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new compartment with a bidirected edge to an existing
compartment.
© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Compartmental models are commonly used in fields such as pharmacokinetics, ecology,
and epidemiology to understand interacting groups, or compartments [18]. In pharma-
cokinetics, the compartments may represent tissue or tissue groups [15,23,37,39]; in ecol-
ogy, the compartments may represent habitat zones or role in a population (e.g., forager
bee and nurse bee) [22,26,27,33]; while in epidemiology, the compartments may represent
groups of infected, susceptible, and recovered individuals [4,36]. Interactions, exchanges,
or flows between compartments are represented by edges between compartments, result-
ing in a directed graph, with distinguished nodes representing inputs, outputs, and leaks
from the system. Linear compartmental models, which form the topic of this paper, are
commonly used compartmental models described by a parameterized system of linear
ordinary differential equations.

A fundamental question regarding linear compartmental models is whether or not the
parameters are identifiable from a series of observations. In this paper, we give a way to
visually verify when certain linear compartmental models are identifiable. To be precise,
our main theorem (Theorem 5.2) states: A bidirectional tree model with one input and
one output is generically locally identifiable if and only if the distance between the input
and output is at most one and the model has either no leaks or a single leak.

Bidirectional tree models, or simply tree models, are linear compartmental models
where the underlying directed graph is a bidirectional tree. Tree models often appear
in applications. Indeed, [32, Example 7] discusses the importance of tree models in ap-
plications, using diffusion models along rivers and streams [22] and models of neuronal
dendritic trees [7] as motivating applications. As another example, [32, Example 6] con-
siders a 11-compartment tree model, obtained by modifying a compartmental model of
manganese pharmacokinetics in rats [16].

Two families of tree models that often arise in applications are catenary and mam-
millary models. For catenary (respectively, mammillary) models, the underlying directed
graph is a path (respectively, a star). As corollaries to the main theorem, we give a full
classification of when catenary and mammillary models are generically locally identifiable
in the case of a single input and output (Corollaries 5.3 and 5.4).

Generic local identifiability is a form of structural identifiability, a model property that
guarantees unique parameter inference given noiseless and continuous data [3]. While
structural identifiability is based on perfect, i.e., noiseless data, the property is necessary
for parameter estimation in the noisy setting, and thus is usually established before
applying inference techniques with observed data.
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Combinatorial conditions for identifiability that can be visually verified, as in the
main theorem, are desired because compartmental models are described using a graphi-
cal structure and are often used in settings with few compartments. Prior results in this
direction were given by Cobelli et al., who showed that mammillary and catenary models
are identifiable when the models have a single input and output in the same compart-
ment (specific to the respective models) and have at most one leak [12]. Another known
result asserts that models with inductively strongly connected graphs, a single input and
output in a certain compartment, and at most one leak are identifiable [19,31,32]. Other
related results are due to Boukhobza et al., who gave a graph-theoretic criterion for iden-
tifiability [6], Chau, who explored properties of catenary and mammillary models [9,10],
Delforge, who described necessary conditions for identifiability and posed conjectures on
identifiability [13,14], and Vajda, who gave a condition for identifiability based on the
submodels obtained by deleting one edge at a time [38]. Finally, other authors have in-
vestigated identifiability in dynamical network models that are more general than linear
compartmental models, but where the network topology is still captured by a directed
graph [11,24,25 .28 29].

Establishing structural identifiability of a model can be achieved by using differential
algebra techniques to translate the problem to a linear algebra question [30,32]. In par-
ticular, the question of whether a given linear compartmental model is generically locally
identifiable is equivalent to asking whether the Jacobian matrix of a certain coefficient
map (arising from certain input-output equations) is generically full rank. We give a
general formula for the coefficients of these equations in terms of the combinatorics of
the underlying directed graph associated to the model (Theorem 3.1). This is the second
significant result of this work (after the main theorem mentioned earlier). Previous for-
mulas appear in [21,31], but only apply to models that satisfy certain conditions. For
example, the results in [21] require the input and output to be in the same compart-
ment. In comparison, the only condition of Theorem 3.1 is the existence of at least one
input.

A general formula for coefficients allows us then to explore the effect of adding edges
and moving inputs and outputs as we work towards an understanding of tree models.
Indeed, Theorem 3.1 implies that if the input and output are too far apart then the model
is unidentifiable (Corollary 3.5). This result places immediate constraints on how inputs
and outputs can be moved if identifiability is to be preserved, which we can glimpse in the
main theorem, Theorem 5.2, stated earlier. Our final set of results, which we summarize
in Table 1, concerns operations involving moving inputs and outputs and adding leaf
edges. These results establish situations where such operations preserve identifiability,
and therefore contribute to a recent body of work aimed at understanding the effect on
identifiability of adding, deleting, or moving an input, output, leak, or edge [8,17,19]. Our
results also contribute to a more general body of work aimed at understanding which
operations preserve a model’s “expected dimension” [2,5,31].

The outline of our work is as follows. Section 2 introduces linear compartmental models
and identifiability. Our formula for the coefficients of input-output equations is proven
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Table 1

Summary of results on operations preserving identifiability. For an identifiable,
strongly connected, linear compartmental model M with one input, one output,
and no leaks, if M’ is obtained from M by the specified operation, then M’ is
identifiable. For related prior results, we refer the reader to [8, Table 1] and [19,

Table 1].
Model Operation Result
Any Add leaf edge Theorem 4.3
Model with Add leaf edge at i, and move input Theorem 4.4
In = Out = {i} or output to the new compartment

in Section 3. Section 4 contains our results on operations that preserve identifiability.
In Section 5, we classify identifiable tree models and then end with a discussion in
Section 6.

2. Background

This section introduces linear compartmental models and how to assess their identifi-
ability using input-output equations. In particular, after defining linear compartmental
models in Section 2.1 and introducing graph-theory terminology in Section 2.2, the
remaining subsections, Sections 2.3-2.4, review prior results on input-output equa-
tions and identifiability that serve as the foundation for our contributions in Sec-
tions 3-5.

We closely follow the notation in [17,21]. Also, throughout this work, a graph is a
finite, weighted (i.e., edge-labeled), directed multigraph. Recall that a multigraph allows
for multi-edges, that is, more than one edge with the same source and target.

2.1. Linear compartmental models

A linear compartmental model M = (G, In, Out, Leak) consists of a (directed) graph
G = (Vg, Eg) without multi-edges and sets I'n, Out, Leak C Vi, which are called the
input, output, and leak compartments, respectively. An edge j — i € Eq is labeled by the
parameter a;;. We always assume that Out is nonempty, because models with no outputs
are not identifiable. Finally, a model M = (G, In, Out, Leak) is strongly connected if G
is strongly connected (that is, given any two vertices of G, there exist directed paths in
each of the two directions between the two vertices).

As in prior works, a linear compartmental model is depicted by its graph G, plus

b

leaks indicated by outgoing edges, input compartments labeled by “in,” and output
compartments marked by this symbol: ¢. For instance, for the 3-compartment model
M = (G, In,Out, Leak) shown in Fig. 1, the graph G is the complete directed graph on
3 nodes, In = Out = {1}, and Leak = {2}.

For a linear compartmental model M = (G, In, Out, Leak) with n compartments (so,

n = |Vg|), the compartmental matriz A is the n x n matrix defined by:
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a21
in
\ aiz
@ asz || a23
o 13

asi

Fig. 1. A linear compartmental model with In = Out = {1} and Leak = {2}.

—Q0i = Do imskeR, ki @ =J, i € Leak,

A = =2k imkeEg ki i=j, i ¢ Leak,
I’J B . . . .
aij Z#]a (.772)€EG,

Next, the model M defines the following ODE system (1), where w;(t) and y;(t) denote
the concentrations of input and output compartments, respectively, at time ¢, and z(t) =

(x1(t), z2(t),...,x,(t)) is the vector of concentrations of all compartments:
d
= = Ac(t) +u(®), (1)

yi(t) = z(t) for all ¢ € Out ,
where u;(t) = 0 for i ¢ In.

Remark 2.1. Initial conditions form an important part of an ODE system, and the the-
ory of structural identifiability analysis does allow for the consideration of known or
unknown initial conditions [35]. However, in this work, we assume that initial conditions
are generic.

2.2. Graphs associated to linear compartmental models

We define several auxiliary graphs arising from a linear compartmental model M =
(G, In,Out, Leak). Examples of such graphs are shown in Fig. 2.

e Recall that the leak-augmented graph [21], denoted by G , is obtained from G by
adding (1) a new node, labeled by 0 and referred to as the leak node, and (2) for every
J € Leak, an edge j — 0 with label a;.

e We introduce the graph é;“ (where 7 is some compartment), which is obtained from G
by removing all outgoing edges from node 7. We also define a related matrix, denoted
by A, which is obtained from the compartmental matrix A of G by replacing the
column corresponding to compartment-i with zeros.

e The graph G is obtained from é? by (1) replacing every edge j — i (labeled by a;;)
by the edge j — 0 labeled a;;, and then (2) deleting node i.
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Fig. 2. Graphs arising from the linear compartmental model in Fig. 1.

Remark 2.2. Among the graphs defined above, only the graph C:‘l may have multi-edges
(more than one edge with the same source and target). Specifically, such edges may
appear from a compartment to the leak node (for instance, see the graph G; in Fig. 2).

The productivity of a graph H with edge set Fy is the product of its edge labels:

H L(e) , (2)

eeFEy

where L(e) is the label of edge e. Following the usual convention, we define mpy = 1 for
graphs H having no edges.

