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Abstract

A reaction system exhibits “absolute concentration robustness” (ACR) in some
species if the positive steady-state value of that species does not depend on initial
conditions. Mathematically, this means that the positive part of the variety of the
steady-state ideal lies entirely in a hyperplane of the form xi = c, for some c > 0.
Deciding whether a given reaction system – or those arising from some reaction
network – exhibits ACR is difficult in general, but here we show that for many simple
networks, assessing ACR is straightforward. Indeed, our criteria for ACR can be
performed by simply inspecting a network or its standard embedding into Euclidean
space. Our main results pertain to networks with many conservation laws, so that
all reactions are parallel to one other. Such “one-dimensional” networks include
those networks having only one species. We also consider networks with only two
reactions, and show that ACR is characterized by a well-known criterion of Shinar
and Feinberg. Finally, up to some natural ACR-preserving operations – relabeling
species, lengthening a reaction, and so on – only three families of networks with two
reactions and two species have ACR. Our results are proven using algebraic and
combinatorial techniques.

Keywords: absolute concentration robustness, reaction network, mass-action ki-
netics, multiple steady states, roots of polynomials

1 Introduction

The concept of absolute concentration robustness (ACR) was introduced by Shinar and
Feinberg in their investigations into how biochemical systems maintain their function
despite changes in the environment [25]. A biochemical system exhibits ACR in some
species Xi if for every positive steady state x, regardless of initial conditions, the value of
xi is the same. Thus, a system with ACR maintains species Xi at a constant level, even
amid environmental fluctuations. Mathematically, ACR occurs when the positive part of
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the variety of the steady-state ideal lies entirely in a hyperplane of the form xi = c, for
some c > 0. ACR is therefore rare.

Many of the known results on ACR are sufficient conditions for ACR, which arise from
the reaction-network structure [25], through the analyses of elementary modes [20, 21], or
by network “translation” (a way of understanding the steady states of one network through
those of a closely related network) [27]. Algebraic methods also have been harnessed [18,
23, 24], and several important biochemical systems have been analyzed in the context of
ACR [8, 9]. There has also been interest from control theory [5, 19]. Finally, ACR has
also been considered in stochastic, rather than deterministic, models [1, 2, 3, 12].

A starting point of this work is the first sufficient condition for ACR, from the original
article of Shinar and Feinberg [25]. Here we show that their criterion completely char-
acterizes ACR in networks having only two reactions (and at least two species), under
mass-action kinetics, as long as a mild nondegeneracy condition is met. (This condition
ensures that a network like {B  A + B} is viewed as having only one species, A, with
B acting only as a catalyst.) Therefore, ACR is easy to check for two-reaction networks
(see Theorem 6.6), even though this is a difficult task for general networks.

It turns out that for other classes of networks ACR is again easy to assess. One such
class is formed by networks with only one species – or, more generally, those with many
conservation laws so that all reaction vectors are scalar multiples of each other. For these
networks, ACR is checked simply from inspecting the directions of the reaction arrows in
an embedding of the network in Euclidean space. See Proposition 4.2 and Theorem 5.5.

Finally, we specialize our results to the case of networks with exactly two reactions
and two species (Corollary 6.5). We prove that up to certain network operations which
preserve ACR – such as relabeling species and lengthening a reaction – there are exactly
three families of networks with ACR:

1. {0  mA}, for m ≥ 1,

2. {A→ 2A, A + nB → nB}, for n ≥ 1, and

3. {B → A, pA + B → (p− 1)A + 2B}, for p ≥ 1.

In the third family, the p = 1 network goes back to the original article on ACR [25].
It might seem that our results, which apply to a limited class of networks, are only

moderately interesting. However, the original interest in ACR pertained to small networks
and the capacity of ACR in such networks to confer robustness even when situated inside
a larger network [25]. Indeed, such results on how ACR – and even the steady-state value
– are maintained when located within larger networks, are proved in a recent article of
Cappelletti, Gupta, and Khammash [5]. Therefore, having a database and (as much as
possible) a classification of small networks having ACR will aid in analyzing ACR – and
robustness more generally – in applications.

The outline of our work is as follows. We begin with a Background in Section 2,
and then introduce network operations in Section 3. In Section 4, we present our results
on networks with only one species. Next, we generalize those results to handle one-
dimensional networks with any number of species in Section 5. In Section 6, we prove our
results on networks with two reactions. We end with a Discussion in Section 7.
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2 Background

This section recalls pertinent definitions and prior results related to reaction networks
and ACR.

2.1 Reaction networks

We start by defining a reaction network, and then we define the system of differential
equations modelling the dynamics of networks under mass-action kinetics.

Definition 2.1. A reaction network G = (S, C,R) consists of three finite sets:

1. a set of species S := {A1, A2, . . . , As};

2. a set of complexes C := {y1, y2, . . . , yp}, consisting of finite nonnegative-integer com-
binations of the species; and

3. a set of reactions R ⊆ (C × C)  {(yi, yi) | yi ∈ C}, which are ordered pairs of
complexes, excluding diagonal pairs, such that every complex takes part in at least
one reaction.

Throughout our work, s and r denote the numbers of species and reactions, respectively.
It is customary to write a reaction (yi, yj) as yi → yj. The complexes yi and yj are

called the reactant and product respectively. Also, a reaction yi → yj is reversible if its
reverse reaction yj → yi is also in R, and we denote such a pair by yi  yj.

It will sometimes be convenient to write reactions as y → y (rather than yi → yj)
so that indices correspond to the species rather than the complexes. This usage should
be clear from context. Also, our examples will involve only a few species, and so we will
write A,B,C, . . . for the species rather than A1, A2, A3 . . . .

Example 2.2. Let n ≥ 1. The following generalized Shinar–Feinberg network has 2
species, 4 complexes, and 2 reactions:

{B → A, nA + B → (n− 1)A + 2B} . (1)

The n = 1 version of this network was analyzed by Shinar and Feinberg [25].

Our next task is to explain how a network gives rise to a system of ODEs. We begin
by writing the i-th complex as yi1A1 + yi2A2 + · · ·+ yisAs, where each yij ∈ Z≥0 is called
the stoichiometric coefficient of Aj, for j = 1, 2, . . . , s. Next, x1, x2, . . . , xs represent the
concentrations of the s species, which we view as functions xi(t) of time t, and we define
the monomial xyi := xyi1

1 xyi2
2 · · ·xyis

s .
A reaction yi → yj, from the i-th complex to the j-th complex, defines the reaction

vector yj − yi, which encodes the net change in each species resulting from the reaction.
The stoichiometric matrix Γ is the s× r matrix whose k-th column is the reaction vector
of the k-th reaction. Under mass-action kinetics, each reaction yi → yj comes with a rate
constant κij, which is a positive real parameter.
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A mass-action system, denoted by (G, κ), is the dynamical system that arises, via
mass-action kinetics, from a chemical reaction network G = (S, C,R) and a choice of rate
constants κ = (κij) ∈ Rr

>0 (recall that r is the number of reactions), as follows:

dx

dt
=


yi→yj ∈R

κijx
yi(yj − yi) =: fκ(x) . (2)

Viewing the rate constants as a vector of parameters κ = (κij) ∈ Rr
>0, we have

polynomials fκ,i ∈ Q[κ, x], for i = 1, 2, . . . , s. For simplicity, we often write fi instead of
fκ,i.

The stoichiometric subspace, S := span ({yj − yi | yi → yj is in R}), is the vector sub-
space of Rs spanned by all reaction vectors yj − yi. Thus, S = Im(Γ), where Γ is the
stoichiometric matrix defined earlier.

Let d = s− rank(Γ). A conservation-law matrix of G, denoted by W , is a row-reduced
d × s-matrix whose rows form a basis of the orthogonal complement of S. A trajectory
x(t) that starts at a positive vector x(0) = x0 ∈ Rs

>0 remains, for all positive time, in
the following stoichiometric compatibility class with respect to the total-constant vector
c := Wx0 ∈ Rd (where W is a conservation-law matrix):

Sc := {x ∈ Rs
≥0 | Wx = c} . (3)

Example 2.3 (Example 2.2, continued). Returning to the generalized Shinar–Feinberg
network (1), the resulting ODEs (2) are as follows:

dxA

dt
= κ1xB − κ2x

n
AxB (4)

dxB

dt
= −κ1xB + κ2x

n
AxB ,

where κ1 and κ2 are the rate constants for the first and second reactions in (1) respec-
tively. The stoichiometric subspace is spanned by (1,−1)T and so is one-dimensional.
The stoichiometric compatibility classes are the following line segments, for c ∈ R>0:

Sc = {(xA, xB) ∈ R2
≥0 | xA + xB = c} . (5)

Many of the results in this work pertain to networks, like the generalized Shinar–
Feinberg networks, in which the stoichiometric subspace is one-dimensional. Another
class that will appear often is formed by networks in which only a single species appears
in all the reactions. Accordingly, we give names to these networks, as follows.

Definition 2.4. Let G = (S, C,R) be a reaction network.

1. G is one-dimensional if its stoichiometric subspace is one-dimensional.

2. G is a one-species network if there exists a species Ai ∈ S such that every reaction
involves only Ai, that is, (y, y) ∈ R implies that yj = yj = 0 for all species
Aj ∈ S  {Ai}.
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Every reaction network G = (S, C,R) with |S| = 1 is a one-species network. However,
our definition allows larger species sets, as long as the extra species do not take part in
reactions, in order to accommodate our definitions of network operations in Section 3.

Remark 2.5. One-dimensional networks have been analyzed recently in terms of multi-
stationarity and multistability [26] and in the stochastic setting [28, 29].

