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Learning Performance Graphs From Demonstrations
via Task-Based Evaluations

Aniruddh G. Puranic

Abstract—In the paradigm of robot learning-from-demonstra
tions (LfD), understanding and evaluating the demonstrated be-
haviors plays a critical role in extracting control policies for robots.
Without this knowledge, a robot may infer incorrect reward func-
tions that lead to undesirable or unsafe control policies. Prior work
has used temporal logic specifications, manually ranked by human
experts based on their importance, to learn reward functions from
imperfect/suboptimal demonstrations. To overcome reliance on
expert rankings, we propose a novel algorithm that learns from
demonstrations, a partial ordering of provided specifications in
the form of a performance graph. Through various experiments,
including simulation of industrial mobile robots, we show that
extracting reward functions with the learned graph results in robot
policies similar to those generated with the manually specified
orderings. We also show in a user study that the learned orderings
match the orderings or rankings by participants for demonstra-
tions in a simulated driving domain. These results show that we
can accurately evaluate demonstrations with respect to provided
task specifications from a small set of imperfect data with minimal
expert input.

Index Terms—Formal methods in robotics and automation,
learning from demonstration, reinforcement learning.

I. INTRODUCTION

N HUMAN-ROBOT interaction, understanding the behav-
I iors exhibited by humans and robots plays a key role in robot
learning, improving task efficiency, collaboration and mutual
trust [1], [2], [3], [4]. Demonstrated behaviors can be evaluated
by specifying a cumulative reward function that assigns behav-
iors a numeric value; the implicit assumption here is that higher
cumulative rewards indicate good behaviors. Such cumulative
rewards are then used with reinforcement learning (RL) to learn
an optimal policy. Poorly-designed reward functions can pose
the serious risk of reward hacking where the agent behavior
maximizing the cumulative reward is undesirable or unsafe [5].
An alternative method is the use of high-level task descriptions
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using logical specifications (rather than manually defined re-
wards), and approaches that use task descriptions expressed in
temporal logic are quite popular in robotics [6], [7], [8], [9], [10].
Of particular relevance to this letter is the use of the specification
language Signal Temporal Logic (STL) [11]. Recent work de-
velops the LfD-STL framework [12], [13]; this framework uses
STL specifications to infer rewards from user-demonstrations
(some of which could be suboptimal or unsafe) and has shown to
outperform inverse reinforcement learning (IRL) methods [14],
[15], [16] in terms of number of demonstrations required and
the quality of rewards learned.

In the LfD-STL framework, STL specifications describe de-
sired objectives, and demonstrations show how to achieve these
objectives. For example, in an autonomous driving scenario,
an STL specification could describe the task “reach the goal
while avoiding obstacles”. STL is equipped with quantitative
semantics that indicate how well the demonstrations performed
on the tasks, which are used to infer rewards. The inferred
rewards guide the robotic agent towards policies that produce
desirable behaviors. Typically, robotic systems are difficult to
characterize using a single specification, and users may thus
seek for policies that satisfy several task specifications. Not all
specifications may be equally important; for example, a hard
safety constraint is more important than a performance objective.
LfD-STL permits users to thus provide several specifications,
but also requires them to manually specify their preferences or
priorities on specifications. These preferences are then encoded
in a directed acyclic graph (DAG) that, in this letter, we call the
performance graph. Based on a given performance graph and the
quantitative semantics of each STL specification, the LfD-STL
framework then defines a state-based reward function that is
used with off-the-shelf RL methods to extract a policy. This
framework offers few crucial advantages: (i) STL allows defin-
ing non-Markovian rewards useful for sequential, patrolling, and
reactive tasks, (ii) applications to high-dimensional, continuous
and stochastic spaces, and (iii) has empirically demonstrated
significant reductions in sample complexity for learning.

A key limitation of the LfD-STL framework is that the onus
on providing the performance graph is on the user, which be-
comes infeasible when there are numerous task specifications.
Moreover, there could exist multiple ways of performing a task
and a challenge in LfD is whom the agent should imitate, i.e.,
disambiguate the demonstrations. We propose solutions to these
problems by using the STL specifications and quantitative se-
mantics to not only evaluate the performance of demonstrations,
but also to use the evaluations to infer the performance graph.
We propose the Performance-Graph Learning (PeGLearn) algo-
rithm that systematically constructs DAGs from demonstrations
and STL evaluations, resulting in a representation that can be
used to explain the performance of provided demonstrations. A
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high-level overview of this algorithm used in conjunction with
prior LfD framework is shown in Fig. 1, which we discuss in
detail in Section III-B.

