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ABSTRACT: Dynamic polymer networks utilize weak bonding
interactions to dissipate the stored energy and provide a source of
self-healing for the material. Due to this, tracking the progression
of damage in these networks is poorly understood as it becomes
necessary to distinguish between reversible and irreversible bond
detachment (by kinetic bond exchange or chain rupture,
respectively). In this work, we present a statistical formulation
based on the transient network theory to track the chain
conformation space of a dynamic polymer network whose chains
rupture after being pulled past a critical stretch. We explain the
predictions of this model by the observable material timescales of
relaxation and self-healing, which are related to the kinetic rates of
attachment and detachment. We demonstrate our model to match
experimental data of cyclic loading and self-healing experiments, providing physical interpretation for these complex behaviors in
dynamic polymer networks.

1. INTRODUCTION
Soft materials, such as hydrogels, polymers, and biological
tissues, display a rich spectrum of mechanical responses, in
terms of elasticity, fracture resistance, and stimuli responsive-
ness. This is today at the heart of a number of emerging
applications spanning soft robotics,1 tissue engineering,2−4 and
stretchable electronics.5 In almost all of these applications, it is
highly desirable to design materials that are not only resistant
to damage and fracture but that can also self-heal over time.
Tremendous efforts have been invested to enhance damage
resistance through a variety of strategies, including particle
reinforcement,6,7 sacrificial bond breaking,4,8,9 or the intro-
duction of reversible bonds.10−12 Despite the differences in
methodologies, a common objective has been to introduce
some energy dissipation mechanism that can delay or even
prevent the initiation and catastrophic proliferation of network
damage.13 Among these strategies, the introduction of a
transient network has been favored by many researchers due to
the capability of bond reformation, leading to mechanical
strength recovery after large deformation14 and self-healing
after cutting.12 The introduction of these dynamic networks
yields a multitude of new questions regarding the physical
origins of damage. Indeed, if damage has traditionally been
described as the rupture (or detachment) of a chain from the
network, then what distinguishes bond dissociation from chain
damage? Furthermore, damage is often defined as the
irrecoverable loss of network connectivity over time. This
condition clearly does not apply to transient networks since
bond reattachment is possible, as observed during self-healing.

To better apprehend the distinction between bond dynamics
and chain rupture, let us first consider damage in a covalent
network. In this case, the primary failure mechanism is the
rupture of individual chains or cross-links when they are
stretched beyond their load-carrying capacity.15,16 This usually
occurs when their end-to-end distance is close to their contour
length, where chains undergo a pronounced stiffening. At the
network level, this is manifested by progressive failure, which
eventually leads to localized macroscopic failure events such as
cracking. In contrast, the stretch of a chain in a transient
network does not necessarily follow the deformation of the
bulk; for instance, if loading is applied slowly enough, a chain
may first stretch with the network before it dissociates from it
due to ambient thermal fluctuations (Figure 1). In this case,
the dissociated chains may reassociate in a more favorable
(force-free) state that will protect them from reaching their
critical stretch. In essence, bond dynamics should therefore
delay or even completely prohibit damage initiation under
certain rates of deformation.
Models for the progression of damage in elastic polymers,

such as rubbers and other elastomers, have been primarily used
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to study fracture or rate-independent softening.1 In order to
properly account for the fact that chain rupture is driven by the
stretching of bonds, as emphasized by the foundational work of
Lake and Thomas,21 Mao et al. incorporated stretchable bonds
and the internal energy of bond stretching into a micro-
mechanical framework for chain rupture.15 This framework has
been extended to investigate the mechanics of progressive
chain rupture,19,20,22 the Mullins effect,18 and damage in
polydisperse networks16,23−25 to name a few. On the other
hand, micro-mechanical models for viscoelasticity typically
consider time dependence as stemming from the existence of
weak bonds that constantly break and reform throughout the
network. Such formulations were originally proposed for
reptation in polymer melts26,27 but have been extended to
study rubbery viscoelasticity28,29 and the mechanics of dynamic
polymer networks.30,31 Notably, recent work by Buche and
Silberstein32 accounted for force-sensitive reversible bond
breaking through an intact chain probability density distribu-
tion that evolves through time. Some studies have been
performed to combine the ideas of these previous works,33,34

but the formulations are typically complex, empirical, or both,
which inhibits a greater understanding of the underlying
mechanisms. Thus, while the individual topics of viscoelasticity
and damage in polymer networks have been studied
extensively, as of yet there has been little work on investigating
their coupled behavior.
In this work, we develop a statistical theory of damage for

transient networks that can directly bridge the molecular
mechanisms and macroscopic response. As described in earlier
studies,17,31 the theory starts from the description of the
physical state of a polymer network using a statistical
distribution of the length and direction of the end-to-end
vectors of its physically connected chains. The transient
network theory (TNT) provides an evolution law for this
distribution (in the form of a Fokker−Planck equation) as a
response to the application of a macroscopic deformation and
molecular-level events causing chain detachment and reattach-

ment.31 In addition to these mechanisms, we here incorporate
the phenomenon of chain damage as a chain reaches its critical
stretch, which, as will be seen, modifies the original Fokker−
Planck equation by adding a rate of chain rupture over time.
The knowledge of this distribution over time then allows us to
directly evaluate the stored elastic energy, dissipation rates
(that is manifested as viscoelasticity and damage), and the
stress tensor. The final model is able to capture the evolution
of rate-dependent and anisotropic damage in transient
networks. With this aim, Section 2 presents the statistical
framework and general thermodynamic arguments for the
model. Section 3 introduces a rupture criterion for flexible
chains, leading to a specific form of the damage model. We
then provide details on the numerical solution procedure for
the model and illustrate model predictions for basic conditions
and loading scenarios. Finally, in Section 4, we provide a
comprehensive overview of the model and compare its
predictions with published experimental data.