Remark 2.3. Our definition of G; differs slightly from that in [21]. Here, we use multi-
edges (e.g., ape and ajs in G, in Fig. 1), while the corresponding graph in [21] uses a
single edge with the sum of the labels (e.g., ap2 + a12). Using multi-edges here is more
convenient. Moreover, in the result from [21] that we use and improve (Proposition 2.10
below), it is straightforward to check that our definition of Gi yields the same sum of
productivities. Thus, both Proposition 2.10 and the result in [21] are correct, even with
our updated definition of éi.

Example 2.4. For the model in Fig. 1, the corresponding graphs G, C:*, C~¥1, and é’{ are
shown in Fig. 2. The matrices arising from G and G7 are, respectively, as follows:
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—(a21 + as1) a2 a3
A= az1 —(ap2 + a1z + as) as3 ,
as1 asz —(a13 + ag3)
0 a1z a3
AT =10 —(ag2 + a1z + as2) as3
0 aso *(0413 + a23)

The ODE system (1) for this model is as follows:

1 1 Uy —(a21 + az1)r1 + 61272 + a13x3 + Uy
To | =A|lax2 |+ O = a21z1 + —(ag2 + a1z + ase)xrs + agsrs |
T3 3 0 az1z1 + azexe + —(a13 + a23)x3

with Y1 = 21.

For a graph, a spanning incoming forest is a spanning subgraph for which the under-
lying undirected graph is a forest (i.e., has no cycles) and each node has at most one
outgoing edge. “Spanning” refers to the fact that every vertex of the graph is included
in the forest, which can include isolated vertices. We introduce the following notation
for a graph H:

o F;(H) is the set of all spanning incoming forests of H with exactly j edges, and

. J-"J]»C *“(H) is the set of all spanning incoming forests of H with exactly j edges, such
that some connected component (of the underlying undirected graph) contains both
of the vertices k and .

The following three results, which pertain to spanning incoming forests, will be used
to prove the main result in Section 3.

Lemma 2.5. Every connected component of a spanning incoming forest contains exactly
one sink node, i.e., exactly one node with no outgoing edges.

Proof. Let C' be a connected component of a spanning incoming forest H of a (finite)
graph G. To see that a sink node exists in C', we start from some node in C and follow
outgoing arrows; eventually (as H is finite and cycle-free) we must reach a sink node.

Now assume for contradiction that C' has two sink nodes v and v’. The underlying
undirected graph of C is a tree, so it contains a unique undirected path P from v to v'.
In the directed version of this path, each edge points in the direction of either v or v'.
Both v and v" have only incoming edges, so some node on the path P has two outgoing
edges — one pointing toward v and one toward v’. This contradicts the fact that nodes
in an incoming forest have no more than one outgoing edge. O

Lemma 2.6. Let (G, In,Out, Leak) be a linear compartmental model. Let k and { be
distinct compartments, and let j be a positive integer. Then every forest F € .F]k’g(G’g)
contains a directed path from k to £.
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Proof. Let F € ]-'J’-C ’Z(é}‘). By definition, some connected component C of F' contains k
and ¢. By construction, the node ¢ has no outgoing edges in é}‘ So, by Lemma 2.5 and
its proof, £ is the unique sink node of C, and there is a directed path in F from k to
¢. O

The following lemma views spanning forests with a path from & to £ as a union, over
edges of the form k — i, of forests with paths from ¢ to /.

Lemma 2.7. Let H = (V, Ex) be a (directed) graph. Consider vertices k,¢ € Vi with
k # £, and let j be a positive integer. Assume that H has no edges outgoing from ¢.
Let K be the graph obtained from H by removing all edges outgoing from k. Then the
following equality holds:

i = U {0 Brulk— i) | FeF ()}
i(k—i)EEy

Proof. We first prove “C”. Let F* € }"J’M(H). Then, k and /¢ are in the same connected
component C' of F*. Also, by assumption, £ has no outgoing edges and so, by Lemma 2.5,
¢ is the unique sink node of C'. Thus, k is a non-sink node, and so there is an edge k — @
in F*. Moreover, this is the unique such edge (as F* is a spanning incoming forest).

It follows that F := (Vy, Ep- ~ {k — i}) is a (j — 1)-edge, spanning subgraph of K.
Moreover, F' has no cycles and each node has at most 1 outgoing edge (because F* has
the same properties). Finally, ¢ and £ are in the same connected component of F because
(as we saw in the proof of Lemma 2.5) by following edges in F** we must eventually reach
£, and the edge k — i is not encountered here, because otherwise F* would contain a
cycle. We conclude that F* = (Vy, Ep U{k — i}), with F € f;fl(K), as desired.

We prove “2.7 Assume that k — i is an edge of H, and let F' € f;fl(K). We must
show that after adding the edge k — 4, the new graph F* := (Vy, Er U{k — i}) is in
]-']]?’E(H). By construction, F* is a j-edge spanning subgraph of H. Also, each node of
F* has at most 1 outgoing edge (this property was true for ', and F — as a subgraph of
K — had no outgoing edges from k). Next, k and ¢ are in the same connected component
of F*, due to the edge k — i and the fact that ¢ and ¢ are in the same component of F.

Finally, we must show that F* has no cycles. In K (and thus also in F'), both k and
£ have no outgoing edges and hence are sink nodes. Thus, by Lemma 2.5, k and ¢ are
in distinct connected components of F. Adding the edge k — i therefore joins these two
components, but does not introduce any cycles. This completes the proof. O

2.3. Input-output equations
In what follows, we use the following notation. For a matrix B, we let B%/ denote the

matrix obtained from B by removing row i and column j. Similarly, B{#7}{#:¢} denotes
the matrix obtained from B by removing rows ¢ and j and columns k and /.
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For a linear compartmental model, an input-output equation is an equation that holds
along all solutions of the ODEs (1), and involves only the parameters a,;, input variables
u;, output variables y;, and their derivatives. One way to obtain such equations is given
in the following result, which is due to Meshkat, Sullivant, and Eisenberg [32, Theorem
2] (see also [19, Proposition 2.3 and Remark 2.7]):

Proposition 2.8 (Input-output equations, [32]). Let M = (G, In,Out, Leak) be a linear
compartmental model with n compartments and at least one input. Define OI to be the
n X n matriz in which every diagonal entry is the differential operator d/dt and every
off-diagonal entry is 0. Let A be the compartmental matriz. Then, the following equations
are input-output equations of M:

det(0I — A)y; = Z (=1)"*7 det (DI — A)"" u; for i € Out . (3)
j€iln

Example 2.9 (Ezample 2./, continued). Returning to the model in Fig. 1, the compart-
mental matrix A was shown in Example 2.4, which yields the following the input-output
equation (3):

3 .
y§ )y (a2 + a12 + a3 + az1 + azz +az1 + as2)ii + (2013 + 412613 + Gp2a21 + a13a21

+ ap2a23 + a12a23 + a21023 + 2031 + A12a31 + A23a31 + A13a32 + A21a32 + A31a32)Y1
+ (ag2a13a21 + Go2a21G23 + A02a23a31)Y1

= i1 + (ap2 + a12 + @13 + az3 + asz)1 + (ap2a13 + a12013 + 2023 + a12023 + A13a32)U1.
The following result is [21, Theorem 4.5].

Proposition 2.10 (Coefficients when input equals output, [21]). Consider a linear com-
partmental model M = (G, In,Out, Leak) with In = Out = {1}. Let n denote the
number of compartments, and let A be the compartmental matriz. Write the input-output
equation (3) as:

) (n—1) (n—1

+cn1yg +tay o = u ) 4+ dnfzuﬁ”’z)

e Fo ot didy + dous . (4)

Then the coefficients of this input-output equation are as follows (where wp is as in (2)):

¢ = Z mp  fori=0,1,....n—1, and
FeFn_i(G)
di = > e fori=01,...,n-2.

FeF,_i—1(G1)

One of the aims of this work is to generalize Proposition 2.10 to allow for the in-
put and output to be in distinct compartments and for more inputs and outputs (see
Theorem 3.1).
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Next, we introduce the coefficient maps arising from input-output equations. We begin
by regarding the input-output equations (3) as polynomials in the y;’s and u;’s and their
derivatives. Thus, each coefficient of the equation is a polynomial in the parameters (ag,
for edges m — ¢, and ag) for leaks p € Leak).

Definition 2.11. Let M = (G, In, Out, Leak) be a linear compartmental model.

(i) The coefficient map ¢ : RIFcl+lLeakl _y Rm sends the vector of parameters to the
vector of all non-constant coefficients of all input-output equations of the form (3).
Here, m denotes the number of such coefficients.

(ii) M has expected dimension if the dimension of the image of its coefficient map
c: RIFcltILeak] s R™ equals the minimum of |Eg| + |Leak| and m.

Remark 2.12. Having expected dimension is useful for proving a model has an identifiable
reparametrization [31]. For example, a strongly connected model with at most 2|Vg| — 2
edges, input and output in the same compartment, and leaks from every compartment has
an identifiable scaling reparametrization if and only if the model has expected dimension,
which in this case is the number of independent cycles of the graph [31, Theorem 1.2].
The case of input and output in separate compartments was analyzed in [5].

2.4. Identifiability

A linear compartmental model is structurally identifiable if all of its parameters can
be recovered from data [3]. Here we focus on generic local identifiability, which allows
for recovering parameters up to a finite set, except for those in a measure-zero set of
parameter space. This concept, in the case of strongly connected models (and others
as well), is captured by the Definition 2.13 (below) via input-output equations (this
was proven by Ovchinnikov, Pogudin, and Thompson [34, Corollary 2]). This connection
between identifiability and input-output equations underlies our interest in formulas for
the coefficient map (as in Proposition 2.10).

