
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 1, JANUARY 2023 169

Beyond Single-Deletion Correcting Codes:
Substitutions and Transpositions

Ryan Gabrys , Member, IEEE, Venkatesan Guruswami , Fellow, IEEE, João Ribeiro , and Ke Wu

Abstract— We consider the problem of designing
low-redundancy codes in settings where one must correct
deletions in conjunction with substitutions or adjacent
transpositions; a combination of errors that is usually observed
in DNA-based data storage. One of the most basic versions of
this problem was settled more than 50 years ago by Levenshtein,
who proved that binary Varshamov-Tenengolts codes correct
one arbitrary edit error, i.e., one deletion or one substitution,
with nearly optimal redundancy. However, this approach fails
to extend to many simple and natural variations of the binary
single-edit error setting. In this work, we make progress on
the code design problem above in three such variations: 1) We
construct linear-time encodable and decodable length-n non-
binary codes correcting a single edit error with nearly optimal
redundancy log n + O(log log n), providing an alternative
simpler proof of a result by Cai et al. (IEEE Trans. Inf. Theory
2021). This is achieved by employing what we call weighted
VT sketches, a new notion that may be of independent interest.
2) We show the existence of a binary code correcting one deletion
or one adjacent transposition with nearly optimal redundancy
log n + O(log log n). 3) We construct linear-time encodable
and list-decodable binary codes with list-size 2 for one deletion
and one substitution with redundancy 4 log n + O(log log n).

Manuscript received 18 April 2022; accepted 25 August 2022. Date of
publication 29 August 2022; date of current version 22 December 2022. The
work of Venkatesan Guruswami was supported in part by the NSF under
Grant CCF-1814603 and Grant CCF-2107347. The work of João Ribeiro
was supported in part by the NSF under Grant CCF-1814603 and Grant
CCF-2107347, in part by the NSF under Award 1916939, in part by the
Defense Advanced Research Projects Agency (DARPA) Securing Information
for Encrypted Verification and Evaluation (SIEVE) Program, in part by
the Ripple, in part by the Department of Energy (DoE) National Energy
Technology Laboratory (NETL) Award, in part by the JP Morgan Faculty
Fellowship, in part by the PNC Center for Financial Services Innovation
Award, and in part by the Cylab Seed Funding Award. The work of Ke Wu was
supported in part by a DARPA SIEVE Award, SRI Subcontract under Grant
53978, and in part by the DARPA Prime under Contract HR00110C0086.
An earlier version of this paper was presented at RANDOM 2022
[DOI: 10.4230/LIPIcs.APPROX/RANDOM.2022.8]. (Corresponding author:
João Ribeiro.)

Ryan Gabrys is with the Department of Electrical and Computer Engineer-
ing, University of California, La Jolla, San Diego, CA 92093 USA (e-mail:
ryan.gabrys@gmail.com).

Venkatesan Guruswami is with the Department of Electrical Engi-
neering and Computer Science, University of California, Berkeley,
Berkeley, CA 94720 USA, and also with the Computer Science Depart-
ment, Carnegie Mellon University, Pittsburgh, PA 15213 USA (e-mail:
venkatg@berkeley.edu).

João Ribeiro and Ke Wu are with the Computer Science Depart-
ment, Carnegie Mellon University, Pittsburgh, PA 15213 USA (e-mail:
jlourenc@cs.cmu.edu; kew2@cs.cmu.edu).

Communicated by I. Tamo, Associate Editor At Large for Coding and
Decoding.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TIT.2022.3202856.

Digital Object Identifier 10.1109/TIT.2022.3202856

This matches the Gilbert-Varshamov existential bound up to an
O(log log n) additive term.

Index Terms— Synchronization errors, optimal codes, efficient
encoding/decoding.

I. INTRODUCTION

DELETIONS, substitutions, and transpositions are some
of the most common types of errors jointly affecting

information encoded in DNA-based data storage systems
[1], [2]. Therefore, it is natural to consider models capturing
the interplay between these types of errors, along with the best
possible codes for these settings. More concretely, one usually
seeks to pin down the optimal redundancy required to correct
such errors, and also to design fast encoding and decoding
procedures for low-redundancy codes. It is well-known that
deletions are challenging to handle even in isolation, since
they cause a loss of synchronization between sender and
receiver. The situation where one aims to correct deletions in
conjunction with other reasonable types of errors is even more
difficult. Our understanding of this interplay remains scarce
even in basic settings where only one or two such worst-case
errors may occur.

One of the most fundamental settings where deletions
interact with the other types of errors mentioned above is
that of correcting a single edit error (i.e., a deletion, insertion,
or substitution) over a binary alphabet. In this case, linear-time
encodable and decodable binary codes correcting a single edit
error with nearly optimal redundancy have been known for
more than 50 years. Levenshtein [3] showed that the binary
Varshamov-Tenengolts (VT) code [4] defined as

C =

�
x ∈ {0, 1}n :

n�
i=1

i · xi = a mod (2n + 1)

�
(1)

corrects one arbitrary edit error. For an appropriate choice of a,
this code has redundancy at most log n+2, and it is not hard to
see that at least log n bits of redundancy are required to correct
one edit error. Remarkably, a greedy Gilbert-Varshamov-type
argument only guarantees the existence of single-edit correct-
ing codes with redundancy 2 logn – much higher than what
can be achieved with the VT code. We recommend Sloane’s
excellent survey [5] for a more in-depth overview of binary
VT codes and their connections to combinatorics.

Although the questions of determining the optimal redun-
dancy and giving nearly-optimal explicit constructions of
codes in the binary single-edit setting have been settled long

0018-9448 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on March 10,2023 at 07:57:04 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-9197-3371
https://orcid.org/0000-0001-7926-3396
https://orcid.org/0000-0002-9870-0501

170 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 1, JANUARY 2023

ago, the underlying approach fails to extend to many simple,
natural variations of this setting combining deletions with sub-
stitutions and transpositions. In this work, we make progress
on these questions in three such fundamental variations, which
we proceed to describe next. Although these variations are
quite distinct from each other, we see the goal of this work as
improving our understanding of how deletions and insertions
interact with other fundamentally different types of errors.

A. Non-Binary Single-Edit Correcting Codes

We begin by considering the problem of correcting a single
arbitrary edit error over a non-binary alphabet. This setting is
especially relevant due to its connection to DNA-based data
storage, which requires coding over a 4-ary alphabet. In this
case, the standard VT sketch

f(x) =
n�

i=1

i · xi mod N, (2)

which allows us to correct one binary edit error in (1) with
an appropriate choice of N , is no longer enough. Instead,
we present a natural extension of the binary VT code to a
non-binary alphabet via a new notion of weighted VT sketches,
which yields an order-optimal result.

Theorem 1: There exists a 4-ary1 single-edit correcting code
C ⊆ {0, 1, 2, 3}n with log n + log log n + 7 + o(1) bits of
redundancy, where o(1) → 0 when n → ∞. Moreover, there
exists a single edit-correcting code C ⊆ {0, 1, 2, 3}n with
log n + O(log log n) redundant bits that supports linear-time
encoding and decoding.

This problem was previously considered by Cai, Chee,
Gabrys, Kiah, and Nguyen [6], who proved an analogous
result. Our existential result requires 6 fewer bits of redun-
dancy than the corresponding result from [6], and our explicit
code supports linear time encoding and decoding procedures,
while the explicit code from [6] requires Θ(n log n) time
encoding [7]. However, we believe that our more significant
contribution in this setting is the simpler approach we employ
to prove Theorem 1 via weighted VT sketches. The technique
of weighted VT sketches seems quite natural and powerful
and may be of independent interest.

We note that the existential result in Theorem 1 extends to
arbitrary alphabet size q with log n+Oq(log log n) redundant
bits, but we focus on q = 4 since it is the most interesting
setting and provides the clearest exposition of our techniques.
More details can be found in Section III, where we also present
a more in-depth discussion on why the standard VT sketch (2)
does not suffice in the non-binary case.

B. Binary Codes Correcting One Deletion or
One Adjacent Transposition

As our second contribution, we consider the interplay
between deletions and adjacent transpositions, which map
01 to 10 and vice-versa. An adjacent transposition may be
seen as a special case of a burst of two substitutions. Besides
its relevance to DNA-based storage, the interplay between

1A 4-ary alphabet is relevant for DNA-based data storage.

deletions and transpositions is an interesting follow-up to the
single-edit setting discussed above because the VT sketch is
highly ineffective when dealing with transpositions, while it is
the staple technique for correcting deletions and substitutions.
The issue is that, if y, y′ ∈ {0, 1}n are obtained from
x ∈ {0, 1}n via any two adjacent transpositions of the form
01 �→ 10, then f(y) = f(y′) = f(x)−1, where we recall that
f(z) =

�n
i=1 i·zi mod N is the VT sketch. This implies that

knowing the VT sketch f(x) reveals almost no information
about the adjacent transposition, since correcting an adjacent
transposition is equivalent to finding its location.

In this setting, the best known redundancy lower bound
is log n (the same as for single-deletion correcting codes),
while the the best known existential upper bound is 2 logn,
obtained by naively intersecting a single-deletion correcting
code and a single-transposition correcting code. A code with
redundancy log n + O(1) was claimed in [8, Sec. III], but
the argument there is flawed. In this work, we determine
the optimal redundancy of codes in this setting up to an
O(log log n) additive term via a novel marker-based approach.
More precisely, we prove the following result, more details of
which can be found in Section IV.

Theorem 2: There exists a binary code C ⊆ {0, 1}n

correcting one deletion or one transposition with redundancy
log n + O(log log n).

Since we know that every code that corrects one deletion
also corrects one insertion [3], we also conclude from Theo-
rem 2 that there exists a binary code correcting one deletion,
one insertion, or one transposition with nearly optimal redun-
dancy log n + O(log log n).

C. Binary Codes for One Deletion and One Substitution

To conclude, we make progress on the study of single-
deletion single-substitution correcting codes. Recent work
by Smagloy et al. [9] constructed efficiently encodable and
decodable binary single-deletion single-substitution correcting
codes with redundancy close to 6 log n. On the other hand, it is
known that 2 log n redundant bits are required, and a greedy
approach shows the existence of a single-deletion single-
substitution correcting code with redundancy 4 logn + O(1).

In this setting, we ask what improvements are possible if
we relax the unique decoding requirement slightly and instead
require that the code be list-decodable with list-size 2. There,
our goal is to design a low-redundancy code C ⊆ {0, 1}n such
that for any corrupted string y ∈ {0, 1}n−1∪{0, 1}n there are
at most two codewords x, x′ ∈ C that can be transformed
into y via some combination of at most one deletion and one
substitution. This is the strongest possible requirement after
unique decoding, which corresponds to lists of size 1.

The best known existential upper bound on the optimal
redundancy in the list-decoding setting is still 4 log n + O(1)
via the Gilbert-Varshamov-type greedy algorithm. We give
an explicit list-decodable code with list-size 2 correcting one
deletion and one substitution with redundancy matching the
existential bound up to an O(log log n) additive term. At a
high level, this code is obtained by combining the standard VT
sketch (2) with run-based sketches, which have been recently
used in the design of two-deletion correcting codes [10]. More

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on March 10,2023 at 07:57:04 UTC from IEEE Xplore. Restrictions apply.

GABRYS et al.: BEYOND SINGLE-DELETION CORRECTING CODES: SUBSTITUTIONS AND TRANSPOSITIONS 171

precisely, we have the following result, details of which can
be found in Section V.

Theorem 3: There exists a linear-time encodable and decod-
able binary list-size 2 single-deletion single-substitution cor-
recting code C ⊆ {0, 1}n with 4 logn + O(log log n) bits of
redundancy.

Subsequently to the appearance of our work online [11],
Song et al. [12] constructed a list-decodable code with list-
size 2 for one deletion and one substitution with redundancy
3 logn + O(log log n).

D. Related Work

Recently, there has been a flurry of works making progress
in coding-theoretic questions analogous to the ones we con-
sider here in other extensions of the binary single-edit error
setting.

A line of work culminating in [10], [13], and [14] has suc-
ceeded in constructing explicit low-redundancy codes correct-
ing a constant number of worst-case deletions. Constructions
focused on the two-deletion case have also been given, e.g.,
in [14], [15], and [10]. Explicit binary codes correcting a
sublinear number of edit errors with redundancy optimal up to
a constant factor have also been constructed recently [16], [17].
Other works have considered the related setting where one
wishes to correct a burst of deletions or insertions [18], [19],
[20], or a combination of duplications and edit errors [21].
Following up on [9], codes correcting a combination of more
than one deletion and one substitution were given in [22]
with sub-optimal redundancy. List-decodable codes in set-
tings with indel errors have also been considered before. For
example, Wachter-Zeh [23] and Guruswami et al. [24] study
list-decodability from a linear fraction of deletions and inser-
tions. Some works have also considered probabilistic models
introducing deletions, insertions, and substitutions [25], [26].