2. STATISTICAL MECHANICS OF DAMAGE IN
TRANSIENT NETWORKS

Here, we seek to describe the evolution of a dynamic network
made of long flexible chains composed of N freely rotating
joined Kuhn segments with an initial reference length b. These
chains are connected at cross-linking points by reversible
bonds that possess their own association and dissociation rates.
The nature of such a network entails that its chains can be
characterized by three distinct states (Figure 1): (a) an
“effective state” where the chain is connected to the network
and effectively bears load, (b) a “detached state” where the
chain is still intact but is disconnected from the network and
thus is unable to carry load, and finally (c) a “ruptured state”,
where the chain can never regain its effectiveness in carrying
load. Because the last two categories are mechanically
ineffective, we may only describe their presence through
nominal concentrations Cd (for detached) and Cr (for
ruptured), respectively. If the concentration of effective chains
is C, the concentration of all chains in the network is Ctot, and
assuming that the total number of chain is conserved, we have

C C C Cd r tot+ + = (1)

C C C 0d r
̇ + ̇ + ̇ = (2)

where a superimposed dot is used to designate a material time
derivative. Because they are mechanically active, the effective
chains must be described not only by their concentration but
also by the spatial conformation of their end-to-end vector r.
We capture this by following the probability function p(λ) of
their normalized end-to-end vector λ = r/r0, where r N b0 =
is the root-mean-square average end-to-end distance of the

Figure 1. Distinction between chain rupture and chain detachment in
a transient network. In this network, a chain can be found in three
distinct states: attached, detached, and ruptured. The ruptured chains
are unable to create new network connections and are at the origin of
irreversible damage.

Figure 2. (a) End-to-end vector of a polymer chain, defined as the vector spanning two cross-links. (b) Distribution density ϕ(r, t) of a (one-
dimensional) network conformation.
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chains in the undeformed network (Figure 2). The quantities
C and p can be combined into the distribution

t C t p t( , ) ( ) ( , )λ λϕ = (3)

This function indicates the density of effective chains in a
given conformation λ. The nominal concentration of effective
chains can then be back-calculated from the knowledge of the
distribution

C t t( ) ( , )d∫ λϕ= Ω
Ω (4)

where ∫ ΩϕdΩ is the integral of the chain distribution ϕ over
the space of all possible conformations, : 3λΩ { ∈ }.
2.1. Fokker−Planck Equation for Network Evolution.

The chain distribution ϕ is considered to evolve according to
external stimuli as well as internal topological rearrangement.
For simplicity, we assume an instantaneously affine kinematic
law such that a chain in the network transforms according to λ̇
= Lλ, where L = ḞF−1 is the macroscopic velocity gradient and
F is the deformation gradient. We also assume that effective
chains dissociate from the network following a first-order
kinetics law with constant kd, while dissociated (but intact)
chains may reattach in a relaxed state following a similar law
with kinetic constant ka. From these two assumptions,
Vernerey et al.31 derived an evolution equation for ϕ of the
form

t
k C p kL L: Tr( ) a d 0 dλϕ ϕ

λ
ϕ ϕ∂

∂
= − ∂

∂
⊗ − + −i

k
jjj

y
{
zzz

(5)

where⊗ is the dyadic (tensor) product and p0 is the stress-free
probability density function of a single chain. The introduction
of a criterion for chain rupture is quite natural with this
formalism. Indeed, the assumption that a chain breaks when its
deformation reaches a critical stretch value λc translates into
the following condition for the distribution ϕ

t( , ) 0 when cλ λϕ λ= | | > (6)

This statement enforces that the density of chains whose
stretch is larger than λc must vanish. If the initial distribution
ϕ(λ, 0) is known, eq 5 can then be integrated in time under
the restriction imposed by eq 6 in order to determine the
distribution ϕ at any time during its loading history. To close
the model, we now need to determine the evolution of the
detached chain concentration Cd that enters the third term on
the right-hand side of eq 5. From eq 2, it is found as

C C C( )d r
̇ = − ̇ + ̇ (7)

The evolution of attached chains follows from eq 4.
Imposing the restriction of eq 6 defines a new domain Ωu:
{λ ∈ Ω, |λ| < λc}, which is the conformation space of

undamaged chains in the network. Integrating the Fokker−
Planck equation over Ωu and using the divergence theorem, we
find

C C k C k C

C S k C k C

L L

j n

: d Tr( )

( )d

a d d

a d d

u

u

∫

∫

λϕ
λ

̇ = − ∂
∂

⊗ Ω − + −

̇ = − · + −

Ω

Γ

i
k
jjj

y
{
zzz

(8)

where Γu is the boundary of the damage surface, |λ| = λc, and j
= ϕλ̇ is introduced. The vector j is interpreted as the flux of
chains through the conformation space during deformation.
This flux represents the evolution of chains toward a preferred
conformation when a loading is applied (see Figure 3). The
first term of eq 8 expresses the fact that the rate of chain loss
(from rupture) in the network is equal to the flux of effective
chains crossing the damage surface. We may therefore define
the rate of chain rupture as

C Sj n( )dr
u

∫̇ = ·
Γ (9)

while the last two terms in eq 8 denote a change in effective
concentration due to bond dynamics. Combining eqs 7−9, the
rate of the detached chain concentration is simply

C k C k Cd a d d
̇ = − + (10)

2.2. Second Principle, Energy Dissipation, and Stress.
We would next like to explore the constitutive predictions of
the model, starting at the level of a single chain. When the
network is deformed, chains store energy due to conforma-
tional changes and enthalpic interactions. Keeping things
general for now, let us introduce ψc as the Helmholtz free
energy in a flexible chain. Summing over the space of
undamaged chain conformations, the elastic energy ψ stored
per unit network volume is found as

C p Cd dc c c
u u

∫ ∫ψ ϕψ ψ ψ= Ω = Ω = ⟨ ⟩
Ω Ω (11)

where the notation ⟨·⟩ defines the statistical average over the
conformation space of effective chains. The free-energy density
ψ can thus be used to relate the current chain conformation
(represented by the distribution ϕ(r, t)) to macroscopic
quantities such as stress and energy dissipation. For this, we
first introduce the Clausius−Duhem inequality to enforce the
second law of thermodynamics. Considering an isothermal
process and assuming incompressible deformation, it is written
as