Definition 2.13. Consider a strongly connected linear compartmental model M =
(G, In,Out, Leak) with at least one input. Assume that |Eg| + |Leak| > 1. Let
¢ : RlIEcl+|Leak] _y R he the coefficient map arising from the input-output equations (3).
Then M is:

(i) generically locally identifiable if, outside a set of measure zero, every point in
RIFcl+IEeakl has an open neighborhood U for which the restriction ¢|y : U — R™
is one-to-one; and

(i) unidentifiable if c is generically infinite-to-one.
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We also adopt the convention that models M = (G, In, Out, Leak) without parameters,
that is, with |Eq| + |Leak| = 0, are generically locally identifiable.

Example 2.14 (Ezample 2.9, continued). For the model in Fig. 1, the input-output equa-
tion was shown in Example 2.9. Following Definition 2.11, the resulting coefficient map
c:R7” = R% is:

(002, ai2,0a13,a21, a3, 431, 032) —

(ap2 + a1z +aiz+ a1 +ags +asi +asz, ..., ap2013 +a12a13 + o203 + a12023 + a13a32) .

There are more parameters than coeflicients, so ¢ is generically infinite-to-one. Hence,
by Definition 2.13, M is unidentifiable.

Next, we recall the following useful criteria for identifiability [32] and expected dimen-
sion [5].

Proposition 2.15 ( [5,52]). A linear compartmental model M = (G, In,Out, Leak) is
generically locally identifiable (respectively, has expected dimension) if and only if the
rank of the Jacobian matriz of its coefficient map, ¢ : RIFclt|Leakl _y Rm when evaluated
at a generic point, equals |Eq|+|Leak| (respectively, equals the minimum of | Eq|+|Leak|
and m).

Due to Proposition 2.15, we will often be interested in the ranks of Jacobian matrices,
when evaluated at a generic point. For brevity, we will typically omit the phrase “when
evaluated at a generic point” and simply refer to the rank of the matrix. We will also
use “identifiable” to mean “generically locally identifiable”.

Remark 2.16. There are two important places where “generic” has a role: (1) the rank
of the Jacobian matrix is evaluated at a generic point and (2) we consider models with a
generic choice of initial conditions. There might be points in the parameter space where
the rank of the Jacobian matrix drops and identifiability no longer holds [21]. Likewise,
there might be a choice of initial conditions where the corresponding solutions of the
ODE model are not unique functions of the parameters [35].

Next, we recall from [31,32] a class of identifiable models M = (G, In, Out, Leak) for
which the graph G is inductively strongly connected, as follows:

Definition 2.17. A graph G is inductively strongly connected with respect to vertex 1 if
there is a reordering of the vertices that preserves vertex 1, such that, fori =1,2,...,n,

the subgraph of G induced by the vertices {1,2,...,4} is strongly connected.

The following result combines results from [19,32].
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Proposition 2.18 (Inductively strongly connected models). Let M = (G, In,Out, Leak)
be a linear compartmental model such that In = Out = {1}, |Leak| < 1, and G is

inductively strongly connected with respect to vertex 1. Then M is generically locally
identifiable.

Proof. The model M with |Leak| = 1 is generically locally identifiable due to [32,
Theorem 1] and [32, Remark 1], and the model M with |Leak| = 0 is still generically
locally identifiable by [19, Proposition 4.6] (or by definition if G has no edges). O

Finally, we recall two additional results on adding or removing leaks [19, Proposi-
tion 4.6 and Theorem 4.3], which we summarize in the following proposition.

Proposition 2.19 (Add or remove leak, [19]). Let M be a linear compartmental model

that is strongly connected and has at least one input. Assume that one of the following
holds:

(1) M has no leaks, and M is a model obtained from M by adding one leak; or
(2) M has an input, an output, and a leak in a single compartment (and no other inputs,
outputs, or leaks), and M is obtained from M by removing the leak.

If M is generically locally identifiable, then so is M.
3. Results on coefficients of input-output equations

The main result of this section is a combinatorial formula for the coefficients of input-
output equations (Theorem 3.1). This result generalizes Proposition 2.10, which applies
only to the case with input and output in the same compartment.

3.1. Main results

This subsection features our formula for the coefficients of input-output equations
(Theorem 3.1), which we use to evaluate the number of non-constant coefficients of the
input-output equation for strongly connected models with one input and one output
(Corollary 3.4). As a consequence, we obtain a criterion for unidentifiability which arises
when a model has more parameters than coefficients (Corollary 3.5).

Theorem 3.1 (Cocfficients of input-output equations). Consider a linear compartmental
model M = (G, In,Out, Leak) with at least one input. Let n denote the number of
compartments. Write the input-output equation (3) (for some i € Out) as follows:

yz(n) + Cn—lyz(n_l) + -+ i + coyi

= YO (™Y e dgr + dyou; ) (5)

j€In
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Then the coefficients of the input-output equation (5) are as follows:

cr = Z TR fork=0,1,....,.n—1, and
FEFn_1(G)
djr = Z TR forjelnand k=0,1,...,n—1.

FeFl, 1(GY)

The proof of Theorem 3.1 is given in Section 3.2.

From Theorem 3.1, we can determine the non-constant coefficients in the input-output
equations. We state this result in the case of strongly connected models with one input
and one output, as follows.

Corollary 3.2 (Non-constant coefficients). Consider a strongly connected linear compart-
mental model M = (G, In,Out, Leak) with In = {j} and Out = {i}. Let n be the
number of compartments. Write the input-output equation (3) as follows:

u ey e oy = (-1 (dn—luﬁn_l)+~-~+d1u}+doua‘) '

(6)

The coefficients on the left-hand side of (6) that are non-constant are as follows:

{co,cl,...,cn_l if Leak # ()

€1,C2y. .. Cn-1 if Leak =10 .

The coefficients on the right-hand side of (6) that are non-constant are as follows:

do,dh...,dn,Q zf]n:Out
do,dl,...,dn,L,1 zf]n;éOut,

where L is the length of the shortest (directed) path from the input j to the output i.

Proof. We first analyze the left-hand side of (6). By equation (3), the coefficient ¢
equals, up to sign, det A. This determinant is 0 if Leak = §) (as A in this case is the
negative Laplacian of a strongly connected graph). If, on the other hand, Leak # (), then
det A is a nonzero polynomial (by [32, Proposition 1]) of degree n in the age’s.

Thus, it suffices to show that ¢1,co,...,c,—1 are nonzero (they are non-constant, as
their degrees are n —1,n—2,...,1). As G is strongly connected, there exists a spanning
tree T of G that is directed toward compartment i (which necessarily has (n — 1) edges
and no vertex with more than one outgoing edge). Let T be the corresponding subtree
(with the same edges) of G. Then, 7z is a summand of ¢; by Theorem 3.1. Similarly,
a summand of co (respectively, ¢z, ¢y, ..., cp—1) is obtained by removing 1 edge (respec-
tively, 2,3,...,n — 2 edges) from T. This completes the analysis of the left-hand side.
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For the right-hand side of (6), we consider two cases. Consider first the case
when In = Out (i.e.,, ¢ = j). By Theorem 3.1, the summands of (respectively)
dp—1,dp—2,...,dy correspond to the spanning incoming forests of éj that have (respec-
tively) 0,1,...,n — 1 edges. There is a unique such forest with no edges, so d,—; = 1.
Next, by construction, the tree T' from earlier in the proof has no edges outgoing from
i, so we can consider the corresponding subtree (with the same edges) T of G7. So,
by removing (respectively) 0,1,...,n — 2 edges from i—*, we obtain a forest correspond-
ing to a summand of (respectively) do,ds,...,dn—o. Hence, do,ds,...,d,—o are nonzero
polynomials of degree (respectively) n —1,n—2,...,1.

We now consider the remaining case, when In # Out (i.e., i # j). First, we claim that
dpn_1=dp_o=---=d,_r =0. Indeed, by Theorem 3.1 and Lemma 2.6, these d;’s are
sums over certain subgraphs of G, with 0,1,..., L — 1 (respectively) edges, containing a
path from the input compartment j to output ¢; but no such subgraphs exist (by defini-
tion of L). On the other hand, spanning incoming forests of é;‘ having L, L+1,...,n—1
edges and a directed path from the input j to output ¢ do exist. We construct such forests
as follows. Start with a spanning incoming forest F of G with n— 1 edges (so the under-
lying undirected graph is a tree) such that F' contains a directed path P of length L from
input to output (it is straightforward to show that such a forest exists, using the fact
that G is strongly connected). Next, to obtain an appropriate forest with (respectively)
L,L+1,...,n—1 edges, remove (respectively) n — L —1,n — L —2,...,0 non-P edges
from F'. Thus, as desired, the coefficients d,,_;_1,d,_1_o,...,dy are non-constant. 0O

Remark 3.3 (Constant coefficients). From the proof of Corollary 3.2, we know the values
of the constant coefficients in the input-output equation (6):

co=10 if Leak =0
dp—1=1 if In = Out
dp—p =dp_r41="=dp1 =0 if In# Out .

In particular, in the right-hand side of (6), the highest derivative u§d) (with nonzero
coefficient) in that sum is when d = n — 1 — L, where L is the length of the shortest

(directed) path from the unique input to the unique output.

Corollary 3.2 immediately yields the next result, which answers the question posed
in [17, §2.2] of how read off the number of coefficients directly from a model. That is, we
give a formula for the number D where ¢ : RIZI+IEeakl R is the coefficient map.

Corollary 3.4 (Number of coefficients). Consider a strongly connected linear compart-
mental model M = (G, In,Out, Leak) with |In| = |Out| = 1. Let n be the number of
compartments and L the length of the shortest (directed) path in G from the (unique)
input compartment to the (unique) output. Then the numbers of non-constant coefficients
on the left-hand and right-hand sides of (6) are as follows:



C. Bortner et al. / Advances in Applied Mathematics 146 (2023) 102490 15

n if Leak # ()
n—1 if Leak =10

n—1 if In=Out

# on LHS =
n— L if In # Out.

and # on RHS = {

In the next section, we use Corollary 3.4 to prove that identifiability is preserved when
a linear compartmental model is enlarged in certain ways (see Theorems 4.3 and 4.4).
In [8], Corollary 3.4 is used to partially resolve some conjectures on identifiability.