Most relevant to our result in Section I-C, Guruswami and
Håstad [10] constructed an explicit list-size two code correct-
ing two deletions with redundancy 3 log n+O(log log n), thus
beating the greedy existential bound in this setting.

With respect to the interplay between deletions and transpo-
sitions, Gabrys et al. [8] constructed codes correcting a single
deletion and many adjacent transpositions. In an incomparable
regime, Schulman and Zuckerman [27], Cheng et al. [28],
and Haeupler and Shahrasbi [29] constructed explicit codes
with good redundancy correcting a linear fraction of deletions
and insertions and a nearly-linear fraction of transpositions.
Adjacent transpositions are sometimes also called bit-shifts or
peak-shifts. Klove [30] constructed perfect codes correcting
deletions/insertions of 0’s in conjunctions with adjacent trans-
positions.

II. PRELIMINARIES

A. Notation and Conventions

We denote sets by uppercase letters such as S and T or
uppercase calligraphic letters such as C, and define [n] =
{1, . . . , n}, [[n]] = {0, 1, . . . , n − 1}, and S≤k =

�k
i=0 Si

for any set S. The symmetric difference between two sets S

and T is denoted by S�T . We use the notation {{a, a, b}} for
multisets, which may contain several copies of each element.
Given two strings x and y over a common alphabet Σ,
we denote their concatenation by x	y and write x[i : j] =
(xi, xi+1, . . . , xj). We say y ∈ Σk is a k-subsequence of
x ∈ Σn if there are k indices 1 ≤ i1 < i2 < · · · < ik ≤ n such
that xij = yj for j = 1, . . . , k, in which case we also call x an
n-supersequence of y. Moreover, we say x[i : j] is an a-run
of x if x[i : j] = aj−i+1 for a symbol a ∈ Σ. We denote the
base-2 logarithm by log. A length-n code C is a subset of Σn

for some alphabet Σ which will be clear from context. In this
work, we are interested in the redundancy of certain codes
(measured in bits), which we define as n log |Σ| − log |C|.

B. Error Models and Codes

Since we will be dealing with three distinct but related
models of worst-case errors, we begin by defining the relevant
standard concepts in a more general way. We may define a
worst-case error model over some alphabet Σ by specifying a
family of error balls B = {B(y) ⊆ Σ∗ : y ∈ Σ∗}. Intuitively,
B(y) contains all strings that can be corrupted into y by
applying an allowed error pattern. We proceed to define unique
decodability of a code C ⊆ Σn with respect to an error model.

Definition 1 (Uniquely Decodable Code): We say a code
C ⊆ Σn is uniquely decodable (with respect to B) if |B(y) ∩
C| ≤ 1 for all y ∈ Σ∗.

Throughout this work the underlying error model will
always be clear from context, so we do not mention it
explicitly. We will also consider list-decodable codes with
small list size in Section V, and so we require the following
more general definition.

Definition 2 (List-size t Decodable Code): We say a code
C ⊆ Σn is list-size t decodable (with respect to B) if |B(y)∩
C| ≤ t for all y ∈ Σ∗.

Note that uniquely decodable codes correspond exactly to
list-size 1 codes. Moreover, we remark that for the error mod-
els considered in this work and constant t, the best existential
bound for list-size t codes coincides with the best existential
bound for uniquely decodable codes up to a constant additive
term.

We proceed to describe the type of errors we consider.
A deletion transforms a string x ∈ Σn into one of its (n− 1)-
subsequences. An insertion transforms a string x ∈ Σn into
one of its (n + 1)-supersequences. A substitution transforms
x ∈ Σn into a string x′ ∈ Σn that differs from x in exactly one
coordinate. An adjacent transposition transforms strings of the
form ab into ba. More formally, a string x ∈ Σn is tranformed
into a string x′ ∈ Σn with the property that x′

k = xk+1 and
x′

k+1 = xk for some k, and x′
i = xi for i �= k, k + 1.

We can now instantiate the above general definitions under
the specific error models considered in this paper. In the
case of a single edit, B(y) contains all strings which can be
transformed into y via at most one deletion, one insertion,
or one substitution. In the case of one deletion and one
substitution, B(y) contains all strings that can be transformed
into y by applying at most one deletion and at most one
substitution. Finally, in the case of one deletion or one adjacent

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on March 10,2023 at 07:57:04 UTC from IEEE Xplore. Restrictions apply.

172 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 1, JANUARY 2023

transposition, B(y) contains all strings that can be transformed
into y by applying either at most one deletion or at most one
transposition.

III. NON-BINARY SINGLE-EDIT CORRECTING CODES

In this section, we describe and analyze the code construc-
tion used to prove Theorem 1. Before we do so, we provide
some intuition behind our approach.

A. The Binary Alphabet Case as a Motivating Example

It is instructive to start off with the binary alphabet case and
the VT code described in (1), which motivates our approach
for non-binary alphabets. More concretely, we may wonder
whether a direct generalization of C to larger alphabets also
corrects a single edit error, such as

C′ =
�

x ∈ [[q]]n
���� �n

i=1 ixi = s mod (1 + 2qn),
|{i : xi = c}| = sc mod 2, c ∈ [[q]]

	
,

where [[q]] = {0, 1, . . . , q − 1}.2 However, this approach fails
already over a ternary alphabet {0, 1, 2}. In fact, C′ cannot
correct worst-case deletions of 1’s because it does not allow
us to distinguish between

. . . 102 . . . and . . . 021 . . . ,

which can be obtained one from the other by deleting and
inserting a 1 in the underlined positions. More generally, there
exist codewords x ∈ C′ with substrings (xj = 1, xj+1, . . . , xk)
not consisting solely of 1’s satisfying

k�
i=j+1

(xi − 1) = 0. (3)

This is problematic since the string x′ obtained by deleting
xj = 1 from x and inserting a 1 between xk and xk+1 is also
in C′.

In order to avoid the problem encountered by C′, we instead
consider a weighted VT sketch of the form

fw(x) =
n�

i=1

i · w(xi) mod N (4)

for some weight function w : [[q]] → Z and an appropriate
modulus N . Using fw instead of the standard VT sketch
f(x) =

�n
i=1 ixi mod N in the argument above causes the

condition (3) for an uncorrectable 1-deletion to be replaced by

k�
i=j+1

(w(xi) − w(1)) = 0.

Then, choosing 0 ≤ w(0) < w(1)
 w(2) < · · · < w(q − 1)
appropriately allows us to correct the deletion of a 1 in x
given knowledge of fw(x) provided that x satisfies a simple
runlength constraint. In turn, encoding an arbitrary message
z into a string x satisfying this constraint can be done very
efficiently via a direct application of the simple runlength

2We note that other generalizations of the VT code to non-binary alphabets
(correcting only one insertion or one deletion) have been considered in the
literature. E.g., see [31].

replacement technique from [18] using few redundant bits.
Theorem 1 is then obtained by instantiating the weighted VT
sketch (4) with an appropriate weight function and modulus.

B. Code Construction

In this section, we present our construction of a 4-ary single-
edit correcting code which leads to Theorem 1. As discussed
in Section III-A, given an arbitrary string x ∈ {0, 1, 2, 3}n we
consider a weighted VT sketch

f(x) = fw(x) =
n�

i=1

i ·w(xi) mod [1 + 2n · (2 log n + 12)],

where w(0) = 0, w(1) = 1, w(2) = 2 logn + 11, and w(3) =
2 logn + 12, along with the count sketches

hc(x) = |{i : xi = c}| mod 2

for c ∈ {0, 1, 2}. Intuitively, the count sketches allow us
to cheaply narrow down exactly what type of deletion or
substitution occurred (but not its position). As we shall prove
later on, successfully correcting the deletion of an a boils down
to ensuring that

k�
i=j

(w(xi) − w(a)) �= 0 (5)

for all 1 ≤ j ≤ k ≤ n such that there is i ∈ [j, k] with
xi �= a. We call strings x that satisfy this property for every a
regular, and proceed to show that enforcing a simple runlength
constraint on x is sufficient to guarantee that it is regular.

Lemma 1: Suppose x ∈ {0, 1, 2, 3}n satisfies the following
property: If x′ denotes the subsequence of x obtained by
deleting all 1’s and 3’s and x′′ denotes the subsequence
obtained by deleting all 0’s and 2’s, it holds that all 0-runs
of x′ and all 3-runs of x′′ have length at most log n + 3.
Then, x is regular.

Proof: First, note that when a = 0, 3 it follows that
(5) holds trivially for all x. Thus, it suffices to consider
a = 1, 2. Fix any x satisfying the property outlined in the
lemma statement and 1 ≤ j ≤ k ≤ n such that there is
i ∈ [j, k] with xi �= 1. The runlength constraint on x′ implies
that there must be at least one 2 in x[j, k] for every consecutive
subsequence of 2�log n + 3� 0’s that appears in x[j, k]. Since
w(0)−w(1) = −1 and w(2)−1 = 2 logn+10 > 2�log n+3�,
it follows that (5) holds. The argument for the case a =
2 is analogous using the fact that w(3) − w(2) = 1 and
w(1) − w(2) = −(2 log n + 10) < −2�logn + 3�.

Let G ⊆ {0, 1, 2, 3}n denote the set of regular strings. Given
the above definitions, we set our code to be

C = G ∩
�

x ∈ {0, 1, 2, 3}n

���� f(x) = s,
hc(x) = sc, c ∈ {0, 1, 2}

	
(6)

for appropriate choices of s ∈ {0, . . . , 1 + 2n · (2 log n +12)}
and sc ∈ {0, 1} for c = 0, 1, 2. A straightforward application
of the probabilistic method shows that most strings are regular.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on March 10,2023 at 07:57:04 UTC from IEEE Xplore. Restrictions apply.

GABRYS et al.: BEYOND SINGLE-DELETION CORRECTING CODES: SUBSTITUTIONS AND TRANSPOSITIONS 173

Lemma 2: Let X be sampled uniformly at random from
{0, 1, 2, 3}n. Then,

Pr[X is regular] ≥ 7/8.

Proof: Let X ′ and X ′′ be the subsequences of X obtained
by deleting all 1’s and 3’s or all 0’s and 2’s, respectively. Then,
the probability that X ′ has a 0-run of length log n+4 starting
at i is 1

16n . By a union bound over the fewer than n choices for
i, it follows that X ′ has at least one such 0-run with probability
at most 1/16. Since the same argument applies to 3-runs in
X ′′, a final union bound over the two events yields the desired
result by Lemma 1.

As a result, by the pigeonhole principle there exist choices
of s, s0, s1, s2 such that

|C| ≥ 7 · 4n

8 · 23 · (1 + 2n · (2 log n + 12))
.

This implies that we can make it so that C has log n +
log log n+6+o(1) bits of redundancy, where o(1) → 0 when
n → ∞, as desired. If n is not a power of two, then taking
ceilings yields at most one extra bit of redundancy for a total
of log n + log log n + 7 + o(1) bits, as claimed.

It remains to show that C corrects a single edit in linear
time and that a standard modification of C admits a linear
time encoder. Observe that if a codeword x ∈ C is corrupted
into a string y by a single edit error, we can tell whether it
was a deletion, insertion, or substitution by computing |y|.
Therefore, we treat each such case separately below.

C. Correcting One Substitution

Suppose that y is obtained from some x ∈ C by changing
an a to a b at position i. Then, we can find |w(a) − w(b)|
by computing ha(y) − ha(x) for a = 0, 1, 2. In particular,
note that we can correctly detect whether no substitution was
introduced, since this happens if and only if ha(y) = ha(x)
for a = 0, 1, 2. It also holds that

f(y) − f(x) = i · (w(b) − w(a)).

Since

|i · (w(b) − w(a))| ≤ n · (2 log n + 12)

<
1 + 2n · (2 logn + 12)

2
,

we can recover the position i by computing

i =
|f(y) − f(x)|
|w(b) − w(a)| .

Note that these steps can be implemented in time O(n).

D. Correcting One Deletion

Suppose that y is obtained from x ∈ C by deleting an a
at position i. First, note that we can find a by computing
hc(y) − hc(x) for c = 0, 1, 2. Now, let y(j) denote the string
obtained by inserting an a to the left of yj (when j = n this

means we insert an a at the end of y). We have x = y(i) and
our goal is to find i. Consider n ≥ j ≥ i and observe that

f(x) − f(y(j)) = f(y(i)) − f(y(j))

=
j�

�=i+1

(w(x�) − w(a)),

because y�−1 = x� for � > i. Since x is regular, it follows
that

�j
�=i+1(w(x�)−w(a)) �= 0 unless xi+1 = · · · = xj = a.

