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Viscoelastic material behavior in polymer systems largely arises from dynamic topological
rearrangement at the network level. In this paper, we present a physically motivated micro-
sphere formulation for modeling the mechanics of transient polymer networks. By following
the directional statistics of chain alignment and local chain stretch, the transient micro-
sphere model (TMM) is fully anisotropic and micro-mechanically based. Network evolution
is tracked throughout deformation using a Fokker–Planck equation that incorporates the
effects of bond creation and deletion at rates that are sensitive to the chain-level environ-
ment. Using published data, we demonstrate the model to capture various material
responses observed in physical polymers. [DOI: 10.1115/1.4052375]
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1     Introduction
The mechanical properties of soft polymeric materials feature an

enormous range of both fluid-like and solid-like behaviors that are
ultimately governed by interactions at the chain and network levels.
Materials with supramolecular architecture such as physically
bonded polymers are particularly diverse in their properties,
despite similarities in the underlying structure. For instance, physi-
cal gels have been reported with different levels of viscoelasticity
[1–3], self-healing [4,5], and hyperextensibility [6]. These proper-
ties can be attributed to the reversibility of physical bonds, which
has also been shown to provide sacrificial energy dissipation and
increase the toughness of hybrid (covalent and physical) materials
[7]. This makes them desirable for a variety of applications, but
there remains a large gap in our knowledge of the connection
between chemical design and emergent properties. We thus need
to gain a deeper understanding of the mechanisms that govern
chain kinetics and, perhaps more importantly, how this drives the
emergent network response.

While the chemical makeup of many physically bonded networks
may be different, the physics that governs their behavior is funda-
mentally the same. Physical bonds have an activation energy
close in magnitude to the thermal background, causing them to
break and reform at relatively high rates. This type of reaction is
well-described by kinetic theories such as those proposed by
Eyring [8] and Kramers [9]. For instance, the rheological properties
of some associating polymer solutions were well-described by relat-
ing the relaxation timescale of the material to the average lifetime of
a bond [10,11]. This material template has remained common for
studying the viscoelastic properties of physical networks, but dis-
crepancies in the response are observed even for networks with
similar architecture (see works by Erk et al. [12,13], Berret and
Séréro [1,14], and Skrzeszewka et al. [3,15]). Further, while
much effort has gone into studying the topology of these networks
[16,17], there has been little work dedicated to directly characteriz-
ing the role of physical bonds. Indeed, a large variety of unique
network architectures have been created [18], but their diversity
hinders our ability to finely tune the desired mechanical properties.
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A primary goal of this study is thus to relate the governing physics
of different networks to their resultant material behaviors.

Statistical approaches such as the transient network theory
(TNT) [19,20] offer a promising template for bridging the connec-
tion between chain-level physics and material properties. The TNT
is based on tracking the configuration of polymer chains within a
network during deformation. With this approach, the behavior of a
material can be fully described by knowing the distribution func-
tion ϕ(r) of end-to-end vectors r  of polymer chains in the
network. While this description was capable of describing the
complex mechanics of elastic damage [21] and the rheology of
fire ant aggregates [22], it is computationally expensive to track
the full distribution ϕ(r) throughout deformation. To combat
this, a reduced, tensorial form of the TNT was developed, which
instead tracked the covariance μ of the distribution [20,23]. This
has been applied to study a variety of transient behaviors such
as biological growth [24], fracture [25], and the mechanics of topo-
logical materials [26], but the gain in numerical convenience
comes at a loss of directional information. These reduced forms
are thus insufficient for properly capturing complex chain-level
interactions.

The difficulty in adding complexity to chain-level physics lies in
the homogenization method used to bridge chain and network
length scales. Many physically based formulations, such as Tre-
loar’s three-chains model [27] and the Arruda–Boyce eight-chains
model [28], make significant simplifications to the environment
felt by a single chain to facilitate convenient constitutive laws.
This comes at the cost of a loss in the directional properties of the
network, however, which motivated the development of micro-
sphere models that maintain a fully anisotropic description of the
network [29–31]. This approach has been used to explore the
effects of non-affine deformations [30,32] and provide physical
interpretation to the Mullins effect in rubber [31,33]. Current vis-
coelastic microsphere models are restricted to rubber-like materials
such as elastomers [34,35]. These models have done well to capture
the time-dependency of topological effects originating from repta-
tion and the release of chain restrictions (entanglements), but the
dissipative mechanisms in dynamic polymer systems are quite dif-
ferent [20]. As such, behaviors unique to these materials such as
stress overshoot [2,36], self-healing [4,5], and creep [10,14]
cannot be described by rubber-like viscoelasticity. Development
in this area could thus provide a vital connection between bond
characterization and viscoelastic behavior in physically bonded
networks.
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The goal of this study is to unify experiments and theory in the
context of dynamic polymer networks. We propose here a micro-
sphere formulation of the TNT, also known as the transient micro-
sphere model (TMM), which accounts for variable detachment
rates. Our contributions are thus two-fold: (i) generalizing the
microsphere approach to transient networks and (ii) further supple-
menting previous works on transient networks by exploring force-
dependent bond kinetics. We demonstrate that this formulation is
versatile and predicts a large variety of material responses using a
minimal parametric space. In Sec. 2, we present the theoretical
framework of the model and derive thermodynamically consistent
constitutive laws. Section 3 then outlines our solution procedure
and is dedicated to exploring the predictions of our model, which
begins with defining its limiting cases, and is followed by direct
comparisons to published experiments. We finish the paper with
concluding remarks and an overview of the limitations and key find-
ings of the model.

2     Theoretical Framework
This section presents a theoretical basis for the TMM. We begin

the detailed analysis of our system by considering flexible polymer
chains that detach from the network and reattach at given rates.
Expanding on our previous works, which have assumed constant
rates of attachment and detachment [25,37], we derive a micro-
sphere theory for dynamic networks which incorporates a force-
dependent kinetic rate of detachment.