Remark 2.6. Our definition of one-species networks is more general than how the term
is used in [16], but this should not cause any confusion.

As mentioned above, one-dimensional and one-species networks form two classes of
networks that play a key role in our results. We also consider a third class, as follows.

Definition 2.7. A species Ai ∈ S is a catalyst-only species of a reaction network G if, for
all reactions y → y of G, we have yi = yi.

Example 2.8 (Degenerate-ACR network). Let n ≥ 1. Consider the following network,
which was shown to us by Daniele Cappelletti:

{A→ 2A, A + nB → nB} . (6)

We call this network the degenerate-ACR network (we will see later in this section that this
network has ACR but all steady states are degenerate). The species B is a catalyst-only
species, and the ODEs (2) are as follows:

dxA

dt
= κ1xA − κ2xAx

n
B (7)

dxB

dt
= 0

where κ1 and κ2 are the rate constants for the first and second reactions in (6), respectively.

In Example 2.8, we saw that the catalyst-only species B gave rise to an ODE with
zero right-hand side. It is easy to see that this generalizes, as follows.

Lemma 2.9. Let Ai be a species of a reaction network G. Then Ai is a catalyst-only
species of G if and only if in the mass-action ODEs (2), for all choices of positive rate
constants, we have dxi

dt
= 0.

2.2 Steady states

For a mass-action system, a steady state is a nonnegative concentration vector x∗ ∈ Rs
≥0

at which the right-hand side of the ODEs (2) vanishes: fκ(x∗) = 0. A steady state x∗ is
nondegenerate if Im (dfκ(x∗)|S) = S, where dfκ(x∗) is the Jacobian matrix of fκ evaluated
at x∗. A nondegenerate steady state is exponentially stable (or, for brevity, stable) if
each of the dim(S) nonzero eigenvalues of dfκ(x∗) has negative real part. If one of these
eigenvalues has positive real part, then x∗ is unstable.

Our main interest in this work is in positive steady states x∗ ∈ Rs
>0. The set of all

positive steady states of a mass-action system is the positive steady-state locus.
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Definition 2.10. A network admits a positive steady state (respectively, is multista-
tionary) if there exist positive rate constants (κij) ∈ Rm

>0 such that, for the corresponding
dynamical system (2), there is some stoichiometric compatibility class (3) having at least
one (respectively, at least two) positive steady state(s).

Example 2.11 (Example 2.3, continued). From the ODEs (4) of the generalized Shinar–
Feinberg network, we see that the positive steady-state locus is the set {( n


κ1/κ2, b) |

b ∈ R>0}. This set intersects each stoichiometric compatibility class (5) at most once.
Thus, the generalized Shinar–Feinberg network is non-multistationary.

Example 2.12 (Example 2.8, continued). From the ODEs (7) of the degenerate-ACR
network, we see that the stoichiometric subspace is spanned by (1, 0)T and the stoichio-
metric compatibility classes are the horizontal, closed half-rays Pc = {(xA, c) | xA ∈ R≥0},
for c ∈ R>0. Also, the positive steady-state locus is the interior of a single compatibility
class, Pc∗ , where c∗ = n


κ1/κ2. It is straightforward to check that all of these positive

steady states are degenerate.

Some of our results will pertain to networks with two reactions. The following lemma
states that such networks, if they admit a positive steady state, must be one-dimensional.

Lemma 2.13. Let G be a reaction network with exactly two reactions. If G admits a
positive steady state, then G is one-dimensional.

Proof. This follows easily from [16, Lemma 4.1] (or a straightforward calculation).

Remark 2.14. The converse of Lemma 2.13 is false: the network {0→ A→ 2A} consists
of two reactions and is one-dimensional, but does not admit a positive steady state.

2.3 Deficiency

The deficiency δ is a nonnegative integer associated with each network (see Definition 2.15
below). It is an important invariant, with a close relationship to steady states and their
stability [13].

To define deficiency, we need some terminology. By representing each reaction (yi, yj) ∈
R as yi → yj, we obtain a reaction graph G in which the vertices correspond to the com-
plexes, and the (directed) edges correspond to the reactions. The linkage classes of a
network are the connected components of G. The terminal strong linkage classes are the
strongly connected components of G such that no reaction points out of the component
(that is, there is no reaction y → y with y in the component but not y). A complex is
terminal if it belongs to a terminal strong linkage class; otherwise, it is nonterminal.

Definition 2.15. The deficiency of a reaction network is

δ := p− − dim(S) ,

where p is the number of complexes,  is the number of linkage classes, and S is the
stoichiometric subspace.

Example 2.16 (Example 2.11, continued). The generalized Shinar–Feinberg network has
4 complexes and 2 linkage classes. We saw earlier that the network is one-dimensional.
Hence, the deficiency is 4− 2− 1 = 1.
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Figure 1: Reaction diagram of the network in Example 2.20.

2.4 Geometric diagrams for networks

We recall how to represent a network geometrically, through the reaction diagram [14].

Definition 2.17. Let G be a network with s species. The reaction diagram of G is the
realization, in Rs, of its reaction graph in which each reaction y1A1 + y2A2 + . . . ysAs →
z1A1 + z2A2 + . . . zsAs is depicted as the arrow from (y1, y2, . . . , ys) to (z1, z2, . . . , zs).

Remark 2.18. Reaction diagrams are also called “Euclidean embedded graphs” [6].

Example 2.19 (Example 2.16, continued). The reaction diagram of the generalized
Shinar–Feinberg network is shown here:

B
A

nA + B

(n− 1)A + 2B

Example 2.20. The reaction diagram of the network {3A + 5B → A + 6B , A + 3B →
3A + B} is presented in Figure 1.

2.5 Embedded networks and arrow diagrams

Here we recall two concepts – embedded networks and arrow diagrams – which will be
useful when we analyze one-dimensional networks [16].

Definition 2.21. The restriction of a set of reactions R to a set of species S, denoted
by R|S , is the set obtained from R by (1) setting to 0 the stoichiometric coefficients of
all species not in S, and then (2) discarding any trivial reactions (reactions of the form

miAi →


miAi, that is, in which the reactant and product complexes are equal) and
keeping only one copy of any duplicate reactions that arise.
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Definition 2.22. The embedded network N of a network G = (S, C,R) obtained by
removing a set of reactions R ⊆ R and a set of species {Xi}i∈I ⊆ S is

N :=

S|C|RN , C|RN

, RN := (RR) |S{Xi}i∈I


,

where C|RN
denotes the set of complexes of the set of reactions RN , and S|C|RN denotes

the set of species in the set of complexes C|RN
.

Remark 2.23 (Embedded networks as projections). All embedded networks considered
in this work are obtained by removing all species except one. Accordingly, such embedding
networks can be viewed as projections of the original network (or its reaction diagram)
to the axis corresponding to the single species. See, for instance, Example 2.25 below or
(in a later section) Figure 2.

Definition 2.24. Let G be a one-species reaction network with at least one reaction. Let
A denote the unique species appearing in all reactions, so that each reaction of G has the
form aA → bA, where a, b ≥ 0 and a = b. Let m be the number of (distinct) reactant
complexes, and let a1 < a2 < . . . < am be their stoichiometric coefficients. The arrow
diagram of G, denoted ρ = (ρ1, ρ2, . . . , ρm), is the element of {→,←, •←→}m defined by:

ρi =


→ if for all reactions aiA→ bA in G, it is the case that b > ai
← if for all reactions aiA→ bA in G, it is the case that b < ai

•←→ otherwise.

Example 2.25 (Example 2.19, continued). For the generalized Shinar–Feinberg network,
{B → A, nA + B → (n − 1)A + 2B}, the embedded network obtained by removing
species A is {0 ← B → 2B}, which has arrow diagram ( •←→). On the other hand,
removing B yields {0→ A , (n− 1)A← nA}, with arrow diagram (→,←).

Remark 2.26. Arrow diagrams have been used to analyze properties of one-species net-
works, specifically, multistationarity [17], multistability [26], and the “mixed volume” [22].

2.6 Absolute concentration robustness

Here we recall the definition of absolute concentration robustness (ACR), and introduce
stable ACR. Stable ACR is the type of ACR that is most relevant in applications, as in
this case the steady states are robust to small perturbations.

Definition 2.27. Let Ai be a species of a reaction network G.

(i) A mass-action system (G, κ) has absolute concentration robustness (ACR) in Ai if
the value of xi in every positive steady state x of the system, is the same. This value
of xi is the ACR value.

(ii) A mass-action system (G, κ) has stable ACR if (G, κ) has ACR in Ai and additionally
every positive steady state of the system is stable.
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Remark 2.28. A mass-action system with no positive steady states trivially has ACR
(and also stable ACR); this is called “vacuous ACR” in [24]. Mass-action systems with
vacuous ACR include those systems arising from networks with only one reaction. How-
ever, in applications, we are not interested in vacuous ACR. Therefore, our main results
will consider only networks that admit positive steady states.

Remark 2.29. A weaker form of ACR, in which some species has only finitely many
positive steady-state values, was analyzed recently by Pascual-Escudero and Feliu [23].

In this work, we are interested in ACR at the level of networks, rather than at the
level of one of its mass-action systems. Accordingly, we introduce the following definition.

Definition 2.30. A network G with m reactions and species A1, A2, . . . , As has ACR
in Ai if (G, κ) has ACR in Ai for every choice of κ ∈ Rm

>0. Similarly, G may have stable
ACR in Ai. Also, G has ACR (or stable ACR) if G has ACR (or stable ACR) in some
species Ai.

Remark 2.31. A network G that has ACR (or stable ACR) could have vacuous ACR (as
in Remark 2.28) for some or even all of its mass-action systems. However, as mentioned
earlier, we usually focus on networks that admit a positive steady state, so that vacuous
ACR is permitted for some but not all of the resulting mass-action systems.