This suggests the following decoding algorithm: Successively
compute f(x) − f(y(j)) for j = n, n − 1, . . . , 1 until f(x) −
f(y(j)) = 0, in which case the above argument ensures that
y(j) = x since we must be inserting a into the same a-run
of x from which an a was deleted. This procedure runs in
overall time O(n), since we can compute f(x) − f(y(j−1))
given f(x) − f(y(j)) with O(1) operations.

E. Correcting One Insertion

The procedure for correcting one insertion is very similar to
that used to correct one deletion.3 We present the argument for
completeness. Suppose y is obtained from x by inserting an
a between xi−1 and xi (when i = 1 or i = n + 1 this means
we insert an a at the beginning or end of x, respectively).
First, observe that we can find a by computing hc(x)− hc(y)
for c = 0, 1, 2. Let y(j) denote the string obtained from y by
deleting yj = a. Then, it holds that y(i) = x and for j ≥ i we
have

f(x) − f(y(j)) = f(y(i)) − f(y(j))

= −
j−2�
�=i

(w(x�) − w(a)),

because y� = x�−1 when j > i. As before, using the fact that
x is regular allows us to conclude that f(x) − f(y(j)) = 0 if
and only if xi = · · · = xj−2 = a, in which case we are
deleting an a from the correct a-run of x. Therefore, we can
correct an insertion of an a in x by successively computing
f(x)−f(y(j)) for all j such that yj = a starting at j = n + 1
and deleting yj for the first j such that f(x) − f(y(j)) = 0,
in which case the argument above ensures that y(j) = x. This
procedure runs in time O(n).

F. A Linear-Time Encoder

In the previous sections we described a linear-time decoder
that corrects a single edit error in regular strings x assuming
knowledge of the weighted VT sketch f(x) and the count
sketches hc(x) for c = 0, 1, 2. It remains to describe a
low-redundancy linear-time encoding procedure for a slightly
modified version of our code C defined in (6). Fix an arbitrary
message z ∈ {0, 1, 2, 3}m. We proceed in two steps:

1) We describe a simple linear-time procedure based on
runlength replacement that encodes z into a regular
string x ∈ {0, 1, 2, 3}m+4;

3It is well known that every code that corrects one deletion also corrects
one insertion [3]. However, this implication does not hold in general if we
require efficient decoding too.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on March 10,2023 at 07:57:04 UTC from IEEE Xplore. Restrictions apply.

174 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 1, JANUARY 2023

2) We append an appropriate encoding of the sketches
f(x)	h0(x)	h1(x)	h2(x) (which we now see as binary
strings) to x that can be recovered even if the final string
is corrupted by an edit error. This adds O(log log n) bits
of redundancy.

We begin by considering the first step. We can encode z into
a regular string x ∈ {0, 1, 2, 3}m+4 by enforcing a runlength
constraint using a simple runlength replacement technique [18,
Appendix B].

Lemma 3: There is a linear-time procedure Enc that given
z ∈ {0, 1, 2, 3}m outputs x = Enc(z) ∈ {0, 1, 2, 3}m+4 with
the following property: If x′ is obtained by deleting all 1’s
and 3’s from x and x′′ is obtained by deleting all 0’s and
2’s, it holds that all 0-runs of x′ and all 3-runs of x′′ have
length at most �log n + 2�. Moreover, there is a linear-time
procedure Dec such that Dec(x) = z. In particular, x is regular
by Lemma 1.

Proof: Let z′ ∈ {0, 2}m′
with m′ ≤ m denote the subse-

quence at positions 1 ≤ i1 < · · · < im′ ≤ m of z obtained
by deleting all 1’s and 3’s, and let z′′ ∈ {0, 1, 2, 3}m−m′

denote the leftover subsequence. We may apply the runlength
replacement technique from [18] to z′ and z′′ separately in
order to obtain strings x′ and x′′ with the desired properties.
For completeness, we describe it below. The final encoding x
is obtained by inserting the symbols of x′ into the positions
i1, . . . , im′ , m + 1, m+ 2 of z and the symbols of x′′ into the
remaining positions.

The encoding of z′ into x′ proceeds as follows: First, append
the string 20 to z′. Then, scan z′ from left to right. If a
0-run of length �log m′ + 2� is found starting at i, then we
remove it from z′ and append the marker bin(i)	22 to z′,
where bin(i) denotes the binary expansion of i (over {0, 2}
instead of {0, 1}) to �log m′� bits. Note that the length of z′

stays the same after each such operation, and the addition of a
marker does not introduce new 0-runs of length �log m′ + 2�.
Repeating this procedure until no more 0-runs of length
�log m′+2� are found yields a string x′ ∈ {0, 2}m′+2 without
0-runs of length �log m′ + 2� ≤ �log m + 2�. This procedure,
along with the transformation from x′ to x, runs in time O(n).
The encoding of z′′ into x′′ ∈ {1, 3}m−m′+2 is analogous with
1 in place of 2 and 3 in place of 0.

It remains to describe how to recover z from x. It suffices to
describe how to recover z′ and z′′ from x′ and x′′, respectively,
in time O(n). By the encoding procedure above, we know that
if x′ ends in a 0 then it follows that z′ = x′[1 : m′ = |x′|−2].
If x′ ends in a 2, it means that x′ has suffix bin(i)	22 for
some i. Then, we recover i from this suffix and insert a
0-run of length �log m′ + 2� in the appropriate position of x′.
We repeat this until x′ ends in a 0. This procedure also runs in
time O(n). The approach for x′′ is analogous and yields z′′.
Finally, we can merge z′ and z′′ correctly to obtain z since
we know that z′ should be inserted into the positions occupied
by x′ in x (disregarding the last two symbols of x′).

To finalize the description of the overall encoding procedure,
let x = Enc(z) and define (Enc, Dec) to be an explicit coding
scheme for strings of length � = |f(x)	h0(x)	h1(x)	h2(x)|
correcting a single edit error (a naive construction has

redundancy 2 log � + O(1) = O(log log m)). If

u = Enc(f(x)	h0(x)	h1(x)	h2(x)),

the final encoding procedure is

z �→ x	u ∈ {0, 1, 2, 3}n,

which runs in time O(m) = O(n) and has overall redundancy
log m + O(log log m) = log n + O(log log n).

Now, suppose y is obtained from x	u by introducing one
edit error. We show how to recover z in time O(n) from y.
First, we can recover u by running Dec on the last |u| − 1,
|u|, or |u|+ 1 symbols of y depending on whether a deletion,
substitution, or insertion occurred, respectively. If the last |u|
symbols of y are not equal to u, we know that the edit error
occurred in that part of y. Therefore, we have x = y[1 : m+4]
and can compute z = Dec(y[1 : m + 4]). Else, if the last |u|
symbols of y are equal to u, it follows that y[1 : |y| − |u|]
can be obtained from x via one edit error. This means we can
recover x from y[1 : |y|−|u|] and in turn compute z = Dec(x).

IV. BINARY CODES CORRECTING ONE DELETION

OR ONE TRANSPOSITION

In this section, we describe and analyze the code construc-
tion used to prove Theorem 2. As discussed in Section I-B,
the adjacent transposition precludes the use of the standard VT
sketch. Therefore, we undertake a radically different approach.

A. Code Construction and High-Level
Overview of Our Approach

Our starting point is a marker-based segmentation approach
considered by Lenz and Polyanskii [19] to correct bursts
of deletions. We then introduce several new ideas. Roughly
speaking, our idea is to partition a string x ∈ {0, 1}n into
consecutive short substrings zx

1 , . . . , zx
� for some � according

to the occurrences of a special marker string in x. Then,
by carefully embedding hashes of each segment zx

i into a
VT-type sketch, adding information about the multiset of
hashes, and exploiting specific structural properties of dele-
tions and adjacent transpositions, we are able to determine a
short interval containing the position where the error occurred.
Once this is done, a standard technique allows us to recover the
true position of the error by slightly increasing the redundancy.

We now describe the code construction in detail. For a given
integer n > 0, let Δ = 50 + 1000 logn and α = 1000Δ2 =
O(log2 n). For the sake of readability, we have made no efforts
to optimize constants, and assume n is a power of two to
avoid using ceilings and floors. Given a string x ∈ {0, 1}n,
we divide it into substrings split according to occurrences of
the marker 0011. To avoid edge cases, assume that x ends in
0011 – this will only add 4 bits to the overall redundancy.
Then, this marker-based segmentation induces a vector zx =
(zx

1 , . . . , zx
�x

), where 1 ≤ �x ≤ n, and each string zx
i has

length at least 4, ends with 0011, and 0011 only occurs once
in each such string. We may assume that |zx

i | ≤ Δ for all i.
This will only add 1 bit to the overall redundancy, as captured
in the following simple lemma.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on March 10,2023 at 07:57:04 UTC from IEEE Xplore. Restrictions apply.

GABRYS et al.: BEYOND SINGLE-DELETION CORRECTING CODES: SUBSTITUTIONS AND TRANSPOSITIONS 175

Lemma 4: Suppose X is uniformly random over {0, 1}n.
Then, we have

Pr[|zX
i | ≤ Δ, i = 1, . . . , �X] ≥ 1

2
.

Proof: Since the probability that a fixed length-4 substring
of X equals 0011 is 1/16, it follows that the probability that
|zX

i | > Δ for any fixed i is at most

15
16

�Δ/4−1

≤ 1
2n3

.

A union bound over all 1 ≤ i ≤ n yields the desired statement.

Our goal now will be to impose constraints on zx so that
(i) We only introduce log n+O(log log n) bits of redundancy,
and (ii) If x is corrupted by a deletion or transposition in zx

i ,
we can then locate a window W ⊆ [n] = {1, . . . , n} of size
|W | = O(log4 n) such that zx

i ⊆ W . This will then allows
us to correct the error later on by adding O(log log n) bits of
redundancy.

Since each zx
i has length at most Δ = O(log n), we will

exploit the fact that there exists a hash function h with
short output that allows us to correct a deletion, substitution,
or transposition in all strings of length at most 3Δ. This is
guaranteed by the following lemma.

Lemma 5: There exists a hash function h : {0, 1}≤3Δ → [α]
with the following property: If z′ is obtained from z by at most
two transpositions, two substitutions, or at most a deletion and
an insertion, then h(z) �= h(z′).

Proof: We can construct such a hash function h greedily.
Let A(z) denote the set of such strings obtained from z ∈
{0, 1}≤3Δ. Since |A(z)| < α, we can set h(z) so that h(z) �=
h(z′) for all z′ ∈ A(z) \ {z}.

With the intuition above and the hash function h guaranteed
by Lemma 5 in mind, we consider the VT-type sketch

f(x) =
�x�

j=1

j(|zx
j | · α + h(zx

j)) mod (L = 10n · Δ · α + 1)

along with the count sketches

g1(x) = �x mod 5,

g2(x) =
n�

i=1

xi mod 3,

where xi =
�i

j=1 xj mod 2. At a high level, the sketch f(x)
is the main tool we use to approximately locate the error in
x. The count sketches g1(x) and g2(x) are added to allow us
to detect how many markers are created or destroyed by the
error, and to distinguish between the cases where there is no
error or a transposition occurs.

With the above in mind, we define the preliminary code

C′ =

⎧⎪⎪⎨⎪⎪⎩x ∈ {0, 1}n

��������
(xn−3, . . . , xn) = (0, 0, 1, 1),
f(x) = s0,
g1(x) = s1, g2(x) = s2,
∀i ∈ [�x] : |zx

i | ≤ Δ

⎫⎪⎪⎬⎪⎪⎭
for appropriate choices of s0, s1, s2. Taking into account
all constraints, the choice of Δ and α, and Lemma 4, the

pigeonhole principle implies that we can choose s0, s1, s2 so
that this code has at most

4+log(10n·Δ·α+1)+1+2+2+1 = log n+O(log log n) (7)

bits of redundancy.
However, it turns out that the constraints imposed in C′ are

not enough to handle a deletion or a transposition. Intuitively,
the reason for this is that, in order to make use of the sketch
f(x) when decoding, we will need additional information both
about the hashes of the segments of x that were affected by the
error and the hashes of the corresponding corrupted segments
in the corrupted string y. Therefore, given a vector zx and the
hash function h guaranteed by Lemma 5, we will be interested
in the associated hash multiset

Hx = {{h(zx
1), . . . , h(zx

�x
)}}

over [α]. As we shall see, a deletion or transposition will
change this multiset by at most 4 elements. Therefore, we will
expurgate C′ so that any pair of remaining codewords x and x′

satisfy either Hx = Hx′ or |Hx�Hx′ | ≥ 10, where � denotes
symmetric difference. This will allow us to recover the true
hash multiset of x from the hash multiset of the corrupted
string. The following lemma shows that this expurgation adds
only an extra O(log m) = O(log log n) bits of redundancy.

Lemma 6: There exists a code C ⊆ C′ of size

|C| ≥ |C′|
α10

such that for any x, x′ ∈ C we either have Hx = Hx′ or
|Hx�Hx′ | ≥ 10.

