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ABSTRACT
A mathematical model is identifiable if its parameters can be recov-
ered from data. Here we investigate, for linear compartmental mod-
els, whether (local, generic) identifiability is preserved when parts
of the model – specifically, inputs, outputs, leaks, and edges – are
moved, added, or deleted. Our results are as follows. First, for certain
catenary, cycle, andmammillarymodels, moving or deleting the leak
preserves identifiability. Next, for cycle models with up to one leak,
moving inputs or outputs preserves identifiability. Thus, every cycle
model with up to one leak (and at least one input and at least one
output) is identifiable. Next, we give conditions under which adding
leaks renders a cycle model unidentifiable. Finally, for certain cycle
models with no leaks, adding specific edges again preserves identifi-
ability. Our proofs, which are algebraic and combinatorial in nature,
rely on results on elementary symmetric polynomials and the theory
of input-output equations for linear compartmental models.
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1. Introduction

Linear compartmental models are a staple in many biological fields, including pharma-
cology, ecology, and cell biology. These models describe how something, whether it be
drug concentration or toxins, moves within a system. In this work, we focus on the (local,
generic) identifiability of linear compartmental models, that is, the ability to recover flow
parameters from data.

Our motivation is the work of Gross, Harrington et al. [1], which investigated the effect
on identifiability of adding or deleting some component – an input, output, leak, or edge –
of a linear compartmental model. Two key problems that they raised are as follows. First,
it is not well understood which edges can be added to a model so that identifiability is
preserved [1, Table 2]. Second, the effect of removing a leak remains an open question:
the authors conjectured that removing a leak from certain models preserves identifiability
[1, Conjecture 4.5].

Herewe address both problems: we resolve the leak-removal conjecture for three infinite
families of models (Theorem 3.2), and prove that adding certain edges to a cycle model
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Table 1. Summary of results on operations preserving identifiability.

Linear compartmental model Operation Result

Catenary, cycle, or mammillary with In = Out = {1}, Leak = ∅ Add 1 leak Theorem 3.2

Cycle with |In| = |Out| = 1 and Leak = ∅ Add 1 leak, move input, move output Theorem 3.4
Add all incoming edges Theorem 3.13
Add all outgoing edges
Add 1 incoming edge Theorem 3.17
Add 1 or 2 outgoing edges

Note: For a strongly connected linear compartmentalmodelMwith at least one input, ifM is obtained fromMby the specified
operation, and M is identifiable, thenM is identifiable. Related prior results, from [2], are summarized in Proposition 2.8.
Results on how the operation of adding leaks causes identifiability to be lost appear in Section 3.3.

preserves identifiability (Theorems 3.13 and 3.17). We also analyze how the position and
number of leaks affects identifiability (Theorem3.10). Finally, by analyzing a newoperation
on models – namely, moving the output – we prove that every cycle model with up to
one leak, at least one input, and at least one output (in any compartment) is identifiable
(Theorem 3.4). Our main results are summarized in Table 1.

Ourwork fits into the larger goal of determining howproperties ofODE systems defined
by graphs are affected by operations on the graphs. See, for instance, recent work on a
property closely related to identifiability, namely, observability [3].

Our proofs harness the theory of input-output equations for linear compartmentalmod-
els [1, 4–8]. As a result, our analyzes are largely linear-algebraic and combinatorial. For
instance, we apply results on elementary symmetric polynomials.

This paper is structured as follows. Section 2 introduces the definitions and tools we use
throughout the rest of the paper. In Section 3, we state and prove our main results. We end
with a discussion in Section 4.

2. Background

We begin with some definitions and important preliminary results, following the notation
of [7]. Specifically, we focus on linear models and identifiability.

2.1. Linear compartmental models

A linear compartmental model consists of a directed graph G = (V ,E), and three sets, In,
Out, Leak⊆ V , which are the Input, Output, and Leak compartments, respectively (a com-
partment is a vertex i ∈ V). Each edge j → i in E represents the flow or transfer of material
from the jth compartment to the ith compartment, with associated parameter (rate con-
stant) kij. Each leak compartment j ∈ Leak also has an associated parameter, k0j, the rate
constant for the outflow or degradation from that compartment.

Next, each input compartment has an external input, ui(t), which fuels the system. The
output compartments, on the other hand, are measurable: we are able to know the concen-
tration in these compartments. We always assumeOut = ∅, as models without outputs are
not identifiable.

Figure 1(a) depicts an n-compartment cycle model, with In = Out = Leak = {1}. The
input compartment is labelled by ‘in’, the output is indicated by an edge with an empty
circle at the end, also labelled with ‘out’, and the leak has an outgoing edge labelled by the
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Figure 1. The cycle graph with n compartments (cf. [9, Figure 2]), and a linear compartmental model
arising from this graph (with In = Out = Leak = {1}). (a) The cycle graph and (b) A cycle model.

leak parameter k01. To drive some intuition, Figure 1(b) could model the flow of a drug in
the body. Compartment 1 is the injection site, like an arm or thigh. The input is the shot.
The output represents a device that measures how much drug is still in the injection site.
The other compartments could represent organs; so, the drug goes from the injection site,
to, e.g. the heart, the lungs, etc., and then back to the injection site.

We recall several more definitions:

Definition 2.1: (1) A directed graph is strongly connected if there exists a directed path
from each vertex to every other vertex. A directed graphGwith n vertices is inductively
strongly connected with respect to vertex 1 if there exists a reordering of the vertices
that preserves vertex 1, such that, for i = 1, 2, . . . , n, the induced subgraphG{1,2,...,i} is
strongly connected.

(2) A linear compartmental model (G, In,Out, Leak) is strongly connected (respectively,
inductively strongly connected with respect to vertex 1) if G is strongly connected
(respectively, inductively strongly connected with respect to vertex 1).

For instance, for n ≥ 3, the cycle model in Figure 1(b) is strongly connected but not
inductively strongly connected.

