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Abstract. Previous work on convexity of neural codes has produced codes that are open-convex
but not closed-convex---or vice-versa. However, why a code is one but not the other, and how to
detect such discrepancies are open questions. We tackle these questions in two ways. First, we
investigate the concept of nondegeneracy introduced by Cruz et al. We extend their results to show
that nondegeneracy precisely captures the situation when taking closures or interiors of open or closed
realizations, respectively, does not change the code that is realized. Second, we give the first general
criteria for precluding a code from being closed-convex (without ruling out open-convexity), unifying
ad-hoc geometric arguments in prior works. One criterion is built on a phenomenon we call a rigid
structure, while the other can be stated algebraically, in terms of the neural ideal of the code. These
results complement existing criteria having the opposite purpose: precluding open-convexity but not
closed-convexity. Finally, we show that a family of codes shown by Jeffs to be not open-convex is in
fact closed-convex and realizable in dimension three.
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1. Introduction. This work focuses on the following question: Which intersec-
tion patterns can be cut out by convex open sets in some Euclidean space, and which
by convex closed sets? Such intersection patterns are called neural codes, as they arise
in neuroscience as representations of the firing patterns of neurons called place cells.
A place cell in someone's brain fires precisely when the person is in a specific region
of space, called a place field [19]. Because experimental data have shown that place
fields are typically convex, we are interested in the question of which neural codes can
be realized by collections of convex open or convex closed regions. Such codes are,
respectively, open-convex and closed-convex .

The main way to show that a neural code is neither open-convex nor closed-
convex is to prove that it has what is called a local obstruction [1, 8, 15]. However, it
is possible to have no local obstruction and yet be non--open-convex [11, 17] or non--
closed-convex [2, 9] or both [6]. Indeed, there are neural codes that are open-convex

\ast 
Received by the editors October 12, 2021; accepted for publication (in revised form) August 24,

2022; published electronically January 20, 2023.
https://doi.org/10.1137/21M1452147
Funding: The first, second, and third authors initiated this research in the 2020 REU in the

Department of Mathematics at Texas A\&M University, supported by NSF grant DMS-1757872. The
fourth and fifth authors were supported by NSF grant DMS-1752672.

\dagger 
Department of Mathematics and Statistics, Loyola University Chicago, Chicago, IL 60660 USA

(pchan2@luc.edu).
\ddagger 
Department of Mathematics, Lafayette College, Easton, PA 18042 USA (krjohnston24

@gmail.com).
\S 
Department of Mathematics, Pennsylvania State University, State College, PA 16802 USA

(beforelentends@gmail.com).
\P 
Department of Mathematics, Texas A\&M University, College Station, TX 77843 USA

(amrp3@gatech.edu, annejls@math.tamu.edu).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

114

D
ow

nl
oa

de
d 

03
/1

0/
23

 to
 1

65
.9

1.
11

5.
10

4 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/21M1452147
mailto:pchan2@luc.edu
mailto:krjohnston24@gmail.com
mailto:krjohnston24@gmail.com
mailto:beforelentends@gmail.com
mailto:amrp3@gatech.edu
mailto:annejls@math.tamu.edu


NONDEGENERATE NEURAL CODES 115

but not closed-convex and vice-versa; in this article, we are interested in distinguishing
between these classes.

One way to investigate open-convexity versus closed-convexity codes is to see what
happens when we take closures or interiors of open or closed realizations, respectively.
We strengthen a result of Cruz et al. to show that their concept of nondegeneracy
[2] exactly captures the situation when taking closures or interiors yields another
realization of the code (Theorem 3.1), and so such codes are both open-convex and
closed-convex.

We are also interested in nonlocal obstructions to open- or closed-convexity. Cri-
teria precluding open-convexity arise from the concept of ``wheels"" [23] and related
ideas [11]. So far, however, there are no analogous criteria for ruling out closed-
convexity [6, Remark 3.5]. Accordingly, we give two such criteria, unifying ad hoc
geometric arguments in prior works [2, 9].

One criterion harnesses a phenomenon we call a rigid structure (see Definition 4.1
and Theorem 4.12). The criterion is similar in spirit to criteria based on wheels and
therefore is widely applicable. Our results here allow us to construct the first infinite
family of codes that are open-convex but not closed-convex (Theorem 4.31). Moreover,
for many codes, our criterion is straightforward to apply---simply by inspection of a
related graph (Theorem 4.15). In general, however, this first criterion can be difficult
to check.

Our second criterion, in contrast, can be read directly from the code; it asks
whether some codewords contain certain subsets of neurons (Theorem 5.1). This
criterion, while somewhat limited in application, nevertheless yields an algebraic sig-
nature of non--closed-convexity, arising in the neural ideal of the code (Corollary 5.8).
In this way, we mirror algebraic signatures that are known for local obstructions [4].

Finally, we investigate an infinite family of codes shown by Jeffs to be not open-
convex [11]. We show that these ``sunflower codes"" are closed-convex and, moreover,
realizable in dimension three (Theorem 6.3). This is the first family of codes known
to be closed-convex but not open-convex.

The outline of our work is as follows. Section 2 introduces neural codes, convexity,
nondegeneracy, and neural ideals. Section 3 contains our results on nondegeneracy and
embedding dimensions of codes. Our criteria for precluding closed-convexity appear
in sections 4 and 5, and then we present our closed-convex realization of sunflower
codes in section 6. We end with a discussion in section 7.

2. Background. In this section, we introduce convex neural codes (section
2.1), nondegenerate realizations of neural codes (section 2.2), and neural ideals
(section 2.3).

2.1. Neural codes and convexity. For a set Y \subseteq \BbbR d, we let int(Y ), cl(Y ),
and \partial Y denote the interior, closure, and boundary of Y , respectively. If \scrU =
\{ U1, U2, . . . ,Un\} is a collection of subsets of \BbbR d, we use the notation int(\scrU ) :=
\{ int(U1), int(U2), . . . ,int(Un)\} and cl(\scrU ) := \{ cl(U1), cl(U2), . . . , cl(Un)\} .

Below we largely follow the notation of Cruz et al. [2].

Definition 2.1. A neural code \scrC on n neurons is a set of subsets of [n] :=
\{ 1, 2, . . . , n\} , that is, \scrC \subseteq 2[n]. Each element of \scrC is a codeword.

For convenience, we often use a shorthand for codewords, e.g., 124 in place of
\{ 1, 2, 4\} .

Definition 2.2. Let \scrC be a code on n neurons, and let \tau \subseteq [n]. The code
obtained from \scrC by restricting to \tau is the neural code \scrC | \tau := \{ \sigma \cap \tau | \sigma \in \scrC \} .
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116 CHAN, JOHNSTON, LENT, RUYS DE PEREZ, AND SHIU

Definition 2.3. Let \scrU = \{ U1, U2, . . . , Un\} be a collection of sets in a stimulus
space X \subseteq \BbbR d.

(i) For \sigma \subseteq [n], the atom of \sigma with respect to \scrU , denoted by A\scrU 
\sigma , is the following

subset of X:

A\scrU 
\sigma :=

\Biggl( \bigcap 

i\in \sigma 
Ui

\Biggr) 
\smallsetminus 
\bigcup 

j /\in \sigma 
Uj .

By convention, the empty intersection is \cap i\in \emptyset Ui := X.
(ii) The neural code realized by \scrU and X, denoted by code(\scrU , X), is the neural

code on n neurons defined by

\sigma \in code(\scrU , X)\Leftarrow \Rightarrow A\scrU 
\sigma \not = \emptyset .

In this case, \scrU is a realization of \scrC = code(\scrU , X).

Definition 2.4. A neural code \scrC on n neurons is open-convex (or closed-convex)
if, for some \BbbR d, there exist

(i) a collection of convex open (or, respectively, closed) sets \scrU = \{ Ui\} ni=1 in \BbbR d,
and

(ii) a stimulus space X \subseteq \BbbR d that contains the union \cup ni=1Ui,
such that \scrC = code(\scrU , X). The minimum such value of d (or \infty if no such value

exists) is the open embedding dimension (respectively, closed embedding dimension)
of \scrC , which we denote by dimopen(\scrC ) (respectively, dimclosed(\scrC )).

Assumption 2.5. Unless otherwise specified, we will assume that all codes contain
the empty set as a codeword and that X = \BbbR d for some d (see [1, Remark 2.19]).

The main way to prove that a code is neither open-convex nor closed-convex is
to show that it has a ``local obstruction"" [3, 8] or a generalized such obstruction [1,
15]. (Having such an obstruction, however, is not necessary to be non--open-convex
or non--closed-convex [2, 17].) These obstructions are combinatorial and topological,
and we do not give a definition here.

Example 2.6 (open-convex but not closed-convex). To our knowledge, only four
neural codes in the literature have been shown to be open-convex but not closed-
convex. The first, a code on 6 neurons, was found by Cruz et al. [2, Lemma 2.9]:

\scrC Cr = \{ 123,126,156,234,345,456, 12, 16, 23, 34, 45, 56, \emptyset \} .

(Following the literature, the maximal codewords are in boldface.) Similarly,
Goldrup and Phillipson proved that the following three codes on 5 neurons are open-
convex but not closed-convex [9, Theorem 4.1]:

C6 = \{ 123,125,145,234, 12, 15, 23, 4, \emptyset \} ,
C10 = \{ 134,135,234,245,12, 13, 24, 34, 1, 2, 5, \emptyset \} ,
C15 = \{ 123,125,145,234,345, 12, 15, 23, 34, 45, \emptyset \} .

One aim of this work is to give general criteria that in particular show that the
codes \scrC Cr, C6, C10, and C15 are non--closed-convex. See Proposition 4.30 and
Example 5.2.
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NONDEGENERATE NEURAL CODES 117

∅

14 4 24

U2

4 34 U4

1U1 2 3 U3

123

Fig. 1. A closed-convex realization of the code in (1) (cf. [6, Figure 2]).

Example 2.7 (closed-convex but not open-convex). The following is the first code
that was shown to be closed-convex [2] but not open-convex (it is also the first code
known to lack local obstructions and yet be non--open-convex) [17, Theorem 3.1]:

\scrC  \star = \{ 2345,123,134,145, 13, 14, 23, 34, 45, 3, 4, \emptyset \} .

An infinite family of codes that are closed-convex but not open-convex appears
later in Theorem 6.3.

As mentioned above, codes with local obstructions are neither open-convex nor
closed-convex. Here, however, we are interested in codes without local obstructions.

Example 2.8 (neither open-convex nor closed-convex). The following code on 8
neurons is not closed-convex, despite having no local obstructions [6, Theorem 3.2]:

\scrC 8 = \{ 12378,1457,2456,3468, 278, 17, 38, 45, 46, 2, \emptyset \} .

This code is also not open-convex. Indeed, the code obtained from \scrC 8 by restrict-
ing to \{ 1, 2, 3, 4, 5, 6\} is (up to permuting neurons) the minimally non--open-convex
code in [12, Theorem 5.10], and restriction preserves convexity. Another example of
a non--open-convex and non--closed-convex code with no local obstructions is given in
[6, Theorem 3.11].

Examples 2.6 and 2.7 above feature codes with finite open embedding dimension,
but infinite closed embedding dimension---or vice-versa. Next, we see that even when
both embedding dimensions are finite, they can differ.

Example 2.9 (nonequality of open and closed embedding dimensions). The fol-
lowing code is both open-convex and closed-convex:

\scrC \theta := \{ 123,14,24,34, 1, 2, 3, 4, \emptyset \} .(1)

Indeed, a closed-convex realization in \BbbR 2 is shown in Figure 1, and an open-convex
realization in \BbbR 3 appears in [13, Example 5.5]. We claim that such convex realiza-
tions do not exist in lower dimensions, that is, dimclosed(\scrC \theta ) = 2 and dimopen(\scrC \theta ) = 3.
First, the open embedding dimension was shown in [3, Table 2]. Next, it is straight-
forward to check that \scrC \theta does not have a closed-convex realization in \BbbR (see the
results in [21]).
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D
ow

nl
oa

de
d 

03
/1

0/
23

 to
 1

65
.9

1.
11

5.
10

4 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



118 CHAN, JOHNSTON, LENT, RUYS DE PEREZ, AND SHIU

Remark 2.10. The open and closed embedding dimensions can differ by any
amount. In section 6, will see ``sunflower codes"" Sn with closed embedding dimension
at most 3 (Theorem 6.3), but open embedding dimension equal to n [13, section
5]. As for codes with larger closed embedding dimension than open, we posed this
question in an earlier version of this work, and, notably, Jeffs has now constructed such
codes [10].