Proof: Let S be the family of multisets over [α] with
at most n elements. Order the multisets S in S in decreasing
order according to the number N(S) of codewords x ∈ C′ such
that Hx′ = S. The expurgation procedure works iteratively by
considering the surviving multiset S with the largest N(S),
removing all codewords x ∈ C′ associated to S′ ∈ S such that
S′ �= S and |S�S′| < 10, and updating the values N(S) for
S ∈ S. Since there are at most α10 multisets S′ satisfying
the conditions above and N(S) ≥ N(S′) for all such S′,
we are guaranteed to keep at least a 1

α10 -fraction of every
subset of codewords considered in each round of expurgation.
This implies the desired result.

We will take our error-locating code to be the expurgated
code C guaranteed by Lemma 6. By (7) and the choice of
α, it follows that there exists a choice of s0, s1, s2 such that
C has log n + O(log log n) bits of redundancy. We prove the
following result in Section IV-C, which states that, given a
corrupted version of x ∈ C, we can identify a small interval
containing the position where the error occurred.

Theorem 4: If x ∈ C is corrupted into y via one deletion
or transposition, we can recover from y a window W ⊆ [n]
of size |W | ≤ 1010 log4 n that contains the position where the
error occurred (in the case of a transposition, we take the error
location to be the smallest of the two affected indices).

B. Error Correction From Approximate Error Location

In this section, we argue how we can leverage Theo-
rem 4 to correct one deletion or one transposition by adding
O(log log n) bits of redundancy to C, thus proving Theorem 2.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on March 10,2023 at 07:57:04 UTC from IEEE Xplore. Restrictions apply.

176 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 1, JANUARY 2023

Let L = 1010 log4 n. We partition [n] into consecutive dis-
joint intervals B

(1)
1 , B

(1)
2 , . . . , B

(1)
t of length 2L+1. Moreover,

we define a family of shifted intervals B
(2)
1 , . . . , B

(2)
t−1 where

B
(2)
i = [a + L, b + L] if B

(1)
i = [a, b]. For a given string

x ∈ {0, 1}n, let x(1,i) denote its substring corresponding to
B

(1)
i and x(2,i) its substring corresponding to B

(2)
i .

The key property of these families of intervals we exploit
is the fact that the window W of length at most L guaranteed
by Theorem 4 satisfies either W ⊆ B

(1)
i or W ⊆ B

(2)
i for

some i. As a result, we are able to recover x(1,j) (resp. x(2,j))
for all j �= i from y if W ⊆ B

(1)
i (resp. W ⊆ B

(2)
i). Moreover,

we can also recover a string y(i) that is obtained from x(1,i) or
x(2,i) via at most one deletion or one transposition. Therefore,
it suffices to reveal an additional sketch which allows us
to correct a deletion or a transposition in strings of length
2L+1 = O(log4 n) for each interval. Crucially, since we can
already correctly recover all bits of x except for those in the
corrupted interval, we may XOR all these sketches together
and only pay the price of one such sketch. We proceed to
discuss this more concretely.

Suppose �f : {0, 1}2L+1 → {0, 1}� is a sketch with the
following property: If z ∈ {0, 1}2L+1 is transformed into y
via at most one deletion or one transposition, then knowledge
of y and �f(z) is sufficient to recover z uniquely. It is easy to
construct such a sketch with � = O(log L) = O(log log n) [8].
For completeness, we provide an instantiation in Appendix .
Armed with �f , we define the full sketches

�g1(x) =
t�

i=1

�f(x(1,i))

and �g2(x) =
t−1�
i=1

�f(x(2,i))

Note that �gb(x) has length � = O(log log n) for b ∈ {0, 1}.
Then, we take our final code to be�C = {x ∈ C : �g1(x) = s3, �g2(x) = s4}
which has redundancy log n + O(log log n) for some choice
of s3 and s4. To see that �C indeed corrects one deletion or
one transposition, note that, by the discussion above, if the
window W guaranteed by Theorem 4 satisfies W ⊆ B

(1)
i ,

then we can recover �f(x(1,i)) from �g1(x) and y, along with
a string y(i) obtained from x(1,i) by at most one deletion or
one transposition. Then, the properties of �f ensure that we
can uniquely recover x(1,i) from y(i) and the sketch �f(x(1,i)).
The reasoning for when W ⊆ B

(2)
i is analogous. This yields

Theorem 2.

C. Proof of Theorem 4

We prove Theorem 4 in this section, which concludes our
argument. Fix x ∈ C and suppose y is obtained from x via one
deletion or one transposition. We consider several independent
cases based on the fact that a marker cannot overlap with itself,
that we can identify whether a deletion occurred by computing
|y|, and that we can identify whether a transposition occurred
by comparing g2(x) and g2(y).

1) Locating One Deletion: In this section, we show how we
can localize one deletion appropriately. Fix x ∈ C and suppose
that a deletion is applied to zx

i . The following lemma holds
due to the marker structure.

Lemma 7: A deletion either (i) Creates a new marker and
does not delete any existing markers, in which case �y =
�x + 1, (ii) Deletes an existing marker and does not create
any new markers, in which case �y = �x − 1, or (iii) Neither
deletes existing markers nor creates new markers, in which
case �y = �x.

Proof: Without loss of generality, we may assume that
the deletion is applied to the first bit of a 0-run or to the
last bit of a 1-run in x ∈ C. The desired result is implied
by the following three observations: First, if the deletion is
applied to a run of length at least 3, then no marker is created
nor destroyed. Second, if the deletion is applied to a run of
length 2, then a marker may be destroyed, but no marker is
created. Finally, if the deletion is applied to a run of length 1,
then a marker may be created, but no marker is destroyed.

Note that we can distinguish between the cases detailed in
Lemma 7 by comparing g1(x) and g1(y). Thus, we analyze
each case separately:

1) �y = �x: In this case, we have

zy = (zx
1 , . . . , zx

i−1, z
′
i, z

x
i+1, . . . , z

x
�x

), (8)

where z′i is obtained from zx
i by a deletion (in particular,

|z′i| = |zx
i | − 1). Therefore, it holds that

f(x) − f(y) =
�x�

j=1

j(|zx
j | · α + h(zx

j))

−
�y�

j=1

j(|zy
j | · α + h(zy

j)) mod L

= i(|zx
i | · α + h(zx

i) − |z′i| · α − h(z′i))
= i(α + h(zx

i) − h(z′i)),

where the second equality uses (8) and �y = �x. Let
Hy denote the hash multiset of y. Then, we know that
|Hx�Hy| ≤ 2. Therefore, we can recover Hx from Hy ,
which means that we can recover h(zx

i)−h(z′i). Indeed,
if h(zx

i) − h(z′i) = 0 then Hx = Hy. On the other
hand, if h(zx

i) − h(z′i) �= 0 then |Hx�Hy| = 2 and we
recover both h(zx

i) (the element in Hx but not in Hy)
and h(z′i) (the element in Hy but not in Hx). As a result,
we know m + h(zx

i) − h(z′i). Since it also holds that
m + h(zx

i)− h(z′i) �= 0 (because |h(zx
i)− h(z′i)| < m),

we can recover i from f(x)−f(y). This gives a window
W of length at most Δ = O(log n).

2) �y = �x − 1: In this case, the marker at the end of zx
i is

destroyed, merging zx
i and zx

i+1. Observe that if i = �x

then we can simply detect that the last marker in x was
destroyed. Therefore, we assume that i < �x, in which
case we have

zy = (zx
1 , . . . , zx

i−1, z
′
i, z

x
i+2, . . . , z

x
�x

), (9)

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on March 10,2023 at 07:57:04 UTC from IEEE Xplore. Restrictions apply.

GABRYS et al.: BEYOND SINGLE-DELETION CORRECTING CODES: SUBSTITUTIONS AND TRANSPOSITIONS 177

where |z′i| = |zx
i | + |zx

i+1| − 1. Consequently, it holds
that

f(x) − f(y)

=
�x�

j=1

j(|zx
j | · α + h(zx

j))

−
�y�

j=1

j(|zy
j | · α + h(zy

j)) mod L

= i(|zx
i | · α + h(zx

i)) + (i + 1)(|zx
i+1| · α + h(zx

i+1))

− i(|z′i| · α + h(z′i)) +
�x�

j=i+2

(|zx
j | · α + h(zx

j))

=
�x�

j=i+2

(|zx
j | · α + h(zx

j))

+ i(α + h(zx
i) + h(zx

i+1) − h(z′i))
+ (|zx

i+1| · α + h(zx
i+1)).

Note that, since |Hx�H(y)| ≤ 3, we can recover Hx

from Hy . In particular, this means that we know h(zx
i)+

h(zx
i+1)−h(z′i). Therefore, for i′ = �y −1, �y −2, . . . , i

we can compute the “potential function”

Φ(i′) =
�y�

j=i′+1

(|zy
j | · α + h(zy

j))

+ i′(α + h(zx
i) + h(zx

i+1) − h(z′i))

=
�x�

j=i′+2

(|zx
j | · α + h(zx

j))

+ i′(α + h(zx
i) + h(zx

i+1) − h(z′i)).

Note that

|Φ(i) − (f(x) − f(y))| = ||zx
i+1| · α + h(zx

i+1)|
≤ Δ · α + α

≤ 107 log2 n. (10)

Moreover, we also have

Φ(i′ − 1) − Φ(i′) = |zx
i′+1| · α + h(zx

i′+1)
− (α + h(zx

i) + h(zx
i+1) − h(z′i))

≥ 4α − 3α = α. (11)

This suggests the following procedure for recovering the
window W . Sequentially compute Φ(i′) for i′ starting
at �y − 1 until we find i� ≥ i such that |Φ(i′) −
(f(x) − f(y))| ≤ 106 log2 n. This is guaranteed to
exist since i′ = i satisfies this property. We claim that
i� − i ≤ 107 log n. In fact, if this is not the case then
the monotonicity property in (11) implies that

|Φ(i) − (f(x) − f(y))| > α · 107 log n > 107 log2 n,

contradicting (10). Since |zx
j | ≤ Δ for every j, recover-

ing i� also yields a window W ⊆ [n] of size

|W | = 106 log n · Δ = 109 log2 n

containing the error position, as desired.

3) �y = �x + 1: This case is similar to the previous one.
We present it for completeness. The deletion causes the
segment zx

i to be split into two consecutive segments
z′i and z′′i such that |z′i| + |z′′i | = |zx

i | − 1. Therefore,
we have

zy = (zx
1 , . . . , zx

i−1, z
′
i, z

′′
i , zx

i+1, . . . , z
x
�x

). (12)

We may compute

f(x) − f(y)

=
�x�

j=1

j(|zx
j | · α + h(zx

j))

−
�y�

j=1

j(|zy
j | · α + h(zy

j)) mod L

= i(|zx
i | · α + h(zx

i)) − i(|z′i| · α + h(z′i))

− (i + 1)(|z′′i | · α + h(z′′i)) −
�x�

j=i+1

(|zx
j | · α + h(zx

j))

= −
�x�

j=i+1

(|zx
j | · α + h(zx

j))

+ i(α + h(zx
i) − h(z′i) − h(z′′i))

− (|z′′i | · α + h(z′′i)).

As in the previous case, we can recover Hx from Hy ,
and this implies we can also recover h(zx

i) − h(z′i) −
h(z′′i). Therefore, for i′ ≥ i we can compute

Φ(i′) = −
�y�

j=i′+2

(|zy
j | · α + h(zy

j))

+ i′(α + h(zx
i) − h(z′i) − h(z′′i))

= −
�x�

j=i′+1

(|zx
j | · α + h(zx

j))

+ i′(α + h(zx
i) − h(z′i) − h(z′′i)).

Then,

|Φ(i) − (f(x) − f(y))| = ||z′′i | · α + h(z′′i)|
≤ Δ · α + α

≤ 107 log2 n, (13)

since |z′′i | ≤ |zx
i | ≤ Δ. Furthermore, for i′ > i we have

Φ(i′) − Φ(i′ − 1) = |zx
i′ | · α + h(zx

i′)
+ (α + h(zx

i) − h(z′i) − h(z′′i))
≥ 4α − 2α = 2α. (14)

As in the previous case, we can exploit (13) and (14) to
recover an appropriate window W ⊆ [n] of size at most
109 log2 n.

2) Locating One Transposition: In this section, we show
how we can localize one transposition appropriately. Fix x ∈ C
and suppose that a transposition is applied with the left bit in
zx

i (note that the right bit may be in zx
i+1). Then, the following

lemma holds.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on March 10,2023 at 07:57:04 UTC from IEEE Xplore. Restrictions apply.

