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A foundational question in the theory of linear compartmental 
models is how to assess whether a model is structurally 
identifiable – that is, whether parameter values can be 
inferred from noiseless data – directly from the combinatorics 
of the model. Our main result completely answers this 
question for models (with one input and one output) in 
which the underlying graph is a bidirectional tree; moreover, 
identifiability of such models can be verified visually. Models 
of this structure include two families of models often appearing 
in biological applications: catenary and mammillary models. 
Our analysis of such models is enabled by two supporting 
results, which are significant in their own right. One result 
gives the first general formula for the coefficients of input-
output equations (certain equations that can be used to 
determine identifiability) that allows for input and output 
to be in distinct compartments. In another supporting result, 
we prove that identifiability is preserved when a model is 
enlarged and altered in specific ways involving adding a 
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new compartment with a bidirected edge to an existing 
compartment.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Compartmental models are commonly used in fields such as pharmacokinetics, ecology, 
and epidemiology to understand interacting groups, or compartments [18]. In pharma-
cokinetics, the compartments may represent tissue or tissue groups [15,23,37,39]; in ecol-
ogy, the compartments may represent habitat zones or role in a population (e.g., forager 
bee and nurse bee) [22,26,27,33]; while in epidemiology, the compartments may represent 
groups of infected, susceptible, and recovered individuals [4,36]. Interactions, exchanges, 
or flows between compartments are represented by edges between compartments, result-
ing in a directed graph, with distinguished nodes representing inputs, outputs, and leaks 
from the system. Linear compartmental models, which form the topic of this paper, are 
commonly used compartmental models described by a parameterized system of linear
ordinary differential equations.

A fundamental question regarding linear compartmental models is whether or not the 
parameters are identifiable from a series of observations. In this paper, we give a way to 
visually verify when certain linear compartmental models are identifiable. To be precise, 
our main theorem (Theorem 5.2) states: A bidirectional tree model with one input and 
one output is generically locally identifiable if and only if the distance between the input 
and output is at most one and the model has either no leaks or a single leak.

Bidirectional tree models, or simply tree models, are linear compartmental models 
where the underlying directed graph is a bidirectional tree. Tree models often appear 
in applications. Indeed, [32, Example 7] discusses the importance of tree models in ap-
plications, using diffusion models along rivers and streams [22] and models of neuronal 
dendritic trees [7] as motivating applications. As another example, [32, Example 6] con-
siders a 11-compartment tree model, obtained by modifying a compartmental model of 
manganese pharmacokinetics in rats [16].

Two families of tree models that often arise in applications are catenary and mam-
millary models. For catenary (respectively, mammillary) models, the underlying directed 
graph is a path (respectively, a star). As corollaries to the main theorem, we give a full 
classification of when catenary and mammillary models are generically locally identifiable
in the case of a single input and output (Corollaries 5.3 and 5.4).

Generic local identifiability is a form of structural identifiability, a model property that 
guarantees unique parameter inference given noiseless and continuous data [3]. While 
structural identifiability is based on perfect, i.e., noiseless data, the property is necessary 
for parameter estimation in the noisy setting, and thus is usually established before 
applying inference techniques with observed data.
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Combinatorial conditions for identifiability that can be visually verified, as in the 
main theorem, are desired because compartmental models are described using a graphi-
cal structure and are often used in settings with few compartments. Prior results in this 
direction were given by Cobelli et al., who showed that mammillary and catenary models 
are identifiable when the models have a single input and output in the same compart-
ment (specific to the respective models) and have at most one leak [12]. Another known 
result asserts that models with inductively strongly connected graphs, a single input and 
output in a certain compartment, and at most one leak are identifiable [19,31,32]. Other 
related results are due to Boukhobza et al., who gave a graph-theoretic criterion for iden-
tifiability [6], Chau, who explored properties of catenary and mammillary models [9,10], 
Delforge, who described necessary conditions for identifiability and posed conjectures on 
identifiability [13,14], and Vajda, who gave a condition for identifiability based on the 
submodels obtained by deleting one edge at a time [38]. Finally, other authors have in-
vestigated identifiability in dynamical network models that are more general than linear 
compartmental models, but where the network topology is still captured by a directed 
graph [11,24,25,28,29].

Establishing structural identifiability of a model can be achieved by using differential 
algebra techniques to translate the problem to a linear algebra question [30,32]. In par-
ticular, the question of whether a given linear compartmental model is generically locally 
identifiable is equivalent to asking whether the Jacobian matrix of a certain coefficient 
map (arising from certain input-output equations) is generically full rank. We give a 
general formula for the coefficients of these equations in terms of the combinatorics of 
the underlying directed graph associated to the model (Theorem 3.1). This is the second 
significant result of this work (after the main theorem mentioned earlier). Previous for-
mulas appear in [21,31], but only apply to models that satisfy certain conditions. For 
example, the results in [21] require the input and output to be in the same compart-
ment. In comparison, the only condition of Theorem 3.1 is the existence of at least one 
input.

A general formula for coefficients allows us then to explore the effect of adding edges 
and moving inputs and outputs as we work towards an understanding of tree models. 
Indeed, Theorem 3.1 implies that if the input and output are too far apart then the model 
is unidentifiable (Corollary 3.5). This result places immediate constraints on how inputs 
and outputs can be moved if identifiability is to be preserved, which we can glimpse in the 
main theorem, Theorem 5.2, stated earlier. Our final set of results, which we summarize 
in Table 1, concerns operations involving moving inputs and outputs and adding leaf 
edges. These results establish situations where such operations preserve identifiability, 
and therefore contribute to a recent body of work aimed at understanding the effect on 
identifiability of adding, deleting, or moving an input, output, leak, or edge [8,17,19]. Our 
results also contribute to a more general body of work aimed at understanding which 
operations preserve a model’s “expected dimension” [2,5,31].

The outline of our work is as follows. Section 2 introduces linear compartmental models 
and identifiability. Our formula for the coefficients of input-output equations is proven 
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Table 1
Summary of results on operations preserving identifiability. For an identifiable, 
strongly connected, linear compartmental model M with one input, one output, 
and no leaks, if M is obtained from M by the specified operation, then M is 
identifiable. For related prior results, we refer the reader to [8, Table 1] and [19, 
Table 1].

Model Operation Result
Any Add leaf edge Theorem 4.3
Model with

In = Out = {i}
Add leaf edge at i, and move input 
or output to the new compartment

Theorem 4.4

in Section 3. Section 4 contains our results on operations that preserve identifiability. 
In Section 5, we classify identifiable tree models and then end with a discussion in 
Section 6.

2. Background

This section introduces linear compartmental models and how to assess their identifi-
ability using input-output equations. In particular, after defining linear compartmental 
models in Section 2.1 and introducing graph-theory terminology in Section 2.2, the 
remaining subsections, Sections 2.3–2.4, review prior results on input-output equa-
tions and identifiability that serve as the foundation for our contributions in Sec-
tions 3–5.

We closely follow the notation in [17,21]. Also, throughout this work, a graph is a 
finite, weighted (i.e., edge-labeled), directed multigraph. Recall that a multigraph allows 
for multi-edges, that is, more than one edge with the same source and target.

2.1. Linear compartmental models

A linear compartmental model M = (G, In, Out, Leak) consists of a (directed) graph 
G = (VG, EG) without multi-edges and sets In, Out, Leak ⊆ VG, which are called the 
input, output, and leak compartments, respectively. An edge j → i ∈ EG is labeled by the 
parameter aij . We always assume that Out is nonempty, because models with no outputs 
are not identifiable. Finally, a model M = (G, In, Out, Leak) is strongly connected if G
is strongly connected (that is, given any two vertices of G, there exist directed paths in 
each of the two directions between the two vertices).

As in prior works, a linear compartmental model is depicted by its graph G, plus 
leaks indicated by outgoing edges, input compartments labeled by “in,” and output 
compartments marked by this symbol: . For instance, for the 3-compartment model 
M = (G, In, Out, Leak) shown in Fig. 1, the graph G is the complete directed graph on 
3 nodes, In = Out = {1}, and Leak = {2}.

For a linear compartmental model M = (G, In, Out, Leak) with n compartments (so, 
n = |VG|), the compartmental matrix A is the n × n matrix defined by:
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1

2

3

a21

a12

a31

a13

a32 a23

in

a02

Fig. 1. A linear compartmental model with In = Out = {1} and Leak = {2}.

Ai,j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−a0i − k : i→k∈EG

aki i = j, i ∈ Leak,

− k : i→k∈EG
aki i = j, i /∈ Leak,

aij i = j, (j, i) ∈ EG,

0 i = j, (j, i) /∈ EG.

Next, the model M defines the following ODE system (1), where ui(t) and yi(t) denote 
the concentrations of input and output compartments, respectively, at time t, and x(t) =
(x1(t), x2(t), . . . , xn(t)) is the vector of concentrations of all compartments:

dx

dt
= Ax(t) + u(t), (1)

yi(t) = xi(t) for all i ∈ Out ,

where ui(t) ≡ 0 for i /∈ In.

Remark 2.1. Initial conditions form an important part of an ODE system, and the the-
ory of structural identifiability analysis does allow for the consideration of known or 
unknown initial conditions [35]. However, in this work, we assume that initial conditions 
are generic.

2.2. Graphs associated to linear compartmental models

We define several auxiliary graphs arising from a linear compartmental model M =
(G, In, Out, Leak). Examples of such graphs are shown in Fig. 2.

• Recall that the leak-augmented graph [21], denoted by G, is obtained from G by 
adding (1) a new node, labeled by 0 and referred to as the leak node, and (2) for every 
j ∈ Leak, an edge j → 0 with label a0j .

• We introduce the graph G∗
i (where i is some compartment), which is obtained from G

by removing all outgoing edges from node i. We also define a related matrix, denoted 
by A∗

i , which is obtained from the compartmental matrix A of G by replacing the 
column corresponding to compartment-i with zeros.

• The graph Gi is obtained from G∗
i by (1) replacing every edge j → i (labeled by aij) 

by the edge j → 0 labeled aij , and then (2) deleting node i.
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Fig. 2. Graphs arising from the linear compartmental model in Fig. 1.

Remark 2.2. Among the graphs defined above, only the graph Gi may have multi-edges 
(more than one edge with the same source and target). Specifically, such edges may 
appear from a compartment to the leak node (for instance, see the graph G1 in Fig. 2).

The productivity of a graph H with edge set EH is the product of its edge labels:

πH :=
e∈EH

L(e) , (2)

where L(e) is the label of edge e. Following the usual convention, we define πH = 1 for 
graphs H having no edges.