Example 2.32. Consider the following network G, which has only one species:

0
κ1←−− A1 A1

κ2−−→ 2 A1 A1
κ3←−− 2 A1 3 A1

κ4−−→ 4 A1

It is straightforward to check that when κ = (κ1, κ2, κ3, κ4) = (3, 1, 1, 1), the mass-action
system (G, κ) has a unique positive steady state, namely, x∗

A1
= 2, and hence has ACR (in

species A1). On the other hand, when (κ1, κ2, κ3, κ4) = (1, 3, 3, 1), there are two positive
steady states (x∗

A1
= 1 and x∗

A1
= 2), and hence no ACR. Thus, G does not have ACR

(but some of its mass-action systems do).

In Example 2.32, we saw a one-species network with ACR for some but not all of its
mass-action systems; a more interesting example, with two species, was described in the
thesis of Pérez Millán [24, Example 6.5.3].

The following sufficient condition for ACR is due to Shinar and Feinberg [25]:

Proposition 2.33. Suppose that a mass-action system (G, κ) has a positive steady state,
the deficiency of G is 1, and G has two non-terminal complexes that differ in only some
species Ai. Then the system (G, κ) has ACR in Ai.

In Proposition 2.33, the assumption of having a positive steady state is not required
(recall Remark 2.28), so we can restate the criterion at the level of networks as follows.

Proposition 2.34 (Shinar–Feinberg criterion). If G is a reaction network that has defi-
ciency 1 and has two non-terminal complexes that differ in only some species Ai, then G
has ACR in Ai.
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Example 2.35 (Example 2.25, continued). Returning to the generalized Shinar–Feinberg
network, we saw (in Example 2.3) that every positive steady state (xA, xB) satisfies xA =
n


κ1/κ2. Thus, the network has ACR in the species A. Another way to detect ACR
in this network is through the Shinar–Feinberg criterion (Proposition 2.34). Indeed, B
and nA + B are non-terminal complexes that differ only in species A, and we saw in
Example 2.16 that this network has deficiency 1.

Example 2.36 (Example 2.12, continued). The degenerate-ACR network has ACR in
species B: we saw in Example 2.12 that every positive steady state (xA, xB) satisfies
xB = n


κ1/κ2. Notably, the Shinar–Feinberg criterion also applies.

Next, we see that the Shinar–Feinberg criterion does not cover all cases of ACR.

Example 2.37 (Shinar–Feinberg criterion is not necessary for ACR). Consider the one-
species network {0  A}. It is straightforward to check by hand (or by applying
Proposition 4.2 in a later section) that this network has ACR. Nonetheless, the Shinar–
Feinberg criterion (Proposition 2.34) does not apply: the deficiency is δ = 2− 1− 1 = 0.
More generally, the networks {0  nA}, for n ≥ 1, also have ACR and deficiency
0. Another network with ACR that is not detected by the Shinar–Feinberg criterion
is {0→ A→ 2A , 3A← 4A}, which has deficiency δ = 5− 2− 1 = 2.

In fact, there are no known necessary conditions for ACR (for general networks) that
are easy to check. We clarify this claim in light of a recent article which gave a purported
necessary condition [11]. The setup for this condition involves a network G, one of its
species Ai, and the embedded network H obtained by removing species Ai from G. What
is claimed in [11] is that, if the mass-action system (G, κ) has a positive steady state and
the mass-action system (H, κ(H)) also has a positive steady state (here, κ(H) indicates
that the rate constant of a reaction y → y of H is the sum of the rate constants of those
reactions of G that project to y → y – this definition is inferred from but not explicitly
given in [11]), then a necessary condition for G to have ACR in Ai is that G and H have
the same deficiency. This claim, however, is overstated, as the following example shows.

Example 2.38. Consider the network G given by {B → A, A + B → 2B, 2A + B →
A + 2B}. It is straightforward to check (for instance, apply Theorem 5.5) that for all
rate constants κ, the mass-action system (G, κ) has a positive steady state. Next, the
embedded network H obtained by removing A is {0← B → 2B}, which admits a positive
steady state when the two rate constants are equal. The deficiency of G is 6− 3− 1 = 2,
while the deficiency of H is 3 − 1 − 1 = 1. Nevertheless, G has ACR in A (this can be
checked by hand, or we will see this from Theorem 5.5).

3 Network operations

This section introduces several operations on reaction networks (Definition 3.1), which
correspond to the following geometric operations on the reaction diagram: (1) reflecting
the diagram across some diagonal hyperplanes xi = xj, (2) translating the diagram,
(3) changing the length of one arrow, (4) replacing an arrow with two arrows of different
lengths and (5) applying certain rotations to each arrow in the diagram (see Lemma 3.10).
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Our main result states that all of these operations preserve ACR (Theorem 3.9). We also
clarify which of these operations preserve deficiency, the dimension of the stoichiometric
subspace, and the steady state locus. These results are summarized in Table 1.

Operation Deficiency? Dim? Positive steady-state locus? ACR?
Relabel species Yes Yes No (reflects across hyperplanes) Yes
Translate Yes Yes Yes Yes
Stretch a reaction No Yes No* Yes
Duplicate a reaction No Yes No* Yes
Partial scaling No Yes Yes Yes

Table 1: Five operations on networks (from Definition 3.1) and whether they preserve the
properties of deficiency, dimension of the stoichiometric subspace, the positive steady-
state locus, and absolute concentration robustness (ACR). For details, see Proposi-
tions 3.17, 3.18, and 3.24; Theorem 3.9; and Examples 3.19–3.21. Also, “No*” indicates
that an appropriate transformation of the reaction rate constants is required so that the
steady-state locus is preserved; see Lemma 3.16 and the proof of Theorem 3.9.

Definition 3.1 (Network operations). Consider two reaction networks G = (S, C,R) and
G = (S, C ,R), both with species set S = {A1, A2, . . . , As}. We say that G is obtained
from G by:

1. relabeling species if there exists a permutation σ of {1, 2, . . . , s} such that the com-
plexes and reactions of G are obtained from those of G via σ; that is, y1A1 +y2A2 +
· · ·+ysAs ∈ C if and only if yσ(1)Aσ(1)+yσ(2)Aσ(2)+· · ·+yσ(s)Aσ(s) ∈ C , and similarly
for R.

2. translation by z = (z1, z2, ..., zs) ∈ Zs, if the complexes and reactions of G are
obtained by translating those of G by z := z1A1 + z2A2 + · · · + zsAs, that is,
C  = {y + z | y ∈ C} and R = {(y + z, y + z) | (y, y) ∈ R}.

3. stretching a reaction if R is obtained from R by replacing some reaction (y, y) ∈ R
by a reaction (y, y) such that the reaction vectors y−y and y−y are positive-scalar
multiples of each other.

4. duplicating a reaction if R is obtained from R by replacing one reaction (y, y) ∈ R
by two reactions (y, w) and (y, z) that are not in R such that w − y and z − y are
both positive-scalar multiples of y − y.

5. partial scaling if, for some species Ai and some α ∈ R  {0}, each reaction (y, y)
in R is replaced by (y, y), where y = y1A1 +y2A2 + · · ·+ysAs is defined by yj := yj
if j = i and yj := yi + α(yi − yi) (equivalently, yj := αyi + (1− α)yi) if j = i.

Remark 3.2. Many of the operations in Definition 3.1 have appeared in prior works.
For instance, translation and the fact that it preserves the positive steady-state locus
appeared in works of Dickenstein [10] and Boros, Craciun, and Yu [4]. Also, the “scalar
multiplication” operation in [4] is closely related to partial scaling, and the stretching
operation was mentioned in [22, §4]. Indeed, most of the properties of operations detailed
in this section are well known, but for completeness we present the relevant results.
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Remark 3.3. Our network operation of translation is a special case of the “network
translations” introduced by Johnston [15, 27]. We translate the entire network, while
Johnston allows translating parts of the network (typically linkage classes).

Remark 3.4 (Relation to identifiability of networks). The operations of stretching and
duplicating reactions affect the mass-action ODEs at the level of the rate constants, such
that the new system is “dynamically equivalent” to the original (see Lemma 3.16). Hence,
as is well known, the mass-action ODEs (for a given choice of positive rate constants)
are not enough to identify the specific network. Indeed, the fact that the operations
of stretching and duplicating yield networks that are “confoundable” with the original
network follows easily from results of Craciun and Pantea [7].

Remark 3.5 (Adding networks). Boros, Craciun, and Yu considered the operation of
“adding” networks, that is, taking unions to obtain the species, complexes, and reac-
tions [4]. This operation need not preserve ACR. For instance, by adding the net-
works {0  A} and {2A  3A}, both of which have ACR, we obtain the network
{0  A, 2A  3A}, which does not (see Proposition 4.2).

Remark 3.6. Scaling the ODEs of all species by a single nonzero scalar α is often seen
in the literature. This procedure can be viewed in the network either as applying partial
scaling to each species, one at a time, or (if α > 0) as stretching all reactions by a factor
of α (cf. [4, §3.2]).

Remark 3.7. For a given network G, applying certain operations may be impossible; for
instance, stretching a reaction might force the reaction arrow out of nonnegative orthant
Rs

≥0. In such cases, it may be useful to first translate G farther into the orthant before
applying other operations.

Remark 3.8 (Reverse operations). It is straightforward to see that, each operation in
Definition 3.1, except for duplicating a reaction, can be reversed by another version of
the same operation. Also, these operations are easily seen to commute, as long as at each
step a network is obtained (recall Remark 3.7).

The main result of this section is as follows.