178 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 1, JANUARY 2023

Lemma 8: A transposition either (i) Creates a new marker
and does not delete any existing markers, in which case �y =
�x +1, (ii) Deletes an existing marker and does not create any
new markers, in which case �y = �x − 1, (iii) Neither deletes
existing markers nor creates new markers, in which case �y =
�x, (iv) Deletes two existing consecutive markers and does
not create any new markers, in which case �y = �x − 2, or
(v) Creates two consecutive new markers but does not delete
any existing markers, in which case �y = �x + 2.

Proof: We obtain the desired statement via case analysis.
If the leftmost bit of the adjacent transposition belongs to
a run of length at least 3 in x, then no marker is created
and at most one marker is destroyed, and likewise for the
case where the leftmost bit belongs to some 0-run of length
2. On the other hand, the leftmost bit belongs to a 1-run of
length 2, then no marker is created, but at most two markers
may be destroyed (consider applying one transposition to the
underlined bits in 00110011). If the leftmost bit belongs to a 0-
run of length 1, then no marker is destroyed and at most two
consecutive markers may be created (consider applying one
transposition to the underlined bits in 00101011). Finally, if the
leftmost bit belongs to a 1-run of length 1, then no marker is
destroyed and at most one marker is created (consider applying
one transposition to the underlined bits in 0101).

As before, we can distinguish between the cases detailed in
Lemma 8 by comparing g1(x) and g1(y). Cases (i), (ii), and
(iii) in Lemma 8 are analogous to the respective cases consid-
ered for a deletion in Section IV-C.1. Therefore, we focus on
cases (iv) and (v).

1) �y = �x: In this case, we have

f(x) − f(y) = i(h(zx
i) − h(z′i)),

and we can recover i by first recovering h(zx
i)−h(z′i) �=

0, which holds because z′i is obtained from zx
i via one

transposition.
2) �y = �x − 1: In this case, we have

f(x) − f(y) =
�x�

j=i+2

(|zx
j | · α + h(zx

j))

+ i(h(zx
i)+h(zx

i+1)−h(z′i))+(|zx
i+1| ·α+h(zx

i+1)),

and we can then use the exact same approach as in Case
(ii) from Section IV-C.1.

3) �y = �x + 1: In this case, we have

f(x) − f(y) = −
�x�

j=i+1

(|zx
j | · α + h(zx

j))

+ i(h(zx
i) − h(z′i) − h(z′′i)) − (|z′′i | · α + h(z′′i)),

and we can then use the exact same approach as in Case
(iii) from Section IV-C.1.

4) �y = �x − 2: In this case, two consecutive markers are
deleted and no new markers are created, so zx

i , zx
i+1, and

zx
i+2 are merged into a corrupted segment z′i satisfying
|z′i| = |zx

i | + |zx
i+1| + |zx

i+2|. In general, we have

zy = (zx
1 , . . . , zx

i−1, z
′
i, z

x
i+3, . . . , z

x
�x

),

and so

f(x) − f(y) =
�x�

j=1

j(|zx
j | · α + h(zx

j))

−
�y�

j=1

j(|zy
j | · α + h(zy

j)) mod L

= 2
�x�

j=i+3

(|zx
j | · α + h(zx

j))

+ i(h(zx
i) + h(zx

i+1) + h(zx
i+2) − h(z′i))

+ (|zx
i+1| · α + h(zx

i+1))
+ 2(|zx

i+2| · α + h(zx
i+2)).

Since |Hx�Hy| ≤ 4, we can recover Hx from Hy ,
which implies that we can recover h(zx

i) + h(zx
i+1) +

h(zx
i+2) − h(z′i). As before, this means that for i′ ≥ i

we can compute the potential function

Φ(i′) = 2
�y�

j=i′+1

(|zy
j | · α + h(zy

j))

+ i′(h(zx
i) + h(zx

i+1) + h(zx
i+2) − h(z′i))

= 2
�x�

j=i′+3

(|zx
j | · α + h(zx

j))

+ i′(h(zx
i) + h(zx

i+1) + h(zx
i+2) − h(z′i)).

Exploiting the fact that

|Φ(i) − (f(x) − f(y))| = (|zx
i+1| · α + h(zx

i+1))
+ 2(|zx

i+2| · α + h(zx
i+2))

≤ 3(Δ · α + α)

≤ 1010 log2 n

and
Φ(i′ − 1) − Φ(i′) ≥ 8m − 3α = 5α,

we can use the approach from Section IV-C.1 to recover
the relevant window W ⊆ [n] of size at most 1010 log3 n
containing the error position in y.

5) �y = �x+2: This case is similar to the previous one. Two
consecutive markers are created and none are deleted,
meaning that zx

i is transformed into two consecutive
corrupted segments z′i, z′′i , and z′′′i . Therefore,

zy = (zx
1 , . . . , zx

i−1, z
′
i, z

′′
i , z′′′i , zx

i+1, . . . , z
x
�x

)

with |zx
i | = |z′i| + |z′′i | + |z′′′i |. We have

f(x) − f(y) =
�x�

j=1

j(|zx
j | · α + h(zx

j))

−
�y�

j=1

j(|zy
j | · α + h(zy

j)) mod L

= −2
�x�

j=i+1

(|zx
j | · α + h(zx

j))+

i(h(zx
i) − h(z′i) − h(z′′i) − h(z′′′i))

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on March 10,2023 at 07:57:04 UTC from IEEE Xplore. Restrictions apply.

GABRYS et al.: BEYOND SINGLE-DELETION CORRECTING CODES: SUBSTITUTIONS AND TRANSPOSITIONS 179

− (|z′′i | · α + h(z′′i))
− 2(|z′′′i | · α + h(z′′′i)).

As above, we can recover Hx from Hy and thus also
recover h(zx

i) − h(z′i) − h(z′′i) − h(z′′′i). Consequently,
for i′ ≥ i we can compute the potential function

Φ(i′) = −2
�y�

j=i′+3

(|zy
j | · α + h(zy

j))

+ i′(h(zx
i) − h(z′i) − h(z′′i) − h(z′′′i))

= −2
�x�

j=i′+1

(|zx
j | · α + h(zx

j))

+ i′(h(zx
i) − h(z′i) − h(z′′i) − h(z′′′i)).

Since

|Φ(i) − (f(x) − f(y))| = (|z′′i | · α + h(z′′i))
+ 2(|z′′′i | · α + h(z′′′i))
≤ 3(Δ · α + α)

≤ 1010 log2 n

and
Φ(i′) − Φ(i′ − 1) ≥ 8m − 3α = 5α,

we can follow the previous approach to recover a win-
dow W ⊆ [n] of size at most 1010 log3 n containing the
error position.

V. BINARY LIST-SIZE TWO CODE FOR ONE

DELETION AND ONE SUBSTITUTION

In this section, we describe and analyze a binary list-size
two decodable code for one deletion and one substitution,
which yields Theorem 3. Departing from the approach of [9],
our construction makes use of run-based sketches combined
with the standard VT sketch. Run-based sketches have thus
far been exploited in the construction of multiple-deletion
correcting codes, including list-decodable codes with small list
size [10].

A. Code Construction

We begin by describing some required concepts: Given a
string x = (x1, . . . , xn) ∈ {0, 1}n, we define its run string
rx by first setting rx

0 = 0 along with x0 = 0 and xn+1 = 1,
and then iteratively computing rx

i = rx
i−1 if xi = xi−1 and

rx
i = rx

i−1 + 1 otherwise for i = 1, . . . , n, n + 1. Note that
every string x is uniquely determined by its run string rx and
vice-versa. Moreover, it holds that rx defines a non-decreasing
sequence and 0 ≤ rx

i ≤ i for every i = 1, . . . , n, n + 1. As an
example, the run string corresponding to x = 011101000 is
rx = 0111234445. We call rx

i the rank of index i in x. We will
denote the total number of runs in x by r(x).

The main component of our code is a combination of the
standard VT sketch

f(x) =
n�

i=1

ixi mod (3n + 1) (15)

with the run-based sketches

f r
1 (x) =

n�
i=1

rx
i mod (12n + 1), (16)

f r
2 (x) =

n�
i=1

rx
i (rx

i − 1) mod (16n2 + 1) (17)

originally considered in [10]. Additionally, we also consider
the count sketches

h(x)=
n�

i=1

xi mod 5 and hr(x) = r(x) mod 13. (18)

Intuitively, the count sketches are used to distinguish different
error patterns. The sketch h(x) is used to determine the value
of the bit deleted and the value of the bit flipped, while hr(x)
is used to identify how the number of runs was affected by
the errors. For each possible error pattern, we use the standard
VT-sketch and the run-based sketches to decode. Given the
above, our code is defined to be

C =
�

x ∈ {0, 1}n

���� f(x) = s, f r
1 (x) = sr

1, f
r
2 (x) = sr

2,
h(x) = u, hr(x) = ur

	
,

(19)

for an appropriate choice of s ∈ [3n + 1], sr
1 ∈ [12n + 1],

sr
2 ∈ [16n2 + 1], u ∈ [5], and ur ∈ [13]. By the pigeonhole

principle, there is such a choice which ensures C has redun-
dancy 4 logn + O(1).

In the remainder of this section, we first provide a high-level
overview of our approach towards showing that C admits
linear-time list-decoding from one deletion and one sub-
stitution with list-size 2. Then, we provide a formal case
analysis. We remark that linear-time decoding and encoding
of a slightly modified version of C (which has redundancy
4 logn + O(log log n) instead) follow without difficulty from
this analysis via standard methods. These algorithms are
presented and analyzed in Sections V-D and V-E.

B. High-Level Overview of Our Approach

Fix x ∈ C, and let y be the string obtained from x after one
deletion at index d and one substitution at index e. We use xe

to denote the bit flipped and xd to denote the bit deleted in x.
When d = e, we have one deletion and no substitution. Our
goal is to recover x from y.

We begin with some simple but useful remarks. First,
we observe that one deletion and no substitution can be
equivalently transformed to one deletion and one substitution.
Thus, we will only consider the case in which we have one
deletion and one substitution, i.e., d �= e. We present a proof
of this fact in Appendix . Second, the following structural
lemma about the number of runs in a corrupted string will
prove useful in our case analysis.

Lemma 9: If x′ is obtained from x via one deletion, then
either r(x′) = r(x) or r(x′) = r(x) − 2. On the other
hand, if x′ is obtained from x via one substitution, then either
r(x′) = r(x), r(x′) = r(x) − 2, or r(x′) = r(x) + 2.

Proof: The desired statement follows by case analysis.
We have r(x′) = r(x)− 2 when x′ is obtained by deleting or

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on March 10,2023 at 07:57:04 UTC from IEEE Xplore. Restrictions apply.

180 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 1, JANUARY 2023

Fig. 1. Example of an elementary move. Suppose that the error pattern indicates that xd = 1, xe = 1, and the deletion does not reduce the number of runs
while the substitution increases the number of runs by two. The process starts with the left figure in which a bit 1 is inserted at position �d, the end of a 1-run
and the bit 1 at position �e− 1 is flipped. After an elementary move, �d moves to the end of the next 1-run, and e moves to the next position that matches the
error pattern yẽ−δ̃+1 = yẽ−δ̃−1 = 0.

flipping a bit in a run of length 1 in x. Otherwise, we have
r(x′) = r(x) when x′ is obtained by deleting a bit in a run
of length at least 2 or by flipping the leftmost or rightmost
bit in a run of length at least 2. In the remaining case where
the flipped bit is in the middle of a run of length at least 3,
we have r(x′) = r(x) + 2.

Combining Lemma 9 with the count sketches h(x) and
hr(x) and knowledge of y ensures that we can identify not
only the values of xd and xe, but also r(x). As a result, this
allows us to split our analysis into several independent cases.

The process of decoding can be thought of as inserting a
bit xd before the d-th bit in y and flipping the (e − δ)-th bit
in y, where δ ∈ {0, 1} is the indicator variable of whether
e > d. Our goal is to find d and e. We will begin with a
candidate position pair (�d, �e) with �d is as small as possible
with the property that, if �x denotes the string obtained from
y by inserting xd before the d-th bit in y and flipping the bit
at position �e − �δ in y, where �δ indicates whether �d < �e, then
f(�x) = f(x), hr(�x) = hr(x), and hr(x′) = hr(�x′), where
x′ (resp. �x′) denotes the string obtained from x (resp. �x) by
deleting xd (resp. �x

�d). We call such pairs valid. Intuitively,
valid pairs are indistinguishable from the true error pattern
(d, e) from the perspective of the VT sketch and the count
sketches, and there may be several of them. However, crucially,
many are ruled out via the run-based sketches. Note that the
true error pattern (d, e) is a valid pair, so such pairs always
exist.

Roughly speaking, our strategy is to start with some valid
pair (�d, �e) and sequentially move to the next valid pair. This
is done by moving �d one index to the right and checking
whether the unique index �e that ensures f(�x) = f(x) forms
a valid pair (�d, �e). If this does not hold, then we move �d one
more index to the right, and repeat the process. We call this an
elementary move. Note that since inserting a bit b into a b-run
at any position gives the same output, we may always move�d to the end of the next xd-run in y (which may be empty).
Figure 1 shows an example of an elementary move.