Remark 2.3. Our definition of Gi differs slightly from that in [21]. Here, we use multi-
edges (e.g., a02 and a12 in G1 in Fig. 1), while the corresponding graph in [21] uses a 
single edge with the sum of the labels (e.g., a02 + a12). Using multi-edges here is more 
convenient. Moreover, in the result from [21] that we use and improve (Proposition 2.10
below), it is straightforward to check that our definition of Gi yields the same sum of 
productivities. Thus, both Proposition 2.10 and the result in [21] are correct, even with 
our updated definition of Gi.

Example 2.4. For the model in Fig. 1, the corresponding graphs G, G, G1, and G∗
1 are 

shown in Fig. 2. The matrices arising from G and G∗
1 are, respectively, as follows:
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A =
−(a21 + a31) a12 a13

a21 −(a02 + a12 + a32) a23
a31 a32 −(a13 + a23)

,

A∗
1 =

0 a12 a13
0 −(a02 + a12 + a32) a23
0 a32 −(a13 + a23)

The ODE system (1) for this model is as follows:

ẋ1
ẋ2
ẋ3

= A
x1
x2
x3

+
u1
0
0

=
−(a21 + a31)x1 + a12x2 + a13x3 + u1
a21x1 + −(a02 + a12 + a32)x2 + a23x3

a31x1 + a32x2 + −(a13 + a23)x3
,

with y1 = x1.

For a graph, a spanning incoming forest is a spanning subgraph for which the under-
lying undirected graph is a forest (i.e., has no cycles) and each node has at most one 
outgoing edge. “Spanning” refers to the fact that every vertex of the graph is included 
in the forest, which can include isolated vertices. We introduce the following notation 
for a graph H:

• Fj (H) is the set of all spanning incoming forests of H with exactly j edges, and
• Fk,

j (H) is the set of all spanning incoming forests of H with exactly j edges, such 
that some connected component (of the underlying undirected graph) contains both 
of the vertices k and .

The following three results, which pertain to spanning incoming forests, will be used 
to prove the main result in Section 3.

Lemma 2.5. Every connected component of a spanning incoming forest contains exactly 
one sink node, i.e., exactly one node with no outgoing edges.

Proof. Let C be a connected component of a spanning incoming forest H of a (finite) 
graph G. To see that a sink node exists in C, we start from some node in C and follow 
outgoing arrows; eventually (as H is finite and cycle-free) we must reach a sink node.

Now assume for contradiction that C has two sink nodes v and v . The underlying 
undirected graph of C is a tree, so it contains a unique undirected path P from v to v . 
In the directed version of this path, each edge points in the direction of either v or v . 
Both v and v have only incoming edges, so some node on the path P has two outgoing 
edges – one pointing toward v and one toward v . This contradicts the fact that nodes 
in an incoming forest have no more than one outgoing edge.

Lemma 2.6. Let (G, In, Out, Leak) be a linear compartmental model. Let k and be 
distinct compartments, and let j be a positive integer. Then every forest F ∈ Fk,

j (G∗)
contains a directed path from k to .
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Proof. Let F ∈ Fk,
j (G∗). By definition, some connected component C of F contains k

and . By construction, the node has no outgoing edges in G∗. So, by Lemma 2.5 and 
its proof, is the unique sink node of C, and there is a directed path in F from k to 
.

The following lemma views spanning forests with a path from k to as a union, over 
edges of the form k → i, of forests with paths from i to .

Lemma 2.7. Let H = (VH , EH) be a (directed) graph. Consider vertices k,  ∈ VH with 
k = , and let j be a positive integer. Assume that H has no edges outgoing from . 
Let K be the graph obtained from H by removing all edges outgoing from k. Then the 
following equality holds:

Fk,
j (H) =

i:(k→i)∈EH

(VH , EF ∪ {k → i}) | F ∈ F i,
j−1(K) .

Proof. We first prove “⊆”. Let F ∗ ∈ Fk,
j (H). Then, k and are in the same connected 

component C of F ∗. Also, by assumption, has no outgoing edges and so, by Lemma 2.5, 
is the unique sink node of C. Thus, k is a non-sink node, and so there is an edge k → i

in F ∗. Moreover, this is the unique such edge (as F ∗ is a spanning incoming forest).
It follows that F := (VH , EF∗ {k → i}) is a (j − 1)-edge, spanning subgraph of K. 

Moreover, F has no cycles and each node has at most 1 outgoing edge (because F ∗ has 
the same properties). Finally, i and are in the same connected component of F because 
(as we saw in the proof of Lemma 2.5) by following edges in F ∗ we must eventually reach 
, and the edge k → i is not encountered here, because otherwise F ∗ would contain a 

cycle. We conclude that F ∗ = (VH , EF ∪ {k → i}), with F ∈ F i,
j−1(K), as desired.

We prove “⊇.” Assume that k → i is an edge of H, and let F ∈ F i,
j−1(K). We must 

show that after adding the edge k → i, the new graph F ∗ := (VH , EF ∪ {k → i}) is in 
Fk,

j (H). By construction, F ∗ is a j-edge spanning subgraph of H. Also, each node of 
F ∗ has at most 1 outgoing edge (this property was true for F , and F – as a subgraph of 
K – had no outgoing edges from k). Next, k and are in the same connected component 
of F ∗, due to the edge k → i and the fact that i and are in the same component of F .

Finally, we must show that F ∗ has no cycles. In K (and thus also in F ), both k and 
have no outgoing edges and hence are sink nodes. Thus, by Lemma 2.5, k and are 

in distinct connected components of F . Adding the edge k → i therefore joins these two 
components, but does not introduce any cycles. This completes the proof.

2.3. Input-output equations

In what follows, we use the following notation. For a matrix B, we let Bi,j denote the 
matrix obtained from B by removing row i and column j. Similarly, B{i,j},{k, } denotes 
the matrix obtained from B by removing rows i and j and columns k and .
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For a linear compartmental model, an input-output equation is an equation that holds 
along all solutions of the ODEs (1), and involves only the parameters aij , input variables 
ui, output variables yi, and their derivatives. One way to obtain such equations is given 
in the following result, which is due to Meshkat, Sullivant, and Eisenberg [32, Theorem 
2] (see also [19, Proposition 2.3 and Remark 2.7]):

Proposition 2.8 (Input-output equations, [32]). Let M = (G, In, Out, Leak) be a linear 
compartmental model with n compartments and at least one input. Define ∂I to be the 
n × n matrix in which every diagonal entry is the differential operator d/dt and every 
off-diagonal entry is 0. Let A be the compartmental matrix. Then, the following equations 
are input-output equations of M:

det(∂I −A)yi =
j∈In

(−1)i+j det (∂I −A)j,i uj for i ∈ Out . (3)

Example 2.9 (Example 2.4, continued). Returning to the model in Fig. 1, the compart-
mental matrix A was shown in Example 2.4, which yields the following the input-output 
equation (3):

y
(3)
1 +(a02 + a12 + a13 + a21 + a23 + a31 + a32)ÿ1 + (a02a13 + a12a13 + a02a21 + a13a21

+ a02a23 + a12a23 + a21a23 + a02a31 + a12a31 + a23a31 + a13a32 + a21a32 + a31a32)ẏ1

+(a02a13a21 + a02a21a23 + a02a23a31)y1

= ü1 + (a02 + a12 + a13 + a23 + a32)u̇1 +(a02a13 + a12a13 + a02a23 + a12a23 + a13a32)u1.

The following result is [21, Theorem 4.5].

Proposition 2.10 (Coefficients when input equals output, [21]). Consider a linear com-
partmental model M = (G, In, Out, Leak) with In = Out = {1}. Let n denote the 
number of compartments, and let A be the compartmental matrix. Write the input-output 
equation (3) as:

y
(n)
1 + cn−1y

(n−1)
1 + · · ·+ c1y1 + c0y1 = u

(n−1)
1 + dn−2u

(n−2)
1 + · · ·+ d1u1 + d0u1 . (4)

Then the coefficients of this input-output equation are as follows (where πF is as in (2)):

ci =
F∈Fn−i(G)

πF for i = 0, 1, . . . , n− 1 , and

di =
F∈Fn−i−1(G1)

πF for i = 0, 1, . . . , n− 2 .

One of the aims of this work is to generalize Proposition 2.10 to allow for the in-
put and output to be in distinct compartments and for more inputs and outputs (see 
Theorem 3.1).
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Next, we introduce the coefficient maps arising from input-output equations. We begin 
by regarding the input-output equations (3) as polynomials in the yj ’s and ui’s and their 
derivatives. Thus, each coefficient of the equation is a polynomial in the parameters (a m

for edges m → , and a0p for leaks p ∈ Leak).

Definition 2.11. Let M = (G, In, Out, Leak) be a linear compartmental model.

(i) The coefficient map c : R|EG|+|Leak| → Rm sends the vector of parameters to the 
vector of all non-constant coefficients of all input-output equations of the form (3). 
Here, m denotes the number of such coefficients.

(ii) M has expected dimension if the dimension of the image of its coefficient map 
c : R|EG|+|Leak| → Rm equals the minimum of |EG| + |Leak| and m.

Remark 2.12. Having expected dimension is useful for proving a model has an identifiable 
reparametrization [31]. For example, a strongly connected model with at most 2|VG| − 2
edges, input and output in the same compartment, and leaks from every compartment has 
an identifiable scaling reparametrization if and only if the model has expected dimension, 
which in this case is the number of independent cycles of the graph [31, Theorem 1.2]. 
The case of input and output in separate compartments was analyzed in [5].

2.4. Identifiability

A linear compartmental model is structurally identifiable if all of its parameters can 
be recovered from data [3]. Here we focus on generic local identifiability, which allows 
for recovering parameters up to a finite set, except for those in a measure-zero set of 
parameter space. This concept, in the case of strongly connected models (and others 
as well), is captured by the Definition 2.13 (below) via input-output equations (this 
was proven by Ovchinnikov, Pogudin, and Thompson [34, Corollary 2]). This connection 
between identifiability and input-output equations underlies our interest in formulas for 
the coefficient map (as in Proposition 2.10).

Definition 2.13. Consider a strongly connected linear compartmental model M =
(G, In, Out, Leak) with at least one input. Assume that |EG| + |Leak| ≥ 1. Let 
c : R|EG|+|Leak| → Rm be the coefficient map arising from the input-output equations (3). 
Then M is:

(i) generically locally identifiable if, outside a set of measure zero, every point in 
R|EG|+|Leak| has an open neighborhood U for which the restriction c|U : U → Rm

is one-to-one; and
(ii) unidentifiable if c is generically infinite-to-one.
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We also adopt the convention that models M = (G, In, Out, Leak) without parameters, 
that is, with |EG| + |Leak| = 0, are generically locally identifiable.