I L( ): 0σ π ψ= − − ̇ ≥ (12)

Figure 3. Evolution of the (one-dimensional) chain distribution during (a) loading and (b) unloading. Numbers 1, 2, and 3 indicate different time
steps in the loading history. The gray regions on the conformation space represent the stretches that induce chain rupture.
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where is the rate of energy dissipation per unit volume and
π is the Lagrange multiplier enforcing the incompressibility
constraint. Its physical meaning can be interpreted as a
hydrostatic stress-like quantity that prevents volume change.
Using eq 5, the rate of change of elastic energy density, ψ̇, is
found as

k C

k C

L

d

d Tr( )

c

c a d c 0

d c

u

u

∫

∫ λ
λ

ψ ϕψ

ϕ ψ ψ ψ

ψ

̇ = ̇ Ω

= − ∂
∂

· ̇ Ω − + ⟨ ⟩

− ⟨ ⟩

Ω

Ω

i
k
jjj

y
{
zzz

where ⟨ψc⟩0 = ∫ Ωu
p0ψcdΩ is the average energy in a stress-free

chain, taken about the reference probability density function
p0. Changes in stored energy are thus due to three
mechanisms: (i) elastic distortion of the chains, (ii) detach-
ment events, which release stored energy, and (iii) attachment
events, which reset the deformation. As the distribution ϕ(r, t)
is defined for all chain conformations Ω, we should further
break down the first term to explicitly account for chains
leaving the region Ωu as they immediately damage as per eq 6.
Using integration by parts and the divergence theorem, we
define

Sq n f L

d

d d Tr( )

c

c

u

u u

∫
∫ ∫

λ
λ

λ

ϕ ψ

ϕ ψ

∂
∂

· ̇ Ω

= · − · ̇ Ω −

Ω

Γ Ω

i
k
jjj

y
{
zzz

(13)

where we introduce q = ϕψcλ̇ = ψcj as the chain energy flux
through the conformation space and fc = dψc/dλ as the force
vector of a single chain. The rate of change in free energy then
becomes

S k C

k C

q n f Ld d :c a d 0

d

u u

∫ ∫ λψ ϕ ψ

ψ

̇ = − · + ⊗ Ω + ⟨ ⟩

− ⟨ ⟩

Γ Ω

i
k
jjjj

y
{
zzzz

(14)

Note the disappearance of terms involving TrL as chains
leaving the volume (due to chain rupture) are captured by the
integral over the boundary Γu. Combining eqs 12 and (14), we
identify the true (Cauchy) stress as

f Idc
u

∫ λσ ϕ π= ⊗ Ω +
Ω (15)

The remaining terms represent the energy dissipation of the
network. In this case, two independent processes dissipate
energy: chain dynamics and bond rupture. The dissipation
can thus be additively decomposed into d r= + , where
the terms d and r correspond to dissipation associated with
chain dynamics and chain rupture, respectively. These are
identified from eq 14 as

Sq n dr
u

∫= ·
Γ (16)

k C k Cd d a d 0ψ ψ= ⟨ ⟩ − ⟨ ⟩ (17)

Considering these as isolated processes, the Clausius−
Duhem inequality should enforce that both r and d be non-
negative. The constraint on r is trivially satisfied as chains
cannot rupture during unloading. This places the following
restriction on the system:

k C k Cd a d 0ψ ψ⟨ ⟩ ≥ ⟨ ⟩ (18)

Physically, this reflects the fact that the system cannot gain
energy from attachment events. This is true for most physical
systems and has been discussed in previous works.35 We
particularly note that this inequality remains satisfied when
considering the sensitivity of bond detachment to external
forces,36 which is explicitly discussed in the context of the
TNT by Lamont and Vernerey.37

3. DAMAGE MECHANICS OF A NONLINEAR
MOLECULAR NETWORK

So far, we have presented the model in general terms to
promote a wider understanding of the governing physics. In
this section, we introduce the specifics of our implementation
and basic predictions the model provides. Starting at the level
of a single chain, we incorporate an enthalpic term to account
for the stretching of Kuhn segments and eventual bond
rupture. We then define a thermodynamically consistent
reference distribution p0 and end with the basic predictions
of the model.

3.1. Single-Chain Response and Rupture. Chain
rupture usually occurs when a chain is stretched toward its

Figure 4. (a) Comparison of the inextensible Langevin chain force (dashed lines) with extensible Langevin chain forces (solid lines) with differing
values of bond stiffness Eb normalized by kT, κ = Eb/(kT). All chain force values are normalized by kT/b. Beyond the extensibility limit, the chain
force increases as bond stiffness increases. (b) Comparison of the approximated solution of the Kuhn segment stretch using the Bergstrom
approximation with the solution of the Kuhn segment stretch using the exact inverse Langevin function (κ = 2300 is used here).
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contour length (i.e., Nλ → ), at which point the Kuhn
segments are forced to align in the direction of stretch.
Adopting the inextensible Langevin chain model, which
assumes rigid Kuhn segments, the force-extension response
of the chain exhibits severe stiffening behavior (see the left
panel in Figure 4) since the Kuhn segments cannot
accommodate any further displacement once they are aligned
in the direction of stretch. However, adopting the extensible
Langevin chain model assumes that each Kuhn segment along
the chain can stretch to a length bext when the chain as a whole
is stretched toward and beyond its contour length, which may
eventually cause its rupture.15,38 By defining the Kuhn segment
stretch as λb = bext/b, we define the form of the Helmholtz free
energy of the chain to be

T( , ) ( ) ( , )c b b bψ λ λ λ λ λ= − (19)

This approximation assumes that the energetic contributions
of enthalpy and entropy along the chain are decoupled, which
was first proposed by Mao et al.15 According to Figure 4a, the
extensible Langevin chain model in eq 19 deviates from the
inextensible Langevin chain model at high chain stretches