Considering this step-by-step process with elementary
moves is useful because it turns out to be feasible to track how
the different sketches change in each such move. In particular,
the following equations will be useful to determine how �d and�e change in each elementary move. Recall that we regard y
as a string obtained via one substitution at index e − δ from
x′ ∈ {0, 1}n−1, where x′ is obtained via one deletion from x
at index d. Note that

f(x) − f(x′) = dxd +
n−1�

d

x′
i,

f(x′) − f(y) = (e − δ)[xe − (1 − xe)].

Moreover, we have
�n−1

d x′
i =

�n−1
d yi + δ(2xe − 1).

Combining these three observations yields

f(x) − f(y) = dxd +
n−1�
i=d

yi + e(2xe − 1). (20)

We prove that, during this sequential process, either f r
1 is

monotonic and hence rules out all but one valid pair (�d, �e),
or a convexity-type property of f r

2 , which implies that it takes
on each value at most twice, rules out all but at most two
valid pairs. The convexity of f r

2 (x) is a consequence of the
following lemma.

Lemma 10 ([10, Lemma 4.1]): Let ai and a′
i be two

sequences of non-negative integers such that
�n

i=1 ai =�n
i=1 a′

i and there is a value t such that for all i satisfying
ai < a′

i it holds that a′
i ≤ t, and for all i satisfying

ai > a′
i it holds that a′

i ≥ t. Then, either ai = a′
i for all

i, or
�n

i=1 ai(ai − 1) >
�n

i=1 a′
i(a

′
i − 1).

Finally, we note that, in the high level overview above,
we ignored the fact that we do not have access to the
intermediate string x′, but we need to know hr(x′). For
example, if r(y) = r(x), then there is uncertainty about
hr(x′). In fact, it could be that neither error changes the
number of runs, or that both errors do change the number
of runs but these cancel each other out. Since we are aiming
for list-size 2 decoding, this is not problematic, and we handle
it in the final decoding procedure.

C. Error Correction Properties

We now present a formal case analysis showing that our
code is list-decodable from one deletion and one substitution
with list-size 2. As discussed above, the fact that we can
consider the cases below independently follows from our
choice of count sketches h(x) and hr(x) and Lemma 9.

1) If the Number of Runs Increases by Two: If r(y) =
r(x) + 2, then it must be that r(x) = r(x′) and r(y) =
r(x′) + 2. This means that the deletion does not change
the number of runs (and thus occurred in a run of length
at least 2 in x), while the substitution affects a bit in the
middle of a run of length at least 3. In particular, we have
ye−δ−1 = ye−δ+1 = 1 − ye−δ . In this case, it follows that

f r
1 (x) − f r

1 (x′) = rx
d ,

f r
1 (x′) − f r

1 (y) = −(1 + 2(n − e + δ)).

Therefore, for the run-based sketch f r
1 (x) it holds that

f r
1 (x) − f r

1 (y) = rx
d − (1 + 2(n − e + δ)). (21)

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on March 10,2023 at 07:57:04 UTC from IEEE Xplore. Restrictions apply.

GABRYS et al.: BEYOND SINGLE-DELETION CORRECTING CODES: SUBSTITUTIONS AND TRANSPOSITIONS 181

Fig. 2. An example of a take over step. If the take over happens, it must be that � = 1. The resulting �x1 and �x2 are the same.

We now proceed by case analysis on the value of
xd and xe.

a) If xe = xd = b: In this case, when �d makes an
elementary move to the right, it must pass across a (1 − b)-
run of some length � ≥ 1. According to (20), position �e has
to move to the left by � so that f(�x) = f(x). If we have�d < �e before one elementary move but �d > �e after that move,
we call it a take over step. For each elementary move:

• If the move is not a take over step: Then, r�x
�d

increases by

2 while 2(n− �d+�δ)+1 increases by 2�. Therefore, (21)
implies that f r

1 (�x) strictly decreases after such a move
whenever � > 1. If � = 1, then �e moves by 1 to the left
and f r

1 (�x) remains unchanged. However, since we need
1 − b = y

�e−�δ = 1 − y
�e−�δ it follows that �e cannot move

only 1 position to the left, and so � > 1 necessarily.
• If the move is a take over step: Before the move, �d is

on the left of a (1 − b)-run of length � ≥ 1 while �e > �d
satisfies y

�e−1 = 1 − b and y
�e−2 = y

�e = b. After the
move, �d moves to the right of the (1 − b)-run of length
�, while �e is to the left of �d. Moreover, it must be that
y
�e = 1 − b and y

�e−1 = y
�e+1 = b. To match the error

pattern, the only possible case is that � = 1. To see why
this is the case, note that when � ≥ 2 the index �e has
to move to the left by at least � + 2 to match the error
pattern y

�e−�δ−1 = y
�e−�δ+1 = 1−y

�e−�δ. However, this move
leads to f(�x) �= f(x), and thus does not yield a valid
pair (�d, �e). When � = 1, let (�d1, �e1) and (�d2, �e2) denote
the position pair before and after the move, respectively.
Then, these two pairs yield the same candidate solution�x1 = �x2. See Figure 2 for an example.

Taking into account both cases above, we see that f r
1 (�x)

decreases during each elementary move, and decreases by at
most 2n during the whole process. Since the value of f r

1 (x)
is taken modulo 12n + 1, there is only a unique pair (�d, �e)
that yields a solution such that f r

1 (�x) = f r
1 (x). Hence, f(x)

and f r
1 (x) together with y uniquely determine one valid pair

(�d, �e), which in turn yields a unique candidate solution �x = x.
b) If xd = 1 − xe = b: In this case, when �d makes an

elementary move to the right, it must pass across a (1−b)-run
of some length � ≥ 1. Then, �e has to move to the right by �
so that f(�x) = f(x). During each such move f r

1 (�x) strictly
increases. For the whole process, f r

1 (�x) increases by at most
2n. By a similar argument as above, we have that f(x) and
f r
1 (x) together with y uniquely determine one valid pair (�d, �e)

which yields the correct solution �x = x.
2) If the Number of Runs Decreases by Four: If

r(y) = r(x) − 4, then it must be that r(x′) = r(x) − 2 and
r(y) = r(x′)−2. This means that the error pattern must satisfy
xd−1 = xd+1 = 1−xd and that ye−δ−1 = ye−δ+1 = 1−ye−δ.

In this case, since

f r
1 (x) − f r

1 (x′) = rx
d + 2(n + 1 − d),

f r
1 (x′) − f r

1 (y) = 1 + 2(n − e + δ),

we have that

f r
1 (x)−f r

1 (y)=[rx
d +2(n+1−d)]+[1 + 2(n− e + δ)]. (22)

We now proceed by case analysis on the value of xd and xe.
a) If xd = xe = b: We first find a solution of �d and �e

such that �d is as small as possible. During each elementary
move, let (�d1, �e1) denote the valid pair before the move and
(�d2, �e2) after the move. Let �x1 and �x2 be the resulting string,
respectively. Recall that the rank of an index i in a string x
is the i-th number in the run string rx. For each elementary
move, either f r

1 (x) increases, or it remains unchanged. For
those elementary moves in which f r

1 (x) remains unchanged,
we have the following cases:

• If �d1 < �e1 and �d2 < �e2: Since both the deletion and
the substitution decreases the number of runs by two, for
index i such that �d1 ≤ i ≤ �d2, the rank of index i in �x1 is
larger than the rank of index i in �x2. Similarly, for index
j such that �e2 ≤ j ≤ �e1, the rank of index j in �x1 is
smaller than the rank of index j in �x2. By Lemma 10,
we have that f r

2 (�x1) ≤ f r
2 (�x2). Therefore, if �d < �e before

and after an elementary move, then f r
2 (�x) is strictly

increasing.
• If �d1 > �e1 and �d2 > �e2: For index i such that �e2 ≤

i ≤ �e1, the rank of index i in �x1 is smaller than the
rank of index i in �x2. Similarly, for index j such that�d1 ≤ j ≤ �d2, the rank of index j in �x1 is larger than
the rank of index j in �x2. By Lemma 10, we have that
f r
2 (�x1) ≥ f r

2 (�x2). Therefore, if �d > �e before and after
an elementary move, then f r

2 (�x) is strictly decreasing.

Since when �d moves to the right, �e has to move to the left
accordingly to be a valid pair, we can have at most one take
over step. Moreover, f r

2 (�x) increases by at most 4n2 if �d < �e
before and after the elementary move, and f r

2 (�x) decreases by
at most 4n2 if �d > �e before and after the elementary move.
Since the value of f r

2 (x) is taken modulo 16n2+1, this implies
that we have at most two candidate position solutions (�d1, �e1)
and (�d2, �e2), where �d1 < �e1 and �d2 > �e2 such that f(�x1) =
f(�x2) = f(x) and f r

2 (�x1) = f r
2 (�x2) = f r

2 (x). Hence, f(x),
f r
1 (x), and f r

2 (x) together with y yield at most two candidate
position solutions (�d1, �e1) and (�d2, �e2), and thus at most two
candidate solutions �x1 and �x2.

b) If xd = 1 − xe = b: We first find a valid pair
(�d, �e) such that �d is as small as possible. When �d makes
an elementary move to the right, �e needs to move to the
right such that f(�x) = f(x). During such moves, if �d moves

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on March 10,2023 at 07:57:04 UTC from IEEE Xplore. Restrictions apply.

182 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 1, JANUARY 2023

to the right by �, then r�x
�d

increases by at most �, while
2(n + 1− d) decreases by 2�. Moreover, 2(n− e + δ) is non-
increasing. Therefore, by (22), f r

1 (�x) strictly decreases during
the elementary moves. For the whole process, f r

1 (�x) decreases
by at most 4n. Hence, following a similar argument as above,
f(x) and f r

1 (x) together with y uniquely determine a position
pair (�d, �e), and thus a unique candidate solution �x.

3) If the Number of Runs Decreases by Two: If r(y) =
r(x)−2, it might be that the substitution decreases the number
of runs by two: r(x′) = r(x) and r(y) = r(x′) − 2; or that
the deletion decreases the number of runs by two: r(x′) =
r(x) − 2 and r(y) = r(x′). We will treat these two sub-cases
separately, and we will show that in each of these sub-cases
we can uniquely recover x.

a) Substitution decreases the number of runs by two:
We consider the case in which the substitution decreases the
number of runs by two, i.e., r(x′) = r(x) and r(y) = r(x′)−2.
Since the substitution decreases the number of runs, it must flip
a bit b in a b-run of length one, i.e., ye−δ−1 = ye−δ+1 = ye−δ,
and we also have

f r
1 (x) − f r

1 (y) = rx
d + (1 + 2(n − e + δ)). (23)

We will proceed by case analysis based on the value of
xd and xe.

b) If xd = xe = b: We first find a valid pair (�d, �e) such
that �d is as small as possible. When �d makes an elementary
move to the right, it must pass across a (1 − b)-run of length
� ≥ 1. Henceforth, in this elementary move �e must to move to
the left by � so that f(�x) = f(x), according to (20). During
such moves, r�x

�d
strictly increases, while 2(n − e + δ) is non-

decreasing. As a result, by (23), f r
1 (�x) increases during each

elementary move. For the whole process, f r
1 (x) increases by

at most 2n. Therefore, analogously to previous cases, f(x)
and f r

1 (x) together with y uniquely determine a valid position

pair (�d, �e), and thus a unique candidate solution �x = x.
c) If xd = 1−xe = b: We first find a valid pair (�d, �e) such

that �d is as small as possible. When �d makes an elementary
move to the right, it must pass across a (1 − b)-run of length
� ≥ 1. According to (20), �e needs to move to the right by �
to ensure that f(�x) = f(x).

• If this is not a take over step: Suppose that the valid
pairs are (�d1, �e1) and (�d2, �e2) before and after the move,
respectively. During each such move, the run number r�x

�d

increases by 2 while [1 + 2(n− �e + �δ)] decreases by 2�.
By (23), if � > 1, then f r

1 (�x) decreases; if � = 1, then
f r
1 (�x) does not change.