2.1     Nonlinear Chain Statistics. Let us start by defining the
behavior of a single flexible chain. Once attached to the network,
a chain of length Nb stores energy according to the stretch of its
end-to-end vector λ =  r/ Nb. While Gaussian statistics are com-
monly used for small chain stretches, this is known to be inadequate
as a chain is stretched to its contour length. To this end, Kuhn and
Grun [38] and James and Guth [39] proposed an energy functional,
ψ, based on the inverse Langevin function,

ψ =  kb T
√

Nλβ +  
sinh β

(1)

where β =  L−1 (λ/
√

N ) and L − 1  is the inverse Langevin function.
The energetic penalty of pulling a chain necessitates a restoring
force f that seeks to bring the two ends of the chain back to their
resting state, f =  ∂ψ/∂r. As the inverse Langevin function is
highly nonlinear, many ways of approximating the form of these
equations have been proposed. One method which has been
shown to replicate the function exceptionally well up to its asymp-
totic limit at λ =      N is the Padé approximation presented in Cohen
[40],

f (λ) =  
kbT 

L − 1
 
λ

,     where L−1 (x) ≈  
x(3 −  x2)

(2)

Equation (2) predicts that the stiffness of a chain increases nonli-
nearly as the chain is stretched to its contour length, at which
point it diverges to infinity. The force in a chain cannot, of
course, be considered infinite, and we would expect the chain to
detach from the network before it reaches this limit. In fact, the rela-
tively weak strength of physical bonds causes them to regularly
detach from the network and reattach even when no force is
being placed on them at all. This sources from a low activation
energy ΔE between the attached and detached states of the chain.
Clearly, the kinetic rate of detachment kd and the kinetic rate of
attachment ka     must be comparable in size, or a percolated
network would not form. On the other hand, these rates must be sen-
sitive to external perturbations for it to be possible to separate the

011009-2 / Vol. 89, JANUARY 2022

network. This problem was classically studied by Bell [41], who
proposed a kinetic rate in the form

kd =  ω0 exp
−(ΔE −  f δ)

(3)
b

where ω     is the natural frequency of oscillations in the atoms
(�10−13 s), f is the external force placed on the bond, and δ is a char-
acteristic length scale of the bonding interaction. The average
resting length Nb of a chain in a percolated network produces a
finite force even when the material is stress-free; this is attributed
to volume-exclusion and incompressibility conditions. Equation
(3) thus presents an interesting observation in the context of a
chain’s resting kinetics, which will certainly be larger for networks
of chains than isolated chains. To simplify the parameters of the
TMM, we take a similar approach as Tanaka and Edwards [11]
and describe kd in terms of its resting value kd,0,

kd =  kd,0 exp
f −  feq,     where kd,0 =  ω0 exp

feqδ −  ΔE
 

(4) 0
b

and feq =  f (1/
√

N ) is the force in a chain of length 
√

N b. The
chosen form of k therefore enforces the average lifetime of a
bond in a stress-free network to be 1/k . The force sensitivity f0 =
kbT/δ is preferred in the exponential term to further simplify nota-
tion. Its physical meaning can be interpreted as the relative
force-scale on which the respective physical bonding exits. For
large values of f0, the tension in the chain is negligible and the
detachment rate remains approximately constant, while smaller
values facilitate rapidly increasing chain kinetics. In this work,
we normalize f0 by b/kbT to enforce a nondimensional scale—
unless stated otherwise, the unit for f is k T/b. Thus, Fig. 1(b) illus-
trates the exponential curves for f0 = 2 kbT/b, f0 = 5 kbT/b, and f0 =
10 kbT/b.

2.2     The Transient Microsphere Model. The full transient
network theory approach describes the kinematics of a polymer
chain by following the distribution P(r) of its end-to-end vector r
under external loading. While this provides a wealth of information
regarding the chain-level statistics, it can become computationally
expensive for the study of macroscopic problems. Conversely, the
fully reduced TNT proposed in Refs. [20,37] track only the statisti-
cal moments of the distribution and can be solved at the continuum
level. They can thus be incorporated into larger-scale simulations
using the finite element method [25,42], but the resulting model
is fully isotropic. We therefore propose a semi-reduced model in
the context of the microsphere formulations originally introduced
by Treloar [43] and formalized by Wu and Van der Geissen
[29,44]. In this approach, physical quantities of the network are
replaced by a single representative chain in each direction, param-
eterized by their polar and azimuthal angles, ϕ and θ, respectively.
To fully characterize the distribution, we require knowledge of two
physical states of the network: the directional chain density ρ(θ, ϕ)
and the directional chain stretch λ(θ, ϕ).

Fig. 1     (a) Two polymer chains with resting length 
√

Nb which
detach at a rate k d  and (b) exponential change in detachment
rate as a function of chain length r. f0 is given in units of kbT/b.
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We begin by defining the physical quantities ρ(θ, ϕ) and λ(θ, ϕ)
for a network of flexible chains. Due to chain kinetics, a network
with c total chains per unit volume has c ≤ c chains connected to
the network at any one time. We refer to these chains as “effective”
as they store elastic energy, while the corresponding (ct − c) chains
are considered to be dangling chains. As the network deforms, a
higher density of chains begins to align in the principal directions
of deformation, which corresponds to a higher probability of
finding a chain aligned in this direction. The directional density
ρ(θ, ϕ) quantifies this alignment and is found by taking the
average number of chains aligned in a given direction,

∞

ρ(θ, ϕ) =  cP(r, θ, ϕ)r2dr (5)
0

The covalent networks considered by Wu and Van der Giessen were
assumed to maintain a constant number of attached chains, and we
note here that the chain orientation distribution function (CODF) in
Ref. [44] is exactly ρ(θ, ϕ)/c. Thus, ρ(θ, ϕ) represents the number
density of chains per unit volume in the solid angle traced out by θ
and ϕ (Fig. 2(c)). To determine the average stretch in a given direc-
tion, we first note that we should only consider the stretch of chains
currently attached to the network. The directional stretch λ(θ, ϕ)
should therefore be normalized by the density of chains currently
aligned in a given direction. From this, the directional stretch
should be given by

λ(θ, ϕ) =  √
1  

      
μ(θ, ϕ)

(6)

where
∞

μ(θ, ϕ) =  cP(r, θ, ϕ)r4dr (7)
0

is the directional second moment of the distribution. The directional
stretch reflects the average stretch felt by a chain aligned in a given
direction. Both quantities ρ(θ, ϕ) and λ(θ, ϕ) are discretized on the
unit sphere S, so that macroscopic quantities can be recovered by
integrating over the domain of S. One important quantity that
results from our definition of ρ(θ, ϕ) is the current chain density,

2ππ

c =  ρ(θ, ϕ)dS,     where dS = sinϕdϕdθ (8)
S                                                   S                 0      0

For elastic networks, assuming that no chains have ruptured, the
density of attached chains is constant, and this integral will
always equal ct, the total chain concentration. We show in Sec. 3.2
that force-accelerated bond kinetics can temporarily decrease the
current density of attached chains, causing network softening and
energy dissipation.