2.2. Nondegenerate realizations of neural codes. We recall the following
definition introduced by Cruz et al. [2].

Definition 2.11. A collection of subsets \scrU = \{ Ui\} ni=1 of \BbbR d is nondegenerate if

(i) for every nonempty open set So \subseteq \BbbR d and every nonempty atom A\scrU 
\sigma , if

the intersection A\scrU 
\sigma \cap So is nonempty, then the interior is also nonempty:

int(A\scrU 
\sigma \cap So) \not = \emptyset ; and

(ii) for all nonempty \sigma \subseteq [n], the following containment holds: (
\bigcap 
i\in \sigma \partial Ui) \subseteq 

\partial (
\bigcap 
i\in \sigma Ui).

The following result is due to Cruz et al. [2, Lemma 2.11].

Lemma 2.12. Let \scrU = \{ Ui\} ni=1 be a collection of convex sets in \BbbR d. Then
(i) if every Ui is open and \scrU satisfies Definition 2.11(ii), then \scrU also satisfies

Definition 2.11(i);
(ii) if every Ui is closed and \scrU satisfies Definition 2.11(i), then \scrU also satisfies

Definition 2.11(ii).

Example 2.13. For the code \scrC = \{ 1,2, \emptyset \} , the open-convex realization in \BbbR given
by the intervals U1 = ( - 1, 0) and U2 = (0, 1) is degenerate, but U1 = ( - 1, 0) and
U2 = (1, 2) define a realization that is nondegenerate. Similarly, for \scrC = \{ 12, 1, 2, \emptyset \} ,
the closed-convex realization of U1 = [ - 1, 0] and U2 = [0, 1] is degenerate, while
U1 = [ - 1, 1] and U2 = [0, 2] define a realization that is nondegenerate. Finally, the
closed-convex realization shown in Figure 1 is degenerate, as the atom of the codeword
123 has empty interior.

The following result is also due to Cruz et al. [2, Theorem 2.12].

Proposition 2.14. Let \scrU = \{ Ui\} ni=1 be a nondegenerate collection of convex sets
in \BbbR d. Then

(i) if every Ui is open, then code(\scrU ,\BbbR d) = code(cl(\scrU ),\BbbR d); and
(ii) if every Ui is closed, then code(\scrU ,\BbbR d) = code(int(\scrU ),\BbbR d).
In the next section, we prove a converse to Proposition 2.14 (see Theorem 3.1).

Proposition 2.15. Let \scrC be a neural code. Let do (respectively, dc) be the min-
imum value (or \infty if no such value exists) such that \scrC = code(\scrU ,\BbbR do) (respectively,
\scrC = code(\scrU ,\BbbR dc)) for some nondegenerate collection of convex open (respectively,
closed) sets \scrU in \BbbR do (respectively, \BbbR dc). Then do = dc.

Proof. The first implication of Proposition 2.14 implies the inequality do \geq dc,
and the second implication implies the opposite inequality, d0 \leq dc.

In light of Proposition 2.15, we introduce the following definition, which captures
the minimal dimension in which a code has a nondegenerate open-convex or closed-
convex realization.

Definition 2.16. The nondegenerate embedding dimension of a neural code \scrC ,
denoted by dimnondeg(\scrC ), is the value of do = dc in Proposition 2.15.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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NONDEGENERATE NEURAL CODES 119

Proposition 2.17. For every neural code \scrC , the following inequalities hold:

dimopen(\scrC ) \leq dimnondeg(\scrC ) and dimclosed(\scrC ) \leq dimnondeg(\scrC ).(2)

Proof. Every nondegenerate, open-convex (respectively, closed-convex) realization
of \scrC is also an open-convex (respectively, closed-convex) realization of \scrC .

We will investigate when the inequalities (2) are equalities (for instance, see
Theorem 3.3). The following examples show that these inequalities are not equal-
ities in general.

Example 2.18. We saw that the code \scrC \theta in Example 2.9 satisfies dimopen(\scrC \theta ) =
3 and dimclosed(\scrC \theta ) = 2. We claim that dimnondeg(\scrC \theta ) = 3. Indeed, viewing the
3-dimensional realization of \scrC \theta in [13, Example 5.5] as a closed realization, it is easy
to check that Definition 2.11(i) holds, and so by Lemma 2.12(ii), the realization is
nondegenerate. Now Proposition 2.17 implies that dimnondeg(\scrC \theta ) = 3.

Other codes with dimclosed(\scrC ) < dimnondeg(\scrC ) are found in [13, section 6] and [6,
Lemma 3.3].

Next, we consider some related questions.

Question 2.19.

(1) Is there a code \scrC with dimopen(\scrC ) < dimnondeg(\scrC ) <\infty ?
(2) Is there a code \scrC with dimopen(\scrC ) < \infty and dimclosed(\scrC ) < \infty , but

dimnondeg(\scrC ) =\infty ?

We posed these questions in an earlier version of this work, and recently Jeffs
resolved both questions affirmatively [10]. Notably, his constructions rely on our
theory of rigid structures, which appears later in this article (section 4).

In Question 2.19(1), if we remove the requirement that the nondegenerate em-
bedding dimension is finite, then we can find several such codes, as in the following
example.

Example 2.20. For codes \scrC that are open-convex but not closed-convex (such as
those in Example 2.6), dimopen(\scrC ) <\infty while dimnondeg(\scrC ) =\infty . Similarly, for codes
that are closed-convex but not open-convex (as in Example 2.7), dimclosed(\scrC ) < \infty 
but dimnondeg(\scrC ) =\infty .

2.3. The neural ideal and its canonical form. In this subsection, we intro-
duce neural ideals, which capture all the information in a neural code. Neural ideals
have been harnessed to study convexity and other properties of neural codes [4, 5, 7,
16, 20, 22].

A pseudo-monomial in \BbbF 2[x1, x2, . . . , xn] is a polynomial of the form

f =
\prod 

i\in \sigma 
xi
\prod 

j\in \tau 
(1 + xj),

where \sigma , \tau \subseteq [n] with \sigma \cap \tau = \emptyset . Each v \in \{ 0, 1\} n defines a pseudo-monomial \rho v,
which is the characteristic function for v (i.e., \rho v(x) = 1 if and only if x = v):

\rho v :=

n\prod 

i=1

(1 - vi  - xi) =
\prod 

\{ i| vi=1\} 
xi

\prod 

\{ j| vj=0\} 
(1 + xj).

For a codeword \sigma \subseteq [n] (e.g., \sigma = 134 with n = 4), we let v(\sigma ) \in \{ 0, 1\} n denote
the corresponding 0/1 vector (e.g., v(\sigma ) = (1, 0, 1, 1)). That is, v(\sigma )i = 1 if and only
if i \in \sigma .
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D
ow

nl
oa

de
d 

03
/1

0/
23

 to
 1

65
.9

1.
11

5.
10

4 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



120 CHAN, JOHNSTON, LENT, RUYS DE PEREZ, AND SHIU

Definition 2.21. Let \scrC be a neural code on n neurons. The neural ideal J\scrC of \scrC 
is the ideal in \BbbF 2[x1, x2, . . . , xn] generated by all characteristic functions \rho v for v \not \in \scrC :

J\scrC := \langle \{ \rho v | v \not \in \scrC \} \rangle .

A pseudo-monomial f in an ideal J in \BbbF 2[x1, x2, . . . , xn] is minimal if there does
not exist a pseudo-monomial g \in J , where g \not = f , such that f = gh for some h \in 
\BbbF 2[x1, x2, . . . , xn].

Definition 2.22. The canonical form of a neural ideal J\scrC , which we denote by
CF(J\scrC ), is the set of all minimal pseudo-monomials of J\scrC .

The canonical form CF(J\scrC ) is a generating set for the neural ideal J\scrC [5], and
there is software for efficiently computing J\scrC and CF(J\scrC ) [20].

Example 2.23. The canonical forms for the codes in Example 2.6 are as follows:

CF(JC6)

= \{ (x1 + 1)x5, (x2 + 1)x3, x3x5, (x1 + 1)x2(x3 + 1), x1x2x4, x2(x3 + 1)x4,

x2x4x5, x1(x2 + 1)(x5 + 1), x1x4(x5 + 1), x1x3x4\} ,
CF(JC10)

= \{ (x2 + 1)(x3 + 1)x4, (x1 + 1)x3(x4 + 1), x1x4x5, (x2 + 1)x4x5,

(x1 + 1)x3x5, x2x3x5, x3x4x5, x1(x3 + 1)x4, x1(x3 + 1)x5,

x1x2x3, x1x2x4, x1x2x5, x2x3(x4 + 1), x2(x4 + 1)x5\} ,
CF(JC15)

= \{ x1(x2 + 1)(x5 + 1), x1x4(x5 + 1), (x3 + 1)x4(x5 + 1), (x1 + 1)x2(x3 + 1),

x1x2x4, x2(x3 + 1)x4, x2x4x5, x1x3x4, (x1 + 1)x2x5, (x1 + 1)(x4 + 1)x5,

x1(x2 + 1)x3, (x2 + 1)x3(x4 + 1), x1x3x5, x2x3x5, x3(x4 + 1)x5\} .

Pseudo-monomials in J\scrC (and thus in the canonical form) can be translated into
relationships among receptive fields. To state this result, we need the following nota-
tion for \sigma \subseteq [n]:

x\sigma :=
\prod 

i\in \sigma 
xi and U\sigma :=

\bigcap 

i\in \sigma 
Ui.

(As mentioned earlier, recall that the empty intersection is the full space X.) The
following result is due to Curto et al. [5, Lemma 4.2].

Lemma 2.24. Let X be a stimulus space, let \scrU = \{ Ui\} ni=1 be a collection of
subsets of X, and consider the code \scrC = code(\scrU , X). Then for every pair of subsets
\sigma , \tau \subseteq [n],

x\sigma 
\prod 

i\in \tau 
(1 + xi) \in J\scrC \Leftarrow \Rightarrow U\sigma \subseteq 

\bigcup 

i\in \tau 
Ui.

In particular, x\sigma \in J\scrC \Leftarrow \Rightarrow U\sigma = \emptyset .
The relations U\sigma = \emptyset and U\sigma \subseteq \cup i\in \tau Ui, as long as \sigma \cap \tau = \emptyset and U\sigma \cap Ui \not = \emptyset 

for all i \in \tau , are called receptive-field relationships (RF relationships). There are
more types of RF relationships [5, 7, 18], but here we do not need them. We will use
Lemma 2.24 in section 5 to prove a criterion that precludes closed-convexity.
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NONDEGENERATE NEURAL CODES 121

3. Degenerate and nondegenerate codes. The main result of this section,
Theorem 3.1, shows that the concept of nondegeneracy exactly captures when the
operations of taking interiors or closures yield the same code, thereby clarifying (as
Cruz et al. articulated [2]) that nondegeneracy is the ``correct"" setting for studying
convexity of neural codes.

Theorem 3.1. Let \scrU = \{ Ui\} ni=1 be a collection of convex sets in \BbbR d.
(i) Assume every Ui is open. Then the collection \scrU is nondegenerate if and only

if code (\scrU ,\BbbR d) = code(cl(\scrU ),\BbbR d).
(ii) Assume every Ui is closed. Then the collection \scrU is nondegenerate if and

only if code (\scrU ,\BbbR d) = code(int(\scrU ),\BbbR d).
Theorem 3.1 follows directly from Proposition 2.14 (due to Cruz et al. [2]) and

Proposition 3.2.

Proposition 3.2. Let \scrU = \{ Ui\} ni=1 be a degenerate collection of convex sets in
\BbbR d. Then

(i) if every Ui is open, then code(\scrU ,\BbbR d) \not = code(cl(\scrU ),\BbbR d); and
(ii) if every Ui is closed, then code(\scrU ,\BbbR d) \not = code(int(\scrU ),\BbbR d).
Proof. (i) Assume that \scrU is degenerate and every Ui is open and convex. By

Lemma 2.12, there exists some nonempty \sigma \subseteq [n] such that

\bigcap 

i\in \sigma 
\partial Ui \nsubseteq \partial 

\Biggl( \bigcap 

i\in \sigma 
Ui

\Biggr) 
.(3)

We claim that \cap i\in \sigma Ui = \emptyset . To prove our claim, assume for contradiction that
\cap i\in \sigma Ui \not = \emptyset , and so there exists some y \in \cap i\in \sigma Ui. (See Figure 2 for the case of
| \sigma | = 2.) We will show the containment \cap i\in \sigma \partial Ui \subseteq \partial (\cap i\in \sigma Ui), contradicting (3).
Accordingly, let x \in \cap i\in \sigma \partial Ui. By construction, x \not = y, because x is on the boundary
of the open set Ui (for any i \in \sigma ) and so is not in Ui (whereas y \in Ui). Consider
the line segment L from x (which is in \partial Ui for all i \in \sigma ) to y (which is in Ui for all
i \in \sigma ). Let \widetilde L denote the line that is the affine span of L (so, L \subseteq \widetilde L). Then, for
i \in \sigma , the intersection Ui \cap \widetilde L, which contains y, is an open subinterval of \widetilde L (because
Ui is open and convex), and it is straightforward to check that x is an endpoint of
this subinterval. We conclude that L\smallsetminus \{ x\} \subseteq Ui (for all i \in \sigma ).