In complex environments where it is non-trivial to express
tasks in STL, we use human annotations (ratings or scores)
of the data. Examples of complex tasks in human-robot inter-
actions can include descriptions like “tying a knot” or having
“fluency in motion” in robotic surgery, where even experts can
struggle to express the task in formal logic, or specifying the
task formally may not be expressible in a convenient logical
formalism. In our setting, rating scales can replace temporal
logics by (i) choosing queries that assess performance and (ii)
treating the ratings/scores as quantitative assessments'. There
is precedence of such quantitative assessments; for example,
Likert ratings from humans are used as ground-truth measure-
ments of trust [18]. We perform several simulation experiments
in autonomous driving and complex navigation of an industrial
mobile robot (MiR100) to validate our approach. We also discuss
the complexity of PeGLearn and draw comparisons with existing
learning techniques.

II. BACKGROUND

In this section, we provide various definitions and notations
used in our methodology and experiments.

Definition 1 (Demonstration): A demonstration is a finite se-
quence of state-action pairs in an environment that is composed
of a state-space S and action-space A that can be performed by
the agent. Formally, a demonstration £ of finite length L € N
is& = {((s1,a1), (s2,a2),...,(s5,ar)), where s; € S and a; €
A. That is, £ is an element of (S x A)L. We interchangeably
refer to demonstrations as trajectories.

Each environment is governed by tasks or objectives, which
we refer to as specifications or requirements, denoted by . In
this regard, we define a rating function via Definition 2.

Definition 2 (Rating Function): A rating function R is areal-
valued function that maps a specification and a time-series data
or trajectory to a real number, i.e., R : ® x = — R, where, ¢
and = are each infinite sets of specifications and demonstrations,
respectively.

Intuitively, the rating function describes how “well” the spec-
ifications are met (satisfied) by a trajectory. The rating function
can be obtained via the quantitative (robustness) semantics in
temporal logics [19] or human ratings via surveys, annotations,
etc. It indicates the score or signed distance of the time-series
data to the set of temporal data satisfying a specification. For
a given specification ¢ and a demonstration &, the rating (also

"Here we assume that Likert scales are interval scales [17].

referred to as evaluation or score) of ¢ with respect to ¢ is
denoted by p = R(¢p, £). This p is negative if £ violates o, and
non-negative otherwise.

Definition 3 (Directed Acyclic Graph): A directed acyclic
graph or DAG is an ordered pair G = (V, E') where V is a set of
elements called vertices or nodes and F is a set of ordered pairs
of vertices called edges or arcs. An edge e = (u,v) is directed
from a vertex u to another vertex v.

A path z ~» y in G is a set of vertices starting from vertex x
and ending at vertex y by following the directed edges from .
Each vertex v € V is associated with a real number - weight of
the vertex, represented by w(v). Similarly, each edge (u,v) € E
is associated with a real number - weight of the edge and is
represented by w(u, v). Notice the difference in the number of
arguments in the notations of vertex and edge weights. Similar
to prior work [12], [13], we define each node v € V' of some
DAG, G, to represent a task specification.

III. PROBLEM DEFINITION AND METHODOLOGY

A. Problem Formulation

To accomplish a set of tasks, we are given: (i) a finite dataset
of m demonstrations E = {&1,&a,...,&,,} in an environment,
where each demonstration is defined as in Definition 1, (ii)
a finite set of n specifications ® = {¢1, ¢2,...,pn} to ex-
press the high-level tasks and by which a set of scores for
each demonstration evaluated on each of the n specifications
pe = [p1,- .-, pa|]” is obtained. We can then represent this as
anm X n matrix Z where each row ¢ represents a demonstration
and a column j represents a specification. An element p;;
indicates the rating or score of demonstration ¢ for specification

7, 1.e., Pij = R((Pjv 51)