2.3     Kinematics. Let us now assess the evolution of the quan-
tities ρ(θ, ϕ) and λ(θ, ϕ) as the network is exposed to a macroscopic

deformation. For this, we continue our description of chains in a
spherical coordinate system with basis vectors er, eθ, and eϕ.
Assuming an instantaneously affine deformation [45], a chain
with end-to-end vector r(r, θ, ϕ) is transformed according to,
r  =  L r ,  where L  is the macroscopic velocity gradient. In previous
works, we have used a Fokker–Planck equation to track the evolu-
tion of P(r) subject to an external velocity gradient [20,37]. Leaving
the details for Appendix A, we integrate the Fokker–Planck equa-
tion over the radial direction as in Eqs. (5) and (7) and derive the
following evolution laws:

∂t 
=  L :  3ρ(er � er ) −  

sinϕ ∂θ
(eθ � er )

−  
∂ρ 

(eϕ � er ) +  kaρ0 
ct −  1 

−  kd(θ, ϕ)ρ (9)

∂t 
=  L :  5μ(er � er ) −  

sinϕ 
∂
θ 

(eθ � er )

−  
∂μ 

(eϕ � er ) +  kaμ0 
ct −  1 

−  kd(θ, ϕ)μ (10)

where � denotes the dyadic product and ρ and μ are the values of ρ
and μ at which chains reattach, respectively. We note here that the
bracketed term results from a coordinate transformation between the
cartesian velocity gradient L  and the spherical basis description of a
chain. These equations were also derived with a globally incom-
pressible assumption (with the condition Tr L = 0). There are two
major contributions to these equations: (i) the distortion of the
network by the velocity gradient L  and (ii) the difference of
chains detaching in their current state to those attaching back in
their reference configuration. While the equations are given in rate-
form, the chain conformation (represented by ρ and μ) is obtained
by integrating them over time. Thus, the history-dependence of
the material is dependent on the rate of loading; the competition
between the deformation rate and bond dynamics determines
whether the network behaves as an elastic solid, viscous fluid, or
lies between. In the case of permanent bonds (ka = kd = 0), these
evolution laws describe the directional changes in the distribution
of a covalently bonded network. In this scenario, we can show
that the TMM converges back to the kinematics of an affine
elastic network [20]. The force-sensitive bond kinetics in physical
networks creates nonlinear viscoelastic behavior as described by
Eq. (4). To capture this, we propose a mean-field approximation
by defining the average directional kinetic rate

kd(θ, ϕ) =  kd,0 exp
f (λ(θ, ϕ)) −  feq

(11)
0

where the functional form of f is given by the Padé approximation
(Eq. (2)). We recognize in Eq. (9), the bond detachment
rate, ξ =  kdρ, representing the directional density of chains detach-
ing from the network. Its corresponding attachment rate,
ξa =  ka(ct/c −  1)ρ0, enforces a global differential equation for the

Fig. 2     (a) The full configuration space of a polymer chain of length Nb. (b) The prob-
ability distribution P  of end-to-end distance r. The directional density ρ is the zeroth
moment of the distribution in a given direction, while μ is the second moment. (c)
Microsphere discretization of a polymer network. Each direction described by
angles θ and ϕ is represented by an averaged quantity.
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ψ0

0

density of attached chains in the network. Integrating Eq. (9) over
the microsphere, we obtain

c =  ξa −  ξd(θ, ϕ)dS (12)
S

In the absence of deformation, the resting kinetics of the network
enforce an equilibrium chain concentration c0, which represents a
state of thermodynamic equilibrium between attachment and
detachment events. From Eq. (8), it is defined as

c0 =  ct      
ka (13)

d,0          a

By integrating Eqs. (9) and (10), we can also analytically define the
stress-free values of ρ and μ in terms of the initial concentration as

ρ0 =  
c
π

,     μ0 =  
c0Nb2

(14)

From here, the typical resting length of a Gaussian chain is recov-
ered with Eq. (6), yielding λ0 =  1.

2.4     Constitutive Equations. As energy is stored at the chain
level, it is now possible to define a free energy density Ψ for the
network. In each direction, we can predict the average stored
elastic energy in a chain as ψ(λ) with the energy functional of
Eq. (1). The total energy of the network is then found by
summing the contribution of each chain, which identifies in this
approach as an integral over the unit sphere.

Ψ =  ψρdS +  π( det F −  1) (15)
S

where π is a Lagrange multiplier that enforces incompressibility.
For the model to be thermodynamically consistent, we define the
Cauchy stress σ to satisfy the Clausius–Duhem inequality,
σ : L  −  Ψ ≥  0. Following the derivation in Appendix B, the
Cauchy stress takes the form

σ =  
√

N b
 
f λρ(er � er )dS +  πI (16)
S

Constitutively, the elastic behavior of the TMM is similar to previ-
ous fully incompressible microsphere models [31,32]. We particu-
larly note the similarity between Eq. (16) and the full network
theory of Wu and Van der Geissen [44] and illustrate their equiva-
lence for the limiting case of purely elastic chains in Sec. 3.2. The
mechanical dissipation as a result of bond detachment also follows
from the same derivation (Appendix B):

D  =  ξdψ −  ξaψ0 dS ≥  0 (17)
S

Here, ψ =  ψ(λ0) is the average energy stored in a chain at its
resting length. The dissipation has two clear contributions stem-
ming from single chain kinetics. The first term is the energy dissi-
pated by chains detaching from their stretched state, while the
second term is the energy stored by attachment events. The dissipa-
tion equation thus states that the network cannot gain energy by
attachment events—placing physical restrictions on the bond kinet-
ics. Considering that the bond exchange in difference directions is
independent, the dissipation equation imposes the following condi-
tion:

equilibrium, the functional form of the kinetic rates must however
be chosen appropriately to satisfy the condition that the left-hand
side grows faster than the right-hand side. This is ensured for any
first-order kinetic equation, providing that kd is either constant or
monotonically increasing and k is either constant or monotonically
decreasing. The kinetic model presented in this paper satisfies these
requirements.