Now, take an open neighborhood B (in \BbbR d) of x. Fix i0 \in \sigma . As x \in \partial Ui0 , there
exists a point z \in B \smallsetminus Ui0 and so z \in B \smallsetminus (\cap i\in \sigma Ui). On the other hand, every point
z\prime on the line segment L that is sufficiently close to (but not equal to) x is in B and
also in Ui for all i \in \sigma . Hence, B contains a point z\prime that is in \cap i\in \sigma Ui and also a
point z that is not (see Figure 2). We conclude that x \in \partial (\cap i\in \sigma Ui), and so we have
reached a contradiction. Our claim therefore is true.

Our claim implies that no codeword of code(\scrU ,\BbbR d) contains \sigma . On the other hand,
the containment (3) implies that

\bigcap 
i\in \sigma \partial Ui is nonempty, and hence

\bigcap 
i\in \sigma cl(Ui) is also

nonempty. So, some codeword of code(cl(\scrU ),\BbbR d) contains \sigma , and thus code(\scrU ,\BbbR d) \not =
code(cl(\scrU ),\BbbR d).

(ii) Assume that \scrU is degenerate and every Ui is closed and convex. By Lemma
2.12, there exist a nonempty open set So \subseteq \BbbR d and an atom A\scrU 

c such that the following
set is nonempty but has empty interior:

A\scrU 
c \cap So =

\Biggl( \bigcap 

i\in c
Ui

\Biggr) 
\cap 

\left( 
 \bigcap 

j /\in c
(\BbbR d \smallsetminus Uj)

\right) 
 \cap So =

\Biggl( \bigcap 

i\in c
Ui

\Biggr) 
\cap Z,(4)
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x

y

L

B
z

z

U1 U2

Fig. 2. Ideas in the proof of Proposition 3.2(i), when \sigma = \{ 1, 2\} .

where Z := (
\bigcap 
j /\in c(\BbbR d \smallsetminus Uj)) \cap So. This set Z is open (as it is the intersection of

open sets). Therefore, taking the interiors of the sets in (4) (and recalling that taking
interiors and intersections commute; see, e.g., [2, Lemma A.1]) yields

\emptyset = int
\bigl( 
A\scrU 
c \cap So

\bigr) 
=

\Biggl( \bigcap 

i\in c
int(Ui)

\Biggr) 
\cap int(Z) =

\Biggl( \bigcap 

i\in c
int(Ui)

\Biggr) 
\cap Z.(5)

We claim that the intersection
\bigcap 
i\in c int(Ui) is empty. We prove this claim by

contradiction. Accordingly, assume there exists y \in \bigcap i\in c int(Ui). As the set in (4) is
nonempty, there exists x \in (

\bigcap 
i\in c Ui) \cap Z. Let L denote the line segment from x to

y (the | c| = 2 case looks much like what is depicted in Figure 2). For i \in c, we have
the containment (L \smallsetminus \{ x\} ) \subseteq int(Ui), because x \in Ui, y \in int(Ui), and Ui is convex.
Next, x is in the open set Z, so all points z\prime on L that are sufficiently close to, but
not equal to, x are also in Z. Hence, all such points z\prime are in (

\bigcap 
i\in c int(Ui))\cap Z, which

contradicts (5). So, our claim is true.
We conclude the following:

Aint(\scrU )
c =

\Biggl( \bigcap 

i\in c
int(Ui)

\Biggr) 
\smallsetminus 

\left( 
 \bigcup 

j /\in c
int(Uj)

\right) 
 \subseteq 

\bigcap 

i\in \sigma 
int(Ui) = \emptyset .

Thus, c is not a codeword of code(int(\scrU ),\BbbR d), but is a codeword of
code(\scrU ,\BbbR d).

We end this section by proving one case when the inequalities (2) on embedding
dimensions from Proposition 2.17 are in fact equalities---and then discussing two more
such cases.

Theorem 3.3. Let \scrC be a neural code on n neurons. If n \leq 3, then all embedding
dimensions are equal:

dimopen(\scrC ) = dimnondeg(\scrC ) = dimclosed(\scrC ).(6)

Proof. For n \leq 2, this result is easy to check (dimnondeg(\scrC ) = 1 for all such codes).
Assume n = 3. By Proposition 2.17, it suffices to prove the desired equalities (6)

for codes \scrC that are open-convex or closed-convex.
First consider the case when \scrC is open-convex. A list of these codes and their

open embedding dimensions can be read off (through their simplicial complex) from
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NONDEGENERATE NEURAL CODES 123

C6|123515 125 12 123 23

U4145 4 234

Fig. 3. The code C6, viewed as the union of two rigid structures. Dotted lines indicate pairs
of codewords arising from distinct rigid structures, with one contained in the other.

[3, Table 2]. For those codes with dimopen(\scrC ) = 1, the equalities (6) are easy to check.
Now consider the case when dimopen(\scrC ) = 2. An open-convex realization \scrU (in \BbbR 2)
of \scrC is shown in [3, Figure 7], and cl(\scrU ) is easily seen to also realize \scrC . We conclude
from Theorem 3.1 that \scrU is nondegenerate, and so the equalities (6) hold.

Now consider the remaining case: \scrC is closed-convex. Then \scrC has no local ob-
structions [2, Proposition 2.6] and so (as n \leq 3) is open-convex [3]. So, by the prior
case, we are done.

Theorem 3.3 does not extend to codes on n = 4 neurons (recall the code in
Examples 2.9 and 2.18).

Remark 3.4. In a prior version of this article, we posed the following two conjec-
tures, which, if true, would yield more cases in which Theorem 3.3 could be extended:

(1) For a code \scrC , if dimopen(\scrC ) = 1 or dimclosed(\scrC ) = 1, then dimnondeg(\scrC ) = 1.
(2) For a code \scrC , if dimopen(\scrC ) = dimclosed(\scrC ), then dimopen(\scrC ) = dimnondeg(\scrC ).

Both conjectures have been resolved recently by Jeffs [10]. The first conjecture is true.
The second, however, is not. Interestingly, Jeffs's constructions for this second result
rely in a crucial way on our theory of rigid structures, which is the topic we turn to
next.

4. Precluding closed-convexity using rigid structures. In this section, we
elucidate the geometric mechanisms that underlie the known cases of neural codes
that are open-convex but non--closed-convex. Specifically, we give a criterion for non--
closed-convexity in terms of ``rigid structures"" (Theorem 4.12), a special case of which
can be read directly from the code (Theorem 4.15), and then show that these results
apply to the relevant codes we saw earlier (Proposition 4.30).

As this section is somewhat long, we give the reader a more detailed outline.
In section 4.1, we define rigid structures and codeword-containment graphs (Defi-
nitions 4.1 and 4.9) and use these concepts to preclude closed-convexity. Next, in
section 4.2, we give sufficient conditions for rigidity when the codeword-containment
graph is a path (Proposition 4.18), and then, in section 4.3, we use that result to
prove Theorem 4.15. Finally, we illustrate our results through many examples in
section 4.4.

4.1. Rigid structures. We begin by motivating the idea behind rigid structures
through the code C6 = \{ 123,125,145,234, 12, 15, 23, 4, \emptyset \} from Example 2.6. In
Figure 3, we show the nonempty codewords divided into two pieces: The top can be
viewed as the restriction of the code to the set of neurons \{ 1, 2, 3, 5\} , and the bottom
is U4. Also, each piece (as we will see below) is ``rigid"" in the sense that the union (of
the corresponding atoms) is convex in every closed-convex realization (of a restricted
code). The reason for non--closed-convexity is now apparent: In order for the ends of
the two rigid structures to fit together---the atom for 145 is contained in the region

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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124 CHAN, JOHNSTON, LENT, RUYS DE PEREZ, AND SHIU

Table 1.
For each code, we list two rigid structures and the resulting distinguished subcode. See Propo-

sition 4.30.

Code (R,\bigcirc ) (\frakC ,\bigtriangleup ) Distinguished subcode

C6 (1235,\cup ) 4 \{ 145, 234\} 
C10 (34,\cup ) 5 \{ 135, 245\} 
C15 (345,\cup ) (12,\cap ) \{ 123, 125\} 
\scrC \mathrm{C}r (1456,\cup ) (23,\cap ) \{ 123, 234\} 

indicated by 15 and similarly for 234 and 23---one of the structures must ``bend"" and
therefore is not convex.

Definition 4.1. Let \scrC be a code on n neurons. Let \emptyset \not = \sigma \subseteq [n]. A pair (\sigma ,\bigcirc )
is a rigid structure of \scrC if one of the following holds:

(1) \bigcirc = \cap , or
(2) \bigcirc = \cup , and there exists a set \sigma \prime with \sigma \subseteq \sigma \prime \subseteq [n] such that the union \cup i\in \sigma Ui

is convex in every closed-convex realization \scrU = \{ Ui\} i\in \sigma \prime of \scrC | \sigma \prime .
Remark 4.2. Definition 4.1(1) lacks an extra condition, because the intersection

\cap i\in \sigma Ui (unlike the union in Definition 4.1(2)) is automatically convex in every convex
realization.

Remark 4.3. In Definition 4.1(2), we can always choose \sigma \prime = [n], but checking this
condition is generally easier when \sigma \prime \subsetneq [n]. Indeed, in this section, we are interested
in proving that a code \scrC has no closed-convex realization---but the restricted code
\scrC | 
\sigma 
\prime may have such realizations, and so may be easier to analyze.

Example 4.4. Let \scrC be a code on n neurons. If there is a neuron j that is
contained in every nonempty codeword of \scrC , then ([n],\cup ) is a rigid structure. Indeed,
for such a code \scrC , we have \cup i\in [n]Ui = Uj for every convex realization \scrU = \{ Ui\} ni=1.

In general, it is challenging to check whether a given pair (\sigma ,\cup ) is a rigid structure,
but we succeed in obtaining a sufficient result in this direction (Proposition 4.18).
Before turning to that topic, our aim is to state and prove our criterion for non--
closed-convexity (Theorem 4.12). To do so, we need several definitions and lemmas.
We begin by formalizing how two rigid structures ``fit together.""

Definition 4.5. Let \scrC be a code on n neurons. Assume that (R,\bigcirc ) and (\frakC ,\bigtriangleup )
are rigid structures of \scrC . The distinguished subcode arising from (R,\bigcirc ) and (\frakC ,\bigtriangleup )
is the neural code consisting of all codewords \sigma \in \scrC such that

(1) if \bigcirc = \cup , then R \cap \sigma \not = \emptyset ;
(2) if \bigcirc = \cap , then R \subseteq \sigma ;
(3) if \bigtriangleup = \cup , then \frakC \cap \sigma \not = \emptyset ; and
(4) if \bigtriangleup = \cap , then \frakC \subseteq \sigma .
Remark 4.6. In Definition 4.5, the roles of R and \frakC are symmetric; that is,

conditions (1) and (2) match conditions (3) and (4), respectively.

Remark 4.7. Distinguished subcodes do not contain the empty codeword.

Examples of distinguished subcodes appear later in this section (see Table 1).

Lemma 4.8 (realization of distinguished subcode). Let \scrC be a code on n neurons.
Assume that (R,\bigcirc ) and (\frakC ,\bigtriangleup ) are rigid structures of \scrC . Let \scrC \prime be the distinguished
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NONDEGENERATE NEURAL CODES 125

subcode arising from (R,\bigcirc ) and (\frakC ,\bigtriangleup ). Let \scrU = \{ Ui\} ni=1 be a realization of \scrC in
some \BbbR d. Let

\scrU \prime = \{ Ui\prime \} i\in [n] := \{ Ui \cap (\bigcirc j\in RUj) \cap (\bigtriangleup k\in \frakC Uk)\} i\in [n] .

Then \scrC \prime is the code realized by \scrU \prime ; that is, \scrC \prime = code(\scrU \prime , X), where X = \cup i\in [n]Ui
\prime .

Proof. Consider \sigma \subseteq [n]. By definition, \sigma \in \scrC \prime if and only if \sigma \in \scrC and conditions
(1)--(4) in Definition 4.5 hold. This is equivalent to the following conditions:

A\scrU 
\sigma \not = \emptyset and A\scrU 

\sigma \subseteq (\bigcirc j\in RUj) and A\scrU 
\sigma \subseteq (\bigtriangleup k\in \frakC Uk) ;

i.e., A\scrU 
\sigma \cap (\bigcirc j\in RUj) \cap (\bigtriangleup k\in \frakC Uk) is nonempty. Hence, \sigma \in \scrC \prime if and only if \sigma \in 

code(\scrU \prime , X).

Definition 4.9. The codeword-containment graph of a neural code \scrC is the
(undirected) graph with vertex set consisting of all codewords of \scrC and edge set \{ (\sigma , \tau ) | 
\sigma \subsetneq \tau or \sigma \supsetneq \tau \} .