However, when � = 1, the rank of �d1 and �d1 + 1 in�x1 is smaller than that in �x2, while the rank of �e1 and�e2 in �x1 is larger than that in �x2. By Lemma 10,
f r
2 (�x1) > f r

2 (�x2). This implies that during such ele-
mentary moves, either f r

1 (�x) strictly decreases, or f r
2 (�x)

strictly decreases.
• If this is a take over step: During each such move, the

run number r�x
�d

increases by 2 while [1 + 2(n − �e + �δ)]
decreases by 2� + 2. Therefore, f r

1 (�x) decreases.
During the whole process, f r

1 (x) decreases by at most 2n,
while f r

2 (x) decreases by at most 4n2. Consequently, f(x)

and f r
1 (x) together with y uniquely determine a valid pair

(�d, �e), and thus a unique candidate solution �x = x.
d) Deletion decreases the number of runs by two: In this

section we consider the case in which r(x′) = r(x) − 2 and
r(y) = r(x′). This means that the substitution happens at
the beginning or end of a run. Moreover, the deletion pattern
satisfies xd−1 = xd+1 = 1−xd. Let γ be an indicator variable
such that γ = 1 if the substitution is at the end of a run in y,
and γ = −1 if the substitution is at the beginning of a run in
y. Then we have that

f r
1 (x) − f r

1 (y) = rx
d + 2(n + 1 − d) + γ. (24)

We now proceed by case analysis cased on the value of
xd and xe.

e) If xd = xe = b: We first find a valid pair (�d, �e)
such that �d is as small as possible. There are two kinds of
elementary moves of �d.

• The index �d moves within a (1− b)-run of length at least
two: In this case, when �d moves to the right by �, �e has to
move to the left by � so that f(�x) = f(x). In such a move,
r
�d
�d

does not change, while 2(n + 1− d) decreases by 2�.
According to (24), f r

1 (�x) decreases if � > 1. When � = 1,
if γ changes from −1 to 1, the run-based sketch f r

1 (�x)
remains unchanged by (24). This implies that during this
move, �e moves from the beginning of a b-run in y to the
end of a b-run in y. Otherwise, the substitution will affect
the number of runs. However, �e has to move to the left
by at least two to match the error pattern. Thus, it must
be that � > 1.

• The index �d moves across a b-run of length �: In this
case, �d moves to the right by � + �′ for �′ ≥ 2, �e has
to move to the left by �′ such that f(�x) = f(x). During
such moves, f r

1 (�x) decreases.

For the whole process, f r
1 (x) decreases by at most 2n. There-

fore, f(x) and f r
1 (x), together with y, uniquely determine one

position pair (�d, �e), and thus a unique candidate solution �x.
f) If xd = 1 − xe = b: We first find a valid pair (�d, �e)

such that �d is as small as possible. There are two kinds of
elementary moves of �d.

• The first one is that when �d moves within a (1 − b)-
run of length at least two. In this case, when �d moves
to the right by �, �e has to move to the right by �
such that f(�x) = f(x). During such moves, f r

1 (�x) is
non-increasing. Moreover, f r

1 (�x) only remains unchanged
during such moves if � = 1 and �e moves from the
beginning of a b-run of length two to the end of this
b-run; otherwise the substitution will affect the number
of runs. During such a move, f r

2 (�x) is increasing.

• The second one is that when �d moves cross a b-run of
length �. In this case, �d moves to the right by � + �′ for
some �′ ≥ 2, �e has to move to the right by �′ to match
f(x). During such moves, f r

1 (�x) decreases.

For the whole process, f r
1 (x) decreases by at most 2n, while

f r
2 (x) increases by at most 4n2. Therefore, f(x), f r

1 (x) and
f r
2 (x), together with y, uniquely determine a position pair

(�d, �e), and thus a unique candidate solution �x.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on March 10,2023 at 07:57:04 UTC from IEEE Xplore. Restrictions apply.

GABRYS et al.: BEYOND SINGLE-DELETION CORRECTING CODES: SUBSTITUTIONS AND TRANSPOSITIONS 183

Fig. 3. An example of �x1 = �x2, where �x1 is a candidate solution with γ = 1 while �x2 is a candidate solution with γ = −1.

Fig. 4. An example of �x1 = �x2, where �x1 is a candidate solution with γ = 1 while �x2 is a candidate solution with γ = −1.

4) If the Number of Runs Does Not Change: If r(y) = r(x),
it might be that both errors do not change the number of runs:
r(x′) = r(x) and r(y) = r(x′); or that deletion reduces two
runs while substitution increases two runs: r(x′) = r(x) −
2 and r(y) = r(x′) + 2.

a) Both errors do not change the number of runs: In this
case, let γ be an indicator variable satisfying γ = 1 if the
substitution is at the end of a run in y, and γ = −1 if the
substitution is at the beginning of a run in y. We have

f r
1 (x) − f r

1 (y) = rx
d + γ. (25)

Moreover,

f r
2 (x)−f r

2 (y)=

�
rx
d (rx

d − 1)+2(rx
e −1), if γ = 1,

rx
d (rx

d − 1)−2 rx
e , if γ =−1.

(26)

We now proceed by case analysis cased on the value of
xd and xe.

b) If xd = xe = b: We have at most two solutions, one
with γ = 1 and one with γ = −1. Assume that the pair
(�d1, �e1) corresponding to γ = 1 yields codeword �x1, and that
the pair (�d2, �e2) corresponding to γ = −1 yields codeword�x2. We now show that if f(�x1) = f(�x2), f r

1 (�x1) = f r
1 (�x2),

and that f r
2 (�x1) = f r

2 (�x2), then �x1 must be same as �x2.
Note that since f r

1 (�x1) = f r
1 (�x2)and f r

2 (�x1) = f r
2 (�x2),

by (25) and (26), we have

r�x2
�d2

= r�x1
�d1

+ 2,

r�x1
�d1

(r�x1
�d1

− 1) + 2(r�x1
�e1

− 1) = r�x2
�d2

(r�x2
�d2

− 1) − 2 r�x2
�e2

.

This means that r�x1
�e1

+ r�x2
�e2

= r�x1
�d1

+ r�x2
�d2

, or, equivalently,

ry

�e1−�δ1
+ ry

�e2−�δ2
= ry

�d1−1
+ ry

�d2−1
, (27)

where δ1 (δ2) is the indicator of whether �d1 is smaller than �e1

(�d2 is smaller than �e2, respectively). Since both �d1 and �d2 do
not change the runs, there exists a single (1−b)-run of length �
between �d1 and �d2 in y, and that �e2 − �e1 = �.

• If ry

�e1−�δ1
> ry

�d2−1
: By (27), it must be that ry

�e2−�δ2
<

ry
�d1−1

. That is to say,

�e2 − �δ2 < �d1 − 1 < �d2 − 1 < �e1 − �δ1.

However, this contradicts the fact that �e2 − �e1 = �.

• If ry

�e1−�δ1
= ry

�d2−1
: This is impossible since y

�e1−�δ1
=

1 − b while y
�d2−1 = b.

• If ry

�e1−�δ1
< ry

�d2−1
: By (27) and the fact that f(�x1) =

f(�x2), it must be that ry

�e1−�δ1
= ry

�d1−1
+1, and ry

�e2−�δ2
=

ry
�d2−1

−1, i.e., �e1−�δ1 is the end of the (ry
�d1−1

+1)-th run

in y, and �e2−�δ2 is the beginning of this run. In this case,
we must have �x1 = �x2. See Figure 3 for an example.

Therefore, in this case, f(x), f r
1 (x), and f r

2 (x) together with
y uniquely determine a valid pair (�d, �e) and thus a unique
candidate solution �x = x.

c) If xd = 1−xe = b: We have at most two solutions, one
with γ = 1 and one with γ = −1. Assume that the pair (�d1, �e1)
corresponding to γ = 1 yields codeword �x1, and that the pair
(�d2, �e2) corresponding to γ = −1 yields codeword �x2. By a
similar argument as above, it must be that ry

�e1−�δ1
= ry

�d1−1
,

ry

�e2−�δ2
= ry

�d2−1
. These two position pairs actually yield the

same result �x1 = �x2. See Figure 4 for an example.
Therefore, f(x), f r

1 (x), and f r
2 (x) together with y uniquely

determine a valid pair (�d, �e), and thus a unique candidate
solution �x = x.

d) Deletion reduces the number of runs while the substi-
tution increases the number of runs: In this case, we have

f r
1 (x) − f r

1 (x′) = rx
d + 2(n + 1 − d),

f r
1 (x′) − f r

1 (y) = −1 − 2(n − e).

Therefore,

f r
1 (x) − f r

1 (y) = [rx
d +2(n+1−d)]−[1+2(n−e+δ)]. (28)

We now proceed by case analysis cased on the value of
xd and xe.

e) If xd = xe = b: We first find a valid pair of �d
and �e such that �d is as small as possible. When �d makes
an elementary move to the right, �e has to move to the left to
match f(x). During such moves, r�x

�d
+2(n+1−d) decreases,

while 1 + 2(n − e + δ) is non-decreasing. By (28), f r
1 (�x)

decreases. During this process, f r
1 (x) decreases by at most

4n. By a similar argument as above, f(x), f r
1 (x), together

with y uniquely determine a position pair (�d, �e), and thus a
unique candidate solution �x.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on March 10,2023 at 07:57:04 UTC from IEEE Xplore. Restrictions apply.

184 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 1, JANUARY 2023

f) If xd = 1 − xe = d: We first find a valid pair (�d, �e)
such that �d is as small as possible. When �d moves to the right,�e has to move to the right to make sure than f(�x) = f(x).
During such moves, f r

2 (�d) increases if �e > �d, and decreases
if �e < �d by a similar argument in Section V-C.2. Therefore,
we have at most two solutions, (�d1, �e1) and (�d2, �e2), where�d1 < �e1, �d2 > �e2, such that f(�x1) = f(�x2) = f(x), and
meanwhile, f r

2 (�x1) = f r
2 (�x2) = f r

2 (x). Since f r
2 (x) increases

by at most 4n2 when �e > �d and decreases by at most 4n2 when�e < �d, f(x) and f r
2 (x) together determine at most two possible

position pairs (�d1, �e1) and (�d2, �e2), and thus at most two
candidate solutions �x1 and �x2.

D. A Linear-Time Decoder

We now proceed to describe our decoding procedure for C
based on the case analysis described in Sections V-B and V-C:

1) If |y| = n, i.e., there is no deletion, we use the VT
sketch f(x) to decode directly.

2) If |y| = n − 1, i.e., the error includes one deletion at
some index x and one substitution at index e, we check
hr(x) − hr(y). By comparing h(x) and h(y) we can
also recover the value of xd and xe.

a) If the number of runs increases by two (hr(x) −
hr(y) = −2), the analysis in Section V-C.1 shows
that we can recover a unique candidate solution�x = x that matches all the sketches simultaneously
in linear time.

b) If the number of runs decreases by four (hr(x) −
hr(y) = 4), the analysis in Section V-C.2 implies
we can recover at most two candidate solutions�x1 and �x2 that match all the sketches simultane-
ously in linear time, and we are guaranteed that
x ∈ {�x1, �x2}.

c) If the number of runs increases by two (hr(x) −
hr(y) = 2), the analysis in Section V-C.3 implies
that we can uniquely recover x in linear time if
we know which of the errors (deletion or sub-
stitution) reduced the number of runs by 2. This
property yields a linear time list-size 2 decoder as
follows. We run the decoder for the two different
cases above on y. We are guaranteed that one of
the decoders will behave correctly and output x.
The other decoder may behave arbitrarily, but we
know that if it outputs more than one (possibly
erroneous) candidate string then it is not the correct
decoder, and we can then disregard its output.
Therefore, in the worst case we obtain a list of
size 2 containing x.

d) If the number of runs does not change (hr(x) =
hr(y)), the analysis in Section V-C.2 implies that
we can uniquely recover x in linear time if we
know whether both errors did not affect the number
of runs or whether the deletion reduced the number
of runs by 2 while the substitution increased it by 2.
By an analogous argument to the previous item
where we run both decoders, this property implies

that we can recover a list of size 2 containing x in
linear time.

Therefore, we can list decode from one deletion and one
substitution with a list of size at most two in time O(n).

E. A Linear-Time Encoder

In Sections V-B and V-C we gave a list decoding procedure
that corrects one deletion and at most one substitution given
knowledge of the VT sketch (15), the run-based sketches (16)
and (17), and the count sketches in (18). In this section,
we describe a linear-time encoding procedure for a slightly
modified version of the code C defined in (19) with redundancy
4 logn + O(log log n) which inherits the same list decoding
procedure and properties from Section V-D. This approach is
standard and very similar to Section III-F.

Consider an arbitrary input string x ∈ {0, 1}m for some
fixed message length m. Let (Enc, Dec) denote the efficient
encoding and decoding procedures of a code for messages of
length

� = |f(x)	f r
1 (x)	f r

2 (x)	h(x)	hr(x)|
correcting one deletion and one substitution (here, we repre-
sent the sketches via their binary representations). For exam-
ple, we may take the code from [9], which has redundancy
6 log � + 8 = O(log log m). Let

u = Enc(f(x)	f r
1 (x)	f r

2 (x)	h(x)	hr(x)).

Then, we take final encoding procedure Enc to be

Enc(x) = x	u ∈ {0, 1}n,

which runs in time O(m) = O(n) with overall redundancy
|u| = 4 log n + O(log log n).