Example 2.14 (Example 2.9, continued). For the model in Fig. 1, the input-output equa-
tion was shown in Example 2.9. Following Definition 2.11, the resulting coefficient map 
c : R7 → R5 is:

(a02, a12, a13, a21, a23, a31, a32) →

(a02 +a12 +a13 +a21 +a23 +a31 +a32, . . . , a02a13 +a12a13 +a02a23 +a12a23 +a13a32) .

There are more parameters than coefficients, so c is generically infinite-to-one. Hence, 
by Definition 2.13, M is unidentifiable.

Next, we recall the following useful criteria for identifiability [32] and expected dimen-
sion [5].

Proposition 2.15 ( [5,32]). A linear compartmental model M = (G, In, Out, Leak) is 
generically locally identifiable (respectively, has expected dimension) if and only if the 
rank of the Jacobian matrix of its coefficient map, c : R|EG|+|Leak| → Rm, when evaluated 
at a generic point, equals |EG| +|Leak| (respectively, equals the minimum of |EG| +|Leak|
and m).

Due to Proposition 2.15, we will often be interested in the ranks of Jacobian matrices, 
when evaluated at a generic point. For brevity, we will typically omit the phrase “when 
evaluated at a generic point” and simply refer to the rank of the matrix. We will also 
use “identifiable” to mean “generically locally identifiable”.

Remark 2.16. There are two important places where “generic” has a role: (1) the rank 
of the Jacobian matrix is evaluated at a generic point and (2) we consider models with a 
generic choice of initial conditions. There might be points in the parameter space where 
the rank of the Jacobian matrix drops and identifiability no longer holds [21]. Likewise, 
there might be a choice of initial conditions where the corresponding solutions of the 
ODE model are not unique functions of the parameters [35].

Next, we recall from [31,32] a class of identifiable models M = (G, In, Out, Leak) for 
which the graph G is inductively strongly connected, as follows:

Definition 2.17. A graph G is inductively strongly connected with respect to vertex 1 if 
there is a reordering of the vertices that preserves vertex 1, such that, for i = 1, 2, . . . , n, 
the subgraph of G induced by the vertices {1, 2, . . . , i} is strongly connected.

The following result combines results from [19,32].
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Proposition 2.18 (Inductively strongly connected models). Let M = (G, In, Out, Leak)
be a linear compartmental model such that In = Out = {1}, |Leak| ≤ 1, and G is 
inductively strongly connected with respect to vertex 1. Then M is generically locally 
identifiable.

Proof. The model M with |Leak| = 1 is generically locally identifiable due to [32, 
Theorem 1] and [32, Remark 1], and the model M with |Leak| = 0 is still generically 
locally identifiable by [19, Proposition 4.6] (or by definition if G has no edges).

Finally, we recall two additional results on adding or removing leaks [19, Proposi-
tion 4.6 and Theorem 4.3], which we summarize in the following proposition.

Proposition 2.19 (Add or remove leak, [19]). Let M be a linear compartmental model 
that is strongly connected and has at least one input. Assume that one of the following 
holds:

(1) M has no leaks, and M is a model obtained from M by adding one leak; or
(2) M has an input, an output, and a leak in a single compartment (and no other inputs, 

outputs, or leaks), and M is obtained from M by removing the leak.

If M is generically locally identifiable, then so is M.

3. Results on coefficients of input-output equations

The main result of this section is a combinatorial formula for the coefficients of input-
output equations (Theorem 3.1). This result generalizes Proposition 2.10, which applies 
only to the case with input and output in the same compartment.

3.1. Main results

This subsection features our formula for the coefficients of input-output equations 
(Theorem 3.1), which we use to evaluate the number of non-constant coefficients of the 
input-output equation for strongly connected models with one input and one output 
(Corollary 3.4). As a consequence, we obtain a criterion for unidentifiability which arises 
when a model has more parameters than coefficients (Corollary 3.5).

Theorem 3.1 (Coefficients of input-output equations). Consider a linear compartmental 
model M = (G, In, Out, Leak) with at least one input. Let n denote the number of 
compartments. Write the input-output equation (3) (for some i ∈ Out) as follows:

y
(n)
i + cn−1y

(n−1)
i + · · · + c1yi + c0yi

=
j∈In

(−1)i+j dj,n−1u
(n−1)
j + · · · + dj1uj + dj0uj . (5)
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Then the coefficients of the input-output equation (5) are as follows:

ck =
F∈Fn−k(G)

πF for k = 0, 1, . . . , n− 1 , and

dj,k =
F∈Fji

n−k−1(G∗
i )

πF for j ∈ In and k = 0, 1, . . . , n− 1 .

The proof of Theorem 3.1 is given in Section 3.2.
From Theorem 3.1, we can determine the non-constant coefficients in the input-output 

equations. We state this result in the case of strongly connected models with one input 
and one output, as follows.

Corollary 3.2 (Non-constant coefficients). Consider a strongly connected linear compart-
mental model M = (G, In, Out, Leak) with In = {j} and Out = {i}. Let n be the 
number of compartments. Write the input-output equation (3) as follows:

y
(n)
i + cn−1y

(n−1)
i + · · · + c1yi + c0yi = (−1)i+j dn−1u

(n−1)
j + · · · + d1uj + d0uj .

(6)

The coefficients on the left-hand side of (6) that are non-constant are as follows:

c0, c1, . . . , cn−1 if Leak = ∅
c1, c2, . . . , cn−1 if Leak = ∅ .

The coefficients on the right-hand side of (6) that are non-constant are as follows:

d0, d1, . . . , dn−2 if In = Out

d0, d1, . . . , dn−L−1 if In = Out ,

where L is the length of the shortest (directed) path from the input j to the output i.

Proof. We first analyze the left-hand side of (6). By equation (3), the coefficient c0
equals, up to sign, detA. This determinant is 0 if Leak = ∅ (as A in this case is the 
negative Laplacian of a strongly connected graph). If, on the other hand, Leak = ∅, then 
detA is a nonzero polynomial (by [32, Proposition 1]) of degree n in the ak ’s.

Thus, it suffices to show that c1, c2, . . . , cn−1 are nonzero (they are non-constant, as 
their degrees are n − 1, n − 2, . . . , 1). As G is strongly connected, there exists a spanning 
tree T of G that is directed toward compartment i (which necessarily has (n − 1) edges 
and no vertex with more than one outgoing edge). Let T be the corresponding subtree 
(with the same edges) of G. Then, πT is a summand of c1 by Theorem 3.1. Similarly, 
a summand of c2 (respectively, c3, c4, . . . , cn−1) is obtained by removing 1 edge (respec-
tively, 2, 3, . . . , n − 2 edges) from T . This completes the analysis of the left-hand side.
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For the right-hand side of (6), we consider two cases. Consider first the case 
when In = Out (i.e., i = j). By Theorem 3.1, the summands of (respectively) 
dn−1, dn−2, . . . , d0 correspond to the spanning incoming forests of G∗

i that have (respec-
tively) 0, 1, . . . , n − 1 edges. There is a unique such forest with no edges, so dn−1 = 1. 
Next, by construction, the tree T from earlier in the proof has no edges outgoing from 
i, so we can consider the corresponding subtree (with the same edges) T ∗

i of G∗
i . So, 

by removing (respectively) 0, 1, . . . , n − 2 edges from T ∗
i , we obtain a forest correspond-

ing to a summand of (respectively) d0, d1, . . . , dn−2. Hence, d0, d1, . . . , dn−2 are nonzero 
polynomials of degree (respectively) n − 1, n − 2, . . . , 1.

We now consider the remaining case, when In = Out (i.e., i = j). First, we claim that 
dn−1 = dn−2 = · · · = dn−L = 0. Indeed, by Theorem 3.1 and Lemma 2.6, these dk’s are 
sums over certain subgraphs of G, with 0, 1, . . . , L − 1 (respectively) edges, containing a 
path from the input compartment j to output i; but no such subgraphs exist (by defini-
tion of L). On the other hand, spanning incoming forests of G∗

i having L, L +1, . . . , n −1
edges and a directed path from the input j to output i do exist. We construct such forests 
as follows. Start with a spanning incoming forest F of G∗

i with n −1 edges (so the under-
lying undirected graph is a tree) such that F contains a directed path P of length L from 
input to output (it is straightforward to show that such a forest exists, using the fact 
that G is strongly connected). Next, to obtain an appropriate forest with (respectively) 
L, L + 1, . . . , n − 1 edges, remove (respectively) n − L − 1, n − L − 2, . . . , 0 non-P edges 
from F . Thus, as desired, the coefficients dn−L−1, dn−L−2, . . . , d0 are non-constant.

Remark 3.3 (Constant coefficients). From the proof of Corollary 3.2, we know the values 
of the constant coefficients in the input-output equation (6):⎧⎪⎪⎨⎪⎪⎩

c0 = 0 if Leak = ∅
dn−1 = 1 if In = Out

dn−L = dn−L+1 = · · · = dn−1 = 0 if In = Out .

In particular, in the right-hand side of (6), the highest derivative u(d)
j (with nonzero 

coefficient) in that sum is when d = n − 1 − L, where L is the length of the shortest 
(directed) path from the unique input to the unique output.

Corollary 3.2 immediately yields the next result, which answers the question posed 
in [17, §2.2] of how read off the number of coefficients directly from a model. That is, we 
give a formula for the number D where c : R|E|+|Leak| → RD is the coefficient map.

Corollary 3.4 (Number of coefficients). Consider a strongly connected linear compart-
mental model M = (G, In, Out, Leak) with |In| = |Out| = 1. Let n be the number of 
compartments and L the length of the shortest (directed) path in G from the (unique) 
input compartment to the (unique) output. Then the numbers of non-constant coefficients 
on the left-hand and right-hand sides of (6) are as follows:
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# on LHS =
n if Leak = ∅
n− 1 if Leak = ∅

and # on RHS =
n− 1 if In = Out

n− L if In = Out.

In the next section, we use Corollary 3.4 to prove that identifiability is preserved when 
a linear compartmental model is enlarged in certain ways (see Theorems 4.3 and 4.4). 
In [8], Corollary 3.4 is used to partially resolve some conjectures on identifiability.

Finally, we obtain an easy-to-check condition that guarantees that a model is uniden-
tifiable due to having more parameters than coefficients.