Example 4.10. The codeword-containment graph of C6| 1235, displayed below,
mirrors the top part of Figure 3.

NONDEGENERATE NEURAL CODES 11

Remark 4.3. In Definition 4.1(2), we can always choose σ′ = [n], but checking this
condition is generally easier when σ′ ⊊ [n]. Indeed, in this section, we are interested
in proving that a code C has no closed-convex realization – but the restricted code
C|σ′ may have such realizations, and so may be easier to analyze.

Example 4.4. Let C be a code on n neurons. If there is a neuron j that is contained
in every nonempty codeword of C, then ([n],∪) is a rigid structure. Indeed, for such
a code C, we have ∪i∈[n]Ui = Uj for every convex realization U = {Ui}ni=1.

In general, it is challenging to check whether a given pair (σ,∪) is a rigid structure,
but we succeed in obtaining a sufficient result in this direction (Proposition 4.18).
Before turning to that topic, our aim is to state and prove our criterion for non-
closed-convexity (Theorem 4.12). To do so, we need several definitions and lemmas.
We begin by formalizing how two rigid structures “fit together”.

Definition 4.5. Let C be a code on n neurons. Assume that (R,⃝) and (C,△)
are rigid structures of C. The distinguished subcode arising from (R,⃝) and (C,△),
is the neural code consisting of all codewords σ ∈ C such that:

(1) if ⃝ = ∪, then R ∩ σ ̸= ∅,
(2) if ⃝ = ∩, then R ⊆ σ,
(3) if △ = ∪, then C ∩ σ ̸= ∅, and
(4) if △ = ∩, then C ⊆ σ.
Remark 4.6. In Definition 4.5, the roles of R and C are symmetric, that is, con-

ditions (1) and (2) match conditions (3) and (4), respectively.

Remark 4.7. Distinguished subcodes do not contain the empty codeword.

Examples of distinguished subcodes appear later in this section (see Table 1).

Lemma 4.8 (realization of distinguished subcode). Let C be a code on n neurons.
Assume that (R,⃝) and (C,△) are rigid structures of C. Let C′ be the distinguished
subcode arising from (R,⃝) and (C,△). Let U = {Ui}ni=1 be a realization of C in
some Rd. Let

U ′ = {U ′
i}i∈[n] := { Ui ∩ (⃝j∈RUj) ∩ (△k∈CUk) }i∈[n] .

Then C′ is the code realized by U ′, that is, C′ = code(U ′, X), where X = ∪i∈[n]U
′
i .

Proof. Consider σ ⊆ [n]. By definition, σ ∈ C′ if and only if σ ∈ C and condi-
tions (1)–(4) in Definition 4.5 hold. This is equivalent to the following conditions:

AU
σ ̸= ∅ and AU

σ ⊆ (⃝j∈RUj) and AU
σ ⊆ (△k∈CUk) ,

i.e., AU
σ ∩ (⃝j∈RUj) ∩ (△k∈CUk) is nonempty. Hence, σ ∈ C′ if and only if σ ∈

code(U ′, X).

Definition 4.9. The codeword-containment graph of a neural code C is the
(undirected) graph with vertex set consisting of all codewords of C and edge set {(σ, τ) |
σ ⊊ τ or σ ⊋ τ}.

Example 4.10. The codeword-containment graph of C6|1235 mirrors the top part
of Figure 3:

15 125 12 123 23

The following lemma is essentially due to Jeffs, Lienkaemper, and Youngs [14,
Lemma 2.1].

The following lemma is essentially due to Jeffs, Lienkaemper, and Youngs [14,
Lemma 2.1].

Lemma 4.11. Let \scrU = \{ Ui\} ni=1 be a collection of closed convex sets in \BbbR d. Let
\scrC = code(\scrU , X), for some stimulus space X \subseteq \BbbR d that contains every Ui. Let L be a
line segment in \BbbR d, and let A\scrU 

\sigma 1
, A\scrU 

\sigma 2
, . . . , A\scrU 

\sigma q
be the atoms that L intersects (in order,

from one endpoint of L to the other, so an atom may appear more than once in this
list). Then (\sigma 1, \sigma 2), (\sigma 2, \sigma 3), . . ., (\sigma q - 1, \sigma q) are edges in the codeword-containment
graph of \scrC .

Proof. Each intersection Ui \cap L is either empty or a closed interval in L. Label
the set of all endpoints of these intervals as follows.

12 CHAN, JOHNSTON, LENT, RUYS DE PEREZ, AND SHIU

Lemma 4.11. Let U = {Ui}ni=1 be a collection of closed, convex sets in Rd. Let
C = code(U , X), for some stimulus space X ⊆ Rd that contains every Ui. Let L be a
line segment in Rd, and let AU

σ1
, AU

σ2
, . . . , AU

σq
be the atoms that L intersects (in order,

from one endpoint of L to the other, so an atom may appear more than once in this
list). Then (σ1, σ2), (σ2, σ3), . . . , (σq−1, σq) are edges in the codeword-containment
graph of C.

Proof. Each intersection Ui ∩ L is either empty or a closed interval in L. Label
the set of all endpoints of these intervals as follows:

p0 p1 p2 . . . pT
L

By construction, each open interval (pj , pj+1), for j = 0, 1, . . . , T −1, is contained
in some atom AU

νj (with νj ∈ C). So, it suffices to show that the atom containing the

endpoint pj , denoted by AU
τj , satisfies νj ⊆ τj (and so, by symmetry, νj ⊆ τj+1 also

holds).
Let i ∈ [n]. We consider three cases. If pj is the right endpoint of Ui ∩ L, then

i ∈ (τj ∖ νj). If pj is the left endpoint of Ui ∩ L, then i is in both τj and νj . If pj
is not an endpoint of Ui ∩ L, then i is either in both τj and νj or in neither set. We
therefore obtain the desired containment νj ⊆ τj .

The intuition behind the next result is shown in Figure 4: When the intersection
between two rigid structures R and C is disconnected (more precisely, when the atoms
they have in common generate a disconnected codeword-containment graph), then one
of the structures cannot be convex and hence the code is not closed-convex.

R

C

Fig. 4. Idea behind Theorem 4.12: If the intersection of two rigid structures R and C is
disconnected, then at least one of R and C is non-convex.

Theorem 4.12 (criterion for precluding closed-convexity). Let C be a code on
n neurons. Assume that (R,⃝) and (C,△) are rigid structures of C. Let C′ be the
distinguished subcode arising from (R,⃝) and (C,△). If the codeword-containment
graph of C′ is disconnected, then C is not closed-convex.

Proof. Assume that (R,⃝) and (C,△) are rigid structures of C, and assume that
the resulting distinguished subcode, denoted by C′, is disconnected.

Suppose for contradiction that there is a closed-convex realization U = {Ui}ni=1

of C. Let σ and τ be codewords of C in distinct connected components of the codeword-
containment graph of C′. Let L be a line segment from a point in the atom AU

σ to
a point in the atom AU

τ . By Lemma 4.8, both endpoints of L are in (⃝j∈RUj) ∩
(△k∈CUk). Also, by Lemma 4.11 (and the fact that σ and τ are not in the same
connected component of the codeword-containment graph of C′), L intersects some

By construction, each open interval (pj , pj+1), for j = 0, 1, . . . , T  - 1, is contained
in some atom A\scrU 

\nu j (with \nu j \in \scrC ). So, it suffices to show that the atom containing the

endpoint pj , denoted by A\scrU 
\tau j , satisfies \nu j \subseteq \tau j (and so, by symmetry, \nu j \subseteq \tau j+1 also

holds).
Let i \in [n]. We consider three cases. If pj is the right endpoint of Ui \cap L, then

i \in (\tau j \smallsetminus \nu j). If pj is the left endpoint of Ui \cap L, then i is in both \tau j and \nu j . If pj
is not an endpoint of Ui \cap L, then i is either in both \tau j and \nu j or in neither set. We
therefore obtain the desired containment \nu j \subseteq \tau j .

The intuition behind the next result is shown in Figure 4. When the intersec-
tion between two rigid structures R and \frakC is disconnected (more precisely, when
the atoms they have in common generate a disconnected codeword-containment
graph), then one of the structures cannot be convex, and hence the code is not
closed-convex.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/1

0/
23

 to
 1

65
.9

1.
11

5.
10

4 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



126 CHAN, JOHNSTON, LENT, RUYS DE PEREZ, AND SHIU

R

C

Fig. 4. Idea behind Theorem 4.12: If the intersection of two rigid structures R and \frakC is
disconnected, then at least one of R and \frakC is nonconvex.

Theorem 4.12 (criterion for precluding closed-convexity). Let \scrC be a code on
n neurons. Assume that (R,\bigcirc ) and (\frakC ,\bigtriangleup ) are rigid structures of \scrC . Let \scrC \prime be the
distinguished subcode arising from (R,\bigcirc ) and (\frakC ,\bigtriangleup ). If the codeword-containment
graph of \scrC \prime is disconnected, then \scrC is not closed-convex.

Proof. Assume that (R,\bigcirc ) and (\frakC ,\bigtriangleup ) are rigid structures of \scrC , and assume that
the resulting distinguished subcode, denoted by \scrC \prime , is disconnected.

Suppose for contradiction that there is a closed-convex realization \scrU = \{ Ui\} ni=1 of
\scrC . Let \sigma and \tau be codewords of \scrC in distinct connected components of the codeword-
containment graph of \scrC \prime . Let L be a line segment from a point in the atom A\scrU 

\sigma to
a point in the atom A\scrU 

\tau . By Lemma 4.8, both endpoints of L are in (\bigcirc j\in RUj) \cap 
(\bigtriangleup k\in \frakC Uk). Also, by Lemma 4.11 (and the fact that \sigma and \tau are not in the same
connected component of the codeword-containment graph of \scrC \prime ), L intersects some
atom A\scrU 

\nu for some codeword \nu \in \scrC that is not a vertex of the codeword-containment
graph of \scrC \prime . Thus, \nu is a noncodeword of \scrC \prime .

Hence, by Lemma 4.8, the atom A\scrU 
\nu does not intersect \bigcirc j\in RUj or does not

intersect \bigtriangleup j\in \frakC Uj . We conclude that L, which by assumption intersects A\scrU 
\nu , is not

fully contained in \bigcirc j\in RUj or is not fully contained in \bigtriangleup j\in \frakC Uj (even though the
endpoints of L are in those sets). Thus, \bigcirc j\in RUj or \bigtriangleup j\in \frakC Uj is not convex, and so
(R,\bigcirc ) or (\frakC ,\bigtriangleup ) is not rigid (Definition 4.1). This is a contradiction.

Remark 4.13. The notation \frakC was chosen because we view one of the rigid
structures as a ``connector"" of two ends of the other rigid structure R.

The following corollary is the case of Theorem 4.12 when the two rigid structures
coincide.

Corollary 4.14. Let \scrC be a code on n neurons. Assume that (R,\bigcirc ) is a
rigid structure of \scrC . Let \scrC \prime be the neural code consisting of all codewords \sigma \in \scrC 
such that (1) if \bigcirc = \cup , then R \cap \sigma \not = \emptyset ; and (2) if \bigcirc = \cap , then R \subseteq \sigma . If the
codeword-containment graph of \scrC \prime is disconnected, then \scrC is not closed-convex.

The next result represents a special case of Theorem 4.12: when the codeword-
containment graph of a code is a cycle and a certain triplewise-intersection condition
holds.

Theorem 4.15 (cycle criterion for precluding closed-convexity). Let \scrC be a code
on n neurons. Assume that the codeword-containment graph of \scrC \smallsetminus \{ \emptyset \} is a cycle:
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atom AU
ν for some codeword ν ∈ C that is not a vertex of the codeword-containment

graph of C′. Thus, ν is a non-codeword of C′.
Hence, by Lemma 4.8, the atom AU

ν does not intersect ⃝j∈RUj or does not
intersect △j∈CUj . We conclude that L, which by assumption intersects AU

ν , is not
fully contained in ⃝j∈RUj or is not fully contained in △j∈CUj (even though the
endpoints of L are in those sets). Thus, ⃝j∈RUj or △j∈CUj is not convex, and so
(R,⃝) or (C,△) is not rigid (Definition 4.1). This is a contradiction.

Remark 4.13. The notation C was chosen because we view one of the rigid struc-
tures as a “connector” of two ends of the other rigid structure R.

The following corollary is the case of Theorem 4.12 when the two rigid structures
coincide.

Corollary 4.14. Let C be a code on n neurons. Assume that (R,⃝) is a rigid
structure of C. Let C′ be the neural code consisting of all codewords σ ∈ C such that:
(1) if ⃝ = ∪, then R ∩ σ ̸= ∅; and (2) if ⃝ = ∩, then R ⊆ σ. If the codeword-
containment graph of C′ is disconnected, then C is not closed-convex.