P11 P12 Pin Pg;
P21 pa2 P2n Pe,

Z=1 . ) = (D
Pm1  Pm2 Pmn pg

As in prior work on LfD-STL, we need to compute a cu-
mulative score or rating r¢ for each demonstration to col-
lectively represent its individual specification scores, and so
we have an m x 1 vector r = [r¢,,7¢,, ..., 7, ]7. To obtain
the cumulative scores, we require a scalar quantity or weight
associated with each specification indicating its (relative) pri-
ority/preference/importance over other specifications. We thus
have a weight vector w = [w1, wa, . . ., wm]T from which we
can obtain the cumulative scores as Z - w = r. In other words,
for each demonstration &, r¢ = pe’ - w. The objective is to
compute both w and r, given only Z, such that the “better”
demonstrations have higher cumulative scores than others and
ranked appropriately by the LfD-STL framework, i.e., generate
partial order; this is an unsupervised learning problem. One of
the approaches to computing w proposed in [12], [13] required
the demonstrators to specify their preferences encoded as a DAG
and the weights were computed via (2)?.

w(p) = @] — |ancestor(p)] 2)

2Before robustness values of various temporal logic specifications are com-
bined, they are normalized using tanh or piece-wise linear functions.
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where, ancestor(v) = {u | u ~ v,u € V}, i.e., the ancestors
of a vertex v is the set of all vertices in GG that have a path
to v. However, this is not data-driven as it requires human
inputs to define the weights and is only feasible if the number
of specifications is small. To overcome this, we can rely on
data-driven approaches such as unsupervised learning. In our
experiments, we show how existing methods are inefficient, and
we thus propose a new approach by learning a DAG directly from
demonstrations (i.e., without human inputs) and using (2) to
compute weights for the LfD-STL framework to extract rewards
for RL. The DAG contains the elements of ® as its vertices, and
the relative differences in performance between specifications
as edges. We refer to this as the Performance-Graph since it
captures the performance of the demonstrations w.r.t. the task
specifications. This final graph is required to be acyclic so that
topological sorting can be performed on the graph to obtain an
ordering of the nodes and hence specifications, i.e., topological
ordering does not apply when there are cycles in the graph.

An assumption that we make is that, at least 1 demonstration
satisfies all the specifications of ®, but does not have to be op-
timal (i.e., having the highest rating) w.r.t. those specifications;
we argue that this is a reasonable assumption to make compared
to related LfD works like IRL that require a large sample size of
nearly-optimal (i.e., close to the highest rating) demonstrations
and also to show that the task(s) can be realized, even if subopti-
mally, under the given specifications. The last assumption is that
the demonstrators’ intentions are accurately reflected (in terms
of performance) in the demonstrations provided, therefore we
consider each demonstration equally important when inferring
graphs.

B. Rating-Based Graph

In this section, we describe the procedure to create the
Performance-Graph from ratings or scores obtained either auto-
matically by temporal logics or provided by human annotators.
This process involves 3 main steps:

1) Constructing a local weighted-DAG for each demonstra-

tion based on its individual specification scores.

2) Combining the local graphs into a single weighted di-
rected graph, which is not necessarily acyclic as it can
contain bidirectional edges between nodes.

3) Converting the resultant graph into a weighted DAG.

The framework in Fig. 1 depicts the 3 steps described above
and the final stage where the inferred DAG is fed to the LfD-STL
framework to learn rewards and perform RL.

C. Generating Local Graphs

Each demonstration ¢ € = is associated with a vector of
ratings pg = [p1, ..., p|¢‘]T, and the objective is to construct
a weighted DAG for ¢ from these evaluations. We propose the
novel Algorithm 1, where, initially, the evaluations are sorted
in non-increasing order with ties broken arbitrarily (lines 3-5).
This creates a partial ordering based on the performance of the
demonstrations regarding each specification, and is represented
by a DAG to capture the partial ordering. Though DAGs can
be represented by either adjacency lists or adjacency matrices,
in this work, we represent them using adjacency matrices for
notational convenience.

Consider 4 specifications ¢;;¢ € {1,2,3,4}. Let a demon-
stration, say £ € = have evaluations pg = [p1, p2, p3, pa| and
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Algorithm 1: Algorithm to Compute Local DAG for a Single
Demonstration.
Input: £ := a demonstration of any length L; ® := set
of n specifications; e: threshold (tunable)
Result: Constructs local Performance-Graph G

1 begin

2 Ge¢ < Opxn // zero matrix
3 S+ // Create an empty queue
4 for j =110 n do

5

Obtain the rating or score s; for specification
J; S.nsert((j, s;))

// Resulting S is an n x2 matrix
where each row is (index,score)

6 S’ + sort S in non-increasing order of scores

// original indices are recorded

7 fork=1ton—1do // no self-loops

8 0+ Sk, 1] // get index
9 v S'[k, 2] // get score
10 for j =k+ 1t ndo

1 ¢ <« S'[4,1]

12 v+ 55, 2]