Definition 2.2: The compartmental matrix of a linear compartmental model (G, In,Out,
Leak) with n compartments is the n × nmatrix A given by:

Aij :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−k0i −


p:i→p∈E
kpi if i = j and i ∈ Leak

−


p:i→p∈E
kpi if i = j and i ∈ Leak

kij if j → i is an edge of G
0 otherwise

Furthermore, a linear compartmental model defines the following system of linear
ODE’s, with inputs ui(t) and outputs yi(t), where x(t) = (x1(t), x2(t), . . . , xn(t)) is the
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vector of concentrations of the compartments at time t:

x(t) = Ax(t)+ u(t) (1)

yi(t) = xi(t) for i ∈ Out, (2)

where ui(t) = 0 for i ∈ In.

Notation 2.1: Throughout this work, we let (B)ji denote the submatrix obtained from a
matrix B by removing row j and column i.

2.2. Input-output equations

For linear compartmental models, input-output equations are equations that hold along
every solution of (1)–(2), where only the parameters kij, the input variables ui, the output
variables yj, and their derivatives are involved. The following general formulation of these
equations comes fromMeshkat et al. [7, Theorem 2] (see also [1, Remark 2.7]):

Proposition 2.3: Let M = (G, In,Out, Leak) be a linear compartmental model with n com-
partments and at least one input. Define ∂I to be the n × n matrix in which each diagonal
entry is the differential operator d/dt and each off-diagonal entry is 0. Let A be the compart-
mental matrix. Then, the following equations (for i ∈ Out) are input-output equations for
M:

det(∂I − A)yi =

j∈In
(−1)i+j det


(∂I − A)ji


uj, (3)

where (∂I − A)ji is the matrix obtained from (∂I − A) by removing row j and column i.

From the input-output equations (3), we derive a coefficient map, denoted by c :
R|E|+|Leak| → Rm, which evaluates each vector of parameters (kij)(j,i)∈E,or i=0 and j∈Leak at
the vector of non-monic coefficients of the input-output equations. Here, m denotes the
number of such coefficients. To give a formula for this number, directly from the model,
remains an open question.

Example 2.4: For the cycle model shown in Figure 2, the compartmental matrix is:

A =

⎡⎢⎢⎣
−k21 0 0 k14
k21 −k32 0 0
0 k32 −k43 0
0 0 k43 −k14

⎤⎥⎥⎦ .
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Figure 2. A 4-compartment cycle model with In = {1}, Out = {3}, and Leak = ∅.

We have |Out| = 1, so there is a single input-output equation (3):

det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

d
dt

+ k21 0 0 −k14

−k21
d
dt

+ k32 0 0

0 −k32
d
dt

+ k43 0

0 0 −k43
d
dt

+ k14

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
y3

= det

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣

−k21
d
dt

+ k32 0
0 −k32 0

0 0
d
dt

+ k14

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ u1,

which simplifies as follows:

y(4)3 + y(3)3 (k14 + k21 + k32 + k43)

+ y(2)3 (k14k21 + k14k32 + k21k32 + k14k43 + k21k43 + k32k43)

+ y(1)3 (k14k21k32 + k14k21k43 + k14k32k43 + k21k32k43)

= u(1)1 (k21k32)+ u1(k14k21k32).

Thus, the coefficient map c : R4 → R5 is given by:

(k21, k32, k43, k14) → (k14 + k21 + k32 + k43, k14k21 + k14k32 + k21k32
+ k14k43 + k21k43 + k32k43,

k14k21k32 + k14k21k43 + k14k32k43 + k21k32k43, k21k32, k14k21k32).

2.3. Identifiability

A model is (structurally) identifiable if all parameters kij can be recovered from data [10,
11]. More precisely, for an identifiable model, we can derive the values of the parameters
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from perfect (noise-free) input-data and output-data (arising from generic initial condi-
tions). Returning to the injection analogy from the last subsection, the question is: If we
know the amount of injected drug and the amount of drug still present in the injection site
at any time, can we determine the rate at which the drug transfers from one organ to the next?

There are several kinds of identifiability, but we focus on generic local identifiability. To
determine whether a model is generically locally identifiable, we analyze coefficient maps.
That is, the following definition of identifiability (for strongly connected models with at
least one input) is equivalent to the definition above; this equivalence was proved

by Ovchinnikov et al. [8, Corollary 3.2].1

Definition 2.5: Let M = (G, In,Out, Leak) be a linear compartmental model that is
strongly connected and has at least one input. Let c : R|E|+|Leak| → Rm denote the coef-
ficient map arising from the input-output equations (3). Then M is generically locally
identifiable if, outside a set of measure zero, every point in R|E|+|Leak| is in some open
neighbourhood U such that the restriction c|U : U → Rk is one-to-one.

Next, we state some prior results that we will use. The following, due toMeshkat et al. [7,
Proposition 2], is key to many of our proofs.

Proposition 2.6: A linear compartmental model (G, In,Out, Leak), with G = (V ,E), is
generically locally identifiable if and only if the rank of the Jacobian matrix of its coefficient
map c, when evaluated at a generic point, is equal to |E| + |Leak|.

Example 2.7 (Example 2.4, continued): We show that the model from Example 2.4 is
generically locally identifiable, by proving that the Jacobian matrix of its coefficient map
generically has rank |E| + |Leak| = 4. Denote the first four non-monic coefficients as
follows:

e1 = k14 + k21 + k32 + k43
e2 = k14k21 + k14k32 + k14k43 + k21k32 + k21k43 + k32k43
e3 = k14k21k32 + k14k21k43 + k14k32k43 + k21k32k43
κ = k21k32.

For the (4 × 4)-submatrix of the Jacobian matrix arising from rows indexed by e1, e2, e3, κ
and columns k21, k32, k43, k14, the determinant is a nonzero polynomial in the kij’s:

−(k32 − k21)(k14 − k43)

(k14 − k32)(k32 − k43)+ k14k21 − k221 − k21k32 + k21k43


.

So, by Proposition 2.6, the model is generically locally identifiable.

The following result combines [1, Proposition 4.1, Proposition 4.6, and Theorem 4.3].