Corollary 3.5 (Criterion for unidentifiability). Consider a strongly connected linear com-
partmental model M = (G, In, Out, Leak), where G = (V, E). Assume |In| = |Out| = 1. 
Let n be the number of compartments, and let L be the length of the shortest (directed) 
path in G from the (unique) input compartment to the (unique) output. If one of the 
following conditions holds:

(1) Leak = ∅, In = Out, and |E| + |Leak| > 2n − 1,
(2) Leak = ∅, In = Out, and |E| + |Leak| > 2n − L,
(3) Leak = ∅, In = Out, and |E| > 2n − 2, or
(4) Leak = ∅, In = Out, and |E| > 2n − L − 1,

then M is unidentifiable.

Proof. First consider the case of no parameters (i.e., |E| + |Leak| = 0). Then, |E| = 0 ≤
2n − 2 and (if In = Out) |E| = 0 ≤ 2n − L − 1, so none of the four conditions hold.

Now assume that |E| +|Leak| ≥ 1. Let c : R|E|+|Leak| → RD denote the coefficient map 
arising from the input-output equation (3). Corollary 3.4 implies that |E| + |Leak| > D, 
and so, c is infinite-to-one. Hence, M is unidentifiable.

Remark 3.6. Corollary 3.5 is complementary to a recent result of Bortner and Meshkat [5, 
Theorem 6.1], a special case of which asserts that a strongly connected linear compart-
mental model with |In| = |Out| = 1 and |Leak| > |In ∪Out|, is unidentifiable.

Example 3.7 (Example 2.14, continued). The model in Fig. 1 has n = 3 compartments, 
Leak = ∅, In = Out = {1}, and |E| + |Leak| = 6 + 1=7 > 5 = 2n − 1. So, Corollary 3.5
confirms what we saw in Example 2.14: the model is unidentifiable.

Example 3.8 (Bidirectional cycle models). Let n ≥ 3. Let Gn be the bidirectional cycle 
graph with n vertices (so the edges are 1 2 · · · n 1). This graph has 2n edges, 
so Corollary 3.5 implies that every linear compartmental model M = (Gn, In, Out, Leak)
with |In| = |Out| = 1 – such as the model in Fig. 1 – is unidentifiable.

The next example shows that, in general, the converse of Corollary 3.5 does not hold.
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Example 3.9. The model displayed below has n = 3 compartments, In = Out, Leak = ∅, 
and |E| = 4 = 2n − 2. Thus, Corollary 3.5 does not apply. Nevertheless, it is straightfor-
ward to check that the model is unidentifiable.

1

2

3

a21

a13
a32 a23

in

3.2. Proof of Theorem 3.1

To prove Theorem 3.1, we need several preliminary results.

Lemma 3.10. Consider a linear compartmental model M = (G, In, Out, Leak) with com-
partmental matrix A. Let i and j be distinct compartments with i = 1 and j = 1. Then:

det (λI −A){1,i},{1,j} = λ−1 det (λI −A∗
1)i,j .

Proof. Recall that A∗
1 is obtained from A by replacing the first column by a column of 

0’s. Thus, the first column of (λI − A∗
1)i,j is (λ, 0, . . . , 0)T (we are also using 1 = i, j

here), and so Laplace expansion along that column yields the following equality:

det (λI −A∗
1)i,j = λ det (λI −A∗

1){1,i},{1,j} (7)

= λ det (λI −A){1,i},{1,j} ,

and the second equality comes from the fact that, after removing column-1, the matrices 
A and A∗

1 (and thus also λI − A and λI − A∗
1) are equal. The equalities (7) now imply 

the desired equality.

Lemma 3.11. Consider a linear compartmental model M = {G, In, Out, Leak} with In =
Out = {1}. Then, for every positive integer j, the following equality holds:

F∗∈F1,1
j G∗

1

πF∗ =
F∈Fj G1

πF .

Proof. First, for any graph H, note that F i,i
j (H), i.e., the j-edge, spanning, incoming 

forests of H containing a path from i to i, is the same as Fj(H), i.e., the j-edge, spanning, 
incoming forests of H. Hence, to complete the proof, it suffices to find a bijection of the 
following form that preserves productivity (that is, πφ(F∗) = πF∗):
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φ : Fj(G∗
1) → Fj(G1) . (8)

We first explain informally what this map φ will be. Recall that G1 is obtained from 
G∗

1 by “flipping” all edges pointing toward compartment-1 (e.g., 2 → 1 and 3 → 1 in the 
lower-right of Fig. 2) so that they point toward compartment-0 (e.g., 2 → 0 and 3 → 0 in 
the lower-left of Fig. 2), while keeping the same edge labels. Accordingly, we will define 
φ to do the same edge-flipping in spanning forests F ∗ of G∗

1 in order to obtain (as we 
will show) spanning forests of G1.

We define φ precisely, as follows. Let L denote the set of edge labels of G1 (which 
is also the set of edge labels of G∗

1). A spanning subgraph (of any graph) is uniquely 
determined by its set of edges, so every size-j subset of labels S ⊆ L defines (i) a unique 
j-edge subgraph of G1, which we denote by FS, and also (ii) a unique j-edge subgraph 
of G∗

1, which we denote by F ∗
S . By construction, FS and F ∗

S have the same productivity 
(for any S ⊆ L). Hence, we define φ by φ : F ∗

S → FS , and then to show that this map 
gives the desired bijection (8), we need only prove the following two claims:
Claim 1: If F ∗

S ∈ Fj(G∗
1), then each node of FS has at most 1 outgoing edge and there 

is no cycle in the underlying undirected graph of FS.
Claim 2: If FS ∈ Fj(G1), then each node of F ∗

S has at most 1 outgoing edge and there 
is no cycle in the underlying undirected graph of F ∗

S .
The condition on the outgoing edges in Claims 1 and 2 is easy to verify. Indeed, the 

edge-flip procedure preserves the source node of each edge and so the number of outgoing 
edges of each node is the same in FS and F ∗

S (or, in the case of node 1, there are no 
outgoing edges in F ∗

S while the node simply does not exist in FS).
We prove the rest of Claims 1 and 2 by contrapositive, as follows. Assume that FS

is a subgraph of G1 such that (i) each node has at most 1 outgoing edge and (ii) the 
underlying undirected graph contains a cycle. It follows that this cycle must in fact 
form a directed cycle, and so must not involve node-0. Hence, the edges of the cycle are 
not affected by edge-flipping, and so F ∗

S contains the same cycle. Similarly, if F ∗
S is a 

subgraph of G∗
1 with each node having at most 1 outgoing edge and containing a cycle, 

then this must be a directed cycle which therefore avoids nodes 0 and 1, and so is present 
in FS .

Hence, Claims 1 and 2 hold, and so we have the required bijection φ as in (8).

Proposition 3.12. Let M = (G, In, Out, Leak) be a linear compartmental model with n
compartments and compartmental matrix A. Let q and r be compartments. Then, in the 
following equation:

det ((λI −A)r,q) = cn−1λ
n−1 + cn−2λ

n−2 + · · · + c0 , (9)

the coefficients are given by

ck = (−1)q+r

F∈Fr,q
n−k−1(G∗

q)

πF for k = 0, 1, . . . , n− 1. (10)
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Proof. For convenience, we rename out := q. Next, we claim that it suffices to consider 
the case of r = 1. Indeed, if r = 1, then switching (relabeling) compartments 1 and r
(without relabeling edges) yields a model for which the compartmental matrix, which 
we denote by B, is obtained from A by switching rows 1 and r and columns 1 and r, 
and so (λI −A)r,out and (λI −B)1,out have the same determinant. Thus, the r = 1 case 
reduces to the r = 1 case, and so we assume r = 1 for the rest of the proof.

We first analyze the case when out = 1. Then, by Proposition 2.10, the coefficients ck
in (9) (for k = 0, 1, . . . , n − 1) are given by the first equality here:

ck = (−1)1+1

F∈Fn−k−1 G1

πF =
F∈F1,1

n−k−1 G∗
1

πF ,

and the second equality comes from Lemma 3.11. This completes the case of out = 1.
Now suppose that out = 1. We proceed by strong induction on the number of edges 

of G. For the base case, suppose that G has no edges. Then the only edges of G∗
out (if 

any) are leak edges (  → 0 for  ∈ Leak). Thus, there are no spanning incoming forests 
on G∗

out in which out and 1 are in the same connected component (recall that 1 = out). 
The formula in equation (10) therefore yields c0 = c1 = · · · = cn−1 = 0.

Thus, it suffices (for the base case) to show that det(λI − A)1,out = 0. To see this, 
note that the only nonzero entries of A (if any) are leak terms on the diagonal. Therefore 
(λI − A) is also a diagonal matrix. Hence, in the matrix (λI − A)1,out, the column 
corresponding to 1 (which exists because 1 = out) consists of 0’s, and so the determinant 
of (λI −A)1,out is 0. This completes the base case.

Now suppose that the theorem holds for all models N = (H, InN , OutN , LeakN ) with 
|EH | ≤ p −1 (for some p ≥ 1). Consider a model M = (G, In, Out, Leak) with |EG| = p.

We first consider the special case when G has no edges of the form 1 → i, that is, 
outgoing from compartment-1. Essentially the same argument we made in the earlier 
base case applies, as follows. In the compartmental matrix A, the first column consists 
of 0’s, and so det (λI −A)1,out = 0. Also, there are no spanning incoming forests on 
G∗

out in which out and 1 are in the same connected component (recall Lemma 2.6 and 
our assumption that 1 = out). So, equation (10) yields c0 = c1 = · · · = cn−1 = 0. The 
theorem therefore holds in the case when G has no edges outgoing from 1.

Assume now that G has at least one edge of the form 1 → i. Our first step in evaluating 
det (λI −A)1,out is to perform a Laplacian expansion along the first column. In this 
column, the nonzero entries are precisely the −ai,1’s, for those 2 ≤ i ≤ n for which 1 → i

is an edge (because row-1 of the matrix (λI −A) was deleted). Laplace expansion along 
this column therefore yields the first equality here:

det (λI −A)1,out =
i : (1→i)∈EG

(−1)i(−ai1) det (λI −A){1,i},{1,out}

=
i : (1→i)∈EG

(−1)i+1ai1λ
−1 det (λI −A∗

1)i,out , (11)
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and the second equality follows from Lemma 3.10 (and simplifying).
Our next step is to evaluate the determinant that appears in the right-hand side of 

equation (11). Accordingly, we claim that the following equality holds:

det (λI −A∗
1)i,out = (−1)i+out

n−1

j=0

⎛⎜⎝
F∈Fi,out

n−j−1 G∗
out

πF

⎞⎟⎠λj , (12)

where G is the graph obtained from G by removing all edges outgoing from compart-
ment 1.