N( 0.9 )λ ≥ . The entropic contribution of the chain,
( , )bλ λ , is typically captured by the inverse Langevin

function, 1− . Due to the implicit nature of this function, it
is however more convenient to work with its Pade ́
a p p r o x im a t i o n , a s i n t r o d u c e d b y C o h e n , 3 9

x x x x( ) (3 )/(1 )1 2 2≈ − −− . With this approximation, the
entropy of the chain can be written40,41

Nk
N N

1
2

ln 1
b

2

b

2
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λ
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where the term λ/λb is interpreted as the entropic stretch, that
is, the contribution that arises only from the realignment of
Kuhn segments in the direction of chain extension. In contrast,
the stretching of Kuhn segments is an enthalpic process that
finds its source in the molecular distortion of bonds in the
chain backbone. This enthalpic contribution can be chosen as a
harmonic potential of the form

NE
( )

2
( 1)b

b
b

2λ λ= −
(21)

where Eb is the elastic stiffness of each molecular bond in the
chain backbone. All together, the free energy of the chain takes
the form

N
E

kT
N

N

( , )
2

( 1)
1
2

ln 1

c b
b

b
2

b

2

b

2
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The chain force is then found as the conjugate of the end-to-
end distance r or alternatively the applied chain stretch λ as

f
N b

kT
b N

N
N

( , )
1 ( , ) 3

b
c b

b b

2
b
2

2
b
2λ λ

ψ λ λ
λ λ

λ
λ

λ λ
λ λ

=
∂

∂
=

−
−

i
k
jjjjj

y
{
zzzzz

(23)

where the Kuhn segment stretch λb minimizes the free energy

ψc, that is, 0
( , )c b

b
=ψ λ λ

λ
∂

∂
. Using the expression for ψc, this yields

the relation

E f
N

b( 1) ( , )b b b bλ λ λ λ λ− =
(24)

This is a highly nonlinear equation that requires the
derivation of a numerical solution. To enable the derivation
of a closed-form solution without sacrificing accuracy, we
follow Li and Bouklas16 and replace the Pade ́ approximation of
the inverse Langevin function in the chain force f(λ, λb) with
the Bergstrom approximation x x1/(sign( ) )1 ≈ −− pro-
vided that 0.841 36 ≤ |x| < 1.29 Since λ > 1, when N/ 1λ > ,
then N/( ) 1bλ λ < is always true, validating the use of the
Bergstrom approximation. With this approximation, the free-
energy minimization problem reduces to the following cubic
polynomial:
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where κ = Eb/(kT). With B̃ − ÃC̃ > 0, the Kuhn segment
stretch λb takes on the value of the following real cubic root:42
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The right panel of Figure 4 shows how the approximate
solution to the Kuhn segment stretch is essentially identical to
the exact solution over the entire chain stretch region (even for

N/( ) 0.84136bλ λ < ). Note that the solution for the Kuhn
segment stretch (and therefore the chain force) is dependent
on the bond stiffness. According to the left panel of Figure 4,
when a chain is stretched past its extensibility limit, the chain
exhibits an increased force for an increase in bond stiffness. To
provide a criterion for chain failure, we follow the work of Mao
et al.15 and postulate that a chain ruptures when the elastic
energy stored in a Kuhn segment reaches a critical value ( )b c.
Using eq 21, this can be translated into a criterion for the
critical Kuhn segment stretch as

NE
( ) 1

2( )
b c

b c

b
λ = +

(27)

This yields the following critical chain stretch:
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In this way, an enthalpic-based criterion is used to
completely define chain rupture, complying with the
observations of Lake and Thomas.21
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3.2. Reference Probability Density Function. We have
seen earlier that the chain distribution can only be determined
if the reference probability density function is known. This
function indeed appears in eq 5 but is also taken as a good
guess for the initial distribution ϕ(λ, 0). While a multivariate
Gaussian function is often invoked,43,44 in this work, we utilize
a probability density function that is consistent with the free
energy defined in eq 22. This function reads

p
kT

( )
1

exp0
cλ

ψ
=

̅
−i

k
jjj

y
{
zzz (30)

where ̅ is a normalization constant. This connection was
discussed by Buche and Silberstein,45 who studied the efficacy
of such approximations over varying chain lengths and
stiffness. For simplicity, we omit the enthalpic term in the
evaluation of the probability density function, noting that its
significance is only relevant at low link stiffness.45 The resulting
change in the final shape of the function p0 is therefore
expected to be minimal. With this in mind, one can show that
substituting the expression for ψc from eq 22 in eq 30 yields
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where the Heaviside step function was added to restrict the
domain of p0 to Ωu. This distribution reflects the diminishing
probability of finding a chain stretched close to its contour
length due to a significant reduction in entropy. In the limit of
N → ∞, eq 31 converges to the Gaussian distribution
predicted by a random walk in three dimensions. We therefore
expect this distribution to be particularly relevant for networks
of short chains (N ∼ 10). Figure 5 illustrates a comparison of

these distributions for N = 15 and N = 30, respectively. We see
that the proposed distribution results in a higher likelihood of
finding a coiled chain, as expected.
3.3. Network Damage and Self-Healing. Let us now

concentrate on the model at the network level. When the
network is undamaged and in a steady state, the kinetic rates of
chain attachment and detachment, ka and kd, respectively, lead
to an equilibrium concentration of chains C0 that can be
determined by enforcing Ċd = 0 in eq 10. This immediately
yields

C C
k

k k0 tot
a

a d
=

+ (32)

By inserting eq 32 into eq 18, it can be immediately
observed that the Clausius−Duhem inequality is satisfied at
equilibrium. This concentration has a twofold effect on the
network’s response: (a) it determines its initial shear modulus
via the relation G0 = C0kT and (b) it provides a limit to the
number of chains that can be broken at any given time. For
instance, if the detachment rate is greater than the attachment
rate, then only a small fraction of the total chain population is
connected to the network at equilibrium. In this scenario, only
the effective chains are able to rupture and dissipate energy by
chain scission. Therefore, we can define a meaningful network
damage parameter d as the fraction of chains that have
ruptured out of the entire total chain population. Specifically,

d C C/r tot= (33)