Proposition 2.8: Let M be a linear compartmental model that is strongly connected and has
at least one input. Assume that one of the following holds:

(1) M has no leaks, and M is a model obtained from M by adding one leak;
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(2) M is a model obtained from M by adding one input or one output; or
(3) M has an input, an output, and a leak in a single compartment (and no other inputs,

outputs, or leaks), and M is the model obtained from M by removing the leak.

Then, if M is generically locally identifiable, then so is M.

Remark 2.1: Most models we consider have at most one leak. So, by Proposition 2.8, to
prove identifiability, it will suffice to analyze the input-output equations of models without
leaks. For such models, in the left-hand side of the input-output equation (3), the constant
term is 0 (e.g. see Example 2.4). Indeed, this term is, up to sign, the determinant of the
compartmental matrix A, which (if there are no leaks) has 0 column sums.

We end this section by recalling from [7, 12] an important class of models that are
identifiable when all leaks (or all but one) are removed (see Proposition 3.3).

Definition 2.9: A linear compartmental model M = (G, In,Out, Leak), with G = (V ,E),
is an identifiable cycle model if (1) G is strongly connected, (2) In = Out = {1},
(3) Leak = V, and (4) the dimension of the image of the coefficient map is |E| + 1.

When conditions (1)–(3) in Definition 2.9 hold, and also the equality |E| = 2|V| − 2,
then a sufficient criterion for condition (4) to hold is that the graphG is inductively strongly
connected with respect to vertex 1 [12] (c.f. [7, Remark 1]).

2.4. Elementary symmetric polynomials

We will use the following lemma to prove identifiability results in the next section.

Lemma 2.10: Let n be a positive integer. For 1 ≤ m ≤ n, let em be the mth elementary sym-
metric polynomial on a set of variables X = {x1, x2, . . . , xn}. Let J(V) denote the Jacobian
matrix of V := {e1, e2, . . . , en} with respect to x1, x2, . . . , xn. Then det J(V) is a nonzero
polynomial in the xi’s.

Proof: For 1 ≤ m ≤ n, themth elementary symmetric polynomial on X is as follows:

em =


j1<j2<···<jm
xj1 . . . xjm =


j2<···<jm

jk =i

xi(xj2 . . . xjm)+


l1<···<lm
lk =i

xl1 . . . xlm ,

for any 1 ≤ i ≤ n. Thus, taking the partial derivative with respect to xi yields:

∂em
∂xi

=


j2<···<jm
jk =i

xj2 . . . xjm = em−1{x̂i}, (4)
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where em−1{x̂i} is the (m − 1)-st elementary symmetric polynomial on the set X  {xi}.
Hence, the Jacobian matrix of V is as follows:

J(V) =

⎡⎢⎢⎢⎣
1 1 . . . 1

e1{x̂1} e1{x̂2} . . . e1{x̂n}
...

...
. . .

...
en−1{x̂1} en−1{x̂2} . . . en−1{x̂n}

⎤⎥⎥⎥⎦ .

Finally, by Equation (5) in the proof of [7, Theorem 5.1], det(J(V)) equals, up to sign, the
Vandermonde polynomial on X, which is nonzero: det(J(V)) = ±1≤i<j≤n(xi − xj). 

Remark 2.2: An alternate proof of Lemma 2.10 is as follows. The Jacobian matrix of n
polynomials in n unknowns is nonzero if and only if the polynomials are algebraically inde-
pendent [13, Theorem 2.3]. And the algebraic independence of the elementary symmetric
polynomials is known [14, p. 20].

3. Results

In this section we present our main results. In Section 3.1, we recall a conjecture on
removing leaks [1] and then prove the conjecture for three infinite families of models
(Theorem 3.2). Next, in Section 3.2, we investigate a new operation: moving the input and
output. We prove that every cycle model with up to one leak, at least one input, and at
least one output is identifiable (Theorem 3.4). In Section 3.3, we give a partial converse
to this result by analyzing how the number and location of leaks affects whether a cycle
model is identifiable. Lastly, in Section 3.4, we show that adding certain edges to cycle
models preserves identifiability (Theorem 3.17).

3.1. Adding or removing a leak

The following was posed by Gross et al. [1, Conjecture 4.5]:

Conjecture 3.1 (Removing a leak): Let M be a linear compartmental model that is
strongly connected and has at least one input and exactly one leak. If M is generically locally
identifiable, then so is the modelM obtained from M by removing the leak.

The next result resolves Conjecture 3.1 for three infinite families of models, which we
introduce now. A catenary model is a linear compartmental model (G, In,Out, Leak) for
which G is the catenary graph in Figure 3(a) (for some n). Similarly, a cycle model (respec-
tively, amammillary model) arises from the graph in Figure 1(a) (respectively, Figure 3(b)).
All three families of models are among the most common in the literature [15–19].

Theorem 3.2: Let M be a catenary, cycle, or mammillary model that has exactly one input
and exactly one output, both in the first compartment, and exactly one leak. Then M is
generically locally identifiable and so is the model M obtained by removing the leak.

Proof: Proposition 4.7 from [1] states that the modelsM in the statement of the theorem,
with no leaks, are generically locally identifiable. Then, by Proposition 2.8, adding a leak
preserves identifiability. Thus, bothM and M are generically locally identifiable. 
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Figure 3. Two graphs with n compartments (cf. [9, Figures 1–2]). (a) The catenary graph and (b) The
mammillary graph.

In other words, for every catenary, mammillary, or cyclemodel with input and output in
the first compartment, identifiability is preserved when the leak is moved or deleted. Other
models for which identifiability is preserved when the leak is moved, are those obtained
by deleting all but one leak from an ‘identifiable cycle model’ [7, Theorem 1]. Also, for
identifiability analysis of catenary and mammillary models where some of the parameters
are already known, we refer the reader to [19].

Remark 3.1: For the part of Theorem 3.2 concerning models with one leak, another
approach to the proof is via [12, Section 5] and [7, Theorem 1], or (for mammillary mod-
els) through [18, Theorem 5.1]. For the part of the theorem on catenary and mammillary
models with no leaks, another proof is given in [20, Sections 3.1 and 4.1].

We end this subsection with a result that combines two prior results.

Proposition 3.3: LetM be a linear compartmental model obtained from an identifiable cycle
model by removing all leaks or removing all leaks except one. Then M is generically locally
identifiable.