We now describe a linear-time decoding procedure. Suppose
that Enc(x) is corrupted into a string y via at most one
deletion and one substitution. First, note that we can recover
u by running Dec on the last |u| − 1 bits of y. Then, using
the linear-time decoding procedure described in Section V-D,
we can recover a list of size at most two containing x from u
(which encodes the necessary sketches) and y′ = y[1 : m−1].
This yields Theorem 3.

VI. OPEN PROBLEMS

Our work leaves open several natural avenues for future
research. We highlight a few of them here:

• Given the effectiveness of weighted VT sketches in
the construction of nearly optimal non-binary single-
edit correcting codes in Section III with fast encoding
and decoding, it would be interesting to find further
applications of this notion.

• The code we designed in Section IV fails to correct
an arbitrary substitution. Roughly speaking, the reason
behind this is that one substitution may simultaneously
destroy and create a marker with a different starting point.
As the clear next step, it would be interesting to show the
existence of a binary code correcting one edit error or one
transposition with redundancy log n + O(log log n).

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on March 10,2023 at 07:57:04 UTC from IEEE Xplore. Restrictions apply.

GABRYS et al.: BEYOND SINGLE-DELETION CORRECTING CODES: SUBSTITUTIONS AND TRANSPOSITIONS 185

Fig. 5. Transforming a single deletion into one deletion and one substitution, when the single deletion does not change the number of runs.

Fig. 6. Transforming a single deletion into one deletion and one substitution, when the single deletion reduces two runs.

• We believe that the code we introduce and analyze in
Section V is actually uniquely decodable under one
deletion and one substitution. Proving this would be
quite interesting, since then we would also have explicit
uniquely decodable single-deletion single-substitution
correcting codes with redundancy matching the existential
bound, analogous to what is known for two-deletion
correcting codes [10].

APPENDIX

In this section, we provide a concrete instantiation of the
sketch �f used in Section IV-B which is implicit in [8]. Let
L′ = 2L + 1. We claim that we may take �f : {0, 1}L′ →
{0, 1}� of the form�f(z) =

bin

�
n�

i=1

izi mod (L′ + 1),
n�

i=1

izi mod (2L′ + 1)

�
,

where bin denotes binary expansion up to �log(2L′ + 1)�
bits and zi =

�i
j=1 zj mod 2. Note that in this case � =

O(log L), as desired.
It remains to see that �f above satisfies the desired property.

Suppose that y is obtained from z ∈ {0, 1}L′
via at most

one deletion or one transposition. Our goal is to show that
we can determine z uniquely from y and �f(z). First, note
that we can detect if a deletion occurred by computing |y|.
If |y| = L′ − 1, then, as shown by Levenshtein [3], we can
use y and the first part of �f(z) to recover z. Else, if |y| =
L′, then we observe that an adjacent transposition in z is
equivalent to a substitution in z. Therefore, as shown as well
by Levenshtein [3], we can use y and the second part of �f(z)
to recover z since there is a unique correspondence between
z and z.

We proceed by case analysis:
• If the single deletion of b in the i-th run does not change

the number of runs, then it is equivalent to one deletion
of 1 − b in the (i − 1)-th run and one substitution at the
beginning of the i-th run. See Figure 5 for an example.

• If the single deletion of b in the i-th run reduces the
number of runs by two, then it is equivalent to one
deletion in the (i − 1)-th run and a substitution in the
i-th run. See Figure 6 for an example.

REFERENCES

[1] S. M. H. T. Yazdi, R. Gabrys, and O. Milenkovic, “Portable and error-
free DNA-based data storage,” Sci. Rep., vol. 7, p. 5011, Jul. 2017.

[2] L. Organick et al., “Random access in large-scale DNA data storage,”
Nature Biotechnol., vol. 36, no. 3, p. 242, 2018.

[3] V. I. Levenshtein, “Binary codes capable of correcting deletions,
insertions, and reversals,” Doklady Akademii Nauk, vol. 163, no. 4,
pp. 845–848, 1965.

[4] R. R. Varshamov and G. M. Tenengolts, “Codes which correct single
asymmetric errors,” Autom. Remote Control, vol. 26, no. 2, pp. 286–290,
1965.

[5] N. J. A. Sloane, “On single-deletion-correcting codes,” 2002,
arXiv math/0207197.

[6] K. Cai, Y. M. Chee, R. Gabrys, H. M. Kiah, and T. T. Nguyen,
“Correcting a single indel/edit for DNA-based data storage: Linear-time
encoders and order-optimality,” IEEE Trans. Inf. Theory, vol. 67, no. 6,
pp. 3438–3451, Jun. 2021.

[7] D. Tan. (2020). Implementation of Single-Edit Correcting Code.
[Online]. Available: https://github.com/dtch1997/single-edit-correcting-
code

[8] R. Gabrys, E. Yaakobi, and O. Milenkovic, “Codes in the Damerau
distance for deletion and adjacent transposition correction,” IEEE Trans.
Inf. Theory, vol. 64, no. 4, pp. 2550–2570, Apr. 2018.

[9] I. Smagloy, L. Welter, A. Wachter-Zeh, and E. Yaakobi, “Single-deletion
single-substitution correcting codes,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Jun. 2020, pp. 775–780.

[10] V. Guruswami and J. Hastad, “Explicit two-deletion codes with redun-
dancy matching the existential bound,” IEEE Trans. Inf. Theory, vol. 67,
no. 10, pp. 6384–6394, Oct. 2021.

[11] R. Gabrys, V. Guruswami, J. Ribeiro, and K. Wu, “Beyond single-
deletion correcting codes: Substitutions and transpositions,” 2021,
arXiv:2112.09971.

[12] W. Song, K. Cai, and T. T. Nguyen, “List-decodable codes for single-
deletion single-substitution with list-size two,” in Proc. IEEE Int. Symp.
Inf. Theory (ISIT), Jun. 2022, pp. 1004–1009.

[13] J. Brakensiek, V. Guruswami, and A. Zbarsky, “Efficient low-redundancy
codes for correcting multiple deletions,” IEEE Trans. Inf. Theory,
vol. 64, no. 5, pp. 3403–3410, May 2018.

[14] J. Sima and J. Bruck, “On optimal k-deletion correcting codes,” IEEE
Trans. Inf. Theory, vol. 67, no. 6, pp. 3360–3375, Jun. 2021.

[15] R. Gabrys and F. Sala, “Codes correcting two deletions,” IEEE Trans.
Inf. Theory, vol. 65, no. 2, pp. 965–974, Feb. 2019.

[16] K. Cheng, Z. Jin, X. Li, and K. Wu, “Deterministic document exchange
protocols, and almost optimal binary codes for edit errors,” in Proc.
IEEE 59th Annu. Symp. Found. Comput. Sci. (FOCS), Oct. 2018,
pp. 200–211.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on March 10,2023 at 07:57:04 UTC from IEEE Xplore. Restrictions apply.

186 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 1, JANUARY 2023

[17] B. Haeupler, “Optimal document exchange and new codes for insertions
and deletions,” in Proc. IEEE 60th Annu. Symp. Found. Comput. Sci.
(FOCS), Nov. 2019, pp. 334–347.

[18] C. Schoeny, A. Wachter-Zeh, R. Gabrys, and E. Yaakobi, “Codes
correcting a burst of deletions or insertions,” IEEE Trans. Inf. Theory,
vol. 63, no. 4, pp. 1971–1985, Apr. 2017.

[19] A. Lenz and N. Polyanskii, “Optimal codes correcting a burst of
deletions of variable length,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Jun. 2020, pp. 757–762.

[20] S. Wang, J. Sima, and F. Farnoud, “Non-binary codes for correcting
a burst of at most 2 deletions,” in Proc. IEEE Int. Symp. Inf. Theory
(ISIT), Jul. 2021, pp. 2804–2809.

[21] Y. Tang and F. Farnoud, “Error-correcting codes for short tandem
duplication and edit errors,” IEEE Trans. Inf. Theory, vol. 68, no. 2,
pp. 871–880, Feb. 2022.

[22] W. Song, N. Polyanskii, K. Cai, and X. He, “On multiple-deletion
multiple-substitution correcting codes,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Jul. 2021, pp. 2655–2660.

[23] A. Wachter-Zeh, “List decoding of insertions and deletions,” IEEE
Trans. Inf. Theory, vol. 64, no. 9, pp. 6297–6304, Sep. 2018.

[24] V. Guruswami, B. Haeupler, and A. Shahrasbi, “Optimally resilient
codes for list-decoding from insertions and deletions,” in Proc. 52nd
Annu. ACM SIGACT Symp. Theory Comput., Jun. 2020, pp. 524–537.

[25] M. C. Davey and D. J. C. MacKay, “Reliable communication over
channels with insertions, deletions, and substitutions,” IEEE Trans. Inf.
Theory, vol. 47, no. 2, pp. 687–698, Feb. 2001.

[26] M. Cheraghchi and J. Ribeiro, “An overview of capacity results for
synchronization channels,” IEEE Trans. Inf. Theory, vol. 67, no. 6,
pp. 3207–3232, Jun. 2021.

[27] L. J. Schulman and D. Zuckerman, “Asymptotically good codes correct-
ing insertions, deletions, and transpositions,” IEEE Trans. Inf. Theory,
vol. 45, no. 7, pp. 2552–2557, Nov. 1999.

[28] K. Cheng, Z. Jin, X. Li, and K. Wu, “Block edit errors with transpo-
sitions: Deterministic document exchange protocols and almost optimal
binary codes,” in Proc. 46th Int. Colloq. Automata, Lang., Program.
(ICALP), C. Baier, I. Chatzigiannakis, P. Flocchini, and S. Leonardi, Eds.
Wadern, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2019, p. 37.

[29] B. Haeupler and A. Shahrasbi, “Synchronization strings: Explicit con-
structions, local decoding, and applications,” in Proc. 50th Annu. ACM
SIGACT Symp. Theory Comput., Jun. 2018, pp. 841–854.

[30] T. Klove, “Codes correcting a single insertion/deletion of a zero or a
single peak-shift,” IEEE Trans. Inf. Theory, vol. 41, no. 1, pp. 279–283,
Jan. 1995.

[31] G. M. Tenengolts, “Nonbinary codes, correcting single deletion or inser-
tion (Corresp.),” IEEE Trans. Inf. Theory, vol. IT-30, no. 5, pp. 766–769,
Sep. 1984.

Ryan Gabrys (Member, IEEE) received the B.S. degree in mathematics and
computer science from the University of Illinois at Urbana–Champaing in
2005, and the Ph.D. degree in electrical engineering from the University
of California, Los Angeles in 2014. He is currently a Scientist jointly
affiliated with the Naval Information Warfare Center and the California
Institute for Telecommunications and Information Technology (Calit2) at the
University of California, San Diego. His research interests include theoretical
computer science and electrical engineering, coding theory, combinatorics,
and communication theory.

Venkatesan Guruswami (Fellow, IEEE) received the bachelor’s degree from
the IIT Madras, Chennai, in 1997, and the Ph.D. degree from MIT in 2001.
He was a Professor of computer science at Carnegie Mellon University.
He is currently a Senior Scientist with the Simons Institute for the Theory of
Computing and a Professor of EECS and mathematics with the University of
California at Berkeley, Berkeley. His research interests include coding theory,
pseudorandomness, approximate optimization, and computational complexity.
He is a fellow of ACM and was a recipient of the Simons Investigator Award,
the Presburger Award, the Packard and Sloan Fellowships, the ACM Doctoral
Dissertation Award, and the IEEE Information Theory Society Paper Award.
He is the President of the Computational Complexity Foundation. He currently
serves as the Editor-in-Chief for the Journal of the ACM.

João Ribeiro received the B.Sc. degree in applied mathematics and computa-
tion from the Instituto Superior Técnico, Lisbon, Portugal, in 2015, the M.Sc.
degree in computer science from the Swiss Federal Institute of Technology
(ETH), Zurich, Switzerland, in 2017, and the Ph.D. degree in computing
from Imperial College London, U.K., in 2021. He is a Post-Doctoral Fellow
with the Computer Science Department of Carnegie Mellon University. His
research interests include coding theory and pseudorandomness along with
their connections to cryptography and other areas of theoretical computer
science.

Ke Wu received the bachelor’s degree in information and computing science
from the School of Mathematical Sciences Department, Fudan University, and
the master’s degree from Johns Hopkins University. She is currently pursuing
the Ph.D. degree with the Computer Science Department of Carnegie Mellon
University, under the supervision of Prof. Elaine Shi. She was a Research
Assistant under the supervision of Prof. Xin Li at Johns Hopkins University.
She works on the intersection of theoretical cryptography, game theory, and
coding theory, as well as related areas in theoretical computer science.

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on March 10,2023 at 07:57:04 UTC from IEEE Xplore. Restrictions apply.