Theorem 3.9 (Operations and ACR). Consider two reaction networks G and G, such
that G is obtained from G by one of the operations in Definition 3.1. Then G has ACR
if and only G has ACR.

We prove Theorem 3.9 in Section 3.3.

3.1 Operations and reaction diagrams

The following result follows easily from Definition 3.1.

Lemma 3.10 (Operations and reaction diagrams). The first four network operations
in Definition 3.1 correspond to (respectively) the following geometric operations on the
reaction diagram:
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1. reflecting the diagram across the hyperplane xi1 = xj1, then across xi2 = xj2, and so
on, ending with xin = xjn, where σ = (in, jn) . . . (i2, j2)(i1, j1) is a decomposition of
the permutation σ into a product of transpositions.

2. translating the diagram by the vector z.

3. replacing an arrow in the diagram with a shorter or longer arrow in the same direc-
tion and having the same source as the original arrow.

4. replacing an arrow in the diagram with two arrows in the same direction and with
the same source of the arrow.

The fifth network operation, partial scaling, is more complicated to interpret as an
operation on reaction diagrams (each arrow is rotated by some angle and then rescaled).
Accordingly, we give this interpretation only for networks with one-dimensional stoichio-
metric subspaces (Proposition 3.14). The effect on the ODEs, however, is easy to state:

Lemma 3.11 (Partial scaling and ODEs). Assume that G and G are reaction networks
such that G is obtained from G by partial scaling of the species Ai by α ∈ R{0}. Then:

1. the mass-action ODEs (2) of G are obtained from those of G by replacing the ODE
ẋi = fi by ẋi = αfi (and leaving all other ODEs unchanged), and

2. the stoichiometric subspace of G and the stoichiometric subspace of G have the same
dimension.

Proof. Both statements follow from the fact that the stoichiometric matrix Γ of G is
obtained from the stoichiometric matrix Γ of G by scaling the i-th row of Γ by α. We
explain this more precisely as follows. Recall that the mass-action ODEs (2) for G can be
rewritten as ẋ = Γv(x) where Γ is the stoichiometric matrix of G (recall from Section 2.1
that the columns of Γ are the reaction vectors y − y for all reactions (y, y) of G) and
v(x) is the column vector of monomials arising from the reactant of each reaction. The
ODEs for G are similar: ẋ = Γv(x). For any species Aj, the j-th entry of the reaction
vector arising from some reaction (y, y) of G is (y−y)j = yj−yj if j = i, and (y−y)i =
yi +α(yi− yi)− yi = α(yi− yi). This means that Γ is obtained from Γ by scaling the i-th
row by α. Part 1 of the lemma now follows easily. Next, part 2 follows from the fact that
the dimension of the stoichiometric space of a network is the rank of its stoichiometric
matrix, and multiplying a row of a matrix by a nonzero scalar preserves its rank.

Remark 3.12. The proof of Lemma 3.11 shows why (in Definition 3.1) we do not allow
partial scaling by α = 0: doing so might decrease the dimension of the stoichiomet-
ric subspace. Indeed, a one-species network would become an empty network (with no
reactions).

We illustrate Lemma 3.11 through the following example involving networks with one-
dimensional stoichiometric subspaces.

Example 3.13. The n = 1 version of the generalized Shinar–Feinberg network is {B →
A, A+B → 2B}. By applying the operation of partial scaling to species B by a factor of
−1 – we obtain {B → A + 2B, A + B → 0}. The two reaction diagrams are shown here:
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B

A

A + B

2B

B

A + 2B

A + B

0

Proposition 3.14 (Partial scaling and reaction diagrams for 1-dimensional networks).
If G is a one-dimensional network and G is a network obtained from G by partial scaling
(specifically, by scaling species Ai by a factor of α > 0), then the reaction diagram of G

is obtained from the reaction diagram of G by:

1. rotating every arrow y → y by the same angle (but centered at y), and

2. stretching every arrow y → y by the following factor (which depends on the arrow):

λy→y =


1 +

(α2 − 1)(yi − yi)2

y − y2
.

Proof. Take two reactions y → y and z → z in G. The stoichiometric subspace of G is
one-dimensional, so z − z = β(y − y) for some β ∈ R {0}. This means that these two
reaction arrows point in the same direction (more precisely, up to lengthening an arrow,
one can be obtained by the other by translation) if β > 0, and in opposite directions
(that is, up to lengthening, one can be obtained from the other by translation and then
reversing the direction of the arrow) if β < 0.

Next, let y → y and z → z denote the corresponding reactions in G. Let θ denote
the angle (in the plane P containing the arrows y → y and y → y) by which y → y

is rotated to obtain y → y. To show that z → z is also rotated by the angle θ (in the
translation of the plane P that contains z → z), we must prove that the arrows of y → y
and z → z point in the same direction if β > 0, and in opposite directions if β < 0. Thus,
it suffices to show that z − z = β(y − y). Indeed, this follows easily from the definition
of partial scaling: (y − y)j = (yj − yj) if j = i and (y − y)j = α(yi − yi) if j = i; and
analogously for z, z, z.

Finally, the factor by which a reaction y → y is scaled is straightforward to compute:

λy→y =
y − y
y − y

=
(y − y) + (α− 1)(y − y)iei

y − y
=


1 +

(α2 − 1)(yi − yi)2

y − y2
,

where ei is the vector with 1 in the i-th entry and 0 in all other entries.

Remark 3.15. We do not know whether there is a suitable generalization of Proposi-
tion 3.14 beyond one-dimensional networks.

The next result, which describes what happens to the mass-action ODEs when a
reaction is stretched or duplicated, follows easily from definitions.

Lemma 3.16 (Reaction operations and ODEs). Let G and G be reaction networks.

14



1. Assume that G is obtained from G by stretching the reaction (yi, yj) by a factor
of α > 0. Then the mass-action ODEs (2) of G are obtained from those of G by
replacing the rate constant κij by ακij.

2. Assume that G is obtained from G by duplicating a reaction (yi, yj) by way of
reactions (yi, yk) and (yi, y) such that yk − yi = α(yj − yi) and y− yi = β(yj − yi),
with α > 0 and β > 0. Then the mass-action ODEs (2) of G are obtained from
those of G by replacing the rate constant κij by ακik + βκi.

We saw above that partial scaling preserves the dimension of the stoichiometric sub-
space (Lemma 3.11). It is straightforward to check that the other four network operations
in Definition 3.1 also have this property, so we obtain the following result.

Proposition 3.17 (Operations preserve dimension). Let G and G be reaction networks
such that G is obtained from G by performing one or more of the operations from Defi-
nition 3.1. Then the stoichiometric subspace of G and the stoichiometric subspace of G

have the same dimension.

3.2 Operations and deficiency

Certain network operations preserve the deficiency:

Proposition 3.18 (Operations and deficiency). If G is obtained from a reaction net-
work G by translation or relabeling species, then G and G have the same deficiency.

Proof. Translation and relabeling species do not affect the number of complexes or the
number of linkage classes. The dimension of the stoichiometric subspace is also unchanged
(Proposition 3.17). The result now follows from the definition of deficiency.

The remaining three operations from Definition 3.1 do not, in general, preserve defi-
ciency; see the following three examples. Nevertheless, we will see that for the generalized
Shinar-Feinberg network and certain other networks, the operations of partial scaling and
stretching a reaction do preserve deficiency (Proposition 3.23).

Example 3.19 (Stretching a reaction does not preserve deficiency). Starting from the
network {0 → A, A → B, B → 0}, we obtain the network {0 → 2A, A → B, B → 0}
by stretching the reaction 0 → A by a factor of 2. The first network has deficiency
3− 1− 2 = 0, while the second network has deficiency 4− 1− 2 = 1.

Example 3.20 (Duplicating a reaction does not preserve deficiency). From the network
{0 → A}, we obtain {0 → A, 0 → 2A} by duplicating a reaction. The first network has
deficiency 2− 1− 1 = 0, while the second network has deficiency 3− 1− 1 = 1.

Example 3.21 (Partial scaling does not preserve deficiency). The networks {0  2A}
and {0 → A ← 2A} are obtained from each other by partial scaling of both reactions,
but their deficiencies are not equal: the first has deficiency 2− 1− 1 = 0 and the second
has deficiency 3− 1− 1 = 1.

The following lemma reveals one case in which deficiency is preserved by network
operations, involving networks with only two reactions.
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Lemma 3.22. Let G be a reaction network with exactly two reactions, y → y and z → z,
such that the reactant complexes are distinct (y = z) and there exists a species Ai such
that yi = yi = zi = zi. If G is obtained from G by performing one or more operations from
Definition 3.1, except duplicating a reaction, then G and G have the same deficiency.

Proof. The properties satisfied by G are that (1) there are exactly two reactions, (2) the
reactant complexes are distinct (y = z), and (3) there exists a species Ai such that
yi = yi = zi = zi. It is straightforward to check that the first two properties are preserved
when one or more network operations, except duplicating a reaction, are performed. Now
consider the third property. This property is preserved under relabeling species, trans-
lation, and stretching a reaction. The last operation to consider is partial scaling. By
definition, partial scaling some species A (by a nonzero α) replaces the reaction y → y

by y → y, where yj := yj if j =  and yj := y + α(y − y) if j = . The reaction z → z

is similarly transformed. Hence, if yi = yi = zi = zi, then yi = yi = zi = zi. In other
words, the third property still holds after partial scaling is performed.

We conclude that G has 3 or 4 complexes, and G too has 3 or 4 complexes. A 2-
reaction network N with 3 complexes has only 1 linkage class, and so the deficiency of N is
3− 1−dim(N) = 2−dim(N), where dim(N) denotes the dimension of the stoichiometric
subspace of N . Similarly, a 2-reaction network N with 4 complexes has 2 linkage classes,
and so its deficiency is 4−2−dim(N) = 2−dim(N), which is the same as in the 3-complex
case. Now the result follows from the fact that dim(G) = dim(G) (by Lemma 3.17).