Proof: Any such model with one leak is generically locally identifiable, by [7, Theorem 1].
In particular, the model with Leak = {1} is identifiable (and strongly connected), and so
Proposition 2.8.3 implies that removing the leak preserves identifiability. 

3.2. Moving inputs and outputs

In the previous subsection, we investigated whether identifiability is preserved when a leak
is moved or removed. Now we consider other operations: moving inputs and outputs. We
show that these operations preserve identifiability in cyclemodels (in suchmodels, moving
the input is equivalent to moving the output). As a consequence, we obtain the main result
of this subsection, Theorem 3.4, which states that every cycle model with at most one leak
(and at least one input and at least one output) – such as those considered in Examples 2.4
and 2.7 – is identifiable.

Theorem 3.4: Assume2 n ≥ 3. Let M be an n-compartment cycle model with at least one
input, at least one output, and at most one leak. Then M is generically locally identifiable.
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In the next subsection, we prove a partial converse to Theorem 3.4 (see Theorem 3.7).
We prove Theorem 3.4 at the end of this subsection by using the next two propositions.

For the proofs of those propositions, recall that (A)ji denotes the submatrix obtained by
removing row j and column i from matrix A.

Proposition 3.5: Assume n ≥ 3. For an n-compartment cycle model with In = {1}, Out =
{p} for some p = 1, and Leak = ∅, the coefficient map c : Rn → R2n−p is given by:

(k21, k32, . . . , k1n) −→

e1, e2, . . . , en−1, κ , e∗1κ , . . . , e

∗
n−pκ

,

where κ :=p
i=2 ki,i−1, and ej and e∗j denote the jth elementary symmetric polynomial on

the sets E = {k21, . . . , kn,n−1, k1n} and E∗ = {kp+2,p+1, . . . , kn,n−1, k1n}, respectively.

Proof: In the indices, we let n+ 1: = 1. By Proposition 2.3, the input-output equation is

det(∂I − A)yp = (−1)p+1 det(∂I − A)1pu1, (5)

where A is the compartmental matrix. The n × nmatrix A := (∂I − A) is as follows:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d
dt

+ k21 0 . . . 0 −k1n

−k21
d
dt

+ k32 0 . . . 0

0
. . . . . .

... −ki,i−1
d
dt

+ ki+1,i
...

. . . . . .

0 . . . 0 −kn,n−1
d
dt

+ k1n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (6)

We compute the determinant by expanding along the first row:

detA =

d
dt

+ k21

det (A)11 + (−1)n−1 (−k1n) det (A)1n

=

d
dt

+ k21
 n

i=2


d
dt

+ ki+1,i


− k1n

n
j=2

kj,j−1

=
n

i=1


d
dt

+ ki+1,i


−

n
j=1

kj+1,j. (7)

Here, we used the fact that the matrix (A)11 is lower triangular and the matrix (A)1n is
upper triangular, so each determinant is just the products of the diagonal entries.
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Next, we simplify equation (7) by recalling that the ej’s denote the elementary symmetric
polynomial on E:

det(A) = d
dt

n
+ e1

d
dt

n−1
+ · · · + en−1

d
dt
.

Thus, the left-hand side of the input-output equation (5) is:

det(A)yp = y(n) + e1y
(n−1)
p + · · · + en−1y

(1)
p ,

and so the first (n − 1) coefficients stated in the proposition are correct.
We now turn our attention to the remaining coefficients, those on the right-hand side

of the input-output equation (5). It is straightforward to check, using (6), that the matrix
(A)1p can be written as a block matrix:

(A)1p =

B 0
0 C


,

where B is an upper-triangular, (p − 1)× (p − 1) matrix with diagonal entries −k21,
−k32, . . . ,−kp,p−1, andC is a lower-triangular, (n − p)× (n − p)matrix with the diagonal
entries d

dt + kp+2,p+1, . . . , d
dt + kn,n−1, d

dt + k1,n. Thus,

det (A)1p = (detB)(detC) = (−1)p−1

 p
i=2

ki,i−1

 n
j=p+1


d
dt

+ kj+1,j


. (8)

Similar to before, the product of the binomials in (8) can be expressed in terms of
elementary symmetric polynomials, this time on E∗:

n
j=p+1


d
dt

+ kj+1,j


=

d
dt

n−p
+ e∗1


d
dt

n−p−1
+ · · · + e∗n−p−1

d
dt

+ e∗n−p. (9)

Using (8) with (9), we obtain the right-hand side of the input-output equation (5):

(−1)p+1 det(∂I − A)1pu1 =
p

i=2
ki,i−1


d
dt

n−p
+ e∗1

d
dt

n−p−1
+ · · · + e∗n−p


u1. (10)

By inspection, the coefficients of (10) match the last (n − p + 1) coefficients stated in the
proposition, and so this completes the proof. 

Proposition 3.6: Assume n ≥ 3. Let M be an n-compartment cycle model with no leaks,
exactly one input, and exactly one output. Then M is generically locally identifiable.

Proof: By relabelling, wemay assume that In = {1}. Let p denote the output compartment.
If p = 1, then the modelM is generically locally identifiable by Theorem 3.2.

Now assume p = 1. By Proposition 2.6, we must show that the Jacobian matrix of the
coefficient map is generically full rank. By Proposition 3.5, the coefficient map c : Rn →
R2n−p is given by (k21,k32, . . . ,kn,n−1,k1n) → (e1,e2, . . . ,en−1,κ ,e∗1κ , . . . ,e∗n−pκ), where
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κ :=p
i=2 ki,i−1. Thus, the Jacobian matrix of c is an n × (2n − p) matrix (with 2 ≤ p ≤

n), and so we must show that an (n × n) submatrix has nonzero determinant.
To see this, it suffices to show (recall Remark 2.2) that e1, e2, . . . , en−1, κ are alge-

braically independent. To start, the elementary symmetric polynomials e1, e2, . . . , en−1
are algebraically independent (recall Remark 2.2). Now assume for contradiction that
κ =p

i=2 ki,i−1 is algebraic over the fieldF := C(e1, e2, . . . , en−1). Then, by symmetry, the
product of any p−1 distinct elements of the set {k21, k32, . . . , kn,n−1, k1n} is also algebraic
over F. By a straightforward combinatorial argument, the product of all such products

is (en)(
n−1
p−2), so en is algebraic over F = C(e1, e2, . . . , en−1). This is a contradiction (see

Remark 2.2). 