13 if (v —1') > € then

14 | Gelo,¢'] « Gelp, @] +v =0

15 return G¢

without loss of generality, let them already be sorted in non-
increasing values, i.e., p; > p;;Vi < j. This sorting is per-
formed in the first for loop of Algorithm 1. Recall that each
node of the DAG represents a specification of ®, i.e., a node
contains the index of the specification it represents. An edge
between two nodes ¢; and ; is created when the difference
between their corresponding evaluations is greater than a small
threshold value (lines 6-14). This edge represents the relative
rating or performance difference between the specifications and
creates a partial order indicating this difference. The threshold e
acts as a high-pass filter and can be tuned depending on the nor-
malization of ratings. The intuition is that demonstrations having
similar states or features will have similar evaluations for the
specifications, and should produce the same partial ordering of
specifications. That is, an edge is created if the evaluations differ
greatly, e.g., two specifications producing ratings say, 1.0 and
0.99, are numerically different, but have similar performance,
so they should be equally ranked (have no edge between them).
Without this filter, an edge with a very small weight would
be created between them, thereby inadvertently distinguish-
ing similar performances. Formally, e(p;, ;) is added when
8ij = (p(wi) — p(pj)) > €3 We repeat this process for each
node in the DAG (Fig. 2) and the resultant DAG will have at most
n(n — 1)/2 edges, where n = |®|. The local graph is acyclic,
because the nodes are sorted by their respective evaluations in
a non-increasing order and hence edges with negative weights
will not be added thereby eliminating any bidirectional edges.
The DAG for a demonstration imposes a partial order over all

3The demonstration £ argument in p was dropped for convenience since we
are only considering 1 demonstration at a time.
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Fig. 2. Example local graph for a demonstration.

specifications. For any 2 specifications ; and ¢;, @; = @; if
p(wi) > p(p;) and so, an edge is created from ¢; to ¢; with
weight p(p;) — p(¢;) subject to the threshold e.

Complexity Analysis: In general, given n specifications and
a set of algebraic operators (e.g., op = {>,=}), the number
of different orderings is: n!- [lop|” ! — 1] + 1. In our case,
|op| = 2 since the operator < in an ordering is equivalent to
a permutation of the ordering using >, i.e.,a < b =b > a. By
making use of directed graphs, we can eliminate the factorial
component (refer to our supplemental document [ 19] for proofs),
but this still results in an exponential-time search algorithm. To
overcome this, in our algorithm, we eliminate cycles by building
a DAG for each of the m demonstrations. Depending on the data
structure used, the complexity of building a DAG is linear when
using adjacency lists and quadratic when using adjacency matrix
to represent the graph. The total complexity is thus O(mn?) in
the worst case (using matrix representation).

D. Aggregation of Local Graphs

Once the [ocal graphs for each demonstration have been
generated, they need to be combined into a single DAG to be used
directly in the LfD-STL framework [12], [13]. We now propose
Algorithm 2 to aggregate all local graphs into a single DAG.
Line 2 generates the local graphs via Algorithm 1 and stores
them in a dataset G. For every directed edge between any pairs of
vertices u and v, the mean of the weights on corresponding edges
across all graphs in G is computed (line 3 of Algorithm 2). For
example, consider the local graphs of 2 sample demonstrations
shown in Fig. 3. By averaging the edge weights of the graphs of
the 2 demonstrations, we get the intermediate weighted directed
graph shown in Fig. 3(b). This is not necessarily acyclic since
there is a cycle between the nodes of (1 and 5. In this figure,
each wj; = (w}; +w7;)/2. This intermediate graph needs to
be further reduced to a welghted DAG, i.e., by eliminating any
cycles/loops.

E. Conversion/Reduction to Weighted DAG

Note that there can only be at most 2 edges between any pair
of vertices since the outgoing (and similarly, incoming) edges
are averaged into a single edge. In order to reduce this graph
to a global DAG, we systematically eliminate edges by first
computing the difference between the outgoing and incoming
edge and then checking if it is above a certain threshold to add
an edge in the direction of positive difference (note that if the
difference is negative, the edge can be simply reversed). In other
words, for any 2 nodes, u and v, if (w(u,v) —w(v,u)) > e,
then e(u,v) is retained with new weight w(u,v) — w(v,u),
while e(v,u) is removed or discarded since it gets absorbed
by the retained edge. The threshold e again acts as a high-pass

(c) Interim Graph (d) Final DAG

Fig. 3. Example global graph from 2 demonstrations.