From its definition, d varies from 0 (no chains have
ruptured) to 1 (all chains have ruptured). We note here that
this parameter does not provide a measure of effective network
damage but rather a measure of the fraction of the chains
(relative to the initial chain population) that can be used to
carry load at later times. Furthermore, if the network has
sustained damage, the steady-state concentration of effective
chains (which was originally C0) decreases to a value Ceq
determined by

C d C(1 )eq 0= − (34)

This new steady-state concentration determines the shear
modulus of the network, G = (1 − d)C0kT = (1 − d)G0. Since
d is defined in terms of the total concentration of chains Ctot,
rather than the initial concentration of effective chains C0, the
kinetic rates ka and kd effectively govern the amount of damage
a dynamic network could attain when loaded quickly. For
instance, if the network ruptures 50% of its initial chain
population, the incremental change in damage will vary
depending on the ratio C0/Ctot. This stems from the fact
that only elastically effective chains can rupture. The
consequences of this predicted phenomenon are discussed
further in Sections 3.5 and 4.

3.4. Numerical Solution. In the remainder of this work,
we concentrate on predicting the mechanical response
elasticity, relaxation, and damageof a polymer specimen that
is subjected to a macroscopic deformation gradient F(t) whose
time history is known but arbitrary. To facilitate visualization
and numerical convenience, we will restrict our analysis to a
two-dimensional chain conformation space for the duration of
this paper, noting that the qualitative trends of the model are
not affected. For this, the solution procedure can be
summarized by three main steps:

1 Compute the evolution of the chain distribution ϕ by
solving the Fokker−Planck equation introduced in eqs 5
and 6. This is accomplished numerically by solving the
corresponding partial differential equation on a two-
dimensional domain Ωu, with λ = [λ1, λ2], |λ| < λc. For
this, we discretize the domain Ωu as a circle of radius λc
and solve eq 5 as a system of coupled ODEs. Note that
the condition of j·n ≥ 0 ∈ Γ is enforced numerically.

2 Compute the chain flux through the domain boundary,
as shown in eq 9, in order to estimate the overall chain
damage. As the instantaneous deformation of chains is
affine according to the velocity gradient, chains which
are stretched past the critical stretch λc in the previous
step are considered to break before given the chance to

Figure 5. Comparison of the proposed distribution based on
Langevin chain statistics (solid lines) with the distribution based on
Gaussian chain statistics (black dotted lines) for networks with chains
composed of N = 15 Kuhn segments and N = 30 Kuhn segments.
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detach. The incremental change in ruptured chains δCr =
Ċrδt is simply calculated by numerically integrating over
the domain of chains with |λ|≥ λc.

3 Compute the stress tensor using the virial formula in eq
15. This is accomplished by assigning each chain a
corresponding elastic force, given by eq 23, which
depends on both the chain stretch λ and Kuhn segment
stretch λb. We then use trapezoidal integration over the
domain to compute the stress tensor.

To explore the prediction of this model, the remainder of
this paper explores the role of various conditions (loading
conditions and material parameters). In this context and to
clarify our approach, we summarize the key parameters of the
model in Table 1.

3.5. Illustration. The proposed model provides a physically
based procedure for differentiating between reversible chain
detachment and irreversible chain rupture. In traditional
covalently bonded networks, irreversible detachment domi-
nates network softening as the cross-linking junctions are too
strong to dissociate and reassociate at appreciable rates.
However, networks that contain a large portion of physical
bonds (e.g., hydrogen bonding, van der Waals forces, and so
forth) present a coupling between these two processes that is
governed by the loading rate and relative strength of the
physical and chemical bonds present in the network. To
remain general in our approach, we choose to describe these
quantities with non-dimensional variables. We therefore
introduce the Weissenberg number W, which expresses a

normalized timescale relating the rate of deformation to the
rate of elastic dissipation. In this study, we define it as

W
k
L

d
= | |

(35)

where |L| is the spectral norm of the velocity gradient. For
uniaxial tension experiments, this is the stretch rate λ̇, while for
simple shear, it is the shear rate γ̇. When W is large, the
network behaves elastically as most chains do not have time to
detach during loading. In contrast, a low value of W would
imply that chains stretch very little before detaching, which
results in a more fluid-like response.
At this point, we seek to determine the observable effects of

the intrinsic timescales in our system. With this objective, we
consider a typical stress relaxation experiment in which a
network is pulled in uniaxial tension at a loading rate λ̇ ≫ kd
(high W) to a pre-determined stretch λmax and then held
indefinitely to relax (Figure 6). During the loading phase, the
attached and non-ruptured chains behave elastically but begin
to rupture as they are pulled past the damage surface |λ| = λc.
During the relaxation phase, two processes occur simulta-
neously to bring the network to its new equilibrium: (i) the
detachment of stretched chains, resulting in energy dissipation
and stress relaxation, and (ii) the attachment of chains from
the detached population, sourcing self-healing and an increase
in the nominal chain concentration C. The model is able to
analytically capture the stress σ and nominal chain
concentration C during network relaxation. We particularly
note that the characteristic timescale of relaxation, τr = 1/kd, is
independent of the kinetic rate of chain attachment as chains
reattach in a stress-free state. Conversely, the timescale of self-
healing, τh = 1/(ka + kd), involves both kinetic rates. These
timescales are verified analytically in the Supporting
Information. Thus, we expect the same normalized stress
response as indicated in Figure 6a for networks with the same
kd, but the observed recovery in C will vary for different values
of ka (Figure 6b).
Let us now explore the effect of loading rate in the context of

a cyclic loading simulation. In a damage-free elastic network,
the loading and unloading curves are expected to follow the
same path. When chains begin to rupture, however, the elastic

Table 1. Model Parameters

parameter description units

C chain density chains/volume
N chain length Kuhn segments
kd detachment rate chains/second
ka attachment rate chains/second

