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Neural codes, represented as collections of binary strings called codewords, are
used to encode neural activity. A code is called convex if its codewords are
represented as an arrangement of convex open sets in Euclidean space. Previous
work has focused on addressing the question: how can we tell when a neural
code is convex? Giusti and Itskov (Neural Comput. 26:11 (2014), 2527–2540)
identified a local obstruction and proved that convex neural codes have no local
obstructions. The converse is true for codes on up to four neurons, but false in
general. Nevertheless, we prove that this converse holds for codes with up to
three maximal codewords, and, moreover, the minimal embedding dimension of
such codes is at most 2.

1. Introduction

The brain encodes spatial structure through neurons in the hippocampus known
as place cells, which are associated with regions of space called receptive fields.
Place cells fire at a high rate when the animal is in that receptive field. The firing
pattern of these neurons form what is called a neural code. A neural code is convex
if it is generated by receptive fields that are convex. Such convex receptive fields
are observed experimentally, so much work has focused on understanding which
neural codes are convex [Cruz et al. 2019; Curto et al. 2013; 2017; Goldrup and
Phillipson 2020; Gross et al. 2018; Jeffs and Novik 2021; Kunin et al. 2020].

Giusti and Itskov [2014] identified a combinatorial criterion, called a local ob-
struction, and proved that if a neural code is convex, then it has no local obstructions.
The converse is false: Lienkaemper et al. [2017] found a counterexample code
on five neurons with four maximal codewords. For codes on up to four neurons,
however, the converse is true [Curto et al. 2017]. Similarly, we prove that the
converse holds for codes with up to three maximal codewords, as follows.
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Theorem 1.1. Let C be a neural code with up to three maximal codewords. Then
C is convex if and only if C has no local obstructions. Additionally, the minimal
embedding dimension of such a code is at most 2 (that is, the convex receptive fields
can be drawn in 2).

Theorem 1.1 extends a prior result pertaining to the case of a unique maximal
codeword [Curto et al. 2017]. Another case when convexity is equivalent to having
no local obstructions is when all codewords have size up to 2 (that is, each codeword
has at most two active neurons) [Jeffs et al. 2019]. However, for codewords of
size up to 3, the equivalence is false; see the codes in [Cruz et al. 2019, §2.3] and
[Goldrup and Phillipson 2020, Theorem 4.1].

Our proofs are combinatorial in nature, and our construction of receptive fields
in 2 is inspired by a similar construction in [Curto et al. 2017]. We also rely on a
result of Cruz et al. [2019] which states that max-intersection-complete codes (that
is, codes that contain all possible intersections of maximal codewords) are convex.

This work is organized as follows. In Section 2, we recall definitions and
previous results. We prove Theorem 1.1 in Section 3 and then end with a discussion
in Section 4.

2. Background

In this section, we introduce definitions, notation, and previous results.

2A. Neural codes. In a biological context, a codeword represents a set of neurons
that fire together while no other neurons fire. A neural code is a set of such
codewords.

Definition 2.1. A neural code C on n neurons is a set of subsets of [n] (called code-
words), i.e., C ⊆ 2[n]. A maximal codeword of C is a codeword that is not properly
contained in any other codeword in C. A code C is max-intersection-complete if it
contains every intersection of two or more maximal codewords of C.

Definition 2.2. For a neural code C on n neurons and U = {U1, U2, . . . , Un} a
collection of subsets of a set X , we say U realizes C if a codeword σ is in C if and
only if


i∈σ Ui


∖


i /∈σ Ui is nonempty. By convention,


i∈∅Ui := X .

We will assume that all codes contain the empty set and will always take X = d

for some d; see [Chen et al. 2019, Remark 2.19].

Definition 2.3. A neural code C is convex if it can be realized by a set of convex
open sets U1, U2, . . . , Un ⊆ d . The smallest value of d for which this is possible
is the minimal embedding dimension of C, denoted by dim(C).

Example 2.4. Consider the code C = {1234, 12, 3, 4,∅}, where the maximal code-
word is in bold. A convex realization U = {U1, U2, U3, U4} of this code is depicted
in Figure 1.
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1234

4

12 3
—– : U1

- - - : U2

—– : U3

—– : U4

Figure 1. Convex realization of the code C = {1234, 12, 3, 4,∅}.