3     Model Predictions
The model presented in the previous section possesses a limited

set of intrinsic variables as displayed in Table 1. In this section, we
demonstrate that a large number of the reported properties of
dynamic networks can be predicted using this limited set of physical
parameters. We first briefly outline our discretization and solution
procedure to provide a foundation for the illustrations to be pre-
sented. Following this, we compare the TMM to earlier hyperelastic
and viscoelastic models. Finally, we outline the key findings of our
study by identifying the response regimes exhibited by the model.

3.1     Discretization and Illustration. The finite domain of the
microsphere facilitates a reduced numerical procedure without com-
promising the anisotropic properties of the network. To solve the
differential equations presented in the previous section, we first dis-
cretize the microsphere on a 200 × 200 grid for −π/2 ≤  θ ≤  π/2 and
0 ≤  ϕ ≤  π/2, noting that symmetry allows us to only consider half
of the unit sphere. With the initial conditions ρ =  ρ and μ = μ0, we
use a backward-Euler integration scheme to track the chain confor-
mation given a specified velocity gradient L .  A typical iteration thus
consists of (i) evolving ρ and μ at the current time, (ii) solving for
the Cauchy stress and energy dissipation by trapezoidal integration,
and (iii) determining ρ and μ̇ for the next time-step. We note here
that, unless stated otherwise, the initial concentration of attached
chains c is maintained at 75% of the total population (c =
0.75ct) and the chain length is kept at N = 10 for each illustration
in this section. The Cauchy stress is normalized by the shear
modulus c k T in all plots for generality.

For illustration purposes, we first provide examples of two exper-
iments commonly used to measure viscoelasticity: stress relaxation
and cyclic loading. For clarity, we introduce the Weissenberg
number W, which describes the relative rates of elastic distortion
and intrinsic relaxation. In this study, we define it as

W =  |L|/kd,0 (19)

where |L |  is the spectral norm of the velocity gradient L .  For low W
(W�1), the bond dynamics overwhelm the elastic distortion, and
the network flows as a fluid. Conversely, for large W (W�1), the
chains do not have time to detach during loading, and the
network behaves elastically. These limiting cases are discussed
further in Sec. 3.2.

To demonstrate some of the simple predictions of the TMM, we
first investigate the response of a single network consisting of bonds
that detach according to Eq. (11) and reattach at a constant rate ka.
We take f0 to be very large (f0 > 100), so that the detachment rate is
approximately constant for small loadings (Fig. 1(b)). The network
is subjected to simple shear in the x1 direction at a rate much greater

Table 1     Model parameters

Parameter Description Units

ξd ≥  ξa ψ
(18)

For any positive and quadratic energy functional, ψ ≥  ψ . This
means that in an equilibrium state, Eq. (18) is always satisfied, as
the rates of attachment and detachment are equal. Away from

ct Total chain density
N Chain length
b Kuhn segment length
kd Detachment rate
ka Attachment rate
f0 Chain sensitivity

Chains/volume
Kuhn segments
Length
Chains/second
Chains/second
Force

011009-4 / Vol. 89, JANUARY 2022 Transactions of the A S M E



11

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/appliedm

echanics/article-pdf/89/1/011009/6768293/jam
_89_1_011009.pdf by C

olorado A
t B

oulder user on 10 M
arch 2023

1

√

Fig. 3     Simple illustration of a stretch-hold simulation in shear followed by uniaxial tension. (a)
Predicted stress response (Cauchy stress) of the TMM. Roman numerals I–V correspond to
respective portions of the loading curve (inset). (b) Polar plots of λ as a function of azimuthal
angle θ, taken as a “slice” of the surface on the x − y plane. Lines are colored by their direc-
tional chain density ρ.

than its resting kinetics (W = 100). We load to a shear of F12 = 1,
hold at for a short period of time before loading in uniaxial
tension at the same Weissenberg number to F = 1.5, and then
hold at this stretch indefinitely (Fig. 3(a)). The decrease in F12

during the uniaxial loading phase is due to the incompressibility
of the material (requiring det F =  1). The corresponding stress
versus time curve displays nonlinear stiffening behavior in the
loading regimes (I–II and III–IV) and Maxwellian relaxation in
the hold regimes (II–III and IV–V).

To illustrate the microstructural evolution predicted by the TMM,
we plot in Fig. 3(b) the directional density ρ and average chain
stretch λ within the plane of loading (ϕ =  π/2 for uniaxial tension
in the x direction). Here, the length of each line in a direction θ cor-
responds to the average chain stretch λ, while the color is mapped to
the directional chain density ρ in that direction. The top-left panel
shows that the network is initially isotropic, as each line is the
same length and color. During loading, the model predicts an
increase in both the average stretch and density of chains in the prin-
cipal loading direction (θ =  π/4). A partial recovery is observed at
time III, which is due to chain detachment from their stretched state
and reattachment in their initial configuration. The network main-
tains a small amount of shear when loading in uniaxial tension as
observed in panel IV. We predict full stress relaxation in the limit
of t→∞, as indicated by the V in the top-left panel. The illustra-
tions depicted in Fig. 3(b) will be used for the remainder of the
paper, but the scale and colorbars will be omitted to avoid crowding

the figures. All future illustrations maintain the same scale system
established in this figure.

3.2     Limiting Cases and Convergence to Earlier Models.
The behavior of physical networks can exhibit a range of responses
from that of elastic solids at high strain rates (W�1), to that of
viscous fluids at low rates (W�1) [20]. In the context of the pro-
posed model, the limit of large f0     (f0 →∞) corresponds to
regimes where bond dynamics are independent of force (kd

remains constant). The time dependence of the network is therefore
fully decoupled from its deformation history. In these conditions,
we compare the predictions of the TMM to earlier formulations
under cyclic loading conditions and at various rates.