( )b c critical bond energy energy

Eb bond stiffness energy

Figure 6. Stress relaxation experiment. (a) Normalized Cauchy stress vs normalized time. I−II is loaded at a constant rate of λ̇ ≫ kd. II−IV are
held at a constant stretch. The time constant τr is indicated when stress has relaxed by ≈63%. (b) Chain concentration as a function of time. Note
that the time constant of healing τh is not equal to that of relaxation. (c) Contour plots of the distribution ϕ at indicated time intervals. At longer
times, the model predicts convergence to its initial state as ϕ(r, t → ∞) = (1 − d)ϕ0(r).
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energy stored in the chain is lost, creating a distinct hysteresis
loop. The presented model captures this effect in the limit of
large W (Figure 7a). In this case, all the dissipated energy is
due to chain rupture, and the resulting network damage is
significant. Initially, the distribution ϕ(r) (illustrated as iso-
contours over the two-dimensional chain conformation space
in Figure 7) stretches affinely with loading. This creates a
stiffening stress−strain response as a larger portion of chains
approach their nonlinear regime near the contour length. At a
certain point, a significant portion of chains cross the damage
surface, illustrated by the red dashed circle of diameter λc,

effectively softening the network. With further loading, the
stress begins to decrease as more energy is released due to
chain rupture than is stored elastically. The network is
unloaded elastically as well, creating a distinct cutoff in the
distribution in directions where chain rupture has occurred.
When viscous forces dominate (low W), energy dissipation

is due to bond exchange and topological rearrangement
(Figure 7b). Chains are typically not stretched far before
detaching, and the stress response is much softer. Damage
accumulation in this network reflects the creep-like response at
high deformations; there is initially a small portion of chains

Figure 7. Cyclic loading experiment performed at a constant strain rate λ̇. (a) High Weissenberg loading. Energy dissipation is primarily a result of
chain rupture. (b) Low Weissenberg loading. Energy dissipation is primarily due to reversible bond kinetics. Contour plots indicate the distribution
ϕ at the respective stage of loading.

Figure 8. Uniaxial tension behavior for small loading rates (a), moderate loading rates (b), and high loading rates (c). First row is the true
(Cauchy) stress, while the second row is the nominal stress (both in units of C0kT). Note that the tick mark values in the y-axis of the first column
are different from those in the second and third columns.
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that rupture from their resting state being close to the damage
surface, but this fraction of chains progressively becomes
smaller as loading continues. Network evolution consists of
incremental stretches, followed by detachment and reattach-
ment events, which effectively reset the loading history. After a
certain point, the initial conformation of chains is so far from
the damage surface that no more damage is accumulated. This
is accompanied by steady-state creep and a plateauing of the
fraction of ruptured chains. We particularly note the unloading
curve in Figure 7b, which reaches zero stress long before the
material is unloaded completely, indicating a plastic
deformation due to topological changes. The energy
dissipation mechanisms in these networks are therefore quite
different from those of an elastic network. We expect most real
networks to exhibit both types of response, which yields more
complicated behaviors due to the coupling of bond exchange,
elastic deformation, and chain rupture. This is explored in the
following section.

4. RESULTS AND DISCUSSION

The model presented in the previous sections serves as a
foundation for describing polymer networks that undergo both
reversible bond detachment and irreversible chain rupture. In
many systems, weak physical bonds between neighboring
chains source reversible detachment events in the form of
hydrogen bonding or van der Waals forces, even if the network
itself is held together by covalent junctions. In contrast,
physically bonded polymers may experience chain scission
when loaded at a rate much faster than the natural rate of bond
exchange. These two mechanisms thus appear simultaneously
in many materials that do not behave ideally. In this section,
we summarize the basic predictions of the proposed model and
provide relevant material examples where appropriate.
4.1. Basic Predictions. We begin a quantitative explora-

tion of the model by considering a uniaxial tension experiment
at a constant strain rate λ̇. To illustrate the interplay between
elasticity and viscoelasticity, we choose a range of Weissenberg
numbers and critical stretches λc that fully explore the
parametric space of the model. In particular, we choose three
distinct values of λc corresponding to chains breaking when
stretched slightly less than, equal to, or slightly greater than
their inextensible contour length Nb. The strain rate is varied
to represent networks that are primarily viscous (W = 0.1),
primarily elastic (W = 10), or viscoelastic (W = 1). The results
from nine simulations are summarized in Figure 8.
At low Weissenberg numbers, the material flows indefinitely

in steady-state creep. An initial increase in stress is induced due

to the sudden onset of deformation (Figure 8a). Very little
change occurs to the distribution ϕ as rapid bond dynamics
causes chains to detach before deforming. Almost no damage is
accrued in the network as most chains detach before they are
stretched to the point of rupture. Due to this, the critical
stretch λc has very little effect on the predicted response. As we
increase the Weissenberg number, however, the three curves
begin to separate due to the highly nonlinear force response at
large stretches (Figure 8b,c). In these networks, the elastic
deformation competes with bond exchange, which induces a
preferred alignment of chains in the direction of loading
(illustrated by the iso-contour plots of the distribution ϕ). At
larger stretches, a significant portion of chains approach the
damage surface defined by λc (indicated by red circles in Figure
8) and rupture. In the case of W = 1 (Figure 8b), detachment
events are ongoing at a comparable rate to the elastic
distortion. Thus, a portion of chains are able to detach from
their stretched state and reattach in the initial conformation
before rupturing. Eventually, the incremental number of chains
reversibly detaching becomes greater than the number of
chains rupturing, and the damage and true stress plateau to
equilibrium values. This is not the case for high Weissenberg
loading, however, as chains deform elastically and do not have
time to detach from the network before reaching their critical
stretch (Figure 8c). In this case, the full population of initially
effective chains, captured by C0, is expected to fracture with
increased loading. We note, however, that the concentration of
detached chains, Cd, remains fully intact. Thus, the network is
still expected to recover a portion of its elasticity when
unloaded.