Finally, we obtain an easy-to-check condition that guarantees that a model is uniden-
tifiable due to having more parameters than coefficients.

Corollary 3.5 (Criterion for unidentifiability). Consider a strongly connected linear com-
partmental model M = (G, In, Out, Leak), where G = (V, E). Assume |In| = |Out| = 1.
Let n be the number of compartments, and let L be the length of the shortest (directed)
path in G from the (unique) input compartment to the (unique) output. If one of the
following conditions holds:

(1) Leak # 0, In = Out, and |E| + |Leak| > 2n — 1,
(2) Leak # 0, In # Out, and |E| + |Leak| > 2n — L,
(8) Leak =0, In = Out, and |E| > 2n — 2, or

(4) Leak =0, In # Out, and |E| >2n — L —1,

then M is unidentifiable.

Proof. First consider the case of no parameters (i.e., |E|+ |Leak| = 0). Then, |E| =0 <
2n — 2 and (if In # Out) |E| =0 < 2n — L — 1, so none of the four conditions hold.

Now assume that | E|+|Leak| > 1. Let ¢ : RIPI+IEeakl _ RD denote the coefficient map
arising from the input-output equation (3). Corollary 3.4 implies that |E| + |Leak| > D,
and so, c¢ is infinite-to-one. Hence, M is unidentifiable. O

Remark 3.6. Corollary 3.5 is complementary to a recent result of Bortner and Meshkat [5,
Theorem 6.1], a special case of which asserts that a strongly connected linear compart-
mental model with |In| = |Out| =1 and |Leak| > |In U Out|, is unidentifiable.

Example 3.7 (Ezample 2.1/, continued). The model in Fig. 1 has n = 3 compartments,
Leak # 0, In = Out = {1}, and |E| + |Leak| = 6 + 1=7 > 5 = 2n — 1. So, Corollary 3.5
confirms what we saw in Example 2.14: the model is unidentifiable.

Example 3.8 (Bidirectional cycle models). Let n > 3. Let G,, be the bidirectional cycle
graph with n vertices (so the edges are 1 < 2 < - .- < n 55 1). This graph has 2n edges,
so Corollary 3.5 implies that every linear compartmental model M = (G,,, In, Out, Leak)
with |In| = |Out| = 1 — such as the model in Fig. 1 — is unidentifiable.

The next example shows that, in general, the converse of Corollary 3.5 does not hold.
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Example 3.9. The model displayed below has n = 3 compartments, In = Out, Leak = (),
and |E| =4 = 2n — 2. Thus, Corollary 3.5 does not apply. Nevertheless, it is straightfor-
ward to check that the model is unidentifiable.

a21
in

3.2. Proof of Theorem 3.1
To prove Theorem 3.1, we need several preliminary results.

Lemma 3.10. Consider a linear compartmental model M = (G, In, Out, Leak) with com-
partmental matriz A. Let i and j be distinct compartments with i # 1 and j # 1. Then:

det (AL — )L = 3 det (A — A7)7)

Proof. Recall that Aj is obtained from A by replacing the first column by a column of
0’s. Thus, the first column of (AI — A%)% is (X,0,...,0)T (we are also using 1 # 1, j
here), and so Laplace expansion along that column yields the following equality:

det (AT — A7)™) \ det ((/\I _ AT){M},{LJ‘}) )

Adet (AT — A)H1I),

and the second equality comes from the fact that, after removing column-1, the matrices
A and A7 (and thus also A\I — A and A\ — A7) are equal. The equalities (7) now imply
the desired equality. O

Lemma 3.11. Consider a linear compartmental model M = {G, In, Out, Leak} with In =
Out = {1}. Then, for every positive integer j, the following equality holds:

S o= Y

FreF}(Gr) FeF;(Gh)

Proof. First, for any graph H, note that ]—']”(H), i.e., the j-edge, spanning, incoming
forests of H containing a path from i to 4, is the same as F;(H), i.e., the j-edge, spanning,
incoming forests of H. Hence, to complete the proof, it suffices to find a bijection of the
following form that preserves productivity (that is, Ty(p«) = mp-):
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¢ Fi(Gy) = Fi(Gh) - (8)

We first explain informally what this map ¢ will be. Recall that G, is obtained from
é? by “flipping” all edges pointing toward compartment-1 (e.g., 2 — 1 and 3 — 1 in the
lower-right of Fig. 2) so that they point toward compartment-0 (e.g., 2 — 0 and 3 — 0 in
the lower-left of Fig. 2), while keeping the same edge labels. Accordingly, we will define
¢ to do the same edge-flipping in spanning forests F* of é’{ in order to obtain (as we
will show) spanning forests of G.

We define ¢ precisely, as follows. Let £ denote the set of edge labels of Gy (which
is also the set of edge labels of é’{) A spanning subgraph (of any graph) is uniquely
determined by its set of edges, so every size-j subset of labels S C L defines (i) a unique
j-edge subgraph of C~¥1, which we denote by Fjg, and also (ii) a unique j-edge subgraph
of G, which we denote by F¢. By construction, Fis and F§ have the same productivity
(for any S C £). Hence, we define ¢ by ¢ : F§ — Fg, and then to show that this map
gives the desired bijection (8), we need only prove the following two claims:

Claim 1: If ¢ € F; ((N?’{), then each node of Fis has at most 1 outgoing edge and there
is no cycle in the underlying undirected graph of Fg.
Claim 2: If Fg € ]-'j(él), then each node of F¢ has at most 1 outgoing edge and there
is no cycle in the underlying undirected graph of F3§.

The condition on the outgoing edges in Claims 1 and 2 is easy to verify. Indeed, the
edge-flip procedure preserves the source node of each edge and so the number of outgoing
edges of each node is the same in Fg and FJ (or, in the case of node 1, there are no
outgoing edges in F§ while the node simply does not exist in F).

We prove the rest of Claims 1 and 2 by contrapositive, as follows. Assume that Fg
is a subgraph of Gy such that (i) each node has at most 1 outgoing edge and (ii) the
underlying undirected graph contains a cycle. It follows that this cycle must in fact
form a directed cycle, and so must not involve node-0. Hence, the edges of the cycle are
not affected by edge-flipping, and so F§ contains the same cycle. Similarly, if F§ is a
subgraph of é’{ with each node having at most 1 outgoing edge and containing a cycle,
then this must be a directed cycle which therefore avoids nodes 0 and 1, and so is present
in Fs.

Hence, Claims 1 and 2 hold, and so we have the required bijection ¢ as in (8). O

Proposition 3.12. Let M = (G, In,Out, Leak) be a linear compartmental model with n
compartments and compartmental matriz A. Let ¢ and r be compartments. Then, in the
following equation:

det (M — A)™) = ¢ 1 A" e A" 24+ F ¢, (9)
the coefficients are given by

cp = (=17 Z g fork=0,1,...,n—1. (10)
FeF;®, 1 (Gy)
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Proof. For convenience, we rename out := q. Next, we claim that it suffices to consider
the case of r = 1. Indeed, if r # 1, then switching (relabeling) compartments 1 and r
(without relabeling edges) yields a model for which the compartmental matrix, which
we denote by B, is obtained from A by switching rows 1 and r and columns 1 and r,
and so (A — A)"°u* and (A — B)"°%* have the same determinant. Thus, the r # 1 case
reduces to the r = 1 case, and so we assume r = 1 for the rest of the proof.

We first analyze the case when out = 1. Then, by Proposition 2.10, the coefficients ¢
in (9) (for k=0,1,...,n — 1) are given by the first equality here:

P S = > wp,

Fefn,k,l(él) Fef;fkfl(é;)

and the second equality comes from Lemma 3.11. This completes the case of out = 1.

Now suppose that out # 1. We proceed by strong induction on the number of edges
of G. For the base case, suppose that G has no edges. Then the only edges of C:'Zut (if
any) are leak edges (¢ — 0 for ¢ € Leak). Thus, there are no spanning incoming forests
on G*,, in which out and 1 are in the same connected component (recall that 1 # out).
The formula in equation (10) therefore yields co =¢; =+ = ¢,—1 = 0.

Thus, it suffices (for the base case) to show that det(A — A)1o% = 0. To see this,
note that the only nonzero entries of A (if any) are leak terms on the diagonal. Therefore

Lout the column

(M — A) is also a diagonal matrix. Hence, in the matrix (Al — A)
corresponding to 1 (which exists because 1 # out) consists of 0’s, and so the determinant
of (A\I — A)1°% is 0. This completes the base case.

Now suppose that the theorem holds for all models N' = (H, Inpr, Outyr, Leakys) with
|Ex| < p—1 (for some p > 1). Consider a model M = (G, In, Out, Leak) with |Eq| = p.

We first consider the special case when G has no edges of the form 1 — 4, that is,
outgoing from compartment-1. Essentially the same argument we made in the earlier
base case applies, as follows. In the compartmental matrix A, the first column consists
of 0’s, and so det (A — A)1*") = 0. Also, there are no spanning incoming forests on
CNJj‘mt in which out and 1 are in the same connected component (recall Lemma 2.6 and
our assumption that 1 # out). So, equation (10) yields ¢g =¢; = -+ = ¢,—1 = 0. The
theorem therefore holds in the case when G has no edges outgoing from 1.