Elastic response. If the rate of loading is large (W�1), chains do
not have time to detach during loading, and the network
behaves elastically. There is no energy dissipation, and the curves
in their loading and unloading regimes look identical (Fig. 4(a)).
The TMM predicts severe strain stiffening around λ =  1/ N as
chains align and reach their contour length along the loading direc-
tion. In fact, at high strain rates, the TMM converges to the elastic
microsphere models originally proposed by Treloar [43,46], for
which generalized solutions were derived by Wu and Van der
Giessen [29,44]. Thus, the TMM may be thought of as an extension
of these earlier models with incorporated chain kinetics. The micro-
sphere formulation predicts more stiffening than isotropic stretch

Fig. 4     Limiting cases of the TMM. (a) Uniaxial tension at a high loading rate (W = 100). The
model converges to the Full Network Theory (FNT) of Wu and Van der Giessen. (b) Cycl ic
loading at small strain rates. The TMM predicts a more nonlinear curve than previous
(reduced) models [21] due to the anisotropic stretch measure λ. Polar plots are displayed at
the peak of loading for each simulation.
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models, such as the eight-chains model of Arruda and Boyce [28],
which average the chain-stretch over all directions. It is worth
noting that isotropic stretch models have actually been shown to
outperform Microsphere formulations under certain loading condi-
tions (for instance, when considering both uniaxial and biaxial
response simultaneously). This point is further addressed in Sec. 4.

Linear viscoelastic response. Let us now investigate the predic-
tion of the TMM for constant bond dynamics, but moderate to low
strain rates (i.e., W ≤ 1). In these regimes, the network exhibits a
combination of creep and elasticity that can be measured by hyster-
esis loops during cyclic loading. As shown in Fig. 4(b), the form of
the stress-strain curve depends heavily on the loading rate. Previous
models for capturing the effects of nonlinear elasticity and constant
bond dynamics include the reduced transient network theory [37].
In this earlier formulation, the average elastic deformation of the
chain was described by the conformation tensor μ, which is
allowed to relax over time at rate kd. Using an Arruda-Boyce like
approximation for the network elasticity, the model predicted hys-
teresis loops shown as dotted lines in Fig. 4(b). The predictions
of the TMM show notable discrepancies to the reduced transient
network theory when the strain rate is large (W = 1 in the figure),
but a convergence at very low strain rates (W = 0.5 in the figure).
Similar to the elastic comparisons of Fig. 4(a), we observe that
the TMM predicts more stiffening of the network at larger strains,
and this effect becomes predominant as the strain rate increases.
This observation can be explained by the degree of anisotropy
developed in elastic networks; at high loading rates, chains tend
to align and deform elastically in the stretch directions, thereby
inducing a large proportion of highly stretched chains along the
principal axis. This phenomenon, responsible for network stiffen-
ing, is not well-captured by the “average” tensorial form of the
reduced Transient Network Theory. At low strain rates however,
chains have time to detach from the network before becoming
severely deformed. The network therefore remains more isotropic,
with less elastic deformation—a regime that can be captured by
an average tensorial formulation. To summarize, the TMM better
reflects the anisotropic properties of the network either for elastic
networks or at higher loading rates (W ≥ 0.5).

3.3     The Role of Force Sensitivity. Let us now explore the role
of the bonds’ force sensitivity on the mechanical response of the
network. For this, we once again consider a cyclic loading scenario
where the network is first deformed to a stretch λ =      N, after which
it is immediately returned to its initial state at the same rate. To gain
further insight into the microstructure, we follow the evolution of
the density c of attached chains (see Eq. (8)), as well as the
average directional stretch and chain density in the loading direc-
tion, defined by

p =  λ(θp, ϕp),     ρp =  ρ(θp, ϕp)/ρ0

Here, ϕp and θp are, respectively, the polar and azimuthal angles
defining vector x1. Note that ρp is normalized by its initial value
for convenience.

To set a reference, we first show in Fig. 5, the stress response of a
network with constant bond dynamics (f0 →∞) at varying loading
rates. It can be shown that when bond dynamics are decoupled from
mechanics, the overall chain concentration remains constant and
equal to its base value c (determined in Eq. (13)) regardless of
deformation history. In this case, the viscoelastic response—
which is due to bond exchange only, but with no change in chain
concentration—exhibits a stiffening regime that becomes less and
less noticeable as W decreases. This is accompanied with an
increase in viscous dissipation (due to bond exchange) that can
visually be observed by the area enclosed within the hysteresis
loops in Fig. 5. For these networks, the TMM predicts that the evo-
lution of the local chain stretch λp and density ρ closely follow
their macroscopic counterparts; the directional stretch linearly
increases with the macroscopic deformation, while the directional

011009-6 / Vol. 89, JANUARY 2022

density (or chain alignment) exhibits similar hysteresis loop as
the Cauchy stress. This second trend results from a lag in the
chain alignment (compared to the applied strain) due to bond
dynamics.

To illustrate the effect of force-sensitive bond detachment, let us
now consider the fastest loading rate (W = 10) in Fig. 5 and explore
the network response as f0 varies from 1 to 10 (Fig. 6). For the
largest value of f0, a similar curve is recovered, with very little hys-
teresis loop. As bond kinetics become more sensitive to force,
however, a clear trend of softening is observed, with a more pro-
nounced hysteresis. This is explained by considering the increasing
number of highly stretched chains with deformation; as this number
increases, detachment events begin to overwhelm reattachment
events due to accelerated bond kinetics. Indeed, the induced drop
in the total concentration of attached chains, c, is most prevalent
for the most sensitive chains (lowest f0). We note that the change
in c is a temporary consequence of the deformation and the TMM
predicts full recovery of the chain concentration after unloading.
The mechanisms by which chains stretch and detach are readily
observed in the evolution of the directional stretch λp and chain
density ρ . We see here that at low deformations, the chains tend
to realign with stretch, but this realignment is accompanied with a
fast detachment of the most elongated chains. As the second mech-
anism prevails, we observe a drop in both the density of chains
along the principal axis and their average stretch. These events
together are responsible for the noticeable stress softening at
the network level. As expected, this softening initiates earlier if
the force sensitivity of the bond is large (i.e., f0 is low). Thus, the
chain sensitivity can be an important factor in activating energy dis-
sipation, as observed by the increasing area within the hysteresis
loop for lower f0. This dissipation mechanism is however quite dif-
ferent from the networks with constant bond kinetics presented in
Fig. 5, and this difference can be observed in the distinct signature
of the stress-strain curves. In real polymers, energy dissipation may

Fig. 5     Cyclic  loading experiment in uniaxial tension for a
network with constant k d      (high f0) at varying Weissenberg
numbers

Fig. 6     Cyclic  loading experiment in uniaxial tension at W = 10
for networks with varying f0
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Fig. 7     (a) Uniaxial tension at W = 1 with varying f0. The stress overshoot σ0 is defined as the
difference between the peak stress σmax and the steady-state stress. (b) The relative overshoot
σ0/σmax as a function of f0 and W.

arise from a combination of these two processes, yielding more
complex responses discussed in the next section.