4.2. Viscoelasticity and Damage. The existence of time-
dependent dissipative quantities (such as bond kinetics) is
expected to have significant implications on the damage
accumulation in a material undergoing repeated cyclic loading.
On one hand, if the network can rearrange its topology
completely during one cycle (a low Weissenberg number),
there should be little to no chain rupture and thus no
progressive softening of the network. The other extreme would
pertain to permanent networks without dynamic bonds, which
would continue to weaken with increased loading and
increased strain. In this section, we demonstrate the presented
model to unify these extremes as limiting cases relating to the
Weissenberg number.
We here expand on the illustration in Figure 7 by simulating

a step-cycle uniaxial loading experiment in which the network
is immediately reloaded to a higher strain following the first
unloading. Two mechanisms source energy dissipation in the

Figure 9. Multiple cyclic loading experiments. (a) PVA gels synthesized by Zhang et al.;46 the response is primarily elastic, with energy dissipation
due to chain rupture. (b) Metal-coordinated PAM hydrogels created by Ding et al.48 Energy dissipation is due to chain rupture and bond exchange.
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system: (i) the detachment of deformed chains and (ii) the
rupture of highly stretched chains. For the limiting cases of low
and high Weissenberg loading, the former and latter
mechanisms dominate, respectively, and are each solely
responsible for the dissipated energy in each respective case
(appearing as a hysteresis loop as in Figure 7). It is difficult to
decouple these contributions at moderate loading rates,
however, as these two processes may be occurring simulta-
neously.
Let us start by considering a simulation performed at a high

Weissenberg number. In this regime, we expect chain rupture
to source all energy dissipation and the response of the intact
network to be perfectly elastic. As bond rupture is irreversible,
the unloading path is different from the loading path for a
given cycle if damage has accrued during that cycle. However,
chains cannot rupture during unloading, causing the following
loading path to follow the previous unloading path perfectly.
This reflects the fact that there are no inelastic changes to the
distribution ϕ at high Weissenberg numbers; the same chains
are continuously pulled in cycles until they reach their contour
length and break. We would expect this type of response from
networks with either very slow dynamics or chemical networks
such as conventional elastomers and hydrogels. Indeed, a
comparison to the data by Zhang et al.46 reveals a nearly ideal
elastic response with little to no fatigue and negligible
viscoelastic dissipation throughout the loading history (Figure
9a). For this experiment, we fit the data with a Weissenberg
number of W = 100, a chain length of N = 10, and a critical
stretch of N/ 1.08cλ = . The resolution of the TNT for
chemical networks such as this can be interpreted by the
timescales of attachment and detachment approaching zero (kd
→ 0), at which point the foundational model (without
damage) has been shown to converge to the neo-Hookean
model31,47 and the statistically based elastic damage model
described in Vernerey et al.17

The modification of this experiment for moderate loading
rates (W ≈ 1) yields different qualitative trends in the stress−
strain relationship. At this loading rate, the timescale of
dissipation by reversible bond exchange is significant, creating
a visco-plastic response due to the added dissipative
mechanism. We begin to see larger deviations of the loading
and unloading curvesboth within the same cycle and
between subsequent cycles. The chains that were once
stretched have either ruptured or exchanged their bonds to
reattach in a stress-free conformation. Due to this, the
concentration of stretched chains has decreased. This type of

response is, in fact, more commonly observed in experimental
systems. To explain this, we consider the fact that most
hydrogels exhibit some form of rate-dependent behavior
whether it be from bond dynamics, solvent exudation,
reptation of entanglements, and so forth. Even though the
underlying physics governing each microscopic source to
viscoelastic behavior is different, we expect the expression of
the timescale for each phenomenon at the macroscale to be
similar. With this caveat, a number of physical networks
(whose primary source of viscoelasticity is due to bond
dynamics) have been shown to exhibit similar behaviors to that
predicted by the model.49,50 For instance, the trends observed
by Ding et al.48 for an ionic polymer network match the
qualitative predictions of the model (Figure 9b). We
particularly note the distinct discontinuity observed between
each loading cycle, which is commonly observed in viscoelastic
polymers, but is not captured by many existing models. Thus,
while the current formulation does not match all the trends in
the data (in particular, the strong overlap between subsequent
loading cycles), the combination of damage and viscoelasticity
supplements our current state of modeling these experiments.
This fitting predicts the kinetic rates to be ka = 6.9 ms−1 and kd
= 13.9 ms−1, N = 32, and a critical stretch of N/ 1.1cλ = .

4.3. Chain Reattachment and Self-Healing. Reversible
bond detachment provides an intrinsic self-healing mechanism
in physical networks, making them desirable for a variety of
applications in biomedical and tissue engineering. The self-
healing properties of a material are dictated by the kinetic rate
of bond exchange as well as the concentration of reversible
cross-linking junctions in the network. The kinetic rate of bond
exchange is specific to the material and bond type, whereas the
concentration of reversible cross-links may change with loading
history. For instance, extreme loading conditions that have
induced chain rupture may decrease the population of chains
available for bond exchange. In this case, the network may only
recover a portion of its stiffness and energy dissipation
properties. To measure this in material systems, many
researchers have performed subsequent cyclic loading experi-
ments separated by a given wait time, tw, and calculated the
resulting hysteresis ratio for that test. The hysteresis ratio is
defined as the energy dissipated during the loading−unloading
cycle after the hold-and-wait time divided by the energy
dissipated during the cycle prior to the hold-and-wait time
(note that the energy dissipated by the material system during
a cycle is equal to the area under the loading−unloading
stress−strain curve). For small tw, the network may retain