The next result represents a special case of Theorem 4.12: when the codeword-
containment graph of a code is a cycle and a certain triplewise-intersection condition
holds.

Theorem 4.15 (cycle criterion for precluding closed-convexity). Let C be a code
on n neurons. Assume that the codeword-containment graph of C ∖ {∅} is a cycle:

σ1

σ2

σ3

σ4

σ5

σq

If, additionally, for all i = 1, 2, . . . , q, the intersection σi∩σi+1∩σi+2 is nonempty
(where σq+1 := σ1 and σq+2 := σ2), then C is not closed-convex.

The proof of Theorem 4.15 appears in section 4.3; we first need results (in the next
subsection) that help us check whether a given a subset of neurons is rigid. Indeed, in
general, being able to check rigidity is the main difficulty in applying Theorem 4.12.

Example 4.16. The codeword-containment graphs of C15∖{∅} and CCr∖{∅} are,
respectively, the following cycle graphs:

125

15

145

45

345

34

234

23

123

12

123

12

126

16

156

56

456

45

345

34

234

23

All triplewise-intersection conditions are easy to check (e.g., 125∩15∩145 = 15 ̸= ∅).
Hence, Theorem 4.15 implies that both C15 and CCr are non-closed-convex.

Remark 4.17. When a code’s codeword-containment graph is a cycle, as in The-

If, additionally, for all i = 1, 2, . . . , q, the intersection \sigma i\cap \sigma i+1\cap \sigma i+2 is nonempty
(where \sigma q+1 := \sigma 1 and \sigma q+2 := \sigma 2), then \scrC is not closed-convex.

The proof of Theorem 4.15 appears in section 4.3; we first need results (in the next
subsection) that help us check whether a given a subset of neurons is rigid. Indeed, in
general, being able to check rigidity is the main difficulty in applying Theorem 4.12.

Example 4.16. The codeword-containment graphs of C15 \smallsetminus \{ \emptyset \} and \scrC Cr \smallsetminus \{ \emptyset \} 
are, respectively, the following cycle graphs.

NONDEGENERATE NEURAL CODES 13

atom AU
ν for some codeword ν ∈ C that is not a vertex of the codeword-containment

graph of C′. Thus, ν is a non-codeword of C′.
Hence, by Lemma 4.8, the atom AU

ν does not intersect ⃝j∈RUj or does not
intersect △j∈CUj . We conclude that L, which by assumption intersects AU

ν , is not
fully contained in ⃝j∈RUj or is not fully contained in △j∈CUj (even though the
endpoints of L are in those sets). Thus, ⃝j∈RUj or △j∈CUj is not convex, and so
(R,⃝) or (C,△) is not rigid (Definition 4.1). This is a contradiction.

Remark 4.13. The notation C was chosen because we view one of the rigid struc-
tures as a “connector” of two ends of the other rigid structure R.

The following corollary is the case of Theorem 4.12 when the two rigid structures
coincide.

Corollary 4.14. Let C be a code on n neurons. Assume that (R,⃝) is a rigid
structure of C. Let C′ be the neural code consisting of all codewords σ ∈ C such that:
(1) if ⃝ = ∪, then R ∩ σ ̸= ∅; and (2) if ⃝ = ∩, then R ⊆ σ. If the codeword-
containment graph of C′ is disconnected, then C is not closed-convex.

The next result represents a special case of Theorem 4.12: when the codeword-
containment graph of a code is a cycle and a certain triplewise-intersection condition
holds.

Theorem 4.15 (cycle criterion for precluding closed-convexity). Let C be a code
on n neurons. Assume that the codeword-containment graph of C ∖ {∅} is a cycle:

σ1

σ2

σ3

σ4

σ5

σq

If, additionally, for all i = 1, 2, . . . , q, the intersection σi∩σi+1∩σi+2 is nonempty
(where σq+1 := σ1 and σq+2 := σ2), then C is not closed-convex.

The proof of Theorem 4.15 appears in section 4.3; we first need results (in the next
subsection) that help us check whether a given a subset of neurons is rigid. Indeed, in
general, being able to check rigidity is the main difficulty in applying Theorem 4.12.

Example 4.16. The codeword-containment graphs of C15∖{∅} and CCr∖{∅} are,
respectively, the following cycle graphs:

125

15

145

45

345

34

234

23

123

12

123

12

126

16

156

56

456

45

345

34

234

23

All triplewise-intersection conditions are easy to check (e.g., 125∩15∩145 = 15 ̸= ∅).
Hence, Theorem 4.15 implies that both C15 and CCr are non-closed-convex.

Remark 4.17. When a code’s codeword-containment graph is a cycle, as in The-

All triplewise-intersection conditions are easy to check (e.g., 125\cap 15\cap 145 = 15 \not =
\emptyset ). Hence, Theorem 4.15 implies that both C15 and \scrC Cr are non--closed-convex.

Remark 4.17. When a code's codeword-containment graph is a cycle, as in The-
orem 4.15, this is often revealed in a ``pinwheel"" in an open-convex realization of the
code (if the code is open-convex). Such a pinwheel is depicted in Figure 6 in the proof
of Theorem 4.31, and also in [9, Appendix B] (for the code C15) and [2, Figure 2(a)]
(for the code \scrC Cr).

4.2. A sufficient condition for rigidity. In this subsection, we show that
rigid structures arise whenever the codeword-containment graph of a code---or a sub-
code arising in a specific way from a subset of neurons---is a path (Lemma 4.24 and
Proposition 4.18). The proof of Proposition 4.18, which appears at the end of this
subsection, relies on a minimum-distance argument (see Lemma 4.21) and is similar
to (and inspired by) related proofs in [2, 9].

Proposition 4.18 (criterion for rigidity). Let \scrC be a code on n neurons. Let
\emptyset \not = R \subseteq [n]. Let \Gamma be the codeword-containment graph of the code \{ \tau \in \scrC | \tau \cap R \not = \emptyset \} .
Assume \Gamma is a path:
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orem 4.15, this is often revealed in a “pinwheel” in an open-convex realization of the
code (if the code is open-convex). Such a pinwheel is depicted in Figure 6 in the proof
of Theorem 4.31, and also in [9, Appendix B] (for the code C15) and [2, Figure 2(a)]
(for the code CCr).

4.2. A sufficient condition for rigidity. In this subsection, we show that
rigid structures arise whenever the codeword-containment graph of a code – or a
subcode arising in a specific way from a subset of neurons – is a path (Lemma 4.24
and Proposition 4.18). The proof of Proposition 4.18, which appears at the end of this
subsection, relies on a minimum-distance argument (see Lemma 4.21) and is similar
to (and inspired by) related proofs in [2, 9].

Proposition 4.18 (criterion for rigidity). Let C be a code on n neurons. Let
∅ ≠ R ⊆ [n]. Let Γ be the codeword-containment graph of the code {τ ∈ C | τ∩R ̸= ∅}.
Assume Γ is a path:

σ1 σ2 σ3 . . . σq
Γ

If, for all i = 1, 2, . . . , q−2, the intersection σi∩σi+1∩σi+2 is nonempty, then (R,∪)
is a rigid structure of C.

Example 4.19. We claim that for the code C6 = {125,234,145,123, 4, 23, 15, 12, ∅}
from Example 2.6, (1235,∪) is a rigid structure. To see this, we apply Proposition 4.18
to C6|{1,2,3,5} with R = 1235: the graph Γ is the path 15− 125− 12− 123− 23, and
the intersections 15∩ 125 ∩ 12 = 1, 125 ∩ 12 ∩ 123 = 12, and 12 ∩ 123 ∩ 23 = 2 are all
nonempty.

In section 4.4, we analyze more codes using Proposition 4.18.

Remark 4.20 (triplewise-intersection condition). The triplewise-intersection con-
dition in Theorem 4.15 and Proposition 4.18 – (σi ∩ σi+1 ∩ σi+2) ̸= ∅ – can be viewed
as a “brace” condition that forbids a closed-convex realization from “bending” at
the atom of σi+1. This condition can not be removed. Indeed, consider the code
{12, 1, 2, ∅}. For R = {1, 2}, the graph Γ is a path, the intersection 1 ∩ 12 ∩ 2 is
empty, and the following closed-convex realization shows that (R,∪) is not a rigid
structure:

1 12

2

The rest of this subsection is dedicated to proving Proposition 4.18, beginning
with the following lemma.

Lemma 4.21. Let V1, V2,W1,W2 be closed sets in some Rd. If V1 and V2 are
convex, and:

(i) V1 ∩ V2 ̸= ∅,
(ii) V1 ⊆ (V2 ∪W1) and V2 ⊆ (V1 ∪W2), and
(iii) V1 ∩ V2 ∩W1 ∩W2 = ∅ ,

then V1 ∪ V2 is convex.

Proof. Let p ∈ V1 and q ∈ V2, and let L = pq be the line segment between p and
q. Assume for a contradiction that L ̸⊆ V1∪V2 (and in particular p /∈ V2 and q /∈ V1).

First, we claim that L ∩ V1 ∩ V2 = ∅. To see this, assume that there exists
r ∈ L∩V1 ∩V2. Then, by convexity of V1 and V2, we have pr ⊆ V1 and qr ⊆ V2. This
implies that L = pr ∪ qr is contained in V1 ∪ V2, which contradicts our hypothesis.

If, for all i = 1, 2, . . . , q  - 2, the intersection \sigma i \cap \sigma i+1 \cap \sigma i+2 is nonempty, then
(R,\cup ) is a rigid structure of \scrC .
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Example 4.19. We claim that, for the code C6 = \{ 125,234,145,123, 4, 23, 15,
12, \emptyset \} from Example 2.6, (1235,\cup ) is a rigid structure. To see this, we apply Proposi-
tion 4.18 to C6| \{ 1,2,3,5\} withR = 1235: The graph \Gamma is the path 15 - 125 - 12 - 123 - 23,
and the intersections 15 \cap 125 \cap 12 = 1, 125 \cap 12 \cap 123 = 12, and 12 \cap 123 \cap 23 = 2
are all nonempty.

In section 4.4, we analyze more codes using Proposition 4.18.

Remark 4.20 (triplewise-intersection condition). The triplewise-intersection con-
dition in Theorem 4.15 and Proposition 4.18--- (\sigma i \cap \sigma i+1 \cap \sigma i+2) \not = \emptyset -- can be viewed
as a ``brace"" condition that forbids a closed-convex realization from ``bending"" at
the atom of \sigma i+1. This condition can not be removed. Indeed, consider the code
\{ 12, 1, 2, \emptyset \} . For R = \{ 1, 2\} , the graph \Gamma is a path, the intersection 1 \cap 12 \cap 2 is
empty, and the following closed-convex realization shows that (R,\cup ) is not a rigid
structure.
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orem 4.15, this is often revealed in a “pinwheel” in an open-convex realization of the
code (if the code is open-convex). Such a pinwheel is depicted in Figure 6 in the proof
of Theorem 4.31, and also in [9, Appendix B] (for the code C15) and [2, Figure 2(a)]
(for the code CCr).

4.2. A sufficient condition for rigidity. In this subsection, we show that
rigid structures arise whenever the codeword-containment graph of a code – or a
subcode arising in a specific way from a subset of neurons – is a path (Lemma 4.24
and Proposition 4.18). The proof of Proposition 4.18, which appears at the end of this
subsection, relies on a minimum-distance argument (see Lemma 4.21) and is similar
to (and inspired by) related proofs in [2, 9].

Proposition 4.18 (criterion for rigidity). Let C be a code on n neurons. Let
∅ ≠ R ⊆ [n]. Let Γ be the codeword-containment graph of the code {τ ∈ C | τ∩R ̸= ∅}.
Assume Γ is a path:

σ1 σ2 σ3 . . . σq
Γ

If, for all i = 1, 2, . . . , q−2, the intersection σi∩σi+1∩σi+2 is nonempty, then (R,∪)
is a rigid structure of C.

Example 4.19. We claim that for the code C6 = {125,234,145,123, 4, 23, 15, 12, ∅}
from Example 2.6, (1235,∪) is a rigid structure. To see this, we apply Proposition 4.18
to C6|{1,2,3,5} with R = 1235: the graph Γ is the path 15− 125− 12− 123− 23, and
the intersections 15∩ 125 ∩ 12 = 1, 125 ∩ 12 ∩ 123 = 12, and 12 ∩ 123 ∩ 23 = 2 are all
nonempty.

In section 4.4, we analyze more codes using Proposition 4.18.