Algorithm 2: PeGLearn: Generating the Global DAG From
All Demonstrations.
Input: D := set of m demonstrations; ® := set of n
specifications; e: threshold (tunable)
Result: Constructs global Performance-Graph

1 begin
2 G+ UL Gi // via algorithm 1
3 G« ﬁ ZGEQG // Edge-wise mean

// Extracts edge-weighted DAG from
the raw Performance-Graph
G < Opxn // zero matrix
for i =1 ton do
for =11t n do
G['Lv]] — mam(O, G/[Zvj] - Gl[jv 7’])
L if G[i,j] < € then GJ[i, j] + 0

e 9 & v A

return G

o

filter. As we can observe in the case of bidirectional edges,
one of the edges will be “consumed” by the other or both will
be discarded if they are similar. This conversion procedure is
shown by lines 5-8 in Algorithm 2. Thus, all cycles/loops are
eliminated, resulting in a weighted DAG that can be directly
used to rank the demonstrations and compute rewards for RL
tasks as performed in the LfD-STL framework. To show that
our DAG-learning method indeed preserves the performance
ranking over demonstrations, we first define a partial ordering
over demonstrations: for any 2 demonstrations &; and &5, the par-
tial order &; < & is defined when p1; < pg;, Vi € {1,...,n}.
Thus, we say that &, is better or at least as good as &;. Then, by
making use of Lemma 1, we arrive at Theorem 1 that addresses
the problem definition (all proofs are in [19]).

Lemma 1: For a DAG, the weights associated with the nodes
computed via (2) are non-negative.

Theorem 1: For any two demonstrations &; and &5 in an envi-
ronment, the partial ordering &; =< &5 is preserved by PeGLearn.
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Fig. 4. Results for the 2-D autonomous driving simulator. Baseline rewards are from user-defined DAG.
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Fig. 5. Results for the MiR100 navigation environment.

The global DAG imposes a partial order of specifications.
For any 2 specifications ¢; and ;, the partial order ¢; = ; is
defined when p(y;) > p(yp;), where p(¢) is the mean of p(¢)
across all demonstrations. The global graph thus uses a holistic
approach to explain the overall performance of demonstrations
and could provide an intuitive representation for non-expert
users to teach agents to do tasks as well as understand the policies
the agent is learning.

IV. EXPERIMENTS

A. Comparison With Baseline

For comparison with user-defined DAG in the LfD-STL
baseline [12], [13], we evaluated our method on the same
discrete-world and 2D autonomous driving domains using the
same demonstrations (m = 8) and specifications. We show the
results for the 2D driving scenario in Fig. 4. The STL speci-
fications correspond to (i) reaching the goal ¢y, (ii) avoiding
the hindrance/obstacle regions g, (iii) always staying within
the workspace region s, and (iv) reaching the goal as fast as
possible 4. This resembles a real-world scenario wherein, one
of the challenging problems in autonomous driving is overtaking
moving or stationary/parked vehicles on road-sides (e.g., urban
and residential driving). The scenario presented here is a high-
level abstraction where the purple square is a parked car and the
yellow square is the goal state of the ego car after overtaking the
parked car. The light-yellow shaded region are the dimensions of
the road/lane and the task for the ego car is to navigate around the
parked car to the goal state without exiting the lane. From these
figures, we can observe that the rewards using the inferred DAG
are consistent with the specifications, i.e., rewards are aligned
with entity locations. In the discrete-world settings, we were able
to learn similar graphs and rewards, and hence same policies as
the baseline. This shows that our proposed method is a significant
improvement over the prior work since it eliminates the burden

Euclidean distance to goal (m) Euclidean distance to goal (m)

Y coordinate (m)

Y coordinate (m)
Lo

% 2 a 5 -6

. T 3
X coordinate (m)

R i
X coordinate (m)

(d) PeGLearn rewards

3

(c) Expert rewards

of the user to define graphs, while also using at least 4 times
fewer demonstrations than IRL-based methods [14], [20].