Lemma 3.22 implies the following result, which we will use in a later section.

Proposition 3.23 (Operations preserve deficiency of Shinar–Feinberg network). Let G

be a reaction network obtained from a generalized Shinar–Feinberg network G = {B →
A, nA+B → (n− 1)A+ 2B} by performing one or more operations from Definition 3.1,
except duplicating a reaction. Then G and G have the same deficiency.

3.3 Operations and ACR

Some network operations preserve the steady-state locus:

Proposition 3.24 (Operations and the steady-state locus). Assume that G is obtained
from a reaction network G by one of the operations in Definition 3.1. Let κ∗ be a vector
of positive rate constants for G.

1. If G is obtained from G by translation or partial scaling, then the mass-action
systems (G, κ∗) and (G, κ∗) have the same steady-state locus.

2. If G is obtained from G by relabeling species, then the steady-state locus of (G, κ∗)
is obtained from that of (G, κ∗) by performing reflections across some hyperplanes
of the form xi = xj.

Proof. Translation simply multiplies every equation on the right-hand side of the ODEs (2)
by a Laurent monomial, which does not affect the positive steady states. Next, partial
scaling does not change the positive steady states, as the nonzero constant can be elimi-
nated when solving for steady states (recall Lemma 3.11). Relabeling species (permuting
variables) only permutes the axes when considering the steady-state locus, thus the steady
states are preserved up to a renaming of variables.
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We can now prove that all the network operations in Definition 3.1 preserve ACR.

Proof of Theorem 3.9. In this proof, we denote a reaction by (yi, yj) rather than (y, y).
For translation, partial scaling, and relabeling species, this result follows from Propo-

sition 3.24. Now we consider the remaining operations. Accordingly, assume that G is
obtained from G by stretching or duplicating a reaction.

First, we consider the case of stretching: assume that a reaction (yi∗ , yj∗) is stretched
by a factor of α > 0. Recall that this stretching operation can be reversed by another
stretching operation (Remark 3.8), so it suffices to show that if G has ACR in species Ap,
then so does G. By a straightforward application of Lemma 3.16, we know that x∗ ∈ Rs

>0

is a positive steady state of (G, κ∗) if and only if x∗ ∈ Rs
>0 is a positive steady state of

(G, κ∗), where κ∗
ij is defined to be 1

α
κ∗
i∗j∗ if (i, j) = (i∗, j∗), and equals κ∗

ij otherwise. Now
it follows from the definition of ACR that G also has ACR in species Ap if G does.

Next, we consider the case of duplicating a reaction. By Lemma 3.16, the ODEs of G

are obtained from those of G by replacing some κi∗j∗ by some ακi∗k + βκi∗ (with α > 0
and β > 0). Thus, x∗ ∈ Rs

>0 is a positive steady state of (G, κ∗) if and only if x∗ ∈ Rs
>0 is

a positive steady state of (G, κ∗) for every choice of κ∗ for which (i) κ∗
i∗j∗ = ακi∗k +βκi∗,

and (ii) if (i, j) /∈ {(i∗, k), (i∗, )}, then κ∗
ij = κ∗

ij It is now straightforward to conclude
that G has ACR in some species if and only if G does too.

4 One-species networks

A network with only one species has ACR if and only if it is non-multistationary; such
networks have already been classified [17]. We can therefore characterize one-species
networks with ACR (Proposition 4.2) and stable ACR (Proposition 4.3).

To state Proposition 4.2, we need the following definition from [17]:

Definition 4.1. A one-species network is 2-alternating if it has exactly three reactions
and the arrow diagram is either (→,←,→) or (←,→,←).

Proposition 4.2 (ACR in one-species networks). For a one-species network G with at
least one reaction, the following are equivalent:

1. G has ACR,

2. G is non-multistationary, and

3. G does not have a 2-alternating subnetwork, and the arrow diagram of G does not
have the form ( •←→, . . . , •←→).

Proof. This result follows directly from the definitions of ACR and multistationary, and
from [17, Theorem 3.6, part 2], which implies that a one-species network G (with at least
one reaction) is multistationary if and only if G has a 2-alternating subnetwork or the
arrow diagram of G has the form ( •←→, . . . , •←→).

Recall that networks that do not admit positive steady states (e.g., 0 → A) trivially
have ACR (Remark 2.28). Such trivial networks are ruled out in the next result (we
assume that a positive steady state exists), which pertains to stable ACR.
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Proposition 4.3 (Stable ACR). For a one-species network G with at least one reaction,
the following are equivalent:

1. G has stable ACR and admits a positive steady state, and

2. the arrow diagram of G has one of the following four forms:

( •←→, ←,←, . . . ,←) , (→,→, . . . ,→, •←→) , (8)

(→,→, . . . ,→, •←→, ←,←, . . . ,←) , or (→,→, . . . ,→, ←,←, . . . ,←) .

Proof. We begin by proving 2 ⇒ 1. Assume that the arrow diagram of G has one
of the forms shown in (8). In particular, the arrow diagram does not have the form
( •←→, . . . , •←→), and it also follows that G has no 2-alternating subnetwork. Thus, by
Proposition 4.2, G has ACR.

Next, we prove that G admits a positive steady state. We may assume that G has only
one species: |S| = 1 (all species not appearing in the reactions may be disregarded without
affecting the existence of positive and/or stable steady states). The arrow diagram of G
guarantees that there exists a vector of positive rate constants κ∗ = (κij) such that the
right-hand side of the ODE dxA

dt
= fκ∗(xA) has the following form:

fκ∗(xA) = µ1x
p1
A + µ2x

p2
A + · · ·+ µmx

pm
A , (9)

where m ≥ 2, µ1 > 0 and µm < 0, and also 0 ≤ p1 < p2 < · · · < pm. Thus, fκ∗(xA) > 0
for xA > 0 sufficiently small, while fκ∗(xA) < 0 for xA sufficiently large. Hence, the
intermediate-value theorem implies that fκ∗(x∗

A) = 0 for some x∗
A > 0, that is, a positive

steady state x∗
A of (G, κ∗) must exist.

What remains to show is that every positive steady state is exponentially stable.
Accordingly, assume that x∗

A ∈ R>0 is a steady state of (G, κ∗) for some κ∗ ∈ R|R]. Then,
as G has ACR, x∗

A is the unique positive steady state of (G, κ∗). So, by Descartes’ rule of
signs and the form of the arrow diagrams (8), the right-hand side of the ODE, as in (9), has
exactly 1 sign change and x∗

A is a multiplicity-one root of fκ∗(xA). The same argument as
above therefore shows that fκ∗(xA) is positive for xA > 0 sufficiently small and negative
for xA large. We conclude that fκ∗ is decreasing at x∗

A. Hence, f 
κ∗(x∗

A) < 0 (here,
f 
κ∗(x∗

A) = 0 is precluded because x∗
A has multiplicity one), that is, x∗

A is exponentially
stable, as desired.

We prove 1⇒ 2. Assume that G has ACR, and the arrow diagram does not have one
of the forms shown in (8). So, by Proposition 4.2 and the fact that G has at least one
reaction, the arrow diagram must have one of the following forms:

(i) (→,→, . . . ,→),

(ii) (←,←, . . . ,←),

(iii) (←,←, . . . ,←, →,→, . . . ,→),

(iv) ( •←→, →,→, . . . ,→),

(v) (←,←, . . . ,←, •←→), or
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(vi) (←,←, . . . ,←, •←→, →,→, . . . ,→).

We must show that every resulting ODE system, if it has a positive steady state, is
unstable. When the arrow diagram has the form in (i) or (ii), there are no positive steady
states. Next, assume that the arrow diagram has the form in (iii), (iv), (v), or (vi). In
this case, by applying Descartes’ rule of signs to the the right-hand side of the ODE as
in (9) (like what was done earlier in the proof), we see that each resulting ODE system,
if there is a positive steady state x∗

A, then x∗
A is unstable. This completes the proof.

Example 4.4. The network G = {0  A , 2A→ 3A} has arrow diagram (→,←,→) and
hence is itself a 2-alternating network. So, by Proposition 4.2, G does not have ACR. The
network H = {0  A→ 2A} has arrow diagram (→, •←→). Thus, by Proposition 4.3, H
has stable ACR (in species A).

Example 4.5 (Example 2.32, continued). The one-species network from Example 2.32
has the following 2-alternating subnetwork: {A1 → 2A1 , A1 ← 2A1 , 3A1 → 4A1}.
Thus, Proposition 4.2 implies what we saw earlier: the network does not have ACR.

Next, we analyze the special case of one-species networks with only two reactions.

Proposition 4.6 (ACR in 1-species, 2-reaction network). Let G be a one-species network
with exactly two reactions. Then the following are equivalent:

1. G has ACR,

2. the arrow diagram of G is either (→,←) or (←,→), and

3. G can be obtained by network operations (Definition 3.1) from the network {0 
nA}, for some n ≥ 1.

Proof. The equivalence 1⇔ 2 follows easily from Proposition 4.2.
Next, we prove the implication 1 ⇒ 3. We consider two cases. First, assume that

the arrow diagram of G is (→,←). So, after relabeling species if necessary, G = {aA →
bA , cA ← dA} for some non-negative integers a, b, c, d with a < b, a < d, and c < d.
Thus, n := d − a ≥ 1. Recall that all operations, except duplicating a reaction, are
reversible (Remark 3.8). So, it suffices to transform G by operations to the network
{0  nA}. Accordingly, we first stretch each reaction of G to have length n = d− a, and
so obtain {aA  dA}. Next, we translate the network to the left by a = d − n, which
yields {0  nA}, and so we are done.