We recall the following result of Cruz et al. [2019, Theorem 1.2].

Proposition 2.5 (max-intersection-complete ⇒ convex). If C is a max-intersection-
complete neural code with exactly k maximal codewords, then C is convex and
dim(C) ≤ max{2, k − 1}.

2B. Simplicial complexes.

Definition 2.6. An abstract simplicial complex on n vertices is a nonempty set of
subsets ( faces) of [n] that is closed under taking subsets. Facets are the faces of a
simplicial complex that are maximal with respect to inclusion.

For a code C on n neurons, (C) is the smallest simplicial complex on [n] that
contains C:

(C) := {ω ⊆ [n] | ω ⊆ σ for some σ ∈ C}.

Note that two codes on n neurons have the same simplicial complex  if and only
if they have the same maximal codewords (which are the facets of ).

We recall the following monotonicity result of Cruz et al. [2019, Theorem 1.3],
which states that adding nonmaximal codewords to a code (as long as the new
codewords come from the simplicial complex of the code) preserves convexity.

Proposition 2.7 (convexity is monotone). Let C and D be neural codes such that
C ⊆ D ⊆ (C). If C is convex, then D is also convex and dim(D) ≤ dim(C) + 1.

Definition 2.8. For a face σ ∈ , the link of σ in  is the simplicial complex

Lkσ () := {ω ⊆  | σ ∩ ω = ∅ and σ ∪ ω ∈ }.

Example 2.9. Consider the neural code C = {1356, 123, 124, 12, 13, 3,∅}. The
simplicial complex  = (C) has facets {1356, 123, 124}. Depicted in Figure 2
are  and the link Lk{1}() of the triplewise intersection 1356 ∩ 123 ∩ 124 = 1.

Recall that a set is contractible if it is homotopy-equivalent to a single point. We
see in Figure 2 that Lk{1}() is contractible. In this example, the codeword 1 is
the intersection of three facets. Next, we recall what happens when only two facets
intersect; in this case the link may be noncontractible, as follows [Curto et al. 2017,
Lemma 4.7].
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Figure 2. The simplicial complex  with facets {1356, 123, 124}

(left) and the link Lk{1}() (right).

Lemma 2.10. Let σ be a face of a simplicial complex . If σ = τ1 ∩ τ2, where
τ1 and τ2 are distinct facets of , and σ is not contained in any other facet, then
Lkσ () is not contractible.

To state another useful lemma concerning links, we need the following definition.

Definition 2.11. For a collection of subsets W = {W1, W2, . . . , Wn} of a set X , the
nerve of W is the simplicial complex that records the intersection patterns among
the sets:

N (W) :=


I ⊆ [n]

 
i∈I

Wi is nonempty

.

Lienkaemper et al. [2017, Equation (2)] used the nerve lemma to prove the
following result.

Lemma 2.12. Let σ be a face of a simplicial complex , and let Lσ () be the set
of facets of the link Lkσ ():

Lσ () = {(M ∖ σ) | M is a facet of  that contains σ }.

Then the following homotopy equivalence holds: Lkσ () ≃ N (Lσ ()).

We will use Lemma 2.12 to analyze the case when σ is the intersection of three
facets.

2C. Local obstructions. The following definition is equivalent to the standard one
[Curto et al. 2017].

Definition 2.13. A neural code C with simplicial complex  = (C) has a local
obstruction if there exists a nonempty face σ ∈  such that the following hold:

(1) σ is the intersection of two or more facets of .

(2) The link Lkσ () is not contractible.

(3) σ /∈ C.
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The following result is due to Giusti and Itskov [2014].

Proposition 2.14. Every convex neural code has no local obstructions.

The minimal code of a simplicial complex , denoted by Cmin(), consists of

(1) all facets of ,

(2) all faces σ ∈  that are the intersection of two or more facets of  such that
Lkσ () is not contractible, and

(3) the empty set.

By Proposition 2.14, Cmin() is the unique minimal (with respect to inclusion) code
among all codes with simplicial complex  and no local obstructions.

Example 2.15. For the simplicial complex  in Example 2.9, the minimal code is
Cmin() = {1356, 123, 124, 12, 13,∅}.