Remark 4.20 (triplewise-intersection condition). The triplewise-intersection con-
dition in Theorem 4.15 and Proposition 4.18 – (σi ∩ σi+1 ∩ σi+2) ̸= ∅ – can be viewed
as a “brace” condition that forbids a closed-convex realization from “bending” at
the atom of σi+1. This condition can not be removed. Indeed, consider the code
{12, 1, 2, ∅}. For R = {1, 2}, the graph Γ is a path, the intersection 1 ∩ 12 ∩ 2 is
empty, and the following closed-convex realization shows that (R,∪) is not a rigid
structure:

1 12

2

The rest of this subsection is dedicated to proving Proposition 4.18, beginning
with the following lemma.

Lemma 4.21. Let V1, V2,W1,W2 be closed sets in some Rd. If V1 and V2 are
convex, and:

(i) V1 ∩ V2 ̸= ∅,
(ii) V1 ⊆ (V2 ∪W1) and V2 ⊆ (V1 ∪W2), and
(iii) V1 ∩ V2 ∩W1 ∩W2 = ∅ ,

then V1 ∪ V2 is convex.

Proof. Let p ∈ V1 and q ∈ V2, and let L = pq be the line segment between p and
q. Assume for a contradiction that L ̸⊆ V1∪V2 (and in particular p /∈ V2 and q /∈ V1).

First, we claim that L ∩ V1 ∩ V2 = ∅. To see this, assume that there exists
r ∈ L∩V1 ∩V2. Then, by convexity of V1 and V2, we have pr ⊆ V1 and qr ⊆ V2. This
implies that L = pr ∪ qr is contained in V1 ∪ V2, which contradicts our hypothesis.

The rest of this subsection is dedicated to proving Proposition 4.18, beginning
with the following lemma.

Lemma 4.21. Let V1, V2,W1,W2 be closed sets in some \BbbR d. If V1 and V2 are
convex, and

(i) V1 \cap V2 \not = \emptyset ,
(ii) V1 \subseteq (V2 \cup W1) and V2 \subseteq (V1 \cup W2), and
(iii) V1 \cap V2 \cap W1 \cap W2 = \emptyset ,

then V1 \cup V2 is convex.

Proof. Let p \in V1 and q \in V2, and let L = pq be the line segment between p
and q. Assume for a contradiction that L \not \subseteq V1 \cup V2 (and in particular p /\in V2 and
q /\in V1).

First, we claim that L \cap V1 \cap V2 = \emptyset . To see this, assume that there exists
r \in L\cap V1 \cap V2. Then, by convexity of V1 and V2, we have pr \subseteq V1 and qr \subseteq V2. This
implies that L = pr \cup qr is contained in V1 \cup V2, which contradicts our hypothesis.
So, our claim is true.

The line segment L is compact. Also, V1 \cap V2 is closed and, by (i), nonempty.
Hence, there exists x \in (V1 \cap V2) that realizes the (positive) distance between L and
V1 \cap V2. That is, dist(x, L) \leq dist(y, L) for all y \in (V1 \cap V2).

Define L1 = px and L2 = qx. We claim that the three points p, q, x are not
collinear. Indeed, none of the points is on the line segment defined by the other two:
(1) x /\in L because dist(x, L) > 0, (2) p \not \in L2 because p /\in V2 \supseteq L2, and, symmetrically,
(3) q \not \in L1. Hence, p, q, x define a triangle, which we depict here together with V1
and V2.

NONDEGENERATE NEURAL CODES 15

So, our claim is true.
The line segment L is compact. Also, V1 ∩ V2 is closed and, by (i), nonempty.

Hence, there exists x ∈ (V1 ∩ V2) that realizes the (positive) distance between L and
V1 ∩ V2. That is, dist(x, L) ≤ dist(y, L) for all y ∈ (V1 ∩ V2).

Define L1 = px and L2 = qx. We claim that the three points p, q, x are not
collinear. Indeed, none of the points is on the line segment defined by the other two:
(1) x /∈ L because dist(x, L) > 0, (2) p ̸∈ L2 because p /∈ V2 ⊇ L2, and, symmetrically,
(3) q ̸∈ L1. Hence, p, q, x define a triangle, which we depict here together with V1 and
V2:

V2V1
x

p qL

Next, we claim that L1 ∩ V2 = {x}. Indeed, any point x ̸= y ∈ L1 ⊆ V1 satisfies
dist(y, L) < dist(x, L) , and so (by construction of x) such a point y is not in V2.

The line segment L1 is covered by V2 and W1, because L1 ⊆ V1 and by (ii).
However, by the above claim, V2 covers only an endpoint of L1; so, (because W1 is
closed) W1 must cover all of L1. We conclude that x ∈ W1 and so (by symmetry)
x ∈W2 also. Thus, x ∈ V1 ∩ V2 ∩W1 ∩W2, which contradicts (iii).

Remark 4.22. Lemma 4.21 becomes false if “closed sets” is replaced by “open
sets”.

The following lemma pertains to when the codeword-containment graph is a path.

Lemma 4.23. Let C be a code on n neurons. Let Γ be the codeword-containment
graph of the code C ∖ {∅}. Assume that Γ is a path:

σ1 σ2 σ3 . . . σq
Γ

Then the following conditions hold:
(1) Interval Condition. If C is closed-convex, then for all i ∈ [n], either:

• no codeword of C contains i, or
• there exists a “left endpoint” Li and a “right endpoint” Ri with 1 ≤ Li ≤
Ri ≤ q such that the codewords between the two endpoints are precisely
those containing i (that is, Li ≤ ℓ ≤ Ri ⇐⇒ i ∈ σℓ).

(2) Alternating-Containment Condition. The containment relations between
subsequent codewords alternate, so that one of the following holds:

σ1 ⊊ σ2 ⊋ σ3 ⊊ σ4 ⊋ . . . or σ1 ⊋ σ2 ⊊ σ3 ⊋ σ4 ⊊ . . .(7)

Here, the maximal codewords of C are indicated in bold.

Proof. Assume that the Interval Condition does not hold. Then, there exists a
closed-convex realization U = {Ui}ni=1 of C, and, additionally, for some neuron i ∈ [n],
there exist three codewords σℓ1 , σℓ2 , σℓ3 with ℓ1 < ℓ2 < ℓ3 such that i ∈ (σℓ1 ∩ σℓ3)
but i /∈ σℓ2 . Then, by Lemma 4.11 and the construction of Γ, every line segment from
the atom of σℓ1 to the atom of σℓ3 is not completely contained in Ui. Hence, Ui is
non-convex, which is a contradiction.

Next, we verify the Alternating-Containment Condition. If the containments
σr−1 ⊆ σr ⊆ σr+1 or σr−1 ⊇ σr ⊇ σr+1 hold, for some r, then (σr−1, σr+1) is an edge
of Γ, which contradicts the fact that Γ is a path.

Next, we claim that L1 \cap V2 = \{ x\} . Indeed, any point x \not = y \in L1 \subseteq V1 satisfies
dist(y, L) < dist(x, L), and so (by construction of x) such a point y is not in V2.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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NONDEGENERATE NEURAL CODES 129

The line segment L1 is covered by V2 and W1, because L1 \subseteq V1 and by (ii).
However, by the above claim, V2 covers only an endpoint of L1; so, (because W1 is
closed) W1 must cover all of L1. We conclude that x \in W1 and so (by symmetry)
x \in W2 also. Thus, x \in V1 \cap V2 \cap W1 \cap W2, which contradicts (iii).

Remark 4.22. Lemma 4.21 becomes false if ``closed sets"" is replaced by ``open
sets.""

The following lemma pertains to when the codeword-containment graph is a path.

Lemma 4.23. Let \scrC be a code on n neurons. Let \Gamma be the codeword-containment
graph of the code \scrC \smallsetminus \{ \emptyset \} . Assume that \Gamma is a path.

NONDEGENERATE NEURAL CODES 15

So, our claim is true.
The line segment L is compact. Also, V1 ∩ V2 is closed and, by (i), nonempty.

Hence, there exists x ∈ (V1 ∩ V2) that realizes the (positive) distance between L and
V1 ∩ V2. That is, dist(x, L) ≤ dist(y, L) for all y ∈ (V1 ∩ V2).

Define L1 = px and L2 = qx. We claim that the three points p, q, x are not
collinear. Indeed, none of the points is on the line segment defined by the other two:
(1) x /∈ L because dist(x, L) > 0, (2) p ̸∈ L2 because p /∈ V2 ⊇ L2, and, symmetrically,
(3) q ̸∈ L1. Hence, p, q, x define a triangle, which we depict here together with V1 and
V2:

V2V1
x

p qL

Next, we claim that L1 ∩ V2 = {x}. Indeed, any point x ̸= y ∈ L1 ⊆ V1 satisfies
dist(y, L) < dist(x, L) , and so (by construction of x) such a point y is not in V2.

The line segment L1 is covered by V2 and W1, because L1 ⊆ V1 and by (ii).
However, by the above claim, V2 covers only an endpoint of L1; so, (because W1 is
closed) W1 must cover all of L1. We conclude that x ∈ W1 and so (by symmetry)
x ∈W2 also. Thus, x ∈ V1 ∩ V2 ∩W1 ∩W2, which contradicts (iii).

Remark 4.22. Lemma 4.21 becomes false if “closed sets” is replaced by “open
sets”.

The following lemma pertains to when the codeword-containment graph is a path.

Lemma 4.23. Let C be a code on n neurons. Let Γ be the codeword-containment
graph of the code C ∖ {∅}. Assume that Γ is a path:

σ1 σ2 σ3 . . . σq
Γ

Then the following conditions hold:
(1) Interval Condition. If C is closed-convex, then for all i ∈ [n], either:

• no codeword of C contains i, or
• there exists a “left endpoint” Li and a “right endpoint” Ri with 1 ≤ Li ≤
Ri ≤ q such that the codewords between the two endpoints are precisely
those containing i (that is, Li ≤ ℓ ≤ Ri ⇐⇒ i ∈ σℓ).

(2) Alternating-Containment Condition. The containment relations between
subsequent codewords alternate, so that one of the following holds:

σ1 ⊊ σ2 ⊋ σ3 ⊊ σ4 ⊋ . . . or σ1 ⊋ σ2 ⊊ σ3 ⊋ σ4 ⊊ . . .(7)

Here, the maximal codewords of C are indicated in bold.

Proof. Assume that the Interval Condition does not hold. Then, there exists a
closed-convex realization U = {Ui}ni=1 of C, and, additionally, for some neuron i ∈ [n],
there exist three codewords σℓ1 , σℓ2 , σℓ3 with ℓ1 < ℓ2 < ℓ3 such that i ∈ (σℓ1 ∩ σℓ3)
but i /∈ σℓ2 . Then, by Lemma 4.11 and the construction of Γ, every line segment from
the atom of σℓ1 to the atom of σℓ3 is not completely contained in Ui. Hence, Ui is
non-convex, which is a contradiction.

Next, we verify the Alternating-Containment Condition. If the containments
σr−1 ⊆ σr ⊆ σr+1 or σr−1 ⊇ σr ⊇ σr+1 hold, for some r, then (σr−1, σr+1) is an edge
of Γ, which contradicts the fact that Γ is a path.

Then the following conditions hold:

(1) Interval Condition. If \scrC is closed-convex, then for all i \in [n], either
\bullet no codeword of \scrC contains i, or
\bullet there exists a ``left endpoint"" Li and a ``right endpoint"" Ri with 1 \leq Li \leq 
Ri \leq q such that the codewords between the two endpoints are precisely
those containing i (that is, Li \leq \ell \leq Ri \Leftarrow \Rightarrow i \in \sigma \ell ).

(2) Alternating-Containment Condition. The containment relations be-
tween subsequent codewords alternate, so that one of the following holds:

\sigma 1 \subsetneq \bfitsigma 2 \supsetneq \sigma 3 \subsetneq \bfitsigma 4 \supsetneq \cdot \cdot \cdot or \bfitsigma 1 \supsetneq \sigma 2 \subsetneq \bfitsigma 3 \supsetneq \sigma 4 \subsetneq \cdot \cdot \cdot (7)

Here, the maximal codewords of \scrC are indicated in bold.

Proof. Assume that the Interval Condition does not hold. Then, there exists a
closed-convex realization \scrU = \{ Ui\} ni=1 of \scrC , and, additionally, for some neuron i \in [n],
there exist three codewords \sigma \ell 1 , \sigma \ell 2 , \sigma \ell 3 with \ell 1 < \ell 2 < \ell 3 such that i \in (\sigma \ell 1 \cap \sigma \ell 3)
but i /\in \sigma \ell 2 . Then, by Lemma 4.11 and the construction of \Gamma , every line segment from
the atom of \sigma \ell 1 to the atom of \sigma \ell 3 is not completely contained in Ui. Hence, Ui is
nonconvex, which is a contradiction.

Next, we verify the Alternating-Containment Condition. If the containments
\sigma r - 1 \subseteq \sigma r \subseteq \sigma r+1 or \sigma r - 1 \supseteq \sigma r \supseteq \sigma r+1 hold for some r, then (\sigma r - 1, \sigma r+1) is an edge
of \Gamma , which contradicts the fact that \Gamma is a path.