Now consider the remaining case, when G has arrow diagram (←,→). Hence, G =
{aA ← bA , cA → dA}, for some non-negative integers a, b, c, d with a < b < c < d. If
2c < d, translate the network to the right by d− 2c to obtain {aA ← bA , cA → dA}
with 2c ≥ d (in fact, equality holds). If 2c ≥ d, simply relabel a, b, c, d by (respectively)
a, b, c, d. Next, apply the operation of partial scaling by −1 to the species A, which
yields {bA→ (b−a)A , (2c−d)A← cA}, which satisfies (by construction) b < b−a,
b < c, and 0 ≤ 2c− d = c− (d− c) < c. Hence, this final network has arrow diagram
(→,←), and so we have reduced to the prior case, which we already solved above.

Finally, the implication 3 ⇒ 1 holds: we already noted that the networks {0  nA}
have ACR (Example 2.37), and network operations preserve ACR (Theorem 3.9).
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Finally, we consider translations of one-species networks with two reactions. The
following result follows easily from Proposition 4.6.

Corollary 4.7. Let G be a reaction network that is obtained by translation from a one-
species network that has exactly two reactions. Then the following are equivalent:

1. G has ACR,

2. G can be obtained by network operations (Definition 3.1) from the network {0 
nA}, for some n ≥ 1.

5 One-dimensional networks

In the prior section, Proposition 4.3 characterized stable ACR for one-species networks.
Our goal here is to generalize that result to one-dimensional networks (see Theorem 5.5).

We begin with two lemmas, which imply that ACR in a one-dimensional network con-
strains the arrow diagrams of its one-species embedded networks. Recall that a reactant
complex y is such that y → y is a reaction for some complex y.

Lemma 5.1. Let G be a one-dimensional network with species A1, A2, . . . , As. Assume
that G admits a positive steady state. If G has ACR in some species Ai∗, then the reactant
complexes of G differ only in species Ai∗ (that is, if y and y are both reactant complexes
of G, then yi = yi for all i = i∗).

Proof. Let G be a one-dimensional network that admits a positive steady state and has
ACR in species Ai∗ . By relabeling, if necessary, we may assume that i∗ = 1. Assume for
contradiction that there exist two reactant complexes that differ in some species Ai with
i ≥ 2. By relabeling species, if needed, we may assume that i = 2. It follows that the
embedded diagram obtained from G by removing all species except A2, which we denote
by N2, has at least two distinct reactant complexes.

By hypothesis, G admits a positive steady state, so there exist positive rate constants
k∗
1, k

∗
2, . . . , k

∗
r for which G admits a positive steady state x∗ = (x∗

1, x
∗
2, . . . , x

∗
s). Let g denote

the right-hand side of the mass-action ODE for x2. By assumption, x∗
2 is a positive root

of the following univariate (in x2) polynomial, obtained by specializing g:

g := g|k1=k∗1 ,k2=k∗2 ,...,kr=k∗r , x1=x∗
1,x3=x∗

3,x4=x∗
4,...,xs=x∗

s
. (10)

Recall that N2 has at least two reactant complexes. So, unless the arrow diagram of N2

has the form ( •←→, . . . , •←→), the polynomial g is not the zero polynomial. If, on the other
hand, the arrow diagram is ( •←→, . . . , •←→), then make another choice for the k∗

i and x∗
i ,

as follows. The form of the arrow diagram and the fact that there are at least two reactant
complexes ensure that we can pick k∗

1, k
∗
2, . . . , k

∗
r > 0 and set x∗

1 = x∗
3 = x∗

4 = · · · = x∗
s = 1

such that the new version of g, as in (10), has at least two terms and is such that the leading
coefficient is positive and the lowest-order coefficient is negative. Hence, by Descartes’
rule of signs, there exists a positive root x∗

2 of g.
Let xα

2 denote the lowest power of x2 that appears in the polynomial g. It follows that
h := g

xα2
is a univariate polynomial that has x∗

2 as a root and has a nonzero constant term.
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We make the following claim:
Claim: We may assume that x∗

2 is a multiplicity-one root of h.
We prove the claim as follows. If x∗

2 is a multiple root of h (that is, h(x∗
2) = 0), then

we simply need to translate the graph of h up or down a small amount in order for a new
positive root (near x∗

2), with multiplicity one, to appear. (Here we are using the fact that
h is a non-constant polynomial.) We achieve this translation by replacing one of the rate
constants k∗

i that contributes to the constant term of h (notice that each rate constant
contributes to only one monomial) by k∗

i +  or k∗
i −  (for sufficiently small ). We also

ensure that  is sufficiently small so that k∗
i −  > 0. Our claim therefore holds.

Now, our claim implies that by perturbing x∗
1, we preserve a (positive) root (near x∗

2).
More precisely, there exists a small δ > 0, such that the following univariate polynomial
has a positive root, which we denote by x∗∗

2 :

g|k1=k∗1 ,k2=k∗2 ,...,kr=k∗r , x1=x∗
1+δ,x3=x∗

3,x4=x∗
4,...,xs=x∗

s

xα
2

.

We conclude that (x∗
1 + δ, x∗∗

2 , x∗
3, x

∗
4, . . . , x

∗
s) is a positive steady state of (G, κ∗), where

κ∗ := (k∗
1, k

∗
2, . . . , k

∗
r). However, (x∗

1, x
∗
2, . . . , x

∗
s) is also positive steady state of (G, κ∗),

and so G does not have ACR in A1. This is a contradiction.

Remark 5.2. The condition from Lemma 5.1 that the reactant complexes of G differ
only in the species Ai∗ implies that the embedded network of G obtained by removing Ai∗

has at most one reactant complex (the embedded network has no reactant complexes if it
has no reactions).

Lemma 5.3 (ACR for one-dimensional networks). Let G be a one-dimensional network
with species A1, A2, . . . , As. Assume that G admits a positive steady state. If G has ACR
in some species Ai∗ that is not a catalyst-only species, then the following holds:

(a) the embedded network of G obtained by removing all species except Ai∗, which we
denote by N , does not have a 2-alternating subnetwork, and the arrow diagram of N
does not have the form ( •←→, . . . , •←→), and

(b) the reactant complexes of G differ only in species Ai∗ (that is, if y and y are both
reactant complexes of G, then yi = yi for all i = i∗).

Moreover, if G has stable ACR, then the arrow diagram of N has one of these four forms:

( •←→, ←,←, . . . ,←) , (→,→, . . . ,→, •←→) , (11)

(→,→, . . . ,→, •←→, ←,←, . . . ,←) , or (→,→, . . . ,→, ←,←, . . . ,←) .

Proof. Let G be a one-dimensional network that admits a positive steady state and has
ACR in some non-catalyst-only species Ai∗ . By relabeling species, if needed, we may
assume i∗ = 1. Let N denote the embedded network obtained by removing all species
except A1. Part (b) of the lemma follows from Lemma 5.1, so below we verify part (a).

By hypothesis, there exist positive rate constants k∗
1, k

∗
2, . . . , k

∗
r for which G admits a

positive steady state x∗ = (x∗
1, x

∗
2, . . . , x

∗
s). We specialize the ODE for x1, as follows:

dx1

dt
|x2=x∗

2,...,xs=x∗
s

= k1(y

11 − y11)x

y11
1 (x∗

2)
y12 . . . (x∗

s)
y1s + · · ·+ kr(y


r1 − yr1)x

yr1
1 (x∗

2)
yr2 . . . (x∗

s)
yrs

= k1(y11 − y11)x
y11
1 + · · ·+ kr(yr1 − yr1)x

yr1
1 , (12)

21



where we have defined new parameters via ki = ki(x
∗
2)

yi2 . . . (x∗
s)

yis , for i = 1, 2, . . . , r (the
product (x∗

2)
yi2 . . . (x∗

s)
yis is positive because x∗ is a positive steady state). The expression

in (12) is exactly the right-hand side of the ODE for the embedded network N (except that
a summand arising from a reaction z → z in N might appear more than once if more than
one reaction of G projects z → z). We observe that N admits a positive steady state,
because x∗

1 is a positive root of the right-hand side of (12) when the values of the new

parameters are k∗
i := k∗

i (x∗
2)

yi2 . . . (x∗
s)

yis (for i = 1, 2, . . . , r). It is also straightforward
to show that, because G has ACR (respectively, stable ACR) in A1, then N does too
(the fact that A1 is not a catalyst-only species ensures that (12) is not identically zero).
Also, N has at least one reaction (because A1 is not a catalyst-only species). Thus, by
Proposition 4.2 (respectively, Proposition 4.3), the network N has the properties described
in part (a) (respectively, the arrow diagram of N has one of the four forms in (11)).

We will show that a partial converse to Lemma 5.3 holds (Theorem 5.5), but first we
need a lemma that pertains to catalyst-only species. We saw earlier that the degenerate-
ACR network has ACR in a catalyst-only species, but all steady states are degenerate
(Example 2.36). This phenomenon holds more generally, as the following lemma attests.

Lemma 5.4 (ACR in a catalyst-only species). If a one-dimensional reaction network G
has ACR in some catalyst-only species Ai∗, then, for all choices of positive rate constants,
every positive steady state is degenerate and so G does not have stable ACR in Ai∗.

Proof. Let s and r denote the numbers of species and reactions, respectively. By relabel-
ing, if necessary, we may assume that i∗ = 1.