We now prove the main result of this subsection.

Proof of Theorem 3.4: By Proposition 3.6, the models with no leaks, exactly one input,
and exactly one output are generically locally identifiable. Also, by Proposition 2.8, adding
one leak, one or more inputs, and/or one or more outputs preserves identifiability. 

3.3. Adding leaks to a cyclemodel

In the previous subsection, we saw that cycle models with one input, one output, and
at most one leak are identifiable (Theorem 3.4). Here we present a partial converse
(Theorem 3.7), which we prove at the end of the subsection.

Theorem 3.7: Assume n ≥ 3. Let M be an n-compartment cycle model with input and out-
put in the same compartment (and no other inputs or outputs). Then,M is generically locally
identifiable if and only if |Leak| ≤ 1.

Our proof of Theorem 3.7 relies on an analysis of how the number and relative posi-
tion of the leaks affects identifiability – even when the input and output compartments
are distinct (see Theorem 3.10). We begin by computing the relevant coefficient map
(Proposition 3.8), which can be viewed as the Leak = ∅ analogue of Proposition 3.5.

Proposition 3.8: Assume n ≥ 3. Let M be an n-compartment cycle model with In = {1},
Out = {p} (for some 1 ≤ p ≤ n), and Leak = {i1, i2, . . . , it} = ∅. Then the coefficient map
c : Rn+t → R2n−p+1 is given by

(k21, k32, . . . , k1,n, k0,i1 , k0,i2 , . . . , k0,it )

→

e1, e2, . . . , en−1, en −

n
i=1

ki+1,i, κ , e∗1κ , . . . , e
∗
n−pκ



where κ :=p
i=2 ki,i−1, and ej and e∗j denote the jth elementary symmetric polynomial on the

sets E = {k+1, |  ∈ {1, . . . , n} \ Leak} ∪ {k+1, + k0, |  ∈ Leak} and E∗ = {k+1, |
p + 1 ≤  ≤ n,  ∈ Leak} ∪ {k+1, + k0, | p + 1 ≤  ≤ n,  ∈ Leak}, respectively.

Proof: The matrix ∂I − A is obtained from the matrix (6) by adding, for each leak  ∈
Leak, the term k0 to the th diagonal entry. The rest of the proof is now completely
analogous to the proof of Proposition 3.5. 
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It follows from Proposition 3.8 that a cycle model with too many leaks is unidentifiable.

Proposition 3.9: Assume n ≥ 3. Let M be an n-compartment cycle model with In = {1}
andOut = {p} (for some 1 ≤ p ≤ n). If |Leak| ≥ n − p + 2, thenM is not generically locally
identifiable.

Proof: Assume |Leak| ≥ n − p + 2. It follows that n + |Leak| > 2n − p + 1, and so the
coefficient map Rn+|Leak| → R2n−p+1 (from Proposition 3.8) is not finite-to-one, even
outside ameasure-zero set. Thus, by definition,M isnot generically locally identifiable. 

Similarly, the location of the leaks may make a cycle model unidentifiable.

Theorem 3.10: Assume n ≥ 3. Let M be an n-compartment cycle model with In = {1} and
Out = {p} (for some 1 ≤ p ≤ n). If there exist leaks i, j ∈ Leak (with i = j) such that i, j ≥ p,
then M is not generically locally identifiable.

Proof: For this model, the coefficient map c : Rn+|Leak| → R2n−p+1 is given in Proposi-
tion 3.8. Let J denote the (2n − p + 1)× (n + |Leak|) Jacobian matrix of c.

Assume that there exist two leaks i, j ≥ p. It follows that κ =p
=2 k,−1 does not

contain any of the following as factors: ki+1,i, k0i, kj+1,j, k0j. Now it is straightforward to
check from the coefficient map that, for each coefficient c, except for the coefficient
en −n

i=1 ki+1,i, the partial derivatives satisfy the following equalities:

∂c
∂ki+1,i

= ∂c
∂k0i

and
∂c
∂kj+1,j

= ∂c
∂k0j

.

Thus, the columns of J corresponding to ki+1,i and k0i, which we denote by Ci+1,i and C0i,
respectively, are identical in every coordinate, except the one corresponding the coefficient
en −n

i=1 ki+1,i. Thus, the vector Ci+1,i − C0i has 0 in all but one coordinate. By the same
argument, Cj+1,j − C0j is 0 in all but the same coordinate.

Thus, the four columnsCi+1,i,C0i,Cj+1,j,C0j of the Jacobianmatrix J are linearly depen-
dent. We conclude that J is not full rank, and so the model M is not generically locally
identifiable. 

We end this subsection by analyzing two cases when identifiability of a cycle model is
characterized by the number of leaks.

Corollary 3.11: Assume n ≥ 3. Let M be an n-compartment cycle model with Input = {i}
and Output = {i − 1 mod n} (for some 1 ≤ i ≤ n). Then M is generically locally identifi-
able if and only if |Leak| ≤ 1.

Proof: The backward direction (⇐) follows from Theorem 3.4. For the forward direction
(⇒), we can relabel compartments so that In = {1} and Out = {n}, so, by Proposition 3.9,
|Leak| ≤ 1. 

Proof of Theorem 3.7: One direction (⇐) is immediate from Theorem 3.4. For the other
direction (⇒), by relabelling, wemay assume that In = Out = {1}, and so the desired result
follows directly from Theorem 3.10. 
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Figure 4. The Fin and Wing graphs with n compartments. (a) The Fin graph (Finn) and (b) The Wing
graph (Wingn).

3.4. Adding incoming and outgoing edges to cyclemodels

In this section, we introduce a new class of linear compartment models, which can be
viewed as a hybrid between cycle and mammillary models, as they are constructed by
adding certain ‘incoming’ or ‘outgoing’ edges (like those in the mammillary model) to a
cycle model.