We will prove the claimed equality (12) by interpreting the matrix A∗
1 as the compart-

mental matrix of a model having fewer edges than M, and so the inductive hypothesis 
will apply. To this end, notice that A∗

1 is the compartmental matrix of the following 
model:

M∗
1 := (G, In, Out, Leak In) .

We consider two subcases, based on whether i = out. The subcase when i = out was 
proven already at the beginning of the proof (applied to the model M∗

1):

det (λI −A∗
1)out,out =

n−1

j=0

⎛⎜⎝
F∈Fout,out

n−j−1 G∗
out

πF

⎞⎟⎠λj .

Now consider the remaining subcase, when i = out. By construction and our assump-
tion that G has an edge of the form 1 → i, the graph G has fewer edges than G. The 
inductive hypothesis therefore holds for M∗

1 and yields precisely the equality (12), and 
so our claim is proven.

Next, we substitute the expression in (12) into the right-hand side of equation (11), 
simplify, rearrange the order of summation, apply Lemma 2.7 (where H = G∗

out, K =
G∗

out, k = 1, and  = out), and then apply the change of variables k = j − 1:

det (λI −A)1,out =
i : (1→i)∈EG

(−1)i+1ai1λ
−1(−1)i+out

n−1

j=0

⎛⎜⎝
F∈Fi,out

n−j−1 G∗
out

πF

⎞⎟⎠λj

= (−1)out+1
n−1

j=0

⎛⎜⎝
i : (1→i)∈EG F∈Fi,out

n−j−1 G∗
out

ai1πF

⎞⎟⎠λj−1

= (−1)out+1
n−1

j=0

⎛⎜⎝
F∗∈F1,out

n−j G∗
out

πF∗

⎞⎟⎠λj−1
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= (−1)out+1
n−2

k=−1

⎛⎜⎝
F∈F1,out

n−k−1 G∗
out

πF

⎞⎟⎠λk .

Comparing the above expression with the desired coefficients in (9) and (10), it suffices 
to show that, when k = −1 or k = n − 1, the following coefficient is 0:

ck =
F∈F1,out

n−k−1 G∗
out

πF .

We first consider k = −1. The graph G∗
out has n + 1 nodes, and both out and 0

(the leak compartment) have no outgoing edges. Therefore, every incoming spanning 
forest of G∗

out has at least two sink nodes and so (by Lemma 2.5) at least two connected 
components. Such a forest therefore has no more than n − 1 edges. We conclude that 
F1,out

n−k−1(G∗
out) = F1,out

n−(−1)−1(G
∗
out) =F1,out

n (G∗
out) = ∅, and so c−1 = 0, as desired.

Similarly, for k = n −1, we have F1,out
n−k−1(G∗

out) = F1,out
0 (G∗

out) = ∅, because the graph 
with no edges lacks a path from 1 to out (recall that we have assumed 1 = out). So, 
cn−1 = 0. This completes the case of 1 = out, and thus our proof is complete.

We can now prove Theorem 3.1.

Proof of Theorem 3.1. The left-hand side of the input-output equation (3) is det(∂I −
A)yi, and the formula for the coefficients of this expression was previously shown in 
Proposition 2.10. As for the right-hand side, the formula for these coefficients follows 
easily from Propositions 2.8 and 3.12.

4. Results on adding an edge

In this section, we introduce a new operation on linear compartmental models: we add 
a bidirected edge from an existing compartment to a new compartment (Definition 4.2). 
For instance, in Fig. 3, the bidirected edge 1 4 is added to M to obtain the models 
M and M (in M , the output is also moved). We prove that identifiability is preserved 
when the original model has input and output in a single compartment, the new edge 
involves that compartment, and the input or output is moved to the new compartment 
(Theorem 4.4). Similarly, we prove that identifiability is preserved when the input and 
output, which may be in distinct compartments, are not moved (Theorem 4.3).

Remark 4.1. Two related prior results also investigated the effect of adding a bidirected 
edge. These results pertain to models that have leaks in every compartment and have 
expected dimension [5, Proposition 3.30] [31, Proposition 5.5].
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Fig. 3. Depicted are three models, M = (G, {1}, {1}, ∅), M = {G , {1}, {4}, ∅}, and M =
{G , {1}, {1}, ∅}, where G is the graph obtained from G by adding a leaf edge at compartment 1 (to 
a new compartment 4). See Example 4.10.

Definition 4.2. Let G = (VG, EG) be a graph with vertex set VG = {1, 2, . . . , n − 1} (for 
some n ≥ 2). Let i ∈ VG. The graph obtained from G by adding a leaf edge at i is the graph 
H = (VH , EH) with vertex set VH := {1, 2, . . . , n} and edge set EH := EG ∪ {i ↔ n}.

Theorem 4.3 (Add leaf edge). Assume n ≥ 3. Consider a strongly connected linear 
compartmental model with n − 1 compartments, one input, one output, and no leaks, 
M = (G, {in}, {out}, ∅). Let H be the graph obtained from G by adding a leaf edge at com-
partment n − 1, and consider the linear compartmental model M = (H, {in}, {out}, ∅). 
If M has expected dimension (or, respectively, is generically locally identifiable), then 
M also has expected dimension (respectively, is generically locally identifiable).

We prove Theorem 4.3 in Section 4.1.

Theorem 4.4 (Add leaf edge and move input or output). Assume n ≥ 3. Let M =
(G, In, Out, Leak) be a strongly connected linear compartmental model with n − 1 com-
partments such that In = Out = {1} and Leak = ∅. Let H be the graph obtained 
from G by adding a leaf edge at compartment 1. Consider a linear compartmental model 
M = (H, In , Out , Leak ) with Leak = ∅ and either (In , Out ) = ({1}, {n}) or 
(In , Out ) = ({n}, {1}). Then M has expected dimension (or, respectively, is generically 



22 C. Bortner et al. / Advances in Applied Mathematics 146 (2023) 102490

locally identifiable) if and only if M has expected dimension (respectively, is generically 
locally identifiable).

We prove Theorem 4.4 in Section 4.4. An immediate corollary, which comes from 
applying Proposition 2.19(1), pertains to models with one leak, as follows.

Corollary 4.5. Assume n ≥ 3. Let M = (G, In, Out, Leak) be a strongly connected linear 
compartmental model with n −1 compartments such that In = Out = {1} and Leak = ∅. 
Let H be the graph obtained from G by adding a leaf edge at compartment 1. Consider 
a linear compartmental model M = (H, In , Out , Leak ) with |Leak | = 1 and either 
(In , Out ) = ({1}, {n}) or (In , Out ) = ({n}, {1}). If M is identifiable, then M is also 
identifiable.

Next, we reveal a new class of identifiable models, namely, inductively strongly con-
nected models in which the input and output compartments form a leaf edge, as follows.

Corollary 4.6 (Add a leaf and move input/output in inductively strongly connected mod-
els). Assume n ≥ 3. Let M = (G, In, Out, Leak) be a linear compartmental model with 
n − 1 compartments such that In = Out = {1}, Leak = ∅, and G is inductively strongly 
connected with respect to vertex 1. Let H be the graph obtained from G by adding a leaf 
edge at compartment 1. Consider a model M = (H, In , Out , Leak ) with |Leak | ≤ 1
and either (In , Out ) = ({1}, {n}) or (In , Out ) = ({n}, {1}). Then M is generically 
locally identifiable.

Proof. This result follows from Proposition 2.18, Theorem 4.4, and Corollary 4.5.

Remark 4.7. The assumption of n ≥ 3 in Theorems 4.3 and 4.4 and other results in this 
section is simply to avoid cases of models we are not interested in, namely, those with 
no compartments or no parameters.

Remark 4.8. The effect of moving the input or output without adding new compartments 
or edges was considered for cycle models in [17].

Remark 4.9. Baaijens and Draisma considered operations that preserve expected di-
mension in models with input and output in the same compartment and leaks in all 
compartments [2].

Example 4.10. Consider the models shown in Fig. 3. The model M is identifiable by 
Proposition 2.18. So, by Theorems 4.3 and 4.4, M and M are also identifiable. Another 
way to see that M is identifiable, is by applying Corollary 4.6 to M.

Example 4.11. Consider the models in Fig. 4. The model M is identifiable, by Propo-
sition 2.18. Thus, the model obtained from M by removing the leak, which we denote 
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1 2 3
a21

a12

a32

a23
a01

in

M

1 2 34
a21

a12

a32

a23

a14

a41
a01

in

M

Fig. 4. Two (catenary) models, M = (G, {1}, {1}, {1}) and M = (G , {4}, {1}, {1}), where the graph G is 
obtained from G by adding a leaf edge at compartment 1.

by M0, is also identifiable, by Proposition 2.19(2). Applying Corollary 4.5 to the model 
M0, we obtain that M is also identifiable.

Theorems 4.3 and 4.4 are both used in the next section to classify identifiable models 
in which the underlying graph is a bidirected tree. In particular, for catenary models 
(that is, when the graph is a path), we saw in Example 4.11 that a corollary of The-
orem 4.4 applies to some models with an input or output in a leaf compartment (e.g., 
compartments 1 and 3 of the model M in Fig. 4), but we will need Theorem 4.3 to 
handle models in which both the input and output are in non-leaf compartments.

The rest of this section is dedicated to proving Theorems 4.3 and 4.4. We first prove 
Theorem 4.3 (Section 4.1). Next, we analyze moving the output (Section 4.2) and the 
input (Section 4.3), and then combine those results to prove Theorem 4.4 (Section 4.4).

4.1. Proof of Theorem 4.3

To prove Theorem 4.3, we need a result from [31]. To state that result, we must first 
recall how a weight vector ω defines initial forms of polynomials. Consider a polynomial 
g ∈ K[x1, x2, . . . , xr], where K is a field. Let ω ∈ Qr. Then ω defines a weight of a 
monomial xα (where α ∈ Zr

≥0), namely, ω, α . Now the initial-form polynomial (with 
respect to ω) of g, denoted by gω, is the sum of all terms of g for which the monomial 
has highest weight. We can now state the following lemma, which is [31, Corollary 5.9].

Lemma 4.12. Let K be a field. Consider a map φ : Kr → Ks given by polynomials 
f1, f2, . . . , fs ∈ K[x1, x2, . . . , xr]. Let ω ∈ Qr. Define φω : Kr → Ks to be the map given 
by the initial-form polynomials (f1)ω, (f2)ω, . . . , (fs)ω. Then

dim(image φω) ≤ dim(image φ) .

The following proof closely follows that of [31, Theorem 5.7].