Fix a choice of positive rate constants κ ∈ Rr
>0. Let x∗ = (x∗

1, x
∗
2, . . . , x

∗
s) ∈ Rs

>0 be
a positive steady state of the mass-action system (G, κ). We must show that x∗ is a
degenerate steady state. As the stoichiometric subspace S is one-dimensional, it suffices
to show the following equality (where 0 denotes the zero vector in Rs):

Im (dfκ(x∗)|S) = {0} . (13)

By hypothesis, A1 is a catalyst-only species. So, by Lemma 2.9, the mass-action ODE
for A1 is dx1

dt
= 0. Hence, for all z ∈ S, we have z1 = 0. So, to prove the equality (13), we

need only show that columns 2, 3, . . . , s of the matrix dfκ(x∗) are zero columns.
We first examine row-1 of dfκ(x∗). The corresponding ODE, as we saw, is dx1

dt
= 0.

So, row-1 of the matrix is the zero row.
Our next task is to analyze one of the remaining rows, that is, row-j of dfκ(x∗), where

2 ≤ j ≤ s. As G is one-dimensional and has ACR in A1, Lemma 5.1 implies that the
reactant complexes of G differ only in species A1. Hence, the mass-action ODE for species
Aj is either 0 (in which case row-j is, as desired, the zero row) or can be written as:

dxj

dt
= xn2

2 xn3
3 . . . xns

s g(x1) , (14)

for some n2, n3, . . . , ns ∈ Z≥0 and g ∈ R[x1]. By construction, x∗
1 is a positive root of the

right-hand side of (14) and so is a root of g.
Equation (14) implies that in row-j of the Jacobian matrix dfκ(x) (before evaluating

at x∗), the k-th entry, for 2 ≤ k ≤ s, is either 0 or a polynomial multiple of g(x1). Hence,
after evaluating at x∗, these entries all become 0. We conclude that, as desired, columns
2, 3, . . . , s of dfκ(x∗) are zero.
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Theorem 5.5 (Stable ACR for one-dimensional networks). Let G be a network with
species A1, A2, . . . , As. If the stoichiometric subspace of G is one-dimensional, then the
following are equivalent:

1. G has stable ACR and admits a positive steady state, and

2. there exists a species Ai∗ such that the following holds:

(a) for the embedded network of G obtained by removing all species except Ai∗, the
arrow diagram has one of these four forms:

( •←→, ←,←, . . . ,←) , (→,→, . . . ,→, •←→) , (15)

(→,→, . . . ,→, •←→, ←,←, . . . ,←) , or (→,→, . . . ,→, ←,←, . . . ,←) ,

(b) the reactant complexes of G differ only in species Ai∗ (that is, if y and y are
both reactant complexes of G, then yi = yi for all i = i∗).

Proof. The implication 1 ⇒ 2 follows from Lemmas 5.3 and 5.4. Now we prove 2 ⇒ 1.
Denote the reactions of G by yi → yi, with rate constant ki, for i = 1, 2, . . . , r. By
relabeling, if necessary, we may assume that i∗ = 1. By assumption, the stoichiometric
coefficient for A2 (respectively, for A3, . . . , As) is the same in all reactant complexes.
We denote these coefficients by z2, z3, . . . , zs, respectively. Thus, we can rewrite each
monomial xyi , for i = 1, 2, . . . , r, as xyi = xyi1

1 (xz2
2 xz3

3 . . . xzs
s ). The right-hand side of the

ODE for x1 can now be written as follows:

(xz2
2 xz3

3 . . . xzs
s ) (k1(y


11 − y11)x

y11
1 + k2(y


21 − y21)x

y21
1 + · · ·+ kr(y


r1 − yr1)x

yr1
1 ) . (16)

The expression (16) is not identically zero, because of the form (15) of the embedded
network, which we denote by N , obtained by removing all species except A1. Hence, as G
is one-dimensional, the right-hand sides of the remaining (s−1) ODEs are scalar multiples
of (16). We conclude that the positive steady states of G correspond to the positive roots
of the following polynomial in x1 (the monomial factor in (16) can be disregarded):

k1(y

11 − y11)x

y11
1 + k2(y


21 − y21)x

y21
1 + · · ·+ kr(y


r1 − yr1)x

yr1
1 . (17)

This polynomial (17) is exactly the right-hand side of the ODE of the (one-species) em-
bedded network N (except that a summand might appear more than once if more than
one reaction of G projects to some reaction in N), and N has arrow diagram one of those
in (15). So, by Proposition 4.3, N has stable ACR (in A1) and admits a positive steady
state. It is straightforward to show now that the same is true for G.

Example 5.6 (Example 2.35, continued). We saw earlier that the generalized Shinar–
Feinberg network is one-dimensional and admits a positive steady state, and the embedded
network obtained by A (respectively, B) has arrow diagram ( •←→) (respectively, (→,←)).
Thus, Theorem 5.5 implies that G has stable ACR.

We saw earlier that one-reaction networks do not admit positive steady states (Re-
mark 2.28). On the other hand, two-reaction networks that admit a positive steady state
must be one-dimensional (Lemma 2.13), and so the above results apply. We pursue this
topic in the next section.
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6 Networks with two reactions

This section focuses on networks with two reactions. Some of these networks, like B 
2A + B, contain catalyst-only species. Our first result characterizes ACR for such net-
works, when there are only two species (Proposition 6.1). Next, we focus on the remaining
2-species, 2-reaction networks, and show that up to network operations, the only networks
with ACR are the generalized Shinar–Feinberg networks from Example 2.2 (Theorem 6.2).
It follows that, up to network operations, there are only three families of two-species, two-
reaction networks (possibly containing catalyst-only species) with ACR (Corollary 6.5).
More generally, when there are two reactions (and any number of species, but no catalyst-
only species) ACR is completely characterized by the Shinar–Feinberg criterion (Theo-
rem 6.6).

6.1 Networks with catalyst-only species

Proposition 6.1 (ACR for networks with 2 species, 2 reactions, and a catalyst-only
species). Let G be a reaction network with exactly two species and two reactions, such
that one of the species is a catalyst-only species. Assume that G admits a positive steady
state. Then the following are equivalent:

1. G has ACR,

2. G can be obtained by network operations (Definition 3.1) from the network {0 
mA}, for some m ≥ 1, or from the degenerate-ACR network {A→ 2A, A + nB →
nB}, for some n ≥ 1.

Proof. We have already seen that 2 ⇒ 1 holds; see Corollary 4.7, Example 2.36, and
Theorem 3.9.

Now we prove 1 ⇒ 2. Let y → y and z → z denote the two reactions of G. By
relabeling species, if necessary, we may assume that B is a catalyst-only species (that is,
yB = yB and zB = zB). Let N be the embedded network obtained by removing species
B. If N has no reactions, then A too is a catalyst-only species and so G has no reactions,
which is a contradiction. So, N has either one or two reactant complexes. We consider
these two cases separately.

Assume that N has only one reactant complex. So, the arrow diagram of N is (→),
(←), or ( •←→). The first two arrow diagrams are impossible (it is straightforward to see
that either would imply that G does not admit positive steady states). So, the arrow
diagram must be ( •←→). This means that yA = zA and yA − yA and zA − zA are both
nonzero and have opposite signs.

We consider two subcases, based on whether yB = zB or yB = zB. First assume that
yB = zB. This equality, together with yA = zA, imply that the mass-action ODE for A
can be written as follows:

dxA

dt
= κ1(y


A − yA)xyA

A xyB
B + κ2(z


A − zA)xzA

A xzB
B

= (κ1(y

A − yA) + κ2(z


A − zA))xyA

A xyB
B . (18)
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Now choose κ∗
1 := 1 and κ∗

2 := −(yA − yA)/(zA − zA) (which is positive, as we observed
earlier that yA − yA and zA − zA have opposite signs). It follows that, for these rate
constants κ∗

1, κ
∗
2, the right-hand side of (18) is 0, and so every (xA, xB) ∈ Rs

>0 is a positive
steady state. Hence, G does not have ACR, which is a contradiction.

The remaining subcase is when yB = zB. We may assume that yB < zB. Let n :=
zB − yB. We will perform operations on G and obtain a degenerate-ACR network. We
begin by stretching each reaction so the reaction vector has length 1. Next, if yA < yA,
then perform a partial scaling of species A by a factor of −1. The resulting reactions are
(yA, yB)→ (yA + 1, yB) and (yA, yB + n)→ (yA− 1, yB + n). Now translate left by yA− 1
and down by yB to obtain the degenerate-ACR network {A→ 2A, A + nB → nB}.

Now consider the remaining case, when N has exactly two reactant complexes (that
is, xA = yA). Lemma 5.1 implies that xB = yB. This equality, together with the fact that
B is a catalyst-only species, implies that G is obtained by translation from a 1-species
network. So, by Corollary 4.7, we can perform network operations to obtain {0  mA},
for some m ≥ 1, as desired.

6.2 Networks with no catalyst-only species

Theorem 6.2 (ACR for networks with 2 species, 2 reactions, and no catalyst-only
species). Let G be a reaction network with exactly two species (A1 and A2) and two reac-
tions. Assume that G admits a positive steady state and has no catalyst-only species. Let
N1 (respectively, N2) denote the embedded network of G obtained by removing species A1

(respectively, A2). Then the following are equivalent:

1. G has ACR;

2. one of N1 and N2 has arrow diagram ( •←→), and the other has arrow diagram either
(→,←) or (←,→);

3. G can be obtained by network operations (Definition 3.1) from a generalized Shinar–
Feinberg network {B → A + 2B, nA + B → (n− 1)A}, for some n ≥ 1; and

4. G satisfies the Shinar–Feinberg criterion (Proposition 2.34).

Moreover, stable ACR corresponds to the “(→,←)” case from part 2.