As detailed in the Introduction, the converse of Proposition 2.14 is false in general
[Lienkaemper et al. 2017], but true in some cases, such as when all codewords have
size at most 2 [Jeffs et al. 2019] or for codes on up to four neurons [Curto et al.
2017]. Our main result, Theorem 1.1, gives another such class, a special case of
which is as follows.

Proposition 2.16 (convexity for codes with up to two maximal codewords). Assume
C is a neural code with exactly one or two maximal codewords. Then the following
are equivalent:

• C is convex.

• C has no local obstructions.

• C is max-intersection-complete.

Also, if C is convex, then dim(C) ≤ 2.

Proof. Let C be a neural code with exactly k maximal codewords, where k = 1
or k = 2. If C is max-intersection-complete, then Proposition 2.5 implies that C
is convex and dim(C) ≤ max{2, k − 1} = 2. Also, every convex code has no local
obstructions (Proposition 2.14). So, it remains only to show that if C has no local
obstructions, then C is max-intersection-complete. Accordingly, assume that C has
no local obstructions. If k = 1, then C has only one maximal codeword and so is
max-intersection-complete. Now assume that k = 2. Then (C) has exactly two
facets, which we denote by F1 and F2. So, σ := F1 ∩ F2 is the unique intersection
of two (or more) facets of (C).

To complete the proof, we must show that σ is a codeword of C. If σ = ∅,
then σ ∈ C (all codes in this article are assumed to contain the empty codeword)
and so we are done. Now assume that σ ̸= ∅. It follows from Lemma 2.10 that
the link Lkσ ((C)) is not contractible (here we use the fact that F1 and F2 are
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the unique facets of (C)). So, by the hypothesis that C has no local obstructions
(Definition 2.13), we conclude that σ ∈ C, as desired. □

3. Main results

The aim of this section is to prove our main result on codes with up to three maximal
codewords (Theorem 1.1). Our proof requires two preliminary results (Lemmas 3.1
and 3.3) which pertain to simplicial complexes like the one in Example 2.9. Specifi-
cally, the three facets of the simplicial complex are arranged in a certain way, which
we now define.

Let  be a simplicial complex with exactly three facets F1, F2, and F3. We say
that  satisfies the path-of-facets condition if exactly one of the following three
sets is empty (and the other two are nonempty): (F1 ∩ F2)∖ F3, (F1 ∩ F3)∖ F2,
and (F2 ∩ F3)∖ F1. The reason behind the name of this condition is shown in the
proof of the following lemma.

Lemma 3.1. Let  be a simplicial complex with exactly three facets F1, F2, and F3.
Then LkF1∩F2∩F3() is contractible if and only if  satisfies the path-of-facets
condition.

Proof. Let σ = F1 ∩ F2 ∩ F3. By Lemma 2.12, the link Lkσ () is homotopy-
equivalent to the nerve of Lσ () = {(F1∖σ), (F2∖σ), (F3∖σ)}. This nerve does
not contain a 2-simplex (i.e., a filled-in triangle) because the triplewise intersection3

i=1(Fi ∖ σ) is empty. So, the nerve is a graph on three vertices. The only such
graph that is contractible is the path

a∗

F j ∖ σ
b∗

Fk ∖ σ
b∗

Fℓ ∖ σ

(Here, j, k, ℓ form a permutation of 1, 2, 3.) We conclude that Lkσ () is con-
tractible if and only if (F j ∩Fk)∖σ ̸=∅, (Fk ∩Fℓ)∖σ ̸=∅, and (F j ∩Fℓ)∖σ =∅
(for some permutation j, k, ℓ of 1, 2, 3), which is easily seen to be equivalent to
the path-of-facets condition. □

The next result, Lemma 3.3, states that, when the path-of-facets condition holds,
the minimal code can be realized in  by convex open sets (i.e., open intervals). The
proof constructs such a realization, which we illustrate in the following example.

Example 3.2. Recall from Example 2.15 that for the simplicial complex  with
facets {1356, 123, 124}, the minimal code is Cmin()={1356, 123, 124, 12, 13,∅}.
A 1-dimensional convex realization U = {U1, U2, . . . , U6} is shown in Figure 3, and
the regions defined by this realization are labeled by the corresponding codewords
in Figure 4.



NEURAL CODES WITH THREE MAXIMAL CODEWORDS 339

0 1 2 3 4 5


U1
U2

U3
U4

U5
U6

Figure 3. Convex realization of {1356, 123, 124, 12, 13,∅} in .