B. Industrial Mobile Robot Navigation

In this setup, we consider a high-fidelity simulator [21] based
on the mobile robot MiR100 that is widely used in today’s
industries*. In this environment, the robot is tasked with nav-
igating to a goal location while avoiding 3 obstacles (Fig. 5).
However, the locations of the robot, goal and 3 obstacles are
randomly initialized for every episode. This presents a major
challenge for LfD algorithms since the demonstrations collected
on this environment are unique to a particular configuration
of the entity locations (i.e., no two demonstrations are the
same). The 20-dimensional state-space of the robot, indexed by
timestep ¢ consists of the position of the goal in the robot’s frame
in polar coordinates (radial distance p; and orientation 6;), linear
(vy) and angular (w;) velocities, and 16 readings from the robot’s
Lidar for detecting obstacles (z%,i € [1,16]). We obtained 30
demonstrations, of which 15 were incomplete (i.e., collided with
obstacle or failed to reach the goal in time) by training an RL
agent on an expert reward function and recording trajectories
at different training intervals. The specifications governing this
environment are:

1) Eventually reach the goal: ¢, = F(p, < 0), where 0 is

a small threshold set by the environment to determine if
the robot is sufficiently close to the goal to terminate the
episode.

2) Always maintain linear and angular velocity lim-

its: Po = G(vmin < Ut < Umax)s and Pw = G(wmin <
Wi < Wax ). The limits conform to the robot’s capabili-
ties.

“4This letter is accompanied by a multimedia (video) for the experiments.
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3) Always avoid obstacles: ¢, = G(A!2, (x} > 0)), where

x! is the distance from an obstacle as measured by Lidar
i.

4) Reach the goal in a reasonable time: o = F (T <
t < Tinax), Where the time limits are obtained from the
average lengths of good demonstrations observed in this
environment.

Once the graph is extracted via PeGLearn, the rewards are
propagated to the observed states and modeled with a neural
network via the method described in [13]. We used a 2-hidden
layer neural network with 512 nodes in each layer for reward
approximation. The DAG and rewards inferred are shown in
Fig. 5. We can observe that the rewards are semantically con-
sistent with the specifications, in that, rewards increase as the
robot moves towards the goal (center of figure) in a radial
manner. To compare the policies learned with our method and
expert-designed dense rewards, we independently trained two
RL agents via: (i) PPO (on-policy, stochastic actions) [22]
and (ii) D4PG (off-policy, deterministic actions) [23], on each
of the reward functions and evaluated the policies over 100
trials.

Despite being presented with only 50% successful demonstra-
tions, our method achieved a success rate of (i) 79% compared
to 81% for expert rewards when using PPO, with 29% improve-
ment over demonstrations, and (ii) 90% compared to 93% for
expert rewards when using D4PG, with 40% improvement over
demonstrations. This indicates that our method is capable of
producing expert-like behaviors. Furthermore, this particular
environment [21] has shown to be readily transferable to real-
robots without any modifications (i.e., the sim2real transfer gap
is almost nil), which also indicates the real-world applicability
of our framework.

C. CARLA Driving Simulator

We evaluated our method on a realistic driving simulator,
CARLA [24], on highway and urban driving scenarios. A
demonstrator controls the (ego) car via an analog controller. The
states of the car provided by the environment are: lateral distance
and heading error between the ego vehicle to the target lane
center line (in meter and rad), ego vehicle’s speed (in me-
ters per second), and (Boolean) indicator of whether
there is a front vehicle within a safety margin. Based on this
information, we formulated 3 STL specifications that are similar
to the 2D driving and mobile navigation experiments, which
informally, correspond to (i) keeping close to the lane center
1, (i1) maintaining speed limits (o and (iii) maintaining safe
distance to any lead vehicle ¢3; formal definitions are provided
in [19]. For this scenario, we recorded 15 demonstrations from
one of the authors of this letter via an analog steering and pedal
controller. These 15 videos were split uniformly across 3 batches
where, the 5 videos in each batch showed a common behavior,
but the behaviors were different across the batches. All videos
were exclusive to their respective batches, i.e., no video was
used in more than 1 batch, and each video was 30 seconds long
on average.

User Study: The recorded driving videos were used to perform
auser study to determine if users would rate the driving behavior
similarly, thereby providing evidence that the graphs generated
using PeGLearn produce accurate ranking of specifications?.
Using the Amazon Mechanical Turk (AMT) platform, we cre-
ated a survey of the 3 batches representing the split of the 15

videos. Each participant of a batch was shown the corresponding
5 driving videos and was tasked with providing Likert ratings
for: (i) performance of demonstrator on each of the 3 task speci-
fications described in natural language and (ii) ranking of spec-
ifications based on overall driving behaviors. We recruited 146
human participants via AMT service, each with an approval rat-
ing over 98%. The average driving experience of the participants
was 22.4 years. This user study was approved by the University
of Southern California Institution Review Board on January 10,
2022. Additional information about this survey and participant
demographics are provided in the supplemental document [19].
The goal of this study was to first ensure that the PeGLearn
orderings were similar to expert orderings and not a random
coincidence. The total number of possible orderings for the 3
specifications is 27 (= 33), so for each video and participant,
we also generated an ordering randomly and uniformly chosen
from the space of 27 orderings. Based on this, we formulate the
hypothesis as:

Hypothesis 1: The similarity between human expert and Pe-
GLearn orderings is significantly higher than that of a random
ordering.