Figure 10. Self-healing experiments performed by Fang et al.51 Left: cyclic loading curves performed with normalized wait times τh = 1 and τh = 2
after original loading. Right: Hysteresis ratio versus normalized wait time. The fitted curve is an exponential decay curve with a characteristic
timescale τh = 1/(ka + kd), where τh was calculated from experimental calibration.
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plastic strains and preferred chain alignment, and the stiffness
and amount of energy dissipation may be smaller than the
initial loading. As the wait time is increased, the network
distribution ϕ approaches its original value, and the material
properties approach those of the original network.
To further illustrate this point, we consider such a self-

healing experiment performed by Fang et al. on a highly elastic
protein hydrogel.51 Their network is approximated by this
model as a collection of unfolded proteins held together by
physical cross-links. They discovered significant hysteresis
loops and high toughness due to the energy dissipated from
the folding and unfolding of proteins. Notably, the self-healing
curve, measured by the hysteresis ratio versus wait time
between cycles, closely follows the exponential trend of chain
recovery illustrated in Figure 6. To confirm this, we fit the rate
of chain detachment, kd, to the initial loading curve by
simulating this cycle at a constant applied velocity. From here,
we determined ka by fitting an exponential curve to the self-
healing curve with a characteristic time τh = 1/(ka + kd). As
illustrated in Figure 10, the model shows excellent agreement
with the self-healing behavior of the material using model
parameters ka = 51.9 ms−1, kd = 148 ms−1, N = 26, and

N/ 1.0cλ = . We thus expect that the recovery of the
hysteresis ratio closely aligns with a recovery of the chain
concentration toward its new equilibrium value. Similar
experiments were performed by many researchers,48,52−54

each of whom reported an exponential recovery in hysteresis
ratio with respect to wait time. We finally note that the model
predicts recovery to be proportional to the damage accrued in
the network during its initial loading; thus, the equilibrium
value of the hysteresis ratio indicates the fraction of chains that
have irreversibly ruptured in the network. For this experiment,
we predict that roughly 5% of the initial chain concentration
has ruptured as the hysteresis ratio approaches 95%.

5. SUMMARY

In dynamic polymer networks, the mechanisms of reversible
bond exchange and irreversible chain rupture occur simulta-
neously, resulting in a complex response with multiple
governing timescales. This poses significant challenges in
modeling the behavior of these networks as the characteristics
of their response may be due to one or both of these network
degrading processes. In this paper, we have presented a
micromechanically based formulation for describing dynamic
polymer networks whose chains rupture when stretched past a
critical stretch. A statistical description of the network is used
based on the TNT, which allows the model to bridge
macroscopic quantities such as stress and stored energy to
the conformation space of a representative chain. To capture
bond rupture, we incorporate an enthalpic term into the free-
energy density, which accounts for bond stretching and
eventual rupture at high chain stretches. The model predicts
several responses characteristic of physical networks, including
rate-dependence, strain stiffening, and self-healing.
Two timescales are found to govern the behavior of a simple

dynamic polymer network: the timescales of relaxation and
self-healing. Even though these timescales are related to the
kinetic rates of bond association and dissociation, they are not
necessarily of comparable magnitudes. The relaxation time-
scale, which is responsible for rate dependence and energy
dissipation, is strictly governed by the kinetic rate of
dissociation. The timescale of self-healing, however, is inversely

proportional to the summed rate of chain attachment and
detachment. This finding has considerable implications
especially when considering bond rupture and network damage
since only “elastically effective” chains (i.e., not dangling
chains) can be ruptured during a loading cycle. Furthermore,
based on the results in Section 4.3, we may propose a simple
method for approximating these rates experimentally with two
common setups. First, a relaxation test may be performed to
determine the characteristic relaxation time τr = 1/kd, as is
already common for viscoelastic materials. Second, a self-
healing experiment may be performed by measuring the
recovery of the hysteresis ratio under cyclic loading. The
timescale of self-healing τh = 1/(ka + kd) can then be calculated
approximately by an exponential fitting. By measuring these
rates, it could be possible to tune the desired properties, such
as initial shear modulus, self-healing behavior, and chain
extensibility, for a desired application.
The presented formulation rests upon several assumptions

that may be revised according to the type of network studied.
One of the primary assumptions, as mentioned in Section 2, is
the instantaneously affine kinematic law. In many experimental
systems, this has been shown to break down at high strains,
where it is hypothesized that alternative mechanisms such as
reptation are energetically preferred. For this model, this could
be reflected by applying a non-affine kinematic law for highly
stretched conformations of ϕ. Furthermore, the numerical
implementation presented in this work is highly simplified due
to the use of a two-dimensional chain conformation space.
This is due to the limitations of tracking the full three-
dimensional chain conformation space at each stage of loading,
which is computationally expensive. We emphasize the
intention of this work to provide a qualitative understanding
of the governing physics outlined in Section 2 and note that a
more sophisticated numerical strategy could mitigate this. For
instance, reducing the model to the domain of a micro-
sphere37,55,56 could significantly reduce computational cost and
open the possibility for implementation in finite element
method models. We finally note that our usage of a first-order
kinetic law, with constant rates of ka and kd, does not account
for the force sensitivity of bond lifetime in many physical
systems.36 The model may therefore be supplemented by
including a functional form of kd on the force f in the chain as
per previous works.37 Relaxing some of these assumptions is
expected to yield better fittings for the experimental
comparisons presented in this work. In particular, the
Mullins-like effect observed in Figure 9b that was not captured
by this model has been explained by other researchers by
network alteration56 (reflecting the changes of non-affine
deformation) as well as nonlinear viscoelasticity.37

Dynamic polymers have been praised for their ability to
toughen gels and increase their extensibility.57,58 This is
commonly attributed to the reversible cross-links acting as
“sacrificial” bonds, which dissipate energy that would otherwise
be stored in an elastic network. The framework presented here
could have significant implications on the localization and
propagation of fracture in these materials as tracking the full
chain distribution defines an innate length scale that is
otherwise lost in empirical continuum models. In particular,
this model accounts for the preferred rupture of highly
stretched chains at a single point in space, which could help to
explain the zone surrounding the crack tip of a viscoelastic
materiala topic that is still poorly understood.10,59,60

Furthermore, the diffusive motion of dynamic chains into a
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localized region of damage could be incorporated into this
framework to explain more complex patterns of self-healing,
such as mending a material which has been cut in half
entirely.61 This would also be relevant for the interplay
between reptation and damage in elastomers, as well as
hydrogels with slideable cross-links.62,63
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