124 12 123 13 1356 ∅∅


Figure 4. The realization in Figure 3, with regions labeled by codewords.

0 1 2 3 4 5

Fa Fa ∩ Fb Fb Fb ∩ Fc Fc ∅∅


Figure 5. Convex realization of Cmin() in .

Lemma 3.3. Let  be a simplicial complex with exactly three facets F1, F2, and F3.
Assume that  satisfies the path-of-facets condition. Then the minimal code Cmin()

is convex, and, moreover, dim(Cmin()) = 1.

Proof. Since  satisfies the path-of-facets condition, we can relabel the facets
by Fa, Fb, Fc so that (Fa ∩ Fb) ∖ Fc and (Fb ∩ Fc) ∖ Fa are nonempty, while
(Fa∩Fc)∖Fb is empty (that is, Fa∩Fc = Fa∩Fb∩Fc). Next, the link LkFa∩Fb∩Fc()

is contractible (by Lemma 3.1), so Fa ∩ Fb ∩ Fc /∈ Cmin(). On the other hand, by
a straightforward application of Lemma 2.10, the links of Fa ∩ Fb and Fb ∩ Fc are
both not contractible. We conclude that the minimal code is Cmin() = {Fa, Fb, Fc,

Fa ∩ Fb, Fb ∩ Fc,∅}. We will construct a convex open realization U = {Ui }i

of Cmin() in  such that the codewords appear in the order depicted in Figure 5
(which generalizes Figure 4). Accordingly, for each neuron i , we define the receptive
field Ui by

Ui :=



(0, 5) if i ∈ Fa ∩ Fb ∩ Fc,

(0, 3) if i ∈ (Fa ∩ Fb)∖ Fc,

(2, 5) if i ∈ (Fb ∩ Fc)∖ Fa,

(0, 1) if i ∈ Fa ∖ (Fb ∪ Fc),

(2, 3) if i ∈ Fb ∖ (Fa ∪ Fc),

(4, 5) if i ∈ Fc ∖ (Fa ∪ Fb).

We now show that the realization of U = {Ui }i contains all codewords in Cmin()

and no other codewords. It is evident, by construction, that each codeword of
Cmin() appears in the intervals indicated in Figure 5 (e.g., the codeword Fa is
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realized in the interval (0, 1)). So, all that is left to show is that no additional
codewords are realized at the endpoints of the intervals. Indeed, it is straightforward
to check that the endpoints 0, 1, 2, 3, 4, 5 give rise to the codewords ∅, Fa ∩ Fb,
Fa ∩ Fb, Fb ∩ Fc, Fb ∩ Fc, and ∅, respectively. □

We can now completely characterize convexity of codes C with three maximal
codewords. In what follows (see the proof of Theorem 3.4), we show that when
(C) does not satisfy the path-of-facets condition, we have

max-intersection-complete ⇐⇒ convex ⇐⇒ no local obstructions.

On the other hand, when (C) does satisfy the path-of-facets condition, we have
only “convex ⇔ no local obstructions”.

For convenience, we restate Theorem 1.1 as follows.

Theorem 3.4 (Theorem 1.1, restated). If C is a neural code with up to three maximal
codewords, then

• C is convex if and only if C has no local obstructions, and

• if C is convex, then dim(C) ≤ 2.

Proof. From Proposition 2.14 we know that convex codes have no local obstructions.
For the converse, let C be a code with up to three maximal codewords and no local
obstructions. We must show that C is convex and, moreover, dim(C) ≤ 2.

The case of one or two maximal codewords is Proposition 2.16. So, assume that C
has exactly three maximal codewords. We first consider the subcase when (C) sat-
isfies the path-of-facets condition. We have that Cmin((C)) ⊆ C ⊆ (C) (and (C)

is the simplicial complex of Cmin((C))). Thus, Lemma 3.3 and Proposition 2.7
together imply that C is convex and dim(C) ≤ 2.