Secondly, we wanted to investigate the similarity between
existing clustering techniques such as K-Means [25], [26] and
our algorithm, with expert rankings. The problem of finding
weights for specifications resembles anomaly detection where
the bad demonstrations are outliers and methods such as cluster-
ing, classification or combination of both can be employed [27].
Additionally, the weights for specifications that we seek to learn,
indicate the importance of the specifications, which is analogous
to importance/rank of features in classification tasks [28]. Hence,
we use K-Means combined with SVM [25], [26] for comparison
purposes, which we now refer to as Km+SVM. Clustering is first
employed to extract the clusters of demonstrations based on their
corresponding ratings. Note that the set of demonstrations can
contain all good (ones with positive ratings for all specifications),
all bad (ones with negative ratings for any specification) or a
mixture of both these types. Based on the inertia of the k-means
clustering for this data, we found that k = 2 was optimal for each
batch and provided the best fit. Then, SVM was used to classify
the cluster centroids and extract the weights. The magnitude
of the weights indicate the relative importance/ranking of each
feature (specification) [28]. So we ranked the weights to compare
with PeGLearn rankings. Therefore, we formulate our second
hypothesis as follows:

Hypothesis 2: The similarity between human expert and
PeGLearn orderings is significantly higher than that of K-
means+SVM.

Analysis: We first obtain the ratings and hence specification-
orderings from all sources: participants, PeGLearn, Km+SVM
and uniform-random algorithm. We then compute the Hamming
distance [29] between the human expert orderings and orderings
from (i) PeGLearn, (ii)) Km+SVM, and (iii) uniform-random.
The reason being that the Hamming distance between any two
sequences of equal lengths measures the number of element-
wise disagreements or mismatches, and hence gives an estimate
of how close any two orderings are. The distance is a value
in [0, 1] with O representing same sequences and 1| indicating
completely different sequences. To perform statistical analysis,
we introduce a few notations for convenience, as follows: (i) PH
for PeGLearn—-human Hamming distance or error, (ii) KH for
Km+SVM-human Hamming error, and (iii) RH for uniform-
random-human Hamming error. We concatenate these errors
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under the name “Score” for analysis purposes. Note that lower
the Hamming distance or “Score,” the more similar are the two
orderings. A two-way ANOVA was conducted to examine the
effects of agent type (i.e., {PH, KH, RH}) and batch number (i.e.,
{1, 2, 3}) on the “Score”. There was no statistically significant
interaction between agent type and batch number for “Score,”
F(4,429) = 1.605,p = .172, partial n> = .015. Therefore, an
analysis of the main effect of agent type was performed, which
indicated there was a statistically significant main effect of agent
type, F'(2,429) = 34.558, p < .001, partial n* = .139. All pair-
wise comparisons were run, where reported 95% confidence
intervals and p-values are Bonferroni-adjusted. The marginal
means for “Score” were. 475 (SE =. 022) for PH,. 724 (SE =.
022) for KH and. 660 (SE =. 022) for RH. The “Score” means
between RH and PH were found to be statistically significant
p < .001, showing support for H1. Similarly, the “Score” means
for PH and KH were statistically significant p < .001 and the
mean for KH was higher than PH, supporting H2. Lastly, there
was no statistically significant main effect of batch number on
“Score,” F(2,429) = .172,p = .842, partial n*> = .001.

Comparison with Km+SVM: K-means typically has a com-
plexity of O(mknt) where m is the number of data points (i.e.,
demonstrations), k is the number of components/clusters, n is
the dimension of data (i.e., number of specifications) and ¢ is the
number of iterations. Linear SVM follows linear complexity in
m and so the combination of Km+SVM is still O(méknt). Since
there are k = 2 components in our formulation, the k is treated
as a constant and the complexity is just O(mnt). Our algorithm
on the other hand has a complexity of O(mn?) when using
matrices to represent graphs. This shows that our algorithm not
only performs better than clustering methods, but is also more
efficient because generally, the number of specifications is much
smaller than the number of iterations to converge (n < t). All the
experiments and results show that our method can not only learn
accurate rewards similar to the way humans perceive them, but it
does so with a limited number of even imperfect data. Similarly,
we also performed experiments on a real-world surgical robot
dataset, JIGSAWS, to demonstrate how human Likert ratings
can be used to learn DAGs [19]. Additionally, together with
the LfD-STL framework, we are able to learn temporal-based
rewards, even in continuous and high-dimensional spaces with
just a handful of demonstrations.