We use Lemmas 4.21 and 4.23 to prove the next result, which is the special case
of Proposition 4.18 when the rigid structure R is the set of all n neurons. In turn,
Lemma 4.24 will be used to prove Proposition 4.18.

Lemma 4.24. Let \scrC be a code on n neurons. Let \Gamma be the codeword-containment
graph of the code \scrC \smallsetminus \{ \emptyset \} . Assume that \Gamma is a path.

16 CHAN, JOHNSTON, LENT, RUYS DE PEREZ, AND SHIU

We use Lemmas 4.21 and 4.23 to prove the next result,
which is the special case of Proposition 4.18 when the rigid structure R is the set

of all n neurons. In turn, Lemma 4.24 will be used to prove Proposition 4.18.

Lemma 4.24. Let C be a code on n neurons. Let Γ be the codeword-containment
graph of the code C ∖ {∅}. Assume that Γ is a path:

σ1 σ2 σ3 . . . σq
Γ

If, for all i = 1, 2, . . . , q−2, the intersection σi∩σi+1∩σi+2 is nonempty, then ([n],∪)
is a rigid structure of C.

Proof. Let U = {Ui}ni=1 be a closed-convex realization of C. We must show
∪i∈[n]Ui is convex.

By Lemma 4.23, for all i ∈ [n], either Ui is empty or there exist left and right
endpoints, Li and Ri, respectively, with 1 ≤ Li ≤ Ri ≤ q, such that Li ≤ ℓ ≤ Ri ⇐⇒
i ∈ σℓ. Lemma 4.23 also implies that subsequent codewords alternate, as in (7).

When we have containments σr−1 ⊊ σr ⊋ σr+1, the index r of the maximal
codeword σr is a right endpoint of all Ui with i ∈ (σr ∖ σr+1) and is a left endpoint
of all Uj with j ∈ (σr ∖ σr−1). Furthermore, indices ℓ of non-maximal codewords σℓ
are not endpoints, unless ℓ = 1 or ℓ = q. We will use these facts below.

If q = 1, then Ui = Uj for all i, j ∈ σ1 and, additionally, Uk = ∅ for all k ∈ [n]∖σ1;
hence the union ∪i∈[n]Ui is convex. If q = 2, then we have σ1 ⊊ σ2 (or the reverse
containment, which is symmetric), and so ∪i∈[n]Ui = Uj for any j ∈ σ1; hence, this
union is convex. So, assume for the rest of the proof that q ≥ 3.

We relabel the Ui’s as follows:
• Pick U1 to be a “leftmost” receptive field (i.e., L1 = 1) of maximal width

(i.e., R1 is maximal among all Ui with Li = 1). Notice that R1 > 1 holds:
the triplewise-intersection condition (and the q ≥ 3 assumption) imply that
there is some i ∈ (σ1 ∩ σ2 ∩ σ3), and so Li = 1 and Ri ≥ 3 for this i.

– If R1 = q, then relabel all remaining Ui’s arbitrarily.
– Otherwise, continue to the next step.

• Pick U2 to be some Ui such that i ∈ (σR1−1 ∩ σR1
∩ σR1+1) (the triplewise-

intersection condition implies that such an i exists, and the inequalities 1 <
R1 < q guarantee that 1 ≤ R1 − 1 and R1 + 1 ≤ q). Thus, L2 < R1 < R2.

– If R2 = q, then relabel all remaining Ui’s arbitrarily.
– Otherwise, continue to the next step.

• Successively pick U3, U4, . . . , Um (for some m ≤ n) in the same way (that
is, Uk, for k ≥ 3, is chosen to be some Ui such that i ∈ (σRi−1−1 ∩ σRi−1

∩
σRi−1+1)), so that R2 < R3 < · · · < Rm = q and L3 < R2, L4 < R3, . . . ,
Lm < Rm−1. Relabel the remaining Ui’s arbitrarily.

By construction, ∪mi=1Ui = ∪ni=1Ui. So, it suffices to prove (by induction) that
the union ∪ki=1Ui is convex for all k = 1, 2, . . . ,m.

The base case (k = 1) is true by assumption. For induction, assume that ∪ki=1Ui
is convex for some 1 ≤ k ≤ m − 1. We will show that ∪k+1

i=1 Ui is convex by applying
Lemma 4.21. To this end, let V1 = ∪ki=1Ui and V2 = Uk+1. Both V1 and V2 are closed
and convex by hypothesis, and we depict them schematically here:

If, for all i = 1, 2, . . . , q  - 2, the intersection \sigma i \cap \sigma i+1 \cap \sigma i+2 is nonempty, then
([n],\cup ) is a rigid structure of \scrC .

Proof. Let \scrU = \{ Ui\} ni=1 be a closed-convex realization of \scrC . We must show
\cup i\in [n]Ui is convex.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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130 CHAN, JOHNSTON, LENT, RUYS DE PEREZ, AND SHIU

By Lemma 4.23, for all i \in [n], either Ui is empty or there exist left and right
endpoints, Li and Ri, respectively, with 1 \leq Li \leq Ri \leq q, such that Li \leq \ell \leq Ri \Leftarrow \Rightarrow 
i \in \sigma \ell . Lemma 4.23 also implies that subsequent codewords alternate, as in (7).

When we have containments \sigma r - 1 \subsetneq \bfitsigma \bfitr \supsetneq \sigma r+1, the index r of the maximal
codeword \sigma r is a right endpoint of all Ui with i \in (\sigma r \smallsetminus \sigma r+1) and is a left endpoint
of all Uj with j \in (\sigma r \smallsetminus \sigma r - 1). Furthermore, indices \ell of nonmaximal codewords \sigma \ell 
are not endpoints, unless \ell = 1 or \ell = q. We will use these facts below.

If q = 1, then Ui = Uj for all i, j \in \sigma 1 and, additionally, Uk = \emptyset for all k \in [n]\smallsetminus \sigma 1;
hence the union \cup i\in [n]Ui is convex. If q = 2, then we have \sigma 1 \subsetneq \bfitsigma 2 (or the reverse
containment, which is symmetric), and so \cup i\in [n]Ui = Uj for any j \in \sigma 1; hence, this
union is convex. So, assume for the rest of the proof that q \geq 3.

We relabel the Ui's as follows:
\bullet Pick U1 to be a ``leftmost"" receptive field (i.e., L1 = 1) of maximal width

(i.e., R1 is maximal among all Ui with Li = 1). Notice that R1 > 1 holds:
the triplewise-intersection condition (and the q \geq 3 assumption) imply that
there is some i \in (\sigma 1 \cap \sigma 2 \cap \sigma 3), and so Li = 1 and Ri \geq 3 for this i.

 - If R1 = q, then relabel all remaining Ui's arbitrarily.
 - Otherwise, continue to the next step.

\bullet Pick U2 to be some Ui such that i \in (\sigma R1 - 1 \cap \sigma R1 \cap \sigma R1+1) (the triplewise-
intersection condition implies that such an i exists, and the inequalities 1 <
R1 < q guarantee that 1 \leq R1  - 1 and R1 + 1 \leq q). Thus, L2 < R1 < R2.

 - If R2 = q, then relabel all remaining Ui's arbitrarily.
 - Otherwise, continue to the next step.

\bullet Successively pick U3, U4, . . . , Um (for some m \leq n) in the same way (that
is, Uk, for k \geq 3, is chosen to be some Ui such that i \in (\sigma Ri - 1 - 1 \cap \sigma Ri - 1

\cap 
\sigma Ri - 1+1)), so that R2 < R3 < \cdot \cdot \cdot < Rm = q and L3 < R2, L4 < R3, . . .,
Lm < Rm - 1. Relabel the remaining Ui's arbitrarily.

By construction, \cup mi=1Ui = \cup ni=1Ui. So, it suffices to prove (by induction) that
the union \cup ki=1Ui is convex for all k = 1, 2, . . . ,m.

The base case (k = 1) is true by assumption. For induction, assume that \cup ki=1Ui
is convex for some 1 \leq k \leq m  - 1. We will show that \cup k+1

i=1 Ui is convex by applying
Lemma 4.21. To this end, let V1 = \cup ki=1Ui and V2 = Uk+1. Both V1 and V2 are closed
and convex by hypothesis, and we depict them schematically here.NONDEGENERATE NEURAL CODES 17

V2 = Uk+1V1 = ∪ki=1Ui

L1 = 1 Lk+1 Rk Rk+1

By construction, L1 = 1 < Lk+1 < Rk < Rk+1, so V1 ⊈ V2 and V1 ⊉ V2. The
intersection V1 ∩V2 is nonempty: it consists of all atoms between the endpoints Lk+1

and Rk.
Next, we construct a closed set W1 that covers all atoms to the left of Lk+1. Let

L = {ℓ | 1 ≤ ℓ ≤ Lk+1 and σℓ is a maximal codeword of C} .

Let ℓ ∈ L. If ℓ = 1 (so, σ1 is a maximal codeword), pick iℓ ∈ (σ1 ∖ σ2); hence, Uiℓ
contains the atom of σ1. If ℓ ̸= 1, proceed as follows. Pick iℓ ∈ (σℓ−1 ∖ σℓ+1) (which
exists because otherwise σℓ−1 ⊆ σℓ+1, which would contradict the fact that Γ is a
path). Hence, iℓ ∈ σℓ−1 ⊆ σℓ and so Uiℓ contains the atoms of σℓ−1 and σℓ. On the
other hand, iℓ /∈ σℓ+1 implies that the right endpoint of Uiℓ is Riℓ = ℓ ≤ Lk+1.

It follows that W1 := ∪ℓ∈LUiℓ is a closed set such that V1 ⊆ (V2 ∪W1).
We define W2 similarly. Let

R = {r | Rk ≤ r ≤ Rk+1 and σr is a maximal codeword of C} .

Let r ∈ R. If r = q, pick jr ∈ (σq ∖ σq−1); hence, Ujr contains the atom of σr. If
r < q, proceed as follows. Pick jr ∈ (σr+1 ∖ σr−1) (which exists because otherwise
σr+1 ⊆ σr−1, which is a contradiction). Hence, jr ∈ σr+1 ⊆ σr and so Ujr contains
the atoms of σr and σr+1. On the other hand, jr /∈ σr−1 implies that Ljr = r ≥ Rk+1.
Hence, W2 := ∪r∈RUjr is a closed set such that V2 ⊆ (V1 ∪W2).

Now V1, V2,W1,W2 satisfy hypotheses (i) and (ii) of Lemma 4.21. It remains
only to check (iii). We saw above that the right endpoint of every Uiℓ is at most
Lk+1, and the left endpoint of every Ujr is at least Rk. Also, Lk+1 < Rk. Thus,
(W1 ∩W2) = (∪ℓ∈LUiℓ) ∩ (∪r∈LUjr ) = ∅, and so (iii) holds. Thus, the union ∪k+1

i=1 Ui
is convex.

One might hope to now prove Proposition 4.18 by applying Lemma 4.24 to a
restricted code C|R. However, this does not always work. For instance, for the code
CCr with R = 1456, the restricted code CCr|R generates a codeword-containment
graph Γ that is not a path: the codewords 12, 126, 16, 156, which form a path in CCr,
become 1, 16, 16, 156 in CCr|R, and so a vertex is lost and a non-path edge is added
in Γ. To circumvent this problem, we introduce redundant neurons i12 and i126 that
“remember” the original atoms so that, with the redundant neurons, the restricted
codewords – 1i12, 16i126i12, 16, 156 – again form a path.

The following definition explains how to add redundant neurons (this is in contrast
to the focus, in [12], on removing redundant neurons).

Definition 4.25. Let C be a code on n neurons, and let σ ⊆ [n]. The code
obtained by adding a redundant neuron i0 for σ is the code on n+1 neurons obtained
from C by replacing each codeword τ ∈ C that contains σ with τ ∪ {i0}.

Lemma 4.26 (adding redundant neurons preserves convexity and codeword-containment).

Let C be a code on n neurons, and let σ ⊆ [n]. Let C be obtained from C by adding a
redundant neuron i0 for σ. Then:

(1) If {Ui}i∈[n] is a realization (or closed-convex realization) of C, then {Ui}i∈[n]∪
{Ui0 := Uσ} is a realization (or closed-convex realization) of C. Conversely,

By construction, L1 = 1 < Lk+1 < Rk < Rk+1, so V1 \nsubseteq V2 and V1 \nsupseteq V2. The
intersection V1 \cap V2 is nonempty: It consists of all atoms between the endpoints Lk+1

and Rk.
Next, we construct a closed set W1 that covers all atoms to the left of Lk+1. Let

\scrL = \{ \ell | 1 \leq \ell \leq Lk+1 and \sigma \ell is a maximal codeword of \scrC \} .