Proof of Theorem 4.3. If in = out, we define D := 1. If in = out, we define D to be the 
length of the shortest (directed) path in G from in to out. By construction, if in = out, 
then D is also the length of the shortest (directed) path from in to out in H.

Let φM and φM denote, respectively, the coefficient maps for M and M . By Corol-
lary 3.4, the number of coefficients of φM is (n −2) +(n −1 −D) = 2n −3 −D. Similarly, 
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the number of coefficients of φM is 2n − 1 − D. Also, by construction, M has |EG|
parameters; and M has |EG| + 2 parameters. Therefore, the assumption that M has 
expected dimension is the following equality:

dim(image φM) = min{|EG|, 2n− 3 −D} , (13)

in which case our goal is to prove the following equality:

dim(image φM ) = min{|EG| + 2, 2n− 1 −D} . (14)

Similarly, the assumption that M is identifiable is the following equality:

dim(image φM) = |EG| , (15)

in which case our goal is to prove the following equality:

dim(image φM ) = |EG| + 2 . (16)

The inequalities “≤” in (14) and (16) always hold, so we need only prove “≥”. Moreover, 
in light of the equalities (13) and (15), it suffices (for either case) to prove that

dim(image φM ) ≥ 2 + dim(image φM) . (17)

With an eye toward applying Lemma 4.12, define the weight vector ω : {aij | (j, i) ∈
EH} → R as follows:

ω(aij) :=
0 if (i, j) ∈ {(n− 1, n), (n, n− 1)}
1 otherwise.

We will analyze the pullback maps φ∗
M : Q[c1, c2, . . . , cn−2, d0, d1, . . . , dn−2−D] → Q[aij |

(j, i) ∈ EG] and φ∗
M : Q[c1, c2, . . . , cn−1, d0, d1, . . . , dn−1−D] → Q[aij | (j, i) ∈ EH ]. 

Recall that φ∗
M (respectively, φ∗

M ) sends each ck or dk to the corresponding polynomial 
in the aij ’s for the model M (respectively, M ), as given in Theorem 3.1.

By Theorem 3.1, all the polynomials φ∗
M(ci), φ∗

M(di), φ∗
M (ci), and φ∗

M (di) are ho-
mogeneous in the parameters aj . Hence, the corresponding initial-form polynomials 
φ∗
M,ω(ci), φ∗

M,ω(di), φ∗
M ,ω(ci), and φ∗

M ,ω(di) are obtained by removing all terms in-
volving an−1,n or an,n−1 – as long as there exist other terms in the polynomial. These 
other terms, by Theorem 3.1, correspond to spanning incoming forests of H that do not 
involve the edges (n − 1) n (there are no leaks, so we need not leak-augment the 
graph), or, equivalently, spanning incoming forests of G. In particular, there exist such 
forests of G with 1, 2, . . . , n − 2 edges, and so we obtain:

φ∗
M ,ω(ci) = φ∗

M(ci−1) for i = 2, 3, . . . , n− 1 . (18)
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(The shift in the index, from i to i −1, comes from the fact that H has n compartments, 
while G has n − 1.) Similarly, there are spanning incoming forests of G with in and out
in the same component and D, D + 1, . . . , n − 2 edges. Thus, we have:

φ∗
M ,ω(di) = φ∗

M(di−1) for i = 1, 2, . . . , n− 1 −D . (19)

There are two more coefficients of M to consider: c1 and d0. By Theorem 3.1, c1 and 
d0 (or, more precisely, φ∗

M ,ω(c1) and φ∗
M ,ω(d0)) are both sums of productivities of 

(n − 1)-edge spanning incoming forests on H (which has n vertices). Hence, each such 
forest must use exactly one edge from the edges (n − 1) n. We conclude that each 
term in φ∗

M ,ω(c1) (respectively, in φ∗
M ,ω(d0)) contains exactly one of an−1,n or an,n−1. 

This implies that the respective initial-form polynomials agree with the two original 
polynomials:

c1 := φ∗
M ,ω(c1) = φ∗

M (c1) and d0 := φ∗
M ,ω(d0) = φ∗

M (d0) . (20)

We can say more about the polynomials c1 and d0 in (20). First, d0 does not involve 
the parameter an,n−1, as d0 is a sum over (n − 1)-edge spanning incoming forests of H
in which out is the only sink (by Theorem 3.1 and Lemma 2.5) and such forests do not 
contain the edge (n − 1) → n (as this would make compartment-n a sink). Moreover, it 
is straightforward to check that these forests are exactly those obtained by adding the 
edge n → (n − 1) to an (n − 2)-edge spanning incoming forest of G in which out is the 
only sink.

Similarly, the (n − 1)-edge spanning incoming forests of H (with no condition on the 
location of the sink) that involve the edge n → (n − 1) are obtained by attaching that 
edge to an (n −2)-edge spanning incoming forest of G. We summarize the above analysis 
as follows:

c1 = an−1,nφ
∗
M(c1) + (terms involving an,n−1 but not an−1,n) , (21)

d0 = an−1,nφ
∗
M(d0) .

Let JM and JM ,ω (respectively) denote the Jacobian matrices of φM and φM ,ω, 
where the last two rows of JM ,ω correspond to c1 and d0, and the last two columns 
correspond to the parameters an−1,n and an,n−1. We use equations (18)–(21) to relate 
the two Jacobian matrices as follows:

JM ,ω =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 0

JM
...

...
0 0

∗ . . . ∗ ∂c1
∂an−1,n

∂c1
∂an,n−1

∗ . . . ∗ ∂d0
∂an−1,n

∂d0
∂an,n−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎝

0 0

JM
...

...
0 0

∗ . . . ∗ ∗ φ∗
M(c1)

∗ . . . ∗ φ∗
M(d0) 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

(22)
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Both φ∗
M(c1) and φ∗

M(d0) are nonzero (by Corollary 3.2), so equation (22) implies that 
rank(JM ,ω) = 2 + rank(JM). Hence, we obtain the equality below (and the inequality 
comes from Lemma 4.12):

dim(image φM ) ≥ dim(image φM ,ω) = 2 + dim(image φM) .

Thus, our desired inequality (17) holds, and this completes the proof.

Remark 4.13 (Add leak). Let M be a strongly connected model with one input, one 
output, and no leaks. Theorem 4.3 shows that expected dimension is preserved when a 
leaf edge is added to M. The same is true when, instead of a leaf edge, a leak is added 
to M. This result can be proven in an analogous way to the proof of Theorem 4.3, using 
a weight vector ω that is 0 on the new leak parameter, and 1 on all other parameters. 
Another approach to proving this result is given in the proof of [19, Theorem 4.3].

Remark 4.14. Theorems 4.3 and 4.4 are stated for models with a single input and single 
output. Nevertheless, these results can be generalized to models with multiple inputs or 
outputs, if the corresponding models with a single input and single output are identifi-
able. This is because adding inputs or outputs preserves identifiability [19, Proposition 
4.1].

4.2. Moving the output

In this subsection, we examine what happens to a model when a leaf edge is added 
and the output is moved to the new compartment (see Proposition 4.16). The key lemma 
we need is as follows.

Lemma 4.15. Assume n ≥ 3. Let M = (G, In, Out, Leak) be a linear compartmental 
model with n − 1 compartments such that In = Out = {1} and Leak = ∅. Let H
be the graph obtained from G by adding a leaf edge at compartment 1, and let M =
(H, In , Out , Leak ) be a linear compartmental model with Leak = ∅. Let A and A∗

(respectively) denote the compartmental matrices of M and M . Then:

(1) det(λI −A∗) = λ det(λI −A) + a1n det(λI −A) + an1λ det (λI −A)1,1 ,
(2) det (λI −A∗)1,n = (−1)n−1an1 det (λI −A)1,1 , and
(3) det (λI −A∗)n,1 = (−1)n−1a1n det (λI −A)1,1 .

Proof. Letting B denote the matrix obtained by removing the first row from λI−A, we 
have the following:

λI −A =

⎛⎜⎝λ +
(1→j)∈EG

aj1 −a12 −a13 · · · −a1(n−1)

B

⎞⎟⎠ , and
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λI −A∗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ + an1 +
(1→j)∈EG

aj1 −a12 −a13 · · · −a1(n−1) −a1n

0

B
...
0

−an1 0 0 · · · 0 λ + a1n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(23)

where, for non-edges k → 1, we define a1k := 0. Next, letting B∅,1 denote the matrix 
obtained by removing the first column of B, we have B∅,1 = (λI − A)1,1. We will use 
this equality several times in the rest of the proof.

Applying a Laplace expansion along the last row of the matrix (λI−A∗)1,n (see (23)), 
we obtain Lemma 4.15(2):

det (λI −A∗)1,n = (−1)n−2(−an1) det(B∅,1) = (−1)n−1an1 det (λI −A)1,1 .

Similarly, a Laplacian expansion along the last column yields Lemma 4.15(3):

det (λI −A∗)n,1 = (−1)n−2(−a1n) det(B∅,1) = (−1)n−1a1n det (λI −A)1,1 .

Finally, we prove Lemma 4.15(1) by expanding along the last column in (23) and 
using the linearity of the determinant:

det(λI −A∗) = (−1)n−1(−a1n)(−1)n−2(−an1) det(B∅,1)

+ (λ + a1n)

⎛⎜⎝det(λI −A) + det

⎛⎜⎝ an1 0 · · · 0

B

⎞⎟⎠
⎞⎟⎠

= − a1nan1 det(B∅,1) + (λ + a1n)(det(λI −A) + an1 det(B∅,1))

= λ det(λI −A) + a1n det(λI −A) + an1λ det (λI −A)1,1 .

Proposition 4.16 (Move output). Assume n ≥ 3. Let M = (G, In, Out, Leak) be a 
strongly connected linear compartmental model with n − 1 compartments such that 
In = Out = {1} and Leak = ∅. Let H be the graph obtained from G by adding a leaf 
edge at compartment 1, and let M = (H, In , Out , Leak ) be the linear compartmental 
model with In = {1}, Out = {n}, and Leak = ∅. Write the input-output equation (3)
for M as:

y
(n−1)
1 + cn−2y

(n−2)
1 + · · · + c1y1 + c0y1 = u

(n−2)
1 + dn−3u

(n−3)
1 + · · · + d1u1 + d0u1 ,

and define cn−1 := 1 and dn−2 := 1. Similarly, write the input-output equation for M∗

as:
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y
(n)
1 + c∗n−1y

(n−1)
1 + · · · + c∗1y1 + c∗0y1 = d∗n−2u

(n−2)
1 + · · · + d∗1u1 + d∗0u1 .