Proof. Assume G is a 2-reaction, 2-species network that admits a positive steady state and
has no catalyst-only species. Lemma 2.13 implies that G is a one-dimensional network.

The implication 4⇒ 1 is Proposition 2.34, so the rest of the proof proceeds by proving
the implications 1⇒ 2⇒ 3⇒ 4.

We first prove 1 ⇒ 2. Assume that G has ACR. Then, by Lemma 5.3, one of the
embedded networks N1 and N2 has arrow diagram (→,←) or (←,→). Lemma 5.3 also
implies that the other embedded network must have exactly one reactant complex (there
must be at least one reaction, as G has no catalyst-only species) and so has arrow diagram
( •←→), (→), or (←). However, the cases of (→) and (←) are ruled out, because otherwise
(it is straightforward to see) G would not admit a positive steady state.

Next, we prove 2 ⇒ 3. Assume G satisfies condition 2 of the theorem, that is, either
N1 or N2 has arrow diagram ( •←→), and the other has arrow diagram (→,←) or (←,→).
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Recall that all operations, except duplicating a reaction, are reversible (Remark 3.8). So,
it suffices to transform G by operations to a generalized Shinar–Feinberg network. To
accomplish this, our first step is to relabel species, if necessary, to obtain a network in
which N1 has arrow diagram ( •←→) and N2 has arrow diagram (→,←) or (←,→). Next,
if the lengths of the reaction vectors are unequal, then rescale the longer reaction so that
it has the same length as the shorter reaction. Notice that the arrow diagrams of N1 and
N2 are unaffected.

The fact that N2 has arrow diagram (→,←) or (←,→) implies that we can write the
reactions as y → y and z → z, with y1 < z1. Let n := z1−y1. (We also have y2 = z2 ≥ 1,
because N1 has arrow diagram •←→.)

We claim that both components of the reaction vector of y → y, that is, (y − y)1
and (y − y)2, are nonzero. Indeed, otherwise N1 or N2 would have at most one reaction,
and this would contradict our hypothesis. Thus, we can now perform partial scaling to
species A1 by a factor of 1

(y−y)1
and then partial scaling to species A2 by −1

(y−y)2
.

By construction, our reactions, which we denote by y → y and z → z, satisfyy−y = (1,−1) and (as the reactions have the same length but point in opposite directions)z − z = (−1, 1). We conclude that our reactions are as follows:

y1A1 + y2A2 → (y1 + 1)A1 + (y2 − 1)A2

(y1 + n)A1 + y2A2 → (y1 + n− 1)A1 + (y2 + 1)A2 .

An earlier observation, y2 ≥ 1, implies that the above reactions do not leave the non-
negative orthant. Finally, translating left by y1 and down by (y2 − 1) yields {A2 →
A1 , nA1 + A2 → (n− 1)A1 + 2A2}, which is a generalized Shinar–Feinberg network.

We now prove 3⇒ 4. We saw in Example 2.35 that every mass-action system arising
from one of the generalized Shinar–Feinberg networks {B → A+2B, nA+B → (n−1)A},
for n ≥ 1, satisfies the Shinar–Feinberg criterion. So, we need only show that after per-
forming a sequence of network operations (excluding duplicating, as we are considering
only networks with two reactions) to a generalized Shinar–Feinberg network, (i) the de-
ficiency is unchanged, and (ii) the two reactant complexes differ only in one of the two
species. First, (i) holds by Proposition 3.23. Also, (ii) is easy to verify: relabeling species
simply swaps the role of the species, translation maintains the difference between the two
reactant complexes, and stretching and partial scaling preserve the reactant complexes.

Finally, we consider stability. By Lemma 5.3, if G has stable ACR, then we are in the
case of “(→,←)”. And, conversely, it is straightforward to check that the “(←,→)” case
yields a positive steady state that is unstable and hence precludes stable ACR.

Theorem 6.2 yields a geometric criterion for ACR, as follows. Recall that an embedded
network can be viewed as a projection of the geometric diagram onto a coordinate axis
(Remark 2.23). Accordingly, condition 2 in Theorem 6.2 requires that, up to relabeling
species, the geometric diagram has one of the forms shown in Figure 2.

Example 6.3 (Example 2.20, continued). We revisit the network {3A + 5B → A +
6B , A + 3B → 3A + B}. The reaction diagram (Figure 1) does not (even after rela-
beling species) have one of the forms shown in Figure 2. So, the network does not have
ACR. Alternatively, we can draw the same conclusion using Theorem 6.2. Indeed, the
embedded network obtained by removing A (respectively, B) has arrow diagram (←,→)
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A

B

A

B

A

B

A

B

Figure 2: Possible geometric diagrams of a network with two species, two reactions, and
no catalyst-only species, and having ACR in species B. The projection to A yields the
arrow diagram ( •←→), and the projection to B yields (←,→) or (→,←).

(respectively, (→,←)) – neither arrow diagram is ( •←→) – so Theorem 6.2 implies that
there is no ACR.

Example 6.4. Consider the network {5A+B → 7A, 5A+3B → A+5B}, with reaction
diagram as follows:

5A + 3B

A + 5B

5A + B
7A

Here we follow the steps in the proof of Theorem 6.2, to perform operations to transform
this network into a generalized Shinar–Feinberg network. We begin by relabeling the
species (switching the roles of A and B), which yields {A+5B → 7B, 3A+5B → 5A+B}.
Next, we rescale the second reaction by 1/2, so both reactions in the resulting network
have the same length, as shown in the following reaction diagram (the axes are not shown
to avoid excess white space):

A + 5B

7B

3A + 5B

4A + 3B

Next, we apply partial scaling to species A by a factor of 1/(−1) = −1 and then partial
scaling to species B by −1/2. This yields:
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A + 5B

2A + 4B

3A + 5B

2A + 6B

Finally, we translate left by 1 and down by 4 to obtain {B → A, 2A + B → A + 2B},
which is the n = 2 generalized Shinar–Feinberg network.

6.3 General results

The following result follows directly from Proposition 6.1 and Theorem 6.2.

Corollary 6.5 (ACR for networks with 2 species and 2 reactions). Let G be a reaction
network with exactly two species and two reactions. Assume that G admits a positive
steady state. Then G has ACR if and only if G can be obtained by network operations
(Definition 3.1) from one of the following networks:

• a network {0  mA}, for some m ≥ 1,

• a degenerate-ACR network {A→ 2A, A + nB → nB}, for some n ≥ 1, and

• a generalized Shinar–Feinberg network {B → A + 2B, pA + B → (p − 1)A}, for
some p ≥ 1.

Our final result characterizes ACR for networks with two reactions (and at least two
species). It generalizes part of Theorem 6.2 (in fact, all of that theorem can be generalized
but the statements are somewhat technical, so we omit them).

Theorem 6.6 (ACR for networks with 2 reactions). Let G be a reaction network with
exactly two reactions and at least two species. Assume that G admits a positive steady
state and has no catalyst-only species. Then the following are equivalent:

1. G has ACR;

2. G satisfies the Shinar–Feinberg criterion (Proposition 2.34).

Proof. The implication “2⇒ 1” is Proposition 2.34.
For “1 ⇒ 2”, assume that G is as in the statement of the theorem and has ACR. As

G admits a positive steady state, Lemma 2.13 implies that G is one-dimensional. For
i = 1, 2, . . . , s, where s is the number of species, let Ni denote the one-species embedded
network obtained from G by removing all species except i. By Lemma 5.3, one of these
networks Ni∗ has arrow diagram (→,←) or (←,→), and every remaining Nj (for j = i∗)
has at most one reactant complex. In fact, each of these Nj must have exactly one
reactant complex (otherwise, some species Aj would be a catalyst-only species) and so
has arrow diagram ( •←→), (→), or (←). However, the cases of (→) and (←) are ruled out,
because otherwise G would not admit a positive steady state. Now the arrow diagram
( •←→) implies that G has either 3 or 4 complexes. If G has 3 complexes, there is only one
linkage class and so the deficiency is δ = 3 − 1 − 1 = 1. If G has 4 complexes, there are
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two linkage classes and so we get the same deficiency: δ = 4− 2− 1 = 1. Thus, to show
that G satisfies the Shinar–Feinberg criterion, we need only show that the two reactant
complexes (which are by definition non-terminal because each is the source of a reaction)
differ in species i∗ and not in any species j (for j = i∗). Indeed, the reactants differ in i∗

because Ni∗ has arrow diagram (→,←) or (←,→); and the reactants do not differ in j,
for j = i∗, because Nj has only one reactant complex.

7 Discussion

Detecting ACR is, in general, difficult. Nevertheless, here we showed that this task is
straightforward for certain classes of networks. For one-species and (more generally)
one-dimensional networks, ACR can be assessed easily from arrow diagrams or reaction
diagrams (Theorem 5.5). For networks with only two reactions and no catalyst-only
species, ACR is characterized by the Shinar–Feinberg criterion (Theorem 6.6). And,
for networks with exactly two reactions, two species, and no catalyst-only species, we
discovered that, up to network operations, the only networks with ACR are the generalized
Shinar-Feinberg networks (Theorem 6.2).

As noted in the introduction, our interest in ACR for small networks is due to the
potential of these networks to represent robust modules within larger biological sys-
tems [19, 25]. Thus, it is desirable to classify small networks with ACR. Our results
contribute to this important direction.

Going forward we need more theoretical and computational results on detecting ACR.
Are there more examples of networks in which ACR can be easily assessed? Our results
suggest that answers to this question may use the Shinar–Feinberg criterion or its gen-
eralizations [18, 27], and may involve in a crucial way geometric representations of the
network. Indeed, we are very much interested in more results in which ACR can be “seen”
from the reaction diagram.
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