3.4     Elasticity, Flow, and Rupture of Transient Networks.
We here present a detailed study of the TMM by considering the
deformation of a network at a constant loading rate. Three
dynamic processes govern the response of the network: (i) the
elastic distortion of attached chains, (ii) the accelerated detachment
of highly stretched chains, and (iii) the realignment of chains in the
direction of loading. Each of these processes are coupled with each
other: elastic deformation induces a faster detachment rate of highly
stretched chains, chain alignment creates a higher concentration of
chains detaching at a faster rate, and the reattachment of chains in
their stress-free state temporarily resets the process in all directions
for each increment of deformation. The evolution of the network
thus consists of a transient regime, during which these processes
equilibrate with the constant loading rate, and an equilibrium
state, at which point the network topology has reached a state of
dynamic equilibrium. The duration and difference between these
two regimes are determined by the Weissenberg number W and
the bond sensitivity f0. In this section, we demonstrate a large
variety of responses that can be captured by different combinations
of these two parameters.

As the system equilibrates with loading, we expect the stress
response to closely reflect the evolution of the microstructure.
Indeed, the stress response predicted by the TMM typically consists
of an initially increasing regime, followed by a creeping flow at
large deformations. In Fig. 7(a), we illustrate the uniaxial tension
response predicted by the TMM for networks with f0 = 1, f0 = 2,

and f0 = 5 at a loading rate of W = 1. In each case, a noticeable
stress overshoot is observed, which marks the transition from the
transient response to the equilibrium state. Increasing f0 delays
the acceleration of bond kinetics, creating a longer transient
regime and a larger stress overshoot. We see that the point of over-
shoot corresponds with a sudden drop in ρ and λp, which indicates
the existence of a critical stretch at which point the detachment rate
of highly aligned chains overwhelms the loading rate. Indeed, the
peak value of λp increases with increasing f , and the drop in ρ
becomes steeper. The secondary rise in λp and ρ is due to the
stretching and alignment of fresh chains that have reattached to
the network in a stress-free state after a detachment event.
Figure 7(b) summarizes the stress overshoot predicted by the
TMM as a function of W and f . Here, we normalize the overshoot
σo by the corresponding peak stress σmax to promote an easier com-
parison. As expected, the lowest value of f0 achieves the smallest
relative overshoot, as the detachment rate of chains accelerates
very quickly for this network. Increasing the Weissenberg number
further delays yielding as elastic deformation is more influential.
This creates a longer transient regime with a larger stress overshoot.

As we further increase the Weissenberg number, chains do not
have time to detach from the network during loading, and there is
a buildup of highly stretched chains. From Fig. 7, we expect this
to be accompanied by a more delayed and extreme stress overshoot.
In Fig. 8, we illustrate the same range of f values as before, but at a
higher Weissenberg number of W = 10. For small stretches, loading
at this rate is fast enough to maintain a nearly elastic response, and
each curve follows the same stiffening behavior. Once again, yield-
ing coincides with a sudden decrease in ρ and λp, but this time, we
also observe a markable drop in the total chain concentration c/c0.

Fig. 8     (a) Uniaxial tension at W = 10 with varying f0. (b) The maximum chain-level stretch λp as
a function of f0 and W in the fast-loading regime. The dashed horizontal line indicates stretch-
ing a chain to 95% of its contour length.
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Fig. 9     Phase diagram of the stable and unstable regions predicted by the TMM. Experimental
data are denoted with black circles and are taken from Refs. [3] (I: top-left), [14] (II: bottom-left),
[6] (III: top-right), and [49] (IV: bottom-right). Polar plots indicate the equilibrium (final) distribu-
tion for the given simulation.

This is explained by the higher degree of alignment at this loading
rate; very few chains have detached during deformation, so the
detachment event consists of a larger population of chains that
have been stretched since the onset of loading. Once again, increas-
ing f0 delays the yielding and creates a higher peak stress.

At such large values of W, the stretch felt by chains prior to yield-
ing increases significantly, and at a certain point, chain rupture is
preferred over reversible bond detachment. Depending on the
value of f , the maximum chain-level stretch λp could approach
95%–99% of the contour length ℓ = Nb (Fig. 8(b)). At this level
of deformation, the bond angle of the backbone chain itself is
stretched, which is closely followed by chain scission [47]. By fol-
lowing the stretch felt by a chain in a given direction, the TMM pro-
vides an estimate to predict chain rupture and the onset of damage.
For this purpose, we use a generic rupture criterion based on the
maximum directional chain stretch λp. We postulate that failure
occurs when:

p =  0.95
√

N

which corresponds to a situation where a chain is stretched to 95%
of its contour length (illustrated by the dashed red line in Fig. 8(b)).
Using this criterion, we performed 400 simulations that spanned the
parameter space {W, f } and identified two main regimes in the
stress-strain signature of the network (Fig. 9). The first is identified
as the flow regime, where the strain rate is either low enough, or the
bond dynamics sensitive enough to favor flow over rupture. The
second is denoted as the failure regime, which exists for higher
strain rates and lower force sensitivity of the bond. In this regime,
chains are eventually stretched above λp     and rupture, which
marks the end of the simulation.