Then:

(1) the coefficients of M and M∗ are related as follows:

(i) d∗i = (−1)n−1an1di for i ∈ {0, 1, . . . , n− 2},
(ii) c∗i = ci−1 + a1nci + an1di−1 for i ∈ {1, 2, . . . , n− 1},
(iii) c∗0 = c0 = 0 .

(2) letting cM and cM∗ (respectively) denote the coefficient maps of M and M∗, the 
ranks of the resulting Jacobian matrices are related by:

rank (Jac(cM∗)) = rank (Jac(cM)) + 2 .

Proof. The input-output equations (3) for M and M∗ are, respectively, as follows:

det(λI −A)y1 = det (λI −A)1,1 u1 , and det(λI −A∗)yn = det (λI −A∗)1,n u1 .

Now Proposition 4.16(1)(i–ii) follows easily from Lemma 4.15(1–2). Also, Proposi-
tion 4.16(1)(iii) comes from the fact that the models M and M∗ have no leaks (cf. [17, 
Remark 2.10]).

Now we prove part (2) of the proposition. Using part (1) of the proposition, plus 
cn−1 := 1 and dn−2 := 1, we obtain the following the Jacobian matrix of the coefficient 
map of M∗, which we denote by J∗:

J∗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

an1 a1n Parameters akj for all (j, k) ∈ EG

d∗n−2 (−1)n−1 0 0 · · · 0
c∗1 d0 c1 a1n

∂c1
∂akj

+ an1
∂d0
∂akj (j,k)∈EG

c∗2 d1 c2
∂c1
∂akj

+ a1n
∂c2
∂akj

+ an1
∂d1
∂akj (j,k)∈EG

...
...

...
...

c∗n−2 dn−3 cn−2
∂cn−3
∂akj

+ a1n
∂cn−2
∂akj

+ an1
∂dn−3
∂akj (j,k)∈EG

c∗n−1 1 1 ∂cn−2
∂akj (j,k)∈EG

d∗0 (−1)n−1d0 0 (−1)n−1an1
∂d0
∂akj (j,k)∈EG

...
...

...
...

d∗n−3 (−1)n−1dn−3 0 (−1)n−1an1
∂dn−3
∂akj (j,k)∈EG

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Next, we perform the following row operations to J∗, where Rk denotes the row of J∗

corresponding to the coefficient k:
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• for all i ∈ {0, 2, . . . n − 2}, replace row Rd∗
i

by (−1)n−1Rd∗
i
,

• for all i ∈ {1, 2, . . . n − 2}, replace row Rc∗i by (Rc∗i −Rd∗
i−1

),
• iteratively from i = n − 2 down to i = 1, replace row Rc∗i by (Rc∗i − a1nRc∗i+1

),
• for all i ∈ {0, 1, . . . n − 3}, replace row Rd∗

i
by 1

an1
Rd∗

i
.

The resulting matrix, which has the same rank as J∗, has the following form:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

an1 a1n
d∗n−2 1 0 0 · · · 0

c∗1 0 χ 0 · · · 0
c∗2 0 ∗ ∂c1

∂akj (j,k)∈EG

...
...

...
...

c∗n−1 0 ∗ ∂cn−2
∂akj (j,k)∈EG

d∗0
1

an1
d0 0 ∂d0

∂akj (j,k)∈EG

...
...

...
...

d∗n−3
1

an1
dn−3 0 ∂dn−3

∂akj (j,k)∈EG

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

an1 a1n
d∗n−2 1 0 0 · · · 0

c∗1 0 χ 0 · · · 0
c∗2 0 ∗
...

...
...

c∗n−1 0 ∗ J

d∗0
1

an1
d0 0

...
...

...
d∗n−3

1
an1

dn−3 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (24)

where

χ = c1 − a1n (c2 − a1n (· · · − a1n (cn−2 − a1n))) = (−1)n(a1n)n−2 +
n−2

i=1
(−a1n)i−1ci .

By construction, each ci only involves parameters akj for edges (j, k) in G, and so:

χ|akj=0 for all (j,k)∈EG
= (−1)n(a1n)n−2.

We conclude that χ is a nonzero polynomial.
The fact that χ is nonzero, together with the lower block diagonal structure of the 

matrix on the right-hand side of (24), imply that rank(J∗) = 2 +rank(J), as desired.

4.3. Moving the input

In the previous subsection, we analyzed moving the output when a leaf edge is added; 
now we consider moving the input. The following result is the analogous result to Propo-
sition 4.16, and their proofs are very similar.

Proposition 4.17 (Move input). Assume n ≥ 3. Let M = (G, In, Out, Leak) be a strongly 
connected linear compartmental model with n −1 compartments such that In = Out = {1}
and Leak = ∅. Let H be the graph obtained from G by adding a leaf edge at compart-
ment 1, and let M = (H, In , Out , Leak ) be the linear compartmental model with 
In = {1}, Out = {n}, and Leak = ∅. Write the input-output equation (3) for M as:
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y
(n−1)
1 + cn−2y

(n−2)
1 + · · · + c1y1 + c0y1 = u

(n−2)
1 + dn−3u

(n−3)
1 + · · · + d1u1 + d0u1 ,

and define cn−1 := 1 and dn−2 := 1. Similarly, write the input-output equation for M∗

as:

y
(n)
1 + c∗n−1y

(n−1)
1 + · · · + c∗1y1 + c∗0y1 = d∗n−2u

(n−2)
1 + · · · + d∗1u1 + d∗0u1 .

Then:

(1) the coefficients of M and M∗ are related as follows:

(i) d∗i = (−1)n−1a1ndi for i ∈ {0, . . . , n− 2}
(ii) c∗i = ci−1 + a1nci + an1di−1 for i ∈ {1, . . . , n− 1}
(iii) c∗0 = c0 = 0 .

(2) letting cM and cM∗ (respectively) denote the coefficient maps of M and M∗, the 
ranks of the resulting Jacobian matrices are related by:

rank (Jac(cM∗)) = 2 + rank (Jac(cM)) .

Proof. The input-output equations (3) for M and M∗ are, respectively, as follows:

det(λI −A)y1 = det (λI −A)1,1 u1 , and det(λI −A∗)y1 = det (λI −A∗)n,1 un .

Now Proposition 4.17(1) follows easily from Lemma 4.15(1) and Lemma 4.15(3) (and, 
as in the proof of Proposition 4.16, the fact that the models M and M∗ have no leaks).

We use part (1) of the proposition, plus cn−1 := 1 and dn−2 := 1, to obtain the 
Jacobian matrix of the coefficient map of M∗, denoted by J∗:

J∗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1n an1 Parameters akj for all (j, k) ∈ EG

d∗n−2 (−1)n−1 0 0 · · · 0
c∗1 c1 d0 (−1)n−1a1n

∂c1
∂akj

+ an1
∂d0
∂akj (j,k)∈EG

c∗2 c2 d1
∂c1
∂akj

+ a1n
∂c2
∂akj

+ an1
∂d1
∂akj (j,k)∈EG

...
...

...
...

c∗n−2 cn−2 dn−3
∂cn−3
∂akj

+ a1n
∂cn−2
∂akj

+ an1
∂dn−3
∂akj (j,k)∈EG

c∗n−1 1 1 ∂cn−2
∂akj (j,k)∈EG

d∗0 (−1)n−1d0 0 (−1)n−1a1n
∂d0
∂akj (j,k)∈EG

...
...

...
...

d∗n−3 (−1)n−1dn−3 0 (−1)n−1a1n
∂dn−3
∂akj (j,k)∈EG

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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We perform row operations on J∗, where Rk denotes the row of J∗ corresponding to 
the coefficient k:

• for all i ∈ {0, 2, . . . n − 2}, replace row Rd∗
i

by (−1)n−1Rd∗
i
,

• for all i ∈ {1, 2, . . . n − 2}, replace row Rc∗i by (Rc∗i − (an1/a1n)Rd∗
i−1

),
• iteratively from i = n − 2 down to i = 1, replace row Rc∗i by (Rc∗i − a1nRc∗i+1

),
• for all i ∈ {0, 1, . . . n − 3}, replace row Rd∗

i
by 1

an1
Rd∗

i
.

The resulting matrix, which has the same rank as J∗, has the following form:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1n an1
d∗n−2 1 0 0 · · · 0

c∗1 ∗ x 0 · · · 0
c∗2 ∗ ∗ ∂c1

∂akj (j,k)∈EG

...
...

...
...

c∗n−1 ∗ ∗ ∂cn−2
∂akj (j,k)∈EG

d∗0
1

a1n
d0 0 ∂d0

∂akj (j,k)∈EG

...
...

...
...

d∗n−3
1

a1n
dn−3 0 ∂dn−3

∂akj (j,k)∈EG

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1n an1
d∗n−2 1 0 0 · · · 0

c∗1 ∗ x 0 · · · 0
c∗2 ∗ ∗
...

...
...

c∗n−1 ∗ ∗ J

d∗0
1

a1n
d0 0

...
...

...
d∗n−3

1
a1n

dn−3 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (25)

where

χ = d0 − a1n (d2 − a1n (· · · − a1n (dn−3 − a1n))) = (−1)n(a1n)n−2 +
n−2

i=1
(−a1n)i−1di .

For the same reason as in the proof of Proposition 4.16, χ is a nonzero polynomial. Thus, 
from the lower block diagonal structure of the matrix on the right-hand side of (25), we 
obtain the desired equality: rank(J∗) = 2 + rank(J).

4.4. Proof of Theorem 4.4

We now apply Propositions 4.16 and 4.17 to prove our result on adding a leaf edge 
and moving the input or output.

Proof of Theorem 4.4. For models M and M∗, let J and J∗ denote the Jacobian ma-
trices of the respective coefficient maps. We first examine identifiability. By definition, 
M is identifiable if and only if rank(J) = |EG| (recall that M has no leaks). Similarly, 
M∗ is identifiable if and only if rank(J∗) = |EH |. Now the identifiability result follows 
from Propositions 4.16–4.17 and the fact that (by construction) |EH | = 2 + |EG|.
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As for expected dimension, we first compute the number of non-constant coefficients 
in the coefficient map of M (respectively, M∗), which we denote by NM (respectively, 
NM∗ . These numbers, by a straightforward application of Corollary 3.4 (in particular, 
we use the fact that there is an edge in M∗ from input to output, and so the length of 
the shortest path from input to output is 1), are as follows:

NM = 2n− 4 and NM∗ = 2n− 2 . (26)

Next, by Proposition 2.15, M has expected dimension if and only if rank(J) =
min{|EG|, NM}. Similarly, M∗ has expected dimension if and only if rank(J∗) =
min{|EH |, NM∗}. Now, the desired result follows from Propositions 4.16–4.17 and the 
equalities (26).