We prove that when all incoming edges or all outgoing edges are added, and there is
at most one leak, the resulting model is identifiable (Theorem 3.13). Afterward, we con-
sider the case of adding only a subset of the incoming edges or outgoing edges. Specifically,
we compute the coefficient maps (Propositions 3.14 and 3.15) and assess identifiability
(Theorem 3.17).

In what follows, we refer to an edge j → i by its edge-label parameter kij.

Definition 3.12: Consider an n-compartment model.

(1) An incoming edge is an edge from compartment i to compartment 1, where i ∈
{2, 3, . . . , n − 1}. The set of all incoming edges is {k12, k13, . . . , k1,n−1}.

(2) An outgoing edge is an edge from compartment 1 to compartment j, where j ∈
{3, 4, . . . , n}. The set of all outgoing edges is {k31, k41, . . . , kn1}.

Fin and Wing models are obtained from cycle models by adding all incoming (respec-
tively, outgoing) edges; see Figure 4 for the underlying graphs, denoted by Finn and
Wingn.

Theorem 3.13: Let n ≥ 3, and let M be an n-compartment Fin model (Finn, In,Out, Leak)
or Wing model (Wingn, In,Out, Leak), with In = Out = {1} and at most one leak. Then M
is generically locally identifiable.

Proof: It is straightforward to check that, when all leaks are added to the Fin and Wing
models, the resulting models are identifiable cycle models (Definition 2.9). In particu-
lar, condition (4) is satisfied because the graphs Finn and Wingn satisfy |E| = 2|V| − 2
and are inductively strongly connected with respect to compartment 1 and the orderings
{1, 2, . . . , n} and {1, n, n − 1, . . . , 2}, respectively [7, Remark 1]. So, by Proposition 3.3,M
is generically locally identifiable. 
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When only some incoming (respectively, outgoing) edges are added, the resulting sub-
model of a Fin (respectively, Wing) model fails to be inductively strongly connected. Thus,
to checkwhether such amodel is an identifiable cyclemodel (Definition 2.9), wemust com-
pute and analyze the coefficient map. Accordingly, we next compute the coefficient maps
of Fin and Wing models (Propositions 3.14 and 3.15) – the coefficient maps for submod-
els are then obtained by setting some rate constants to 0 – and then prove identifiability
of submodels of Fin and Wing with only one or two incoming edges or outgoing edges
(Theorem 3.17).

We begin by computing the coefficient maps for Fin and Wing models. The proofs are
similar, but the differences are subtle enough that we must prove them separately.

Proposition 3.14 (Coefficientmap for Fin): Assume n ≥ 3. For 2 ≤  ≤ n − 1, define the
following expressions:

(1) e[]m is the mth elementary symmetric polynomial3 on E[] := {k1 + k+1,, k1,+1 +
k+2,+1, . . . , k1,n−1 + kn,n−1, k1n},

(2) P := k1(k21k32 · · · k,−1), and
(3) φ := e[2] + k21e

[2]
−1 −

i=2 Pie
[i+1]
−i .

Then, for the n-compartment model (Finn, In,Out, Leak) with In = Out = {1} and
Leak = ∅, the coefficient map c : R2n−2 → R2n−2 is given by

(k21, k32, k43, . . . , k1n, k12, k13, . . . , k1,n−1)

→

e[2]1 , e[2]2 , . . . , e[2]n−1, e

[2]
1 + k21,φ2,φ3, . . . , φn−1


. (11)

Proof: The matrix A := (∂I − A) is

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d
dt

+ k21 −k12 −k13 . . . −k1,n−1 −k1n

−k21
d
dt

+ (k12 + k32) 0 . . . 0

0 −k32
d
dt

+ (k13 + k43)

0 0 −k43
. . .

...
...

...
d
dt

+ (k1,n−1 + kn,n−1) 0

0 0 . . . 0 −kn,n−1
d
dt

+ k1n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The matrix (A)11 is lower triangular, with diagonal entries (d/dt + k12 + k32), (d/dt +
k13 + k43), . . . , (d/dt + k1,n−1 + kn,n−1), (d/dt + k1n). Hence, the non-monic coefficients
of the right-hand side of the input-output equation (3) are the elementary symmetric poly-
nomials e[2]1 , e[2]2 , . . . , e[2]n−1 on E[2] = {k12 + k32, . . . , k1,n−1 + kn,n−1, k1n}, and these are
the first n−1 coefficients in (11).
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To obtain the left-hand side of (3), we expand along the first row of A:

detA =

d
dt

+ k21

det(A)11 + k12 det(A)12

− k13 det(A)13 + · · · + (−1)nk1n det(A)1n

=

d
dt

+ k21


d
dt

n−1
+

d
dt

n−2
e[2]1 + · · · + e[2]n−1



+
n
j=2
(−1)jk1j det(A)1j. (12)

Letting Kj := k1,j + kj+1,j (for 2 ≤ j ≤ n − 1) and Kn := k1n, we obtain:

(A)1j =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−k21
d
dt

+ K2 0 . . . 0

0 −k32
. . .

...
...

...
. . . d

dt
+ Kj−1

0 . . . −kj,j−1 0 . . . 0

0 . . . 0
d
dt

+ Kj+1 0 . . . 0
...

... −kj+2,j+1
. . .

...
. . . d

dt
+ Kn−1 0

0 . . . 0 −kn,n−1
d
dt

+ Kn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We see that (A)1j is block diagonal, and both blocks are triangular, so we have:

det (A)1j = (−1)j−1(k21k32 · · · kj,j−1) ·

d
dt

+ Kj+1


d
dt

+ Kj+2


· · ·

d
dt

+ Kn



= (−1)j−1 Pj
k1j


d
dt

n−j
+

d
dt

n−j−1
e[j+1]
1 + · · · + e[j+1]

n−j


.

Using the above expression, we compute a sum from (12):

n
j=2
(−1)jk1j det(A)1j = −

n
j=2

Pj


d
dt

n−j
+

d
dt

n−j−1
e[j+1]
1 + . . .+ e[j+1]

n−j



= −
n
j=2


d
dt

n−j j
i=2

Pie
[i+1]
j−i .