Assume now that G has at least one edge of the form 1 — 4. Our first step in evaluating
det ((A] — A)°"") is to perform a Laplacian expansion along the first column. In this
column, the nonzero entries are precisely the —a; 1’s, for those 2 < ¢ < n for which 1 — ¢
is an edge (because row-1 of the matrix (Al — A) was deleted). Laplace expansion along
this column therefore yields the first equality here:

det (A= A)) = 37 (=1)(=aq) det (A — A) (ko)
i: (1>4i)€Eq
= > (=) an AT det (AT — AP (11)

i: (1>i)€Eg
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and the second equality follows from Lemma 3.10 (and simplifying).
Our next step is to evaluate the determinant that appears in the right-hand side of
equation (11). Accordingly, we claim that the following equality holds:

n—1
det (AT — A7)»omt) = (=1)Feut Y > T | M, (12)
J=0 Fefj;j’;il(é;ut)
where & is the graph obtained from G by removing all edges outgoing from compart-
ment 1.

We will prove the claimed equality (12) by interpreting the matrix A} as the compart-
mental matrix of a model having fewer edges than M, and so the inductive hypothesis
will apply. To this end, notice that A} is the compartmental matrix of the following
model:

M; = (8, In, Out, Leak ~ In) .

We consider two subcases, based on whether i = out. The subcase when i = out was
proven already at the beginning of the proof (applied to the model M3):

n—1

det (AT — Ap)oubent)y = Y > T | M.

=0 out,out [ 5«
J Fe]:nfjfl (Qsout)

Now consider the remaining subcase, when i # out. By construction and our assump-
tion that G has an edge of the form 1 — ¢, the graph & has fewer edges than G. The
inductive hypothesis therefore holds for M7 and yields precisely the equality (12), and
so our claim is proven.

Next, we substitute the expression in (12) into the right-hand side of equation (11),
simplify, rearrange the order of summation, apply Lemma 2.7 (where H = éfmt, K =
B*

out»

k =1, and ¢ = out), and then apply the change of variables k = j — 1:

n—1

det (A — A)ovt) = > (=) ag AT (=)ot > T | N

i: (1—>i)€Eq j FeFiout (ngut)

n—j—1

I
=)

n—1
— (_1)out+1 ZO Z Z AT )\j—l
j=

i (1»i)EEG Fefi’f?t_l(éém)

n—1
= (—1H Y 3 mpe | M1

) =0 . 1,0ut (S
J F G‘anj ! (Gout)
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— (_1)out+1 Z Z - )\k )

P \Per it (Gou)

Comparing the above expression with the desired coefficients in (9) and (10), it suffices
to show that, when kK = —1 or k = n — 1, the following coefficient is 0:

Cr = E TF .

1,0u S
FEJ:n'—kt—1 (Gout)

We first consider £ = —1. The graph éj‘)ut has n + 1 nodes, and both out and 0
(the leak compartment) have no outgoing edges. Therefore, every incoming spanning
forest of G%,,; has at least two sink nodes and so (by Lemma 2.5) at least two connected
components. Such a forest therefore has no more than n — 1 edges. We conclude that
Flout (Gx..) = fif}‘fl),l(NZ‘m) —FLout(Gx )y =0, and so c_; = 0, as desired.

Similarly, for k = n—1, we have F°" | ( G ) = Foo (G ,.) = 0, because the graph
with no edges lacks a path from 1 to out (recall that we have assumed 1 # out). So,

¢n—1 = 0. This completes the case of 1 # out, and thus our proof is complete. O
We can now prove Theorem 3.1.

Proof of Theorem 3.1. The left-hand side of the input-output equation (3) is det(9I —
A)y;, and the formula for the coefficients of this expression was previously shown in
Proposition 2.10. As for the right-hand side, the formula for these coefficients follows
easily from Propositions 2.8 and 3.12. O

4. Results on adding an edge

In this section, we introduce a new operation on linear compartmental models: we add
a bidirected edge from an existing compartment to a new compartment (Definition 4.2).
For instance, in Fig. 3, the bidirected edge 1 = 4 is added to M to obtain the models
M and M” (in M’, the output is also moved). We prove that identifiability is preserved
when the original model has input and output in a single compartment, the new edge
involves that compartment, and the input or output is moved to the new compartment
(Theorem 4.4). Similarly, we prove that identifiability is preserved when the input and
output, which may be in distinct compartments, are not moved (Theorem 4.3).

Remark 4.1. Two related prior results also investigated the effect of adding a bidirected
edge. These results pertain to models that have leaks in every compartment and have
expected dimension [5, Proposition 3.30] [31, Proposition 5.5].
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Fig. 3. Depicted are three models, M = (G,{1},{1},0), M’ = {G’,{1},{4},0}, and M" =
{G', {1}, {1}, 0}, where G’ is the graph obtained from G by adding a leaf edge at compartment 1 (to
a new compartment 4). See Example 4.10.

Definition 4.2. Let G = (V, Eg) be a graph with vertex set Vo = {1,2,...,n — 1} (for
some n > 2). Let i € V. The graph obtained from G by adding a leaf edge at i is the graph
H = (Vy, Ey) with vertex set Vi := {1,2,...,n} and edge set Ey := Eq U {i <> n}.

Theorem 4.3 (Add leaf edge). Assume n > 3. Consider a strongly connected linear
compartmental model with n — 1 compartments, one input, one output, and no leaks,
M = (G, {in},{out},D). Let H be the graph obtained from G by adding a leaf edge at com-
partment n — 1, and consider the linear compartmental model M’ = (H, {in}, {out}, D).
If M has expected dimension (or, respectively, is generically locally identifiable), then
M’ also has expected dimension (respectively, is generically locally identifiable).

We prove Theorem 4.3 in Section 4.1.

Theorem 4.4 (Add leaf edge and move input or output). Assume n > 3. Let M =
(G, In,Out, Leak) be a strongly connected linear compartmental model with n — 1 com-
partments such that In = Out = {1} and Leak = (. Let H be the graph obtained
from G by adding a leaf edge at compartment 1. Consider a linear compartmental model
M' = (H,In',Out’, Leak’) with Leak’ = 0 and either (In',Out’) = ({1},{n}) or
(In',Out’) = ({n},{1}). Then M has expected dimension (or, respectively, is generically



22 C. Bortner et al. / Advances in Applied Mathematics 146 (2023) 102490

locally identifiable) if and only if M’ has expected dimension (respectively, is generically
locally identifiable).

We prove Theorem 4.4 in Section 4.4. An immediate corollary, which comes from
applying Proposition 2.19(1), pertains to models with one leak, as follows.

Corollary 4.5. Assumen > 3. Let M = (G, In, Out, Leak) be a strongly connected linear
compartmental model with n—1 compartments such that In = Out = {1} and Leak = 0.
Let H be the graph obtained from G by adding a leaf edge at compartment 1. Consider
a linear compartmental model M’ = (H,In',Out’, Leak’) with |Leak’| = 1 and either
(In',0ut’) = ({1}, {n}) or (In',Out’) = ({n},{1}). If M is identifiable, then M’ is also
identifiable.

Next, we reveal a new class of identifiable models, namely, inductively strongly con-
nected models in which the input and output compartments form a leaf edge, as follows.

Corollary 4.6 (Add a leaf and move input/output in inductively strongly connected mod-
els). Assume n > 3. Let M = (G, In,Out, Leak) be a linear compartmental model with
n — 1 compartments such that In = Out = {1}, Leak = 0, and G is inductively strongly
connected with respect to vertex 1. Let H be the graph obtained from G by adding a leaf
edge at compartment 1. Consider a model M' = (H,In’,Out’, Leak’) with |Leak'| < 1
and either (In',Out’) = ({1},{n}) or (In’,Out’) = ({n},{1}). Then M’ is generically
locally identifiable.

Proof. This result follows from Proposition 2.18, Theorem 4.4, and Corollary 4.5. 0O

Remark 4.7. The assumption of n > 3 in Theorems 4.3 and 4.4 and other results in this
section is simply to avoid cases of models we are not interested in, namely, those with
no compartments or no parameters.

Remark 4.8. The effect of moving the input or output without adding new compartments
or edges was considered for cycle models in [17].

Remark 4.9. Baaijens and Draisma considered operations that preserve expected di-
mension in models with input and output in the same compartment and leaks in all
compartments [2].

Example 4.10. Consider the models shown in Fig. 3. The model M is identifiable by
Proposition 2.18. So, by Theorems 4.3 and 4.4, M” and M’ are also identifiable. Another
way to see that M’ is identifiable, is by applying Corollary 4.6 to M.

Example 4.11. Consider the models in Fig. 4. The model M is identifiable, by Propo-
sition 2.18. Thus, the model obtained from M by removing the leak, which we denote
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Fig. 4. Two (catenary) models, M = (G, {1}, {1}, {1}) and M’ = (G’, {4}, {1}, {1}), where the graph G’ is
obtained from G by adding a leaf edge at compartment 1.

by My, is also identifiable, by Proposition 2.19(2). Applying Corollary 4.5 to the model
My, we obtain that M’ is also identifiable.

Theorems 4.3 and 4.4 are both used in the next section to classify identifiable models
in which the underlying graph is a bidirected tree. In particular, for catenary models
(that is, when the graph is a path), we saw in Example 4.11 that a corollary of The-
orem 4.4 applies to some models with an input or output in a leaf compartment (e.g.,
compartments 1 and 3 of the model M in Fig. 4), but we will need Theorem 4.3 to
handle models in which both the input and output are in non-leaf compartments.

The rest of this section is dedicated to proving Theorems 4.3 and 4.4. We first prove
Theorem 4.3 (Section 4.1). Next, we analyze moving the output (Section 4.2) and the
input (Section 4.3), and then combine those results to prove Theorem 4.4 (Section 4.4).