This parametric study of the TMM reveals a large number of
characteristic responses, which can potentially be used to physically
interpret the behavior of previously studied physical networks. For
instance, the fluid-like creep of associative polymer solutions is
well-approximated by the TMM in the flow regime (left plots of
Fig. 9). The bottom-left plot shows excellent agreement with
shear startup experiments performed by Berret and Séréro [1,14]
in the shear-thinning regime of their telechelic associative
polymer solutions. Each curve reflects shear at a different loading
rate, which varied between W = 0.2 and W = 1.8, with the highest
stress being achieved at the highest loading rate. For this material,
we determined a fitted value of f0 (see Table 2I) based on the
length scale of the backbone polyethylene oxide (PEO) [14]. We
particularly note that the TMM accurately predicts both the transient
and equilibrium response of the network. In contrast, the TMM
underpredicts the stress overshoot observed in the faster experi-
ments (2.5 ≤ W ≤ 5) done by Skrzeszewka et al. [36] for a similar

011009-8 / Vol. 89, JANUARY 2022

family of telechelic polymers (top-left plot in Fig. 9). A larger over-
shoot induces a stress softening response that is known to be asso-
ciated with strain localization. In this context, a higher loading rate
induces the onset of shear banding within the material [1], which
cannot be predicted by a local continuum model [48]. The polymers
studied by Skrzeszewka et al. had a more complex collagen-like
structure [3,36], which makes the determination of the Kuhn
length b less well-defined. The normalized value of f0 is, therefore,
presented in Table 2 (II).

The failure regime of the TMM consists of two distinct responses
characterized by the rate of loading. If the loading is moderate (W ≈
1), the model predicts a response similar to unsteady creep; the
stress initially softens due to the low loading rate, but begins to
stiffen at higher stretches as some chains approach their nonlinear
regime. This is therefore only observed for bonds with high f .
The corresponding “S”-shaped curve was observed from the ioni-
cally bonded triblock copolymers studied by Henderson et al.
[49] (bottom-right plot in Fig. 9). This network was similar in com-
position to the associative solutions studied previously, but the ioni-
cally modified end-groups creates an even more robustly connected
network. Based on the length scale of the middle-group,
poly(methacrylic acid) (PMAA), we fitted f with a loading rate
of W = 1.35 (Table 2(III)). It is interesting to note that the predic-
tions of the TMM in this regime match closely with the rubbery vis-
coelasticity microsphere model of Miehe and Göktepe [34]. In this
light, the dynamics of reptation and the release of entanglements in
elastomers could be interpreted as the detachment of physical bonds
between neighboring polymer chains. At larger Weissenberg
numbers (W ≥ 10), the model predicts a purely stiffening response
as discussed in Sec. 3.2. This type of rubber-like response was
observed in the supramolecular network of Cordier et al. [6] (top-
right plot in Fig. 9). The network consisted of a robust hydrogen-
bonding network of multitopic molecules, which can be interpreted
as scattered chains of clustered molecules held together by weak
interactions. These clusters can be represented as freely jointed

Table 2     Fitted model parameters

Parameter I—Ref. [3] II—Ref. [14] III—Ref. [6]     IV—Ref. [49]

ct 7.0 × 1021 m−3     1.6 × 1022 m−3     7.9 × 1018 m−3     7.8 × 1020 m−3

N                         270 78 230 13
b                         N/A                  0.8 nm                  N/A                  1.3 nm
k                      0.42 s−1                       1.8 s−1                       0.38 s−1                       2.9 s−1

ka                                  7.9 s−1                         34 s−1                        0.02 s−1                     54.3 s−1

f0                                2.5 kbT/b              3.7 pN              3.0 kbT/b              57 pN
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chains if there are minimal interactions between neighboring units
on the same chain. The stiffening behavior and point of failure is
well-captured by the TMM. We use a normalized value of f for
fitting (Table 2 (IV)) given the unorthodox chain topology.

4     Conclusion and Discussion
In this study, we presented the transient microsphere model

(TMM)—a microsphere formulation of the Transient Network
Theory—to explore the role of force-sensitive bond kinetics in
physical networks. The elastic response at high loading rates was
compared to previous hyperelastic models, such as the full
network theory of Wu and Van der Geissen, which the TMM con-
verges to in the limit of large Weissenberg number. We also com-
pared the TMM to previous reductions of the transient network
theory and demonstrated a higher degree of stiffening, which is
not well-approximated by the average stretch at large deformations.
Upon incorporating force sensitivity into the bond kinetics, we
observed two sources of energy dissipation in physical networks:
(i) bond exchange without losses in the total chain concentration
and (ii) network softening due to force-accelerated bond exchange.
These processes yielded distinct regimes of response for simple
loading scenarios such as uniaxial tension and simple shear,
which were dependent on the rate of loading (W) and the bond sen-
sitivity (f0). When chain kinetics dominated the response of the
material (low W and low f0), the TMM predicts a stable stress-strain
curve that ends in steady-state creep. If the material deforms more
elastically (high W and high f0), localized directions of sudden
detachment events offered a metric for predicting failure. Using
published experimental data, we demonstrated that each regime pre-
dicted by the model has been observed in physical polymer net-
works of varying composition. The TMM could therefore be used
to quantify these networks based on physical parameters such as
their rate of detachment and bond strength.

The presented model rests on several assumptions which could be
broadened depending on the system being studied. In particular, it is
known that the affine assumption breaks down at large deforma-
tions. As we are mainly interested in the viscoelastic properties of
the network, we maintain the affine assumption and note that non-
affine characteristics could be added later. We also note here that
our formulation is only instantaneously affine with the macroscopic
velocity gradient (hence, we write r =  Lr).  Due to bond kinetics, the
stretch felt by an individual chain does not reflect the global defor-
mation gradient F  except for the purely elastic case (W→∞). Other
characteristics of non-affine behavior have further been accounted
for in a microsphere model by Miehe et al. [30]. It is also interesting
to note that the stiffening behavior of rubbers is better approximated
by the seemingly less-precise Arruda–Boyce model, which uses an
isotropic approximation for the chain stretch [50]. The divergence
of materials from their predicted alignment is likely also due to non-
affine behaviors and topological constraints such as entanglements
[30]. We believe that the added precision in modeling the aniso-
tropic viscoelastic response sufficiently makes up for the loss of pre-
cision in this one regime.