5. Tree models

In this section, we introduce bidirectional tree models, and completely characterize 
which of these models with one input and one output are identifiable (Theorem 5.2). 
As a consequence, we determine which catenary and mammillary models with one input 
and one output are identifiable (Corollary 5.3 and 5.4). Our results therefore extend 
those of [12], which concerned the case when the input and output are in the same 
compartment.

Definition 5.1. A bidirectional tree graph is a graph G that is obtained from an undirected 
tree graph by making every edge bidirected (that is, (i → j) ∈ EG implies that (i 
j) ∈ EG). A linear compartmental model M = (G, In, Out, Leak) is a bidirectional tree 
model (or, to be succinct, a tree model) if the graph G is a bidirectional tree graph.

In the following theorem, which is the main result of the section, we use the notation 
distG(i, j) to denote the length of shortest (directed) path in G from vertex i to vertex 
j.

Theorem 5.2 (Classification of identifiable tree models). A tree model with exactly one 
input and one output M = (G, {in}, {out}, Leak) is generically locally identifiable if and 
only if distG(in, out) ≤ 1 and |Leak| ≤ 1.

The proof of Theorem 5.2 appears in Section 5.1.
As an easy consequence of Theorem 5.2, we obtain results on catenary and mammillary 

models (that is, models in which the underlying graph is, respectively, a path or a star 
graph, as in Fig. 5). These results form a substantial improvement over prior results, 
which largely concerned the case when input and output are equal (see Lemma 5.5).

Corollary 5.3 (Classification of identifiable catenary models). Let n ≥ 2, and let 
Catn denote the n-compartment catenary graph depicted in Fig. 5. Then a model 
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1 2 . . . n

a12 a23 an−1,n

a21 a32 an,n−1

Catenary

1

2

3

...

n

a21

a12

a13

a31

a1n

an1

Mammillary

Fig. 5. Two bidirected graphs with n compartments (cf. [21, Figures 1–2]). Left: Catenary (path), denoted by 
Catn. Right: Mammillary (star), denoted by Mamn.

(Catn, In, Out, Leak) with |In| = |Out| = 1 is generically locally identifiable if and 
only if |Leak| ≤ 1 and either (1) In = Out or (2) the input and output compartments 
are adjacent.

Corollary 5.4 (Classification of identifiable mammillary models). Let n ≥ 2, and let 
Mamn denote the n-compartment mammillary graph depicted in Fig. 5. Then a model 
(Mamn, In, Out, Leak) with |In| = |Out| = 1 is generically locally identifiable if and 
only if |Leak| ≤ 1 and (at least) one of the following holds: (1) In = Out, (2) In = {1}, 
or (3) Out = {1}.

5.1. Proof of Theorem 5.2

To prove Theorem 5.2, we need two lemmas. The first pertains to tree models whose 
identifiability is known from prior results.

Lemma 5.5. If M = (G, In, Out, Leak) is a tree model with |Leak| ≤ 1 and input and 
output in a single compartment (In = Out = {i}), then M is generically locally identi-
fiable.

Proof. Let n be the number of compartments. Since In = Out = {i}, |Leak| ≤ 1, and 
G is inductively strongly connected with respect to i, the lemma follows from Proposi-
tion 2.18.

The next result, which follows easily from a result in a prior section, pertains to when 
tree models are unidentifiable due to having more parameters than coefficients.

Lemma 5.6 (Unidentifiable tree models). Let n ≥ 1. Consider a tree model with n com-
partments, one input, and one output, M = (G, {in}, {out}, Leak). If distG(in, out) ≥ 2
or |Leak| ≥ 2, then M is unidentifiable.
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Proof. As G is a bidirectional tree with n vertices, it has |EG| = 2n −2 edges. We consider 
first the case when |Leak| ≥ 2. Then |EG| + |Leak| ≥ (2n − 2) + 2 = 2n > 2n − 1. So, by 
Corollary 3.5, M is unidentifiable.

In the other case, we have L := distG(in, out) ≥ 2. There are two subcases. If Leak =
∅, then |EG| + |Leak| ≥ (2n −2) +1 > 2n −2 ≥ 2n −L. If Leak = ∅, then |EG| = 2n −2 >
2n − 2 − 1 ≥ 2n − L − 1. In either subcase, by Corollary 3.5, M is unidentifiable.

We now prove Theorem 5.2, which we recall states that the implication in Lemma 5.6
is in fact an equivalence.

Proof of Theorem 5.2. The forward direction (⇒) is Lemma 5.6.
To prove the backward direction (⇐), we first consider the case when |Leak| = 0. If 

distG(in, out) = 0, then Lemma 5.5 implies that M is identifiable.
Now assume that distG(in, out) = 1 (i.e., in out are edges in G). We will build the 

bidirectional tree graph G by starting with a subtree G and then successively adding 
leaf edges. The subtree G comes from removing the edges in out, which disconnects 
G, and taking the component containing in. More precisely, G is the subgraph induced 
by all i ∈ VG such that distG(in, i) < distG(out, i). It follows that in ∈ VG and G is a 
bidirectional tree. So, by Lemma 5.5, the model M = (G , {in}, {in}, ∅) is identifiable.

Next, let G be obtained from G by adding a leaf edge at the input compartment 
and labeling the new compartment by out (so the new pair of edges is in out). By 
construction, G is a bidirectional tree and an induced subgraph of G. Now Proposi-
tion 4.16 implies that the model M = (G , {in}, {out}, ∅) is identifiable (because M
is). If G = G, we are done. If not, we finish building G from G by adding one leaf 
edge at a time. At each step, the graph is a bidirectional tree and an induced subgraph 
of G; and also (by Theorem 4.3) the resulting model with In = {in}, Out = {out}, and 
Leak = ∅ is identifiable. So, as desired, M = (G, {in}, {out}, ∅) is identifiable.

Finally, consider the case when |Leak| = 1. We already showed that models with 
distG(in, out) ≤ 1 and |Leak| = 0 are identifiable, and now Proposition 2.19 implies that 
adding a leak to such models preserves identifiability. This completes the proof.

5.2. Expected dimension of tree models

Tree models with more than one leak are unidentifiable by Lemma 5.6, but they have 
expected dimension for any number of leaks, as long as the input and output are equal 
or adjacent.

Proposition 5.7. Consider a tree model with exactly one input and one output, M =
(G, {in}, {out}, Leak). If distG(in, out) ≤ 1, then M has expected dimension.

Proof. Let n be the number of compartments. First assume |Leak| ≤ 1. By Theorem 5.2, 
M is generically locally identifiable and so has expected dimension (by Proposition 2.15). 
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In particular, for the model M := (G, {in}, {out}, {i}), the coefficient map, which has 
the form c̄ : R|EG|+1 = R2n−1 → R2n−1 by Corollary 3.4, has image with dimension 
equal to 2n − 1.

Now assume |Leak| ≥ 2. By Corollary 3.4, the coefficient map of M has the form 
c : R|E|+|Leak| → R2n−1 and (by Theorem 3.1) is an extension of c̄ when i ∈ Leak. Thus, 
the image of c has dimension equal to 2n − 1, and so M has expected dimension.

5.3. Beyond tree models

Recall that Theorem 5.2 states that a tree model M = (G, {in}, {out}, Leak) is 
identifiable if and only if distG(in, out) ≤ 1 and |Leak| ≤ 1. It is natural to ask whether 
any part of this theorem generalizes to strongly connected models. Unfortunately, this 
is not the case, as the following examples show.

Example 5.8 (Unidentifiable, but distG(in, out) = 0 and |Leak| = 0). Recall that in 
the model from Example 3.9, the input and output are equal, and there are no leaks. 
Nonetheless, the model is unidentifiable.

Example 5.9 (Identifiable, but distG(in, out) = 2). In the following model, the distance 
of the shortest path from input to output is 2, and [17, Theorem 3.5] implies that the 
model is generically locally identifiable.

1

2

3

a21

a13
a32

in

Example 5.10 (Identifiable, but |Leak| = 2). In the following model, there are 2 leaks 
and [5, Corollary 3.27] implies that the model is generically locally identifiable.

1

2

3

a21

a13
a32

in

a02

a01

In spite of the above examples, we recall from Remark 3.6 that strongly connected 
models (with one input and one output) with |Leak| ≥ 3 (or, if input equals output, 
|Leak| ≥ 2) are unidentifiable.
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6. Discussion

In this work, we made substantial progress on the problem of parameter identifiability 
for linear compartmental models. In particular, we expanded the class of linear com-
partmental models for which structural identifiability can be assessed directly from the 
underlying graph structure. While previously this class contained only certain cycle mod-
els [17], some inductively strongly connected models, and their generalizations [5,31,32], 
and was largely focused on the case where input and output were in the same compart-
ment, we have now added more inductively strongly connected models (Corollary 4.6) 
and, significantly, all tree models with one input and one output with no restrictions 
on the placement of the input and output. This includes a complete classification of 
identifiability for the much-studied catenary and mammillary models (Theorem 5.2).

Going forward, a natural problem is to determine what happens when there are mul-
tiple leaks or more than one input or output, or when we go beyond tree models. While 
Theorem 5.2 does not generalize to all strongly connected models (Section 5.3), a natural 
first step is to analyze directed-cycle models with one input and one output. Some partial 
results are known [17], but the problem remains open. Another way to generalize our 
results is to allow for one-way flow instead of bidirectional flow between compartments 
in tree models. One way to accomplish this is to use [20, Corollary 3.36] to combine 
bidirectional tree models together over a (one-way) directed edge. Another possibility is 
to add leaves to one-way “path” models, as in [5, Proposition 3.29].

Another contribution of our work comes from our results on how to construct new 
identifiable models from models that are previously known to be identifiable (Theo-
rems 4.3 and 4.4). We desire more such results and anticipate that they will aid in 
classifying identifiable models beyond tree models. A natural first step would be to ex-
tend our results on adding leaf edges i n, where n is a new compartment, to allow 
new edges of the form i → n → j, with i = j, which might be part of a cycle (some 
related results are [31, Theorem 5.7] and [2, Proposition 4.14]).

Finally, we note that many of our results are proven using our novel combinatorial 
formula for the coefficients of input-output equations (Theorem 3.1). This formula is 
a new tool for attacking open problems, such as a conjecture concerning the equation 
of the singular locus (essentially the locus of unidentifiable parameters) for tree models 
[21]. Another potential application of Theorem 3.1 is to the important problem of finding 
minimal sets of outputs [1] (or inputs [19]) for identifiability.
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