4.1. Proof of Theorem 4.3

To prove Theorem 4.3, we need a result from [31]. To state that result, we must first
recall how a weight vector w defines initial forms of polynomials. Consider a polynomial
g € K[zy,29,...,2,], where K is a field. Let w € Q. Then w defines a weight of a
monomial £ (where o € Z%)), namely, (w, ). Now the initial-form polynomial (with
respect to w) of g, denoted By Ju, is the sum of all terms of g for which the monomial
has highest weight. We can now state the following lemma, which is [31, Corollary 5.9].

Lemma 4.12. Let K be a field. Consider a map ¢ : K' — K*® given by polynomials
fisfo, oo, fs €Kz, 22,..., 2. Let w € Q. Define ¢, : K™ — K? to be the map given
by the initial-form polynomials (f1)w, (f2)w,-- -, (fs)w- Then

dim(image ¢,,) < dim(image ¢) .
The following proof closely follows that of [31, Theorem 5.7].

Proof of Theorem 4.3. If in = out, we define D := 1. If in # out, we define D to be the
length of the shortest (directed) path in G from in to out. By construction, if in # out,
then D is also the length of the shortest (directed) path from in to out in H.

Let ¢ o and ¢ denote, respectively, the coefficient maps for M and M’. By Corol-
lary 3.4, the number of coefficients of ¢rq is (n—2)+(n—1—D) = 2n—3— D. Similarly,
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the number of coefficients of ¢rp is 2n — 1 — D. Also, by construction, M has |E¢g|
parameters; and M’ has |Eg| + 2 parameters. Therefore, the assumption that M has
expected dimension is the following equality:

dim(image ¢rq) = min{|Eg|, 2n —3 - D}, (13)
in which case our goal is to prove the following equality:
dim(image ¢prr) = min{|Eg|+2, 2n—1— D} . (14)
Similarly, the assumption that M is identifiable is the following equality:
dim(image ¢m) = [Eg]| , (15)
in which case our goal is to prove the following equality:
dim(image ¢rr) = |Eg|+2 . (16)

The inequalities “<” in (14) and (16) always hold, so we need only prove “>”. Moreover,
in light of the equalities (13) and (15), it suffices (for either case) to prove that

dim(image ¢rrr) > 2+ dim(image daq) - (17)

With an eye toward applying Lemma 4.12, define the weight vector w : {a;; | (j,1) €
Ex} — R as follows:

w(a;) = {0 @) & lln=1m), (mn -1}

1 otherwise.

We will analyze the pullback maps ¢}, : Q[c1, 2, ..., ¢n2, do,d1,...,dn_2_p] = Qlay; |
(],Z) S EG} and (1)7\/[/ : Q[Cl,CQ, ey Cp—1, do,dl, e ,dnflfp} — Q[aij | (j, Z) S EH}
Recall that ¢}, (respectively, ¢}, ) sends each ¢ or dj to the corresponding polynomial
in the a;;’s for the model M (respectively, M’), as given in Theorem 3.1.

By Theorem 3.1, all the polynomials ¢%(c;), ¢ (di), ¢hp(ci), and ¢} (d;) are ho-
mogeneous in the parameters aj,. Hence, the corresponding initial-form polynomials
Phmw(Ci), Drwldi), dhp o (ci), and ¢}y ,(di) are obtained by removing all terms in-
volving an—1,, O G, n—1 — as long as there exist other terms in the polynomial. These
other terms, by Theorem 3.1, correspond to spanning incoming forests of H that do not
involve the edges (n — 1) < n (there are no leaks, so we need not leak-augment the
graph), or, equivalently, spanning incoming forests of G. In particular, there exist such
forests of G with 1,2,...,n — 2 edges, and so we obtain:

O wlc) = dymlcion) fori=2,3,...,n—1. (18)
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(The shift in the index, from ¢ to i — 1, comes from the fact that H has n compartments,
while G has n — 1.) Similarly, there are spanning incoming forests of G with in and out
in the same component and D, D +1,...,n — 2 edges. Thus, we have:

d)j\/l/,w(di) = QSj\/t(dl—l) fOI‘i:172,...,n717D. (19)

There are two more coefficients of M’ to consider: ¢; and dy. By Theorem 3.1, ¢; and
do (or, more precisely, ¢} ,(c1) and ¢} ,(do)) are both sums of productivities of
(n — 1)-edge spanning incoming forests on H (which has n vertices). Hence, each such
forest must use exactly one edge from the edges (n — 1) = n. We conclude that each
term in ¢l , (c1) (respectively, in Ohtr (dp)) contains exactly one of a1, OF Gp 1.
This implies that the respective initial-form polynomials agree with the two original
polynomials:

G o= Q) = i)  and  dy = Gheu(do) = Ghe(do) . (20)

We can say more about the polynomials ¢; and JO in (20). First, EZVO does not involve
the parameter a,, ,—1, as c?o is a sum over (n — 1)-edge spanning incoming forests of H
in which out is the only sink (by Theorem 3.1 and Lemma 2.5) and such forests do not
contain the edge (n — 1) — n (as this would make compartment-n a sink). Moreover, it
is straightforward to check that these forests are exactly those obtained by adding the
edge n — (n — 1) to an (n — 2)-edge spanning incoming forest of G in which out is the
only sink.

Similarly, the (n — 1)-edge spanning incoming forests of H (with no condition on the
location of the sink) that involve the edge n — (n — 1) are obtained by attaching that
edge to an (n — 2)-edge spanning incoming forest of G. We summarize the above analysis
as follows:

&1 = an_1nd (1) + (terms involving ay ,—1 but not a,—1,) , (21)

do = an—1,2Pp(do) -

Let Ja and Jap,, (respectively) denote the Jacobian matrices of ¢gaq and ¢,
where the last two rows of Jaq,, correspond to ¢; and g@, and the last two columns
correspond to the parameters a,_1., and a, ,—1. We use equations (18)—(21) to relate
the two Jacobian matrices as follows:

0 0 0 0
JIm : : Jm : :
IMiw = 0 0 = 0 0
dcy dcy
* * 8an:1,n 8anw71 * * * (7257\/[(61)
ado 3(10 *
Koo X Oan_1,n Oan,n—1 * * ¢M (do) 0
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Both ¢%((c1) and ¢’ (do) are nonzero (by Corollary 3.2), so equation (22) implies that
rank(Jap ) = 2 + rank(Jaq). Hence, we obtain the equality below (and the inequality
comes from Lemma 4.12):

dim(image ¢r) > dim(image par ) = 2+ dim(image daq) .
Thus, our desired inequality (17) holds, and this completes the proof. O

Remark 4.13 (Add leak). Let M be a strongly connected model with one input, one
output, and no leaks. Theorem 4.3 shows that expected dimension is preserved when a
leaf edge is added to M. The same is true when, instead of a leaf edge, a leak is added
to M. This result can be proven in an analogous way to the proof of Theorem 4.3, using
a weight vector w that is 0 on the new leak parameter, and 1 on all other parameters.
Another approach to proving this result is given in the proof of [19, Theorem 4.3].

Remark 4.14. Theorems 4.3 and 4.4 are stated for models with a single input and single
output. Nevertheless, these results can be generalized to models with multiple inputs or
outputs, if the corresponding models with a single input and single output are identifi-
able. This is because adding inputs or outputs preserves identifiability [19, Proposition
4.1].

4.2. Mowving the output

In this subsection, we examine what happens to a model when a leaf edge is added
and the output is moved to the new compartment (see Proposition 4.16). The key lemma
we need is as follows.

Lemma 4.15. Assume n > 3. Let M = (G, In,Out, Leak) be a linear compartmental
model with n — 1 compartments such that In = Out = {1} and Leak = 0. Let H
be the graph obtained from G by adding a leaf edge at compartment 1, and let M’ =
(H,In',Out’,Leak’) be a linear compartmental model with Leak’ = (. Let A and A*
(respectively) denote the compartmental matrices of M and M’. Then:

(1) det(AI — A*) = Xdet(AI — A) + a1, det(A — A) + ap1Adet ((/\]_ A)l,l)}
(2) det ((\ — A7) = (17T et (M — A)11), and
(8) det (A — A*)™) = (=1)"lay, det (A — A)11).

Proof. Letting B denote the matrix obtained by removing the first row from AI — A, we
have the following:

(/\ + Z aji —aiz —aig - *al(n—l)\
M- A = U=))eFe and
’ )
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Abani+ Y, aj —ai2 —a13 - —Gip-1) | —0in
(1—»j)EEqG
0
0
—anl 0 O e O )\ —+ A1n

(23)

where, for non-edges k — 1, we define a1j, := 0. Next, letting B?! denote the matrix
obtained by removing the first column of B, we have B%!' = (\I — A)"'. We will use
this equality several times in the rest of the proof.

Applying a Laplace expansion along the last row of the matrix (Al — A*)L™ (see (23)),
we obtain Lemma 4.15(2):

det (AT — A")'™) = (=1)""2(—ap;) det(B™) = (=1)""'a,; det (A= A0 .
Similarly, a Laplacian expansion along the last column yields Lemma 4.15(3):
det (A — A)™Y) = (=1)""*(—a1,) det(B"") = (=1)"tag, det (A — A)™) .