V. RELATED WORK

Learning-from-demonstrations (LfD) has been extensively
explored to obtain control policies for robots [30], [31] using
methods such as behavioral cloning [32] and inverse reinforce-
ment learning (IRL) [20], [33], [34].

Aside from our prior works, there have been many other
methods involving temporal logics with demonstrations. A
counterexample-guided approach using probabilistic compu-
tation tree logics for safety-aware apprenticeship learning is
proposed in [35], which makes use of DAGs to search for
counterexamples. The authors in [36] utilize model-predictive
control to design a controller that imitates demonstrators while
deciding the trade-offs among STL rules. Similar to our prior
works, they assume that the priorities or ordering among the
STL specifications are provided beforehand. An active learning
approach has been explored in [37], in which the rewards are
learned by augmenting the state space of a Markov Decision
Process (MDP) with an automaton, represented by directed
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graphs. An alternative approach to characterize the expressivity
of Markovian rewards has been proposed in [38], which could
provide interpretations for rewards in terms of task descrip-
tions. However, our LfD-STL framework offers several critical
advantages over IRL and the methods of [38], such as: em-
ploying non-Markovian rewards via task-based temporal logics
and empirically having a significant reduction in sample and
computation complexity. Additionally, the methods in [38] have
been explored for deterministic systems, while LfD-STL can
also generalize to stochastic dynamics and continuous spaces as
seen in our experiments.

Causal influence diagrams of MDPs via DAGs for explainable
online-RL have been recently investigated [39]. Another related
work by the authors of [40] make use of causal models to extract
causal explanations of the behavior of model-free RL agents.
They represent action influence models via DAGs in which the
nodes are random variables representing the agent’s world and
edges correspond to the actions. These works are mainly focused
on explainability in forward RL (i.e., when rewards are already
known), while our method is mainly focused on generating
intuitive representations of behaviors and rewards to be used
later in forward RL.

In the area of reward explanations for RL tasks, the method
proposed in [41] decomposes rewards into several components,
based on which, the RL agent’s action preferences can be ex-
plained and can help in finding bugs in rewards. Another work
pertaining to IRL [42] uses expert-scored trajectories to learn
a reward function. This work, which builds on standard IRL,
typically relies on a large dataset containing several hundreds of
nearly-optimal demonstrations and hence generating scores for
each of them. By Theorem 1, our method can also overcome any
rank-conflicts arising out of myopic trajectory preferences [43].
The authors in [4] have investigated the reward-explanation
problem in the context of human-robot teams wherein the
robot, via interactions, learns the reward that is known to the
human. They propose 2 categories of reward explanations: (i)
feature-space: where rewards are explained through individ-
ual features comprising the reward function and their relative
weights, and (ii) policy-space: where demonstrations of actions
under a reward function are used to explain the rewards. Our
work can be regarded as a combination of these categories since
it uses specifications as features along with inferred weights,
and demonstrations.

VI. CONCLUSION

In this letter, we proposed a novel algorithm, PeGLearn, to
capture the performance and provide intuitive holistic represen-
tations of demonstrations in the form of graphs. We showed,
through challenging experiments in robotic domains, that the
inferred graphs could be directly applied to the existing LfD-STL
framework to extract rewards and robust control policies via
RL, with a limited number of even imperfect demonstrations.
The user study conducted showed that our graph-based method
produced more accurate results than (un)supervised algorithms
in terms of similarities with human ratings. We believe our work
is a step in the direction of developing interpretable and explain-
able learning systems with formal guarantees, which is one of
the prominent challenges today [1], [2], [38]. Using intuitive
structures such as DAGs to represent rewards and trajectories
would provide insights into the learning aspects of RL agents,
as to the quality of behaviors they are learning and can be used
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alongside/integrated with works in explainable Al [3], [4]. In
the future, we will also investigate the use of such graphs during
RL as feedback to improve policies and provide performance
guarantees.
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