A clear advantage to the microsphere approach is a finite numer-
ical domain that still accounts for directional properties. Previous
microsphere models [30,32] have further reduced their computa-
tional domain by using quadrature schemes such as those presented
by Bazant and Oh [51]. This allows for the incorporation of fully
anisotropic constitutive laws into more sophisticated studies using
the finite element method [30]. This remains possible with the
TMM, but the spatial derivatives in Eqs. (9) and (10) would be chal-
lenging to compute on a discrete quadrature grid. Future implemen-
tations of this model could surpass this by using an embedded finite
element method such as Arbitrary Lagrangian–Eulerian, which uses
an Eulerian material description in combination with a moving
Lagrangian mesh. This model could then be used to predict more
complex material processes such as fracture.

Journal of Applied Mechanics

Physically bonded networks have been getting increased atten-
tion for their ability to strengthen materials via sacrificial bonding
[7]. The desire to understand physical networks alone is thus vital
to their success, but combining networks into hybrid materials is
a primary application. Many methods of modeling these hybrid net-
works have been proposed, which could incorporate the effects of
polydispersity [33] and various network interactions [30]. We
note that it is possible to qualitatively predict these behaviors by
summing networks in parallel (equal strain assumption) [21]. This
could be done with the TMM to model hybrid materials with con-
stituent networks ranging anywhere from purely elastic to linearly
viscoelastic. On this note, the TMM, as presented in this work, is
restricted to describing one characteristic timescale of a given
network (determined by the rate kd,0). Many real physical networks
are however known to be better represented by a spectrum of time-
scales. These aspects may be easily incorporated into the TMM by
considering multiple networks in parallel as discussed in prior
works [20], an approach that is akin to a prony series decomposi-
tion. Another interesting feature of weak bonding interactions is
their tendency to form clusters or a strong junction consisting of
many weak interactions. The strength of these junctions varies
depending on the number of contributing bonds [52]. This
induces complex viscoelastic behaviors such as yielding and
stress overshoot, which the TMM captures with the force sensitivity
f0. The added strength of a cluster of weak bonds can, therefore, be
explained by a delayed acceleration of bond kinetics. From these
observations, we believe that the insight provided by the TMM
will be valuable for the rational design of materials for a desired
function.
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Appendix A:  Evolution Equations Derivation
In previous works, we have presented a Fokker–Planck equation

for the probability density function Φ =  c(t)P(r, θ, ϕ) [20]. For con-
venience, we write it here:

dt 
=  − L :      

∂r 
� r      +  ka(ct −  c)P0 −  kdΦ (A1)

We note the same terms reflecting the elastic distortion of the
network and viscous dissipation due to bond detachment. It is
also important to note that this equation is derived with the incom-
pressibility assumption (Tr L = 0). We will begin from here to
reduce this equation to its micro-sphere counterparts in Eqs. (9)
and (10). We first note the expansion of the divergence a scalar
field f into spherical coordinates as

∂f 1 ∂f 1 ∂f
∂r r r sinϕ ∂θ θ r ∂ϕ ϕ

Using index notation will be convenient for further derivations, so
we will change our notation for the spherical basis vectors as ri, ˆ i,
and ϕi. The elastic distortion of the network comprises the bulk of
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this derivation, so we will consider here a network whose detach-
ment rates are both zero (kd = ka  = 0). In this case, the differential
Eq. (A1) is written

∂Φ ∂Φ
∂t           ij ∂ri     

j

∂Φ 1 ∂Φ ∂Φ
ij j ∂r i sinϕ ∂θ i ∂ϕ i

To derive Eq. (9), we multiply by r2 and integrate in the radial direc-
tion,

∞∂Φ
r2dr =  −Lijrj

∞

r3 ∂Φ ri +  
s
r2

ϕ
∂Φ

θi +  r2 ∂Φϕidr  ∞

∞

=  −Lijrj ri 
0 

r3 dr +  
sinϕ 0 

r2 dr

+ ϕ i  

∞

r2 ∂Φdr
0 

∞ ∞

=  Lijrj ri Φ
∂r

r3dr +  
sinϕ ∂θ

Φr2dr
∞

+ ϕ i  ∂ϕ          
Φr2dr

=  Lijrj 3riρ +  
sinϕ ∂θ

 
+  ϕi ∂ϕ

(A4)

Integration by parts was used on each term, and it is easy to see that
boundary terms vanish for all cases. The addition of attachment and
detachment terms does not increase the complexity of the deriva-
tion, and the evolution of μ is found by a similar method.

Appendix B:  Deriving the Cauchy Stress and Energy
Dissipation

In the absence of thermal fluctuations and changes in volume, the
Clausius–Duhem inequality is written per unit volume as

D  =  σ : L −  Ψ ≥  0 (B1)

where D  is the energy dissipation per unit volume. Using the defi-
nition in Eq. (15), the material derivative of the macroscopic energy
Ψ is

DΨ 
=  

 
ρ

Dψ
dS +  

 
Dρ

ψdS (B2)
S S

where D(·)/Dt denotes the material derivative, whose form is given
for an arbitrary function f of θ and ϕ as

Df (θ, ϕ) 
=  

∂f 
+  L : (er · �f ) (B3)

We note that this definition depends on our Eulerian definition of
the unit sphere S and the radial coordinate r is equal to unity. The
bulk of this section thus relies on deriving an expression for the
material time derivative of the chain-level stored elastic energy ψ.
We first note the following use of the chain rule:

Dψ 
=  

∂ψDλ 
=  f

√
N b

Dλ
(B4)

The time derivative of λ is defined using the chain rule,
∂λ 1 ∂μ 1 ∂ρ
∂t 2 μ ∂t ρ ∂t
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A simple application of Eqs. (9) and (10) yields

∂t 
=  L :  λer � er −  

sinϕ ∂θ
eθ � er −  

∂ϕ
eϕ � er

+  ka 
ct −  1

 μ0 −
 
ρ0 (B6)

Combining this with the divergence term yields a simple evolu-
tion law for the average stretch,

Dt 
=  λ(L : er � er ) (B7)

We can now write the material time derivative of the chain-level
stored elastic energy as

Dψ 
=  f

√
N bλ(L : er  � er ) (B8)

Putting this into the expression for the Clausius–Duhem
inequality,

D  =  σ : L  −  
 
ρ f

√
Nbλ(L : er � er )dS S

−  [kaρ0(ct/c −  1) −  kdρ]ψ dS ≥  0 (B9)
S

Rearranging and reordering terms, the Cauchy stress and energy
dissipation of Eqs. (16) and (17) are recovered.
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