Finally, we prove Lemma 4.15(1) by expanding along the last column in (23) and
using the linearity of the determinant:

detM = A%) = (=1)"}(a1)(—1)"2(=ay1) det(B*)
n; 0 -+ 0

+ (A +a1,) | det(A — A) + det
B

= = ainan1 det(B™) + (A + a1n)(det(A] — A) + apy det(B"1))
= Adet(M — A) + arn det(A] — A) + agaAdet (M — M) . O

Proposition 4.16 (Move output). Assume n > 3. Let M = (G, In,Out, Leak) be a
strongly connected linear compartmental model with n — 1 compartments such that
In = Out = {1} and Leak = 0. Let H be the graph obtained from G by adding a leaf
edge at compartment 1, and let M’ = (H,In',Out’, Leak’) be the linear compartmental
model with In' = {1}, Out’ = {n}, and Leak’ = 0. Write the input-output equation (3)
for M as:

Y M ey oo = w4 d Y b did + douy
and define c,—1 =1 and d,_o := 1. Similarly, write the input-output equation for M*
as:
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n n—1 n—2
oV + " e = dipu"Y 4 diud + dgu
Then:

(1) the coefficients of M and M* are related as follows:

(i) df =(=1)" tanid; forie{0,1,...,n— 2},
(ii) ¢f =c¢i1+anc +anidi—1 forie{1,2,...,n—1},
(iii) ¢f =co=0.

(2) letting cpq and cpq- (respectively) denote the coefficient maps of M and M*, the
ranks of the resulting Jacobian matrices are related by:

rank (Jac(cpqx)) rank (Jac(cpm)) +2 .

Proof. The input-output equations (3) for M and M™* are, respectively, as follows:

det(A — A)y; = det (A — A)")uy, and  det(A — A")y, = det (A — A*)""™)uy .
Now Proposition 4.16(1)(i-ii) follows easily from Lemma 4.15(1-2). Also, Proposi-
tion 4.16(1)(iii) comes from the fact that the models M and M* have no leaks (cf. [17,
Remark 2.10]).

Now we prove part (2) of the proposition. Using part (1) of the proposition, plus
Cn—1 :=1and d,_s := 1, we obtain the following the Jacobian matrix of the coefficient
map of M*, which we denote by J*:

an1 A1in Parameters ay; for all (j,k) € Eq
&, ()"t 0 0 - 0
o d ‘ (a ey, - 0dg )
' 0 ' 0 Bas; M Bk ) ey
* dcy Oco 9d1
Co dl Co <6akj + ain dar; + an1 dar; (j.k)EEG
* dcn_3 Ocn_2 Odpn_3
J¥ = Cn—2 dn73 Cn—2 ( dar, + ain day; + an1 dar, )(7 ke o
Oy —
cr 1 1 (#)
et Pars ) (jk)eEg
d* -1 nfldo 0 ( —1)»1q4 1 9dg )
o (-1 (=1)" a1 g5, -
_ _ Od,, s
d* —1)n1q 0 ( —1)n"1q 1#)
s \(71) e =1) " 9aks ) (jkyeEs

Next, we perform the following row operations to J*, where Ry denotes the row of J*
corresponding to the coefficient k:
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o forallie {0,2,...n — 2}, replace row Rg: by (=1)""'Rg:,

o forallie {1,2,...n — 2}, replace row Rcr by (Rex — Ra: ),

e iteratively from i = n — 2 down to i = 1, replace row Rc: by (Rer — alnRC;+1),
for all i € {0,1,...n — 3}, replace row Rg: by ﬁRd;.

The resulting matrix, which has the same rank as J*, has the following form:

anl A1n

d:L—Q 1 O 0 e 0 anl A1n

c 0 X 0---0 dy_, 1 0 (0---0

sl o0 ] (23) |0 x|0:-0

’ Fj’k)eEG c 0 %

« OCp_2 = s 24
fn—1 0 . <a“kﬂ' )(7k)€Ec Cn-1 0 | J @

dy| dy 0| (2 di | ardo

0 an1 0 day; (k) EEG 0 'n,l.
4 | d o Ddns) dioy \g7dn-s 0
n—3 \ an1 n—3 Oay; (.k)EEG

where
n—2

X = ¢ —an (2 — a1 (- — a1 (o2 — a1n))) = (=1)"(a1n)" " + Z(_aln)z_lci .
i=1

By construction, each ¢; only involves parameters ay; for edges (j, k) in G, and so:

X|akj:O for all (j,k)€eEc — (_1)n(a1n)n72.

We conclude that y is a nonzero polynomial.
The fact that x is nonzero, together with the lower block diagonal structure of the
matrix on the right-hand side of (24), imply that rank(J*) = 2+rank(J), as desired. O

4.3. Moving the input

In the previous subsection, we analyzed moving the output when a leaf edge is added;
now we consider moving the input. The following result is the analogous result to Propo-
sition 4.16, and their proofs are very similar.

Proposition 4.17 (Move input). Assume n > 3. Let M = (G, In, Out, Leak) be a strongly
connected linear compartmental model with n—1 compartments such that In = Out = {1}
and Leak = 0. Let H be the graph obtained from G by adding a leaf edge at compart-
ment 1, and let M’ = (H,In',Out’, Leak’) be the linear compartmental model with
In’ = {1}, Out’ = {n}, and Leak’ = 0. Write the input-output equation (3) for M as:
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(n—1) (n—2)

Y1 + Cn—2Y; (n=2)

+otayi e = ul" +dnsul"V + o+ dyul + doun

and define c,—1 =1 and d,_o := 1. Similarly, write the input-output equation for M*
as:

™+ (

" e = &Y e A+ djun
Then:

(1) the coefficients of M and M* are related as follows:

(i) df =(-1)"and; forie{0,...,n—2}
(ii) ¢f =ci1+anc +anidi—y forie{l,...,n—1}
(iii) ¢f =co=0".

(2) letting cpq and cpq+ (respectively) denote the coefficient maps of M and M*, the
ranks of the resulting Jacobian matrices are related by:

rank (Jac(ecax)) = 2+ rank (Jac(cam)) -
Proof. The input-output equations (3) for M and M™* are, respectively, as follows:
det(A — A)y; = det (M — A)" )y, and  det(A — A*)y; = det (M — A*)")u

Now Proposition 4.17(1) follows easily from Lemma 4.15(1) and Lemma 4.15(3) (and,
as in the proof of Proposition 4.16, the fact that the models M and M* have no leaks).

We use part (1) of the proposition, plus ¢,—1 := 1 and d,,_2 := 1, to obtain the
Jacobian matrix of the coefficient map of M*, denoted by J*:

A1n an1 Parameters ay; for all (7, k) € Eg
&, ()t 0 0 - 0
" _1\n—1 dcy Odo
(&) C1 dO (( 1) QA1n dar, + an1 day; ) (j.k)EEG
* dc ad
E @ & ( s te ”3ak 1 Ba (.k)EEG
* Ocn—3 Cn—2 Odpn_3
J* = Cn—2 Cn—2 dn73 ( dar; + ain Ba + an1 day; )(7 ke B
ot 1 1 (80"*2)
et Yars ) (j.k)eBe
d* -1 nfld 0 ( -1 nfla ddg
5| (Z1"do A (3.k)€EG
d* -1 n—ld » 0 ( -1 n—la adw 3)
n—g \ (71" s U0 005) Gaere
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We perform row operations on J*, where Ry denotes the row of J* corresponding to
the coefficient k:

o forallie {0,2,...n — 2}, replace row Rg: by (=1)""'Rg:,

o forallie {1,2,...n — 2}, replace row Rex by (Rer — (an1/ain)Rar_,),

e iteratively from i = n — 2 down to i = 1, replace row Rcr by (Rcr — a1ch;+1)7
o foralliec {0,1,...n — 3}, replace row Rg: by ﬁRd;.

The resulting matrix, which has the same rank as J*, has the following form:

Ain Gn1
d:;72 1 0 0---0 Ain an1
c * T 0---0 dy_o 1 0(0---0
e “ N (aaa_c:?) ‘ ct * z [0---0
¥ F],k)GEG C; " "
. Ben s - : : . (25
Cpn—1 * * ( Bay; )(j k)eEq cr * * J (25)
* 1 ad * 1
dO Edo 0 6(11?]- (.k)EEG do A1n dO
: N d* 1 0
* 1 Ody—3 n—3 ain T 3
dn73 mdnfg 0 ( Oar; >(j,k7)EEG
where
n—2
X =do — arn (dy = a1n (- = a1n (dn3 — a1n))) = (=1)"(a1n)" > + Y _(—a1n)""'d; .
i=1

For the same reason as in the proof of Proposition 4.16, x is a nonzero polynomial. Thus,
from the lower block diagonal structure of the matrix on the right-hand side of (25), we
obtain the desired equality: rank(J*) = 2 4+ rank(J). O

4.4. Proof of Theorem J./

We now apply Propositions 4.16 and 4.17 to prove our result on adding a leaf edge
and moving the input or output.

Proof of Theorem 4.4. For models M and M*, let J and J* denote the Jacobian ma-
trices of the respective coefficient maps. We first examine identifiability. By definition,
M is identifiable if and only if rank(J) = |Eg| (recall that M has no leaks). Similarly,
M* is identifiable if and only if rank(J*) = |Ex|. Now the identifiability result follows
from Propositions 4.16-4.17 and the fact that (by construction) |Ey| =2+ |Eg]|.
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As for expected dimension, we first compute the number of non-constant coefficients
in the coefficient map of M (respectively, M*), which we denote by N (respectively,
Npg+. These numbers, by a straightforward application of Corollary 3.4 (in particular,
we use the fact that there is an edge in M* from input to output, and so the length of
the shortest path from input to output is 1), are as follows:

Ny = 2n—4 and Ny = 2n—2. (26)

Next, by Proposition 2.15, M has expected dimension if and only if rank(J) =
min{|Eq|, Na}. Similarly, M* has expected dimension if and only if rank(J*) =
min{|Ep|, Npm+}. Now, the desired result follows from Propositions 4.16-4.17 and the
equalities (26). O

5. Tree models

In this section, we introduce bidirectional tree models, and completely characterize
which of these models with one input and one output are identifiable (Theorem 5.2).
As a consequence, we determine which catenary and mammillary models with one input
and one output are identifiable (Corollary 5.3 and 5.4). Our results therefore extend
those of [12], which concerned the case when the input and output are in the same
compartment.