By substituting the above expression into equation (12), and collecting coefficients of pow-
ers of d/dt, it is straightforward to verify that the non-monic coefficients of the left-hand
side of the input-output equation (3) match the final n−1 coordinates in (11). 
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Proposition 3.15 (Coefficient map for Wing): Assume n ≥ 3. For the n-compartment
model (Wingn, In,Out, Leak) with In = Out = {1} and Leak = ∅, the coefficient map c :
R2n−2 → R2n−2 is given by

(k32, k43, . . . , k1n, k21, k31, . . . , kn1)

→ e1, e2, . . . , en−1, e

1 + K, e2 + e1K,ψ3,ψ4, . . . ,ψn−2, en−1K −

n
i=2

Qihii−2

, (13)

where, for 3 ≤ j ≤ n − 2,

ψj := ej + ej−1K −
n

i=n−j+2
Qihii−n+j−2,

and em and hjm are the mth elementary symmetric polynomials4 on E := {k32, k43, . . . ,
kn,n−1, k1n} and Hj := {k32, k43, . . . , kj,j−1} (for 3 ≤ j ≤ n), respectively, and Qj :=
k1nkj1(kj+1,jkj+2,j+1 . . . kn,n−1) (for 2 ≤ j ≤ n) and K := k21 + k31 + · · · + kn1.

Proof: For this model, the matrix A := (∂I − A) is as follows:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d
dt

+ k21 + k31 + · · · + kn1 0 . . . 0 −k1n

−k21
d
dt

+ k32 0 . . . 0

−k31 −k32
d
dt

+ k43

−k41 0 −k43
...

...
...

. . . . . . 0

−kn1 0 . . . 0 −kn,n−1
d
dt

+ k1n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The matrix (A)11 is lower triangular, with diagonal entries (d/dt + k32), (d/dt +
k43), . . . , (d/dt + k1n). Hence, the non-monic coefficients of the right-hand side of the
input-output equation (3) are the elementary symmetric polynomials e1, e


2, . . . , e


n−1 on

E := {k32, k43, . . . , kn,n−1, k1n}, which match the first n−1 coordinates in (13).
Next, to obtain the left-hand side of (3), we expand along the first column of A:

detA =

d
dt

+ k21 + k31 + · · · + kn1

det(A)11

+ k21 det(A)21 − k31 det(A)31 + · · · + (−1)nkn1 det(A)n1

=

d
dt

+ K


d
dt

n−1
+

d
dt

n−2
e1 + · · · + en−1


+

n
j=2
(−1)jkj1 det(A)j1.

(14)
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Next, we compute:

(A)j1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . 0 0 . . . 0 −k1n
d
dt

+ k32 0 . . . 0 0 . . . 0 0

−k32
. . .

...
...

...
...

. . . 0

0 −kj−1,j−2
d
dt

+ kj,j−1 0 . . . 0 0

0 . . . 0 −kj+1,j
d
dt

+ kj+2,j+1 0
...

...
. . .

. . .

0 . . . 0 −kn,n−1
d
dt

+ k1n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
We see that det(A)j1 is the product of the determinants of three block matrices: the
(1 × 1) upper-right matrix, a (j − 2)× (j − 2) lower-triangular matrix with diagonal
entries (d/dt + ki,i−1), and an (n − j)× (n − j) upper-triangular matrix with diagonal
entries −ki+1,i:

det(A)j1 = (−1)j+1k1n

kj+1,jkj+2,j+1 . . . kn,n−1

  d
dt

+ k32


×

d
dt

+ k43

. . .


d
dt

+ kj,j−1



= (−1)j+1 Qj

kj1


d
dt

j−2
+ hj1


d
dt

j−3
+ · · · + hjj−2


.

Thus, we can compute a sum from (14):

n
j=2
(−1)jkj1 det(A)j1 = −

n
j=2

Qj


d
dt

j−2
+ hj1


d
dt

j−3
+ · · · + hjj−2



= −
n
j=2


d
dt

n−j n
i=n−j+2

Qihii−n+j−2 .

By substituting the above expression into equation (14), and collecting coefficients of pow-
ers of d/dt, it is straightforward to verify that the coefficients of the left-hand side of the
input-output equation (3) match the final n−1 coordinates in (13). 

Remark 3.2: In [9, Theorem 4.5], the authors give a formula for the coefficient map of
any strongly connected model with In = Out = {1} and at least one leak. This formula
is in terms of spanning, incoming forests of subgraphs of the underlying graph G. This
formula agrees with the coefficient maps we compute in Propositions 3.5, 3.14, and 3.15,
even though those models have no leaks (where, in the notation of [9], we take G = G).
This suggests that the result [9, Theorem 4.5] may generalize to models without leaks.
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The coefficient maps of the Fin and Wing models (Proposition 3.14 and 3.15) are
complicated, so analyzing the resulting Jacobian matrices (with the aim of assessing iden-
tifiability of submodels) is difficult. We therefore only conjecture that these submodels are
identifiable.

Conjecture 3.16 (Submodels of Fin and Wing are identifiable): For n ≥ 3, let G be a
graph obtained from the n-compartment cycle graph in Figure 1(a) by adding one or more
incoming edges or adding one or more outgoing edges. Then (G, In,Out, Leak) with In =
Out = {1} and Leak = ∅, is generically locally identifiable.

Earlier, we proved the case of Conjecture 3.16 when all incoming or all outgoing
edges are added (Theorem 3.13). Next, we obtain the following partial result toward
Conjecture 3.16 (we can add one or two incoming or outgoing edges).

Theorem 3.17 (Adding edges to cycle model): Let n ≥ 3. Let G be a graph obtained from
the n-compartment cycle graph in Figure 1(a) by adding one incoming edge or adding one or
(if n ≥ 4) two outgoing edges. Let In = Out = {1} and Leak ⊆ {1, 2, . . . , n}with |Leak| = 1.
Then the model M = (G, In,Out, Leak) is generically locally identifiable, and so is the model
M obtained by removing the leak.