We consider the remaining subcase, when (C) does not satisfy the path-of-facets
condition. We first claim that C is max-intersection-complete. To see this, let σ be
the intersection of two or three maximal codewords of C. If σ is the intersection
of two maximal codewords and is not contained in the third maximal codeword,
then Lemma 2.10 implies that Lkσ () is not contractible and so (as C has no local
obstructions) σ ∈ C. If, on the other hand, σ is the intersection of all three maximal
codewords, then, by Lemma 3.1, Lkσ () is again not contractible (because the
path-of-facets condition does not hold) and so (as before) σ ∈ C. Hence, our claim
holds, and so Proposition 2.5 implies that C is convex with dim(C) ≤ 2. □

Example 3.5. Recall from Example 3.2 that the following code has minimal
embedding dimension 1: Cmin() = {1356, 123, 124, 12, 13,∅}. By adding the
nonmaximal codewords {23, 24, 5, 6}, we obtain a code which we denote by D.
A 2-dimensional convex realization of D is depicted in Figure 6. This realization
is obtained by following the proof of Theorem 1.1 (which, via Proposition 2.7,
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124 123 135612 13

24 6

5

23

—– : U1

- - - : U2

—– : U3

—– : U4

- - - : U5

—– : U6

Figure 6. Convex realization of D = {1356, 123, 124, 12, 13, 23, 24, 5, 6,∅}.

relies on a construction of [Cruz et al. 2019]). Informally, the steps are as follows.
Starting from the 1-dimensional realization of Cmin((C)) in Figure 5, we “fatten”
each interval Ui into 2 and then intersect with an open ball. Then, for each
additional nonmaximal codeword τ , we “slice off” part of a region corresponding
to a codeword τ̃ for which τ ⊆ τ̃ .

Remark 3.6 (1-dimensional vs. 2-dimensional codes). Theorem 3.4 states that
convex codes with up to three maximal codewords have minimal embedding
dimension 1 or 2. To distinguish between these two possible dimensions, we refer
the reader to the classification of 1-dimensional codes due to Rosen and Yan [2017].

Remark 3.7 (bound on dimension). Recall the bound dim(C) ≤ max{2, k − 1},
where k is the number of maximal codewords, which holds for max-intersection-
complete codes (Proposition 2.5). Theorem 3.4 shows that this bound also holds
for convex codes with up to 3 maximal codewords. We do not know whether this
bound holds for all convex codes.

Remark 3.8 (open convex vs. closed convex codes). Convexity in Theorem 3.4
can be replaced by closed convexity (having a realization by convex sets that are
closed). Indeed, the realizations by convex, open sets that are used in our proofs
are easily seen to be nondegenerate, as defined in [Cruz et al. 2019, Theorem 2.12],
and so their results imply that taking closures of the open sets in a realization yields
a closed, convex realization.

We end this section by showing a code which has three maximal codewords and
does not satisfy the path-of-facets condition.
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123
23
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3

134

13 34
U1 U4

U2

Figure 7. Convex realization of C={123,134,234,13,23,34,3,∅}.
The sets U1, U2, and U4 are labeled, and U3 is the full hexagon.

Example 3.9. Consider the code C = {123, 134, 234, 13, 23, 34, 3,∅}. Letting
F1 = 123, F2 = 134, and F3 = 234 denote the three facets of (C), we have that
the three sets (F1 ∩ F2)∖ F3 = 1, (F1 ∩ F3)∖ F2 = 2, and (F2 ∩ F3)∖ F1 = 4 are
nonempty. Hence, the path-of-facets condition does not hold. Next, the code C is
max-intersection-complete, so we obtain a convex realization (shown in Figure 7)
using the construction due to Cruz et al. [2019] for max-intersection-complete codes.

4. Discussion

In general, it is difficult to determine whether a given code is convex [Kunin et al.
2020, Theorem 5]. Nevertheless, here we showed that this task is easy for codes that
have at most three maximal codewords: convexity for such codes is equivalent to
lacking local obstructions. Also, in this setting, open convexity and closed convexity
are equivalent (recall Remark 3.8). We note that neither of these equivalences holds
in general for codes with four or more maximal codewords [Cruz et al. 2019;
Lienkaemper et al. 2017].

It is also usually difficult to ascertain the minimal embedding dimension of a
convex code. In fact, there are few results in this direction, and many such results
only bound the dimension; see [Curto et al. 2017; Curto and Vera 2016; Gross et al.
2018]. It is therefore notable that we are able to achieve precise dimensions for a
family of codes (by Theorem 3.4 and Remark 3.6). Indeed, our results help clarify
which neural codes are easy to understand and which ones remain challenging.
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