Definition 5.1. A bidirectional tree graph is a graph G that is obtained from an undirected
tree graph by making every edge bidirected (that is, (i — j) € Eg implies that (i =
j) € Eg). A linear compartmental model M = (G, In, Out, Leak) is a bidirectional tree
model (or, to be succinct, a tree model) if the graph G is a bidirectional tree graph.

In the following theorem, which is the main result of the section, we use the notation
distg (4, 7) to denote the length of shortest (directed) path in G from vertex i to vertex

7.

Theorem 5.2 (Classification of identifiable tree models). A tree model with exactly one
input and one output M = (G, {in}, {out}, Leak) is generically locally identifiable if and
only if distg(in, out) < 1 and |Leak| < 1.

The proof of Theorem 5.2 appears in Section 5.1.

As an easy consequence of Theorem 5.2, we obtain results on catenary and mammillary
models (that is, models in which the underlying graph is, respectively, a path or a star
graph, as in Fig. 5). These results form a substantial improvement over prior results,
which largely concerned the case when input and output are equal (see Lemma 5.5).

Corollary 5.3 (Classification of identifiable catenary models). Let n > 2, and let
Cat,, denote the m-compartment catenary graph depicted in Fig. 5. Then a model
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an1
ai2 a23 An—1,n :
as asz An,n—1 \
aszi
Catenary ai2

- @

Fig. 5. Two bidirected graphs with n compartments (cf. [21, Figures 1-2]). Left: Catenary (path), denoted by
Cat,,. Right: Mammillary (star), denoted by Mam,,.

Mammillary

(Caty, In,Out, Leak) with |In| = |Out| = 1 is generically locally identifiable if and
only if |Leak| < 1 and either (1) In = Out or (2) the input and output compartments
are adjacent.

Corollary 5.4 (Classification of identifiable mammillary models). Let n > 2, and let
Mam,, denote the n-compartment mammillary graph depicted in Fig. 5. Then a model
(Mamy,,, In, Out, Leak) with |In| = |Out| = 1 is generically locally identifiable if and
only if |Leak| < 1 and (at least) one of the following holds: (1) In = Out, (2) In = {1},
or (8) Out = {1}.

5.1. Proof of Theorem 5.2

To prove Theorem 5.2, we need two lemmas. The first pertains to tree models whose
identifiability is known from prior results.

Lemma 5.5. If M = (G, In,Out, Leak) is a tree model with |Leak| < 1 and input and
output in a single compartment (In = Out = {i}), then M is generically locally identi-
fiable.

Proof. Let n be the number of compartments. Since In = Out = {i}, |Leak| < 1, and
G is inductively strongly connected with respect to i, the lemma follows from Proposi-
tion 2.18. O

The next result, which follows easily from a result in a prior section, pertains to when
tree models are unidentifiable due to having more parameters than coefficients.

Lemma 5.6 (Unidentifiable tree models). Let n > 1. Consider a tree model with n com-
partments, one input, and one output, M = (G, {in}, {out}, Leak). If distg(in, out) > 2
or |Leak| > 2, then M is unidentifiable.
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Proof. As G is a bidirectional tree with n vertices, it has |Eg| = 2n—2 edges. We consider
first the case when |Leak| > 2. Then |Eq|+ |Leak| > (2n—2)+2 = 2n > 2n — 1. So, by
Corollary 3.5, M is unidentifiable.

In the other case, we have L := distg/(in, out) > 2. There are two subcases. If Leak #
(), then |Eg|+|Leak| > (2n—2)+1 > 2n—2 > 2n— L. If Leak = @, then |Eg| = 2n—2 >
2n —2—12>2n — L — 1. In either subcase, by Corollary 3.5, M is unidentifiable. O

We now prove Theorem 5.2, which we recall states that the implication in Lemma 5.6
is in fact an equivalence.

Proof of Theorem 5.2. The forward direction (=) is Lemma 5.6.

To prove the backward direction (<), we first consider the case when |Leak| = 0. If
distg (in, out) = 0, then Lemma 5.5 implies that M is identifiable.

Now assume that distg(in, out) = 1 (i.e., in & out are edges in G). We will build the
bidirectional tree graph G by starting with a subtree G’ and then successively adding
leaf edges. The subtree G’ comes from removing the edges in < out, which disconnects
G, and taking the component containing ¢n. More precisely, G’ is the subgraph induced
by all ¢ € Vg such that distg(in,i) < distg(out, ). It follows that in € Vv and G’ is a
bidirectional tree. So, by Lemma 5.5, the model M" = (G, {in}, {in},0) is identifiable.

Next, let G” be obtained from G’ by adding a leaf edge at the input compartment
and labeling the new compartment by out (so the new pair of edges is in < out). By
construction, G is a bidirectional tree and an induced subgraph of G. Now Proposi-
tion 4.16 implies that the model M" = (G”, {in}, {out}, () is identifiable (because M’
is). If G” = G, we are done. If not, we finish building G from G” by adding one leaf
edge at a time. At each step, the graph is a bidirectional tree and an induced subgraph
of G; and also (by Theorem 4.3) the resulting model with In = {in}, Out = {out}, and
Leak = ) is identifiable. So, as desired, M = (G, {in}, {out}, D) is identifiable.

Finally, consider the case when |Leak| = 1. We already showed that models with
distg (in, out) < 1 and |Leak| = 0 are identifiable, and now Proposition 2.19 implies that
adding a leak to such models preserves identifiability. This completes the proof. O

5.2. Expected dimension of tree models
Tree models with more than one leak are unidentifiable by Lemma 5.6, but they have
expected dimension for any number of leaks, as long as the input and output are equal

or adjacent.

Proposition 5.7. Consider a tree model with exactly one input and one output, M =
(G,{in},{out}, Leak). If distg(in, out) < 1, then M has expected dimension.

Proof. Let n be the number of compartments. First assume |Leak| < 1. By Theorem 5.2,
M is generically locally identifiable and so has expected dimension (by Proposition 2.15).
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In particular, for the model M := (G, {in}, {out}, {i}), the coefficient map, which has
the form ¢ : RIFcl+l = R272-1 _ R27—1 by Corollary 3.4, has image with dimension
equal to 2n — 1.

Now assume |Leak| > 2. By Corollary 3.4, the coefficient map of M has the form
¢ : RIEIHILeak] _ R2n=1 and (by Theorem 3.1) is an extension of & when i € Leak. Thus,

the image of ¢ has dimension equal to 2n — 1, and so M has expected dimension. 0O
5.3. Beyond tree models

Recall that Theorem 5.2 states that a tree model M = (G,{in},{out}, Leak) is
identifiable if and only if distg(in, out) < 1 and |Leak| < 1. Tt is natural to ask whether
any part of this theorem generalizes to strongly connected models. Unfortunately, this
is not the case, as the following examples show.

Example 5.8 (Unidentifiable, but distg(in,out) = 0 and |Leak| = 0). Recall that in
the model from Example 3.9, the input and output are equal, and there are no leaks.
Nonetheless, the model is unidentifiable.

Example 5.9 (Identifiable, but distg(in,out) = 2). In the following model, the distance

of the shortest path from input to output is 2, and [17, Theorem 3.5] implies that the
model is generically locally identifiable.

@
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Example 5.10 (Identifiable, but |Leak| = 2). In the following model, there are 2 leaks
and [5, Corollary 3.27] implies that the model is generically locally identifiable.
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In spite of the above examples, we recall from Remark 3.6 that strongly connected
models (with one input and one output) with |Leak| > 3 (or, if input equals output,
|Leak| > 2) are unidentifiable.
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6. Discussion

In this work, we made substantial progress on the problem of parameter identifiability
for linear compartmental models. In particular, we expanded the class of linear com-
partmental models for which structural identifiability can be assessed directly from the
underlying graph structure. While previously this class contained only certain cycle mod-
els [17], some inductively strongly connected models, and their generalizations [5,31,32],
and was largely focused on the case where input and output were in the same compart-
ment, we have now added more inductively strongly connected models (Corollary 4.6)
and, significantly, all tree models with one input and one output with no restrictions
on the placement of the input and output. This includes a complete classification of
identifiability for the much-studied catenary and mammillary models (Theorem 5.2).

Going forward, a natural problem is to determine what happens when there are mul-
tiple leaks or more than one input or output, or when we go beyond tree models. While
Theorem 5.2 does not generalize to all strongly connected models (Section 5.3), a natural
first step is to analyze directed-cycle models with one input and one output. Some partial
results are known [17], but the problem remains open. Another way to generalize our
results is to allow for one-way flow instead of bidirectional flow between compartments
in tree models. One way to accomplish this is to use [20, Corollary 3.36] to combine
bidirectional tree models together over a (one-way) directed edge. Another possibility is
to add leaves to one-way “path” models, as in [5, Proposition 3.29].

Another contribution of our work comes from our results on how to construct new
identifiable models from models that are previously known to be identifiable (Theo-
rems 4.3 and 4.4). We desire more such results and anticipate that they will aid in
classifying identifiable models beyond tree models. A natural first step would be to ex-
tend our results on adding leaf edges ¢ = n, where n is a new compartment, to allow
new edges of the form i — n — j, with ¢ # j, which might be part of a cycle (some
related results are [31, Theorem 5.7] and [2, Proposition 4.14]).

Finally, we note that many of our results are proven using our novel combinatorial
formula for the coefficients of input-output equations (Theorem 3.1). This formula is
a new tool for attacking open problems, such as a conjecture concerning the equation
of the singular locus (essentially the locus of unidentifiable parameters) for tree models
[21]. Another potential application of Theorem 3.1 is to the important problem of finding
minimal sets of outputs [1] (or inputs [19]) for identifiability.
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