Proof: By Proposition 2.8, it suffices to prove that the modelsM are identifiable.
First, we consider the case of a model M obtained by adding one incoming edge. Let

k1 be the added edge (so, 2 ≤  ≤ n − 1). The coefficient map c : Rn+1 → R2n−2 is
obtained from the coefficient map in Proposition 3.14 by setting k1i = 0 and Pi = 0, for
i ∈ {2, 3, . . . , n − 1} \ {}.

Therefore, n+ 1 of the coefficients aree21,e22, . . . ,e2n−1,e21 + k21, φ, wheree2m denotes
themth elementary symmetric polynomial on the following set:

E2 := {k43, . . . , kn,n−1, k1n, k12 + k32} if  = 2
{k32, k43, . . . , k,−1} ∪ {k1 + k+1,} ∪ {k+2,+1, . . . , kn,n−1, k1n} if  ≥ 3,

and φ :=e2 + k21e2−1 − P.
Consider the (n + 1)× (n + 1) submatrix of the Jacobian matrix of c, with columns

indexed by k32, k43, . . . , k1n, k21, k1 and rows indexed bye21,e22, . . . ,e2n−1,e21 + k21, φ. We
call this matrixJ, and we let R1,R2, . . . ,Rn+1 denote its rows. To show that detJ = 0, we
first perform two row operations which do not change the determinant: (1) replace Rn by
(−1)R1 + Rn, and (2) replace Rn+1 by (−1)R + (−k21)R−1 + Rn+1.

The resulting matrix, which we denote by J, is block upper-triangular, with upper-left
block of size (n − 1)× (n − 1) and lower-right block of size (2 × 2). For the upper-left
block, after setting k1 = 0, this matrix is the Jacobian matrix of the first through (n − 1)-
st elementary symmetric polynomials (on n−1 variables) with respect to those variables,
so by Lemma 2.10 the determinant is nonzero (and so is nonzero before setting k1 = 0).
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The lower-right 2 × 2 block of J is the following matrix:⎡⎣ 1 0e2−1 − ∂P
∂k21

− ∂P
∂k1

⎤⎦ ,

which has nonzero determinant −∂P/∂k1 = −P/k1. Thus, detJ = det J = 0, and so,
by Proposition 2.6, the modelM is generically locally identifiable.

Next, we consider the case of adding outgoing edges. Let k1 (with 3 ≤  ≤ n) or
{kj1, k1} (with 3 ≤ j <  ≤ n) be the added edge(s). The coefficient map c : Rn+1 →
R2n−2 (or, respectively, c : Rn+2 → R2n−2) is obtained from the coefficient map in Propo-
sition 3.15 by:

(1) setting ki1 = 0, for i ∈ {3, 4, . . . , n}  {} (or, respectively, i ∈ {3, 4, . . . , n}  {j, }),
(2) setting Qi = 0, for i ∈ {1, 2, . . . , n}  {} (or, respectively, i ∈ {1, 2, . . . , n}  {j, }),

and
(3) replacing K byK := k21 + k1 (or, respectively,K := k21 + kj1 + k1).

Consider the (n + 1)× (n + 1) (respectively, (n + 2)× (n + 2)) submatrix of the Jaco-
bian matrix of c, with columns indexed by k32, k43, . . . , k1n, k21, k1 (respectively, an extra
column for kj1) and rows indexed by the coefficients e1, e


2, . . . , e


n−1, e


1 +K , en+2− +

en+1−K − Qh0 (respectively, an extra row for en+2−j + en+1−jK − Qh−j − Qjh
j
0 ). This

matrix, which we callJ, is block lower-triangular. The upper-left block, with size (n − 1)×
(n − 1), has nonzero determinant by Lemma 2.10. The lower-right block is the following
2 × 2 matrix: 

1 1
en+1− en+1− − k1n(k+1,k+2,+1 · · · kn,n−1)


,

which has nonzero determinant, or (respectively) the following 3 × 3 matrix:⎡⎢⎢⎣
1 1 1

en+1− en+1− − k1n(k+1,k+2,+1 · · · kn,n−1) en+1−
en+1−j en+1−j en+1−j

−k1n

k+1,k+2,+1 · · · kn,n−1


h−j −k1n


kj+1,jkj+2,j+1 · · · kn,n−1


⎤⎥⎥⎦ ,

which has (nonzero) determinant (QjQ)/(k1kj1) = k21n(k+1, · · · kn,n−1)(kj+1,j · · ·
kn,n−1). Thus, detJ = 0. So, by Proposition 2.6, the model M is generically locally iden-
tifiable. 

4. Discussion

Despite much progress, the following basic question remains open:Which linear compart-
mental models are identifiable? Here, we proved that certain infinite families belong to this
class, including all cycle models with up to one leak and at least one input (and at least one
output). We also showed that adding certain incoming or outgoing edges (for instance, all
incoming edges or all outgoing edges) in cycle models also preserves identifiability.
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Our results give rise to several open problems. First, for cycle models with two or more
leaks, which are identifiable? We obtained results toward an answer in Section 3.3, but
our knowledge is not yet complete. Next, consider cycle models with some incoming or
outgoing edges added. We conjectured that identifiability is preserved when more than
one or two incoming or outgoing edges are added (Conjecture 3.16). Next, is identifiability
preserved when the input or output is moved? Finally, among models containing at least
one incoming edge and at least one outgoing edge, which are identifiable?

In summary, as in [1], we view our work as a case study into the effect on identifiability
of adding, removing, or moving parts of the model (input, output, edge, or leak). Indeed,
we showed for many models that these operations preserve identifiability. Therefore, our
work and further progress in this direction will help to resolve the fundamental problem
of classifying and characterizing identifiable models.

Notes

1. Ovchinnikov et al. considered identifiability overC, whereas we consider identifiability over R,
but these are equivalent in our setting (cf. the discussion in [21, § 3]).

2. This n ≥ 3 assumption comes from the fact that the n = 1 and n = 2 cases reduce to catenary
models.

3. By convention, e[]0 := 1.
4. By convention, hj0 := 1
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