Let \ell \in \scrL . If \ell = 1 (so, \sigma 1 is a maximal codeword), pick i\ell \in (\sigma 1 \smallsetminus \sigma 2); hence,
Ui\ell contains the atom of \sigma 1. If \ell \not = 1, proceed as follows. Pick i\ell \in (\sigma \ell  - 1 \smallsetminus \sigma \ell +1)
(which exists because otherwise \sigma \ell  - 1 \subseteq \sigma \ell +1, which would contradict the fact that \Gamma 
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NONDEGENERATE NEURAL CODES 131

is a path). Hence, i\ell \in \sigma \ell  - 1 \subseteq \sigma \ell and so Ui\ell contains the atoms of \sigma \ell  - 1 and \sigma \ell . On
the other hand, i\ell /\in \sigma \ell +1 implies that the right endpoint of Ui\ell is Ri\ell = \ell \leq Lk+1.

It follows that W1 := \cup \ell \in \scrL Ui\ell is a closed set such that V1 \subseteq (V2 \cup W1).
We define W2 similarly. Let

\scrR = \{ r | Rk \leq r \leq Rk+1 and \sigma r is a maximal codeword of \scrC \} .

Let r \in \scrR . If r = q, pick jr \in (\sigma q \smallsetminus \sigma q - 1); hence, Ujr contains the atom of \sigma r.
If r < q, proceed as follows. Pick jr \in (\sigma r+1 \smallsetminus \sigma r - 1) (which exists because otherwise
\sigma r+1 \subseteq \sigma r - 1, which is a contradiction). Hence, jr \in \sigma r+1 \subseteq \sigma r, and so Ujr contains
the atoms of \sigma r and \sigma r+1. On the other hand, jr /\in \sigma r - 1 implies that Ljr = r \geq Rk+1.
Hence, W2 := \cup r\in \scrR Ujr is a closed set such that V2 \subseteq (V1 \cup W2).

Now V1, V2,W1,W2 satisfy hypotheses (i) and (ii) of Lemma 4.21. It remains
only to check (iii). We saw above that the right endpoint of every Ui\ell is at most
Lk+1, and the left endpoint of every Ujr is at least Rk. Also, Lk+1 < Rk. Thus,
(W1 \cap W2) = (\cup \ell \in \scrL Ui\ell ) \cap (\cup r\in \scrL Ujr ) = \emptyset , and so (iii) holds. Thus, the union \cup k+1

i=1 Ui
is convex.

One might hope to now prove Proposition 4.18 by applying Lemma 4.24 to a
restricted code \scrC | R. However, this does not always work. For instance, for the code
\scrC Cr with R = 1456, the restricted code \scrC Cr| R generates a codeword-containment
graph \Gamma that is not a path: The codewords 12, 126, 16, 156, which form a path in \scrC Cr,
become 1, 16, 16, 156 in \scrC Cr| R, and so a vertex is lost and a nonpath edge is added
in \Gamma . To circumvent this problem, we introduce redundant neurons i12 and i126 that
``remember"" the original atoms so that, with the redundant neurons, the restricted
codewords---1i12, 16i126i12, 16, 156---again form a path.

The following definition explains how to add redundant neurons (this is in contrast
to the focus, in [12], on removing redundant neurons).

Definition 4.25. Let \scrC be a code on n neurons, and let \sigma \subseteq [n]. The code
obtained by adding a redundant neuron i0 for \sigma is the code on n+1 neurons obtained
from \scrC by replacing each codeword \tau \in \scrC that contains \sigma with \tau \cup \{ i0\} .

Lemma 4.26 (adding redundant neurons preserves convexity and codeword-
containment). Let \scrC be a code on n neurons, and let \sigma \subseteq [n]. Let \widetilde \scrC be obtained
from \scrC by adding a redundant neuron i0 for \sigma . Then

(1) If \{ Ui\} i\in [n] is a realization (or closed-convex realization) of \scrC , then

\{ Ui\} i\in [n] \cup \{ Ui0 := U\sigma \} is a realization (or closed-convex realization) of \widetilde \scrC .
Conversely, if \{ Ui\} i\in [n] \cup \{ Ui0\} is a realization (or closed-convex realization)

of \widetilde \scrC , then \{ Ui\} i\in [n] is a realization (or closed-convex realization) of \scrC .
(2) The following is an inclusion-preserving bijection:

\widetilde \scrC \rightarrow \scrC ,
\widetilde \tau \mapsto \rightarrow (\widetilde \tau \smallsetminus \{ i0\} ).

Proof. Part (1) is due to Jeffs [12], and part (2) is straightforward to check.

Lemma 4.27 (redundant neurons and rigid structures). Let \scrC be a code on n
neurons. Consider subsets R \subseteq [n] and \sigma \subseteq [n] such that \sigma \cap R \not = \emptyset . Let \widetilde \scrC be
obtained from \scrC by adding a redundant neuron i0 for \sigma . Then R is a rigid structure
of \scrC if and only if R \cup \{ i0\} is a rigid structure of \widetilde \scrC .

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/1

0/
23

 to
 1

65
.9

1.
11

5.
10

4 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



132 CHAN, JOHNSTON, LENT, RUYS DE PEREZ, AND SHIU

Proof. The assumption \sigma \cap R \not = \emptyset implies that, in every realization \{ Ui\} i\in [n] \cup 
\{ Ui0\} of \widetilde \scrC , we have \cup j\in RUj = Ui0 \cup (\cup j\in RUj). Now the desired result follows from
Lemma 4.26(1).

We are now ready to prove our criterion for rigidity (Proposition 4.18).

Proof of Proposition 4.18. Let \widetilde \scrC be obtained from \scrC by adding a redundant
neuron i\omega for every codeword \omega \in \scrC that contains at least one neuron of R (that is,
\omega \cap R \not = \emptyset ) and at least one neuron outside of R (that is, \omega \nsubseteq R). Let \scrI be the set
of all such redundant neurons i\omega added to \scrC .

Consider the following functions between subsets of the codes \scrC , \widetilde \scrC , and \widetilde \scrC | R\cup \scrI :

\{ \tau \in \scrC | \tau \cap R \not = \emptyset \} \phi \leftarrow  - \{ \widetilde \tau \in \widetilde \scrC | \widetilde \tau \cap R \not = \emptyset \} \psi  - \rightarrow \{ \widetilde \tau \cap (R \cup \scrI ) | \widetilde \tau \in \widetilde \scrC and \widetilde \tau \cap R \not = \emptyset \} 
(8)

=
\Bigl( 
\widetilde \scrC | R\cup \scrI 

\Bigr) 
\smallsetminus \{ \emptyset \} ,(9)

given by \phi (\widetilde \tau ) := (\widetilde \tau \cap [n]), and \psi (\widetilde \tau ) := \widetilde \tau \cap (R \cup \scrI ). (We will prove the equality (9)
below.)

The map \phi is an inclusion-preserving bijection by (repeated application of)
Lemma 4.26(2). The map \psi is inclusion-preserving and surjective by construction.
We claim that \psi is also injective. To show this, it suffices to show (as \phi is bijective)
that \psi \circ \phi  - 1 is injective. To this end, let \tau 1, \tau 2 \in \scrC be such that \tau 1\cap R \not = \emptyset , \tau 2\cap R \not = \emptyset ,
and \tau 1 \not = \tau 2. We must show that \widetilde \tau 1 \cap (R \cup \scrI ) \not = \widetilde \tau 2 \cap (R \cup \scrI ), where (for j = 1, 2) \widetilde \tau j
denotes the codeword in \widetilde \scrC that corresponds to \tau j :

\widetilde \tau j := \tau j \cup \{ i\omega | i\omega \in \scrI and \omega \subseteq \tau j\} .

The assumption \tau 1 \not = \tau 2 implies that there exists a neuron k \in [n] such that
k \in (\tau 1 \smallsetminus \tau 2) or k \in (\tau 2 \smallsetminus \tau 1). By relabeling if necessary, we may assume that
k \in (\tau 1 \smallsetminus \tau 2). We consider two cases, based on whether k \in R. If k \in R, then
k \in (\widetilde \tau 1\cap (R\cup \scrI ))\smallsetminus (\widetilde \tau 2\cap (R\cup \scrI )) (here, we also use the fact that k \in (\tau 1\smallsetminus \tau 2) \subseteq (\widetilde \tau 1\smallsetminus \widetilde \tau 2)).
We now consider the remaining case, when k /\in R. Then i\tau 1 \in \widetilde \tau 1 (as \tau 1 \cap R \not = \emptyset ), and
i\tau 1 /\in \widetilde \tau 2 (because \tau 1 \nsubseteq \tau 2). Hence, as i\tau 1 \in \scrI , we have i\tau 1 \in (\widetilde \tau 1\cap (R\cup \scrI ))\smallsetminus (\widetilde \tau 2\cap (R\cup \scrI )).
Thus, our claim holds.

Next, we prove the equality asserted in (9). The containment \subseteq is straightforward:
If \widetilde \tau \cap R \not = \emptyset , then \widetilde \tau \cap (R\cup \scrI ) \not = \emptyset . As for the reverse containment \supseteq , redundant neurons
i\omega were added only for certain \omega \in \scrC for which \omega \cap R \not = \emptyset ; hence, \widetilde \tau \cap (R \cup \scrI ) \not = \emptyset 
implies that \widetilde \tau \cap R \not = \emptyset .

To summarize, we have proven that the maps in (8) are inclusion-preserving
bijections and that the equality in (9) holds. Hence, the codeword-containment graph
of \widetilde \scrC | R\cup \scrI \smallsetminus \{ \emptyset \} is isomorphic to the codeword-containment graph of \{ \tau \in \scrC | \tau \cap R \not = \emptyset \} ,
which by hypothesis is a path. So, by Lemma 4.24, (R \cup \scrI ,\cup ) is a rigid structure
of \widetilde \scrC | R\cup \scrI and thus (by definition) is also a rigid structure of \widetilde \scrC . So, by repeated
application of Lemma 4.27, (R,\cup ) is a rigid structure of the original code \scrC .

Remark 4.28 (converse of Proposition 4.18 is false). It is natural to ask about
the converse to the proposition---that is, when \Gamma is a path graph, if (R,\cup ) is a rigid
structure, must the triplewise-intersection condition hold? The answer is ``no."" For
instance, when \Gamma is the path 1  - 124  - 2  - 234, we have that (\{ 1, 2, 3, 4\} ,\cup ) is rigid
for trivial reasons: This code has no closed-convex realization (because the Interval
Condition is violated by neuron 4). Yet, the triplewise-intersection condition fails:
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NONDEGENERATE NEURAL CODES 133

1 \cap 124 \cap 2 is empty. On the other hand, requiring the Interval Condition makes
the converse true; this is shown in forthcoming work of Luis Gomez, Loan Tran, and
Elijah Washington.

4.3. Proof of Theorem 4.15. We use Proposition 4.18 to prove the result,
stated earlier, asserting the non--closed-convexity of codes for which the codeword-
containment graph is a cycle and the triplewise-intersection condition holds.

Proof of Theorem 4.15. Assume that the codeword-containment graph of \scrC \smallsetminus \{ \emptyset \} 
is a cycle \sigma 1  - \sigma 2  - \cdot \cdot \cdot  - \sigma q  - \sigma 1 (so, q \geq 3) and that the triplewise intersections
\sigma i \cap \sigma i+1 \cap \sigma i+2 are nonempty. We first rule out the q = 3 case. In this case, the
three (nonempty) codewords \sigma i are linearly ordered, that is, after relabeling if needed,
\sigma 1 \supsetneq \sigma 2 \supsetneq \sigma 3. Hence, \sigma 1\cap \sigma 2\cap \sigma 3 = \sigma 3 \not = \emptyset , which violates the triplewise-intersection
condition.

Assume that q \geq 4. Relabel, if necessary, so that \sigma 1 is a maximal codeword.
Hence, \sigma 1 \supsetneq \sigma 2. Also, \sigma 2 \subsetneq \sigma 3, because if instead we had \sigma 2 \supsetneq \sigma 3, then \sigma 1 - \sigma 3 would
be an edge of the codeword-containment graph, which is impossible as the graph is
a cycle of length q \geq 4. We claim that (i) no nonempty codeword of \scrC is properly
contained in \sigma 2, and (ii) \sigma 1 and \sigma 3 are the only codewords that properly contain \sigma 2.
Indeed, either were violated, the codeword-containment graph would contain an edge
from \sigma 2 to some \sigma k, with k \not = 1, 3, and hence would not be a cycle. Facts (i) and (ii)
will be used below.

Let R := \sigma 2 and \frakC := [n]\smallsetminus R. The pair (R,\cap ) is automatically a rigid structure,
and we now claim that (\frakC ,\cup ) is also a rigid structure. To see this, note that no
nonempty codeword is properly contained in R = \sigma 2 and each such codeword contains
at least one neuron from \frakC . Thus, the codeword-containment graph of \{ \tau \in \scrC | \tau \cap \frakC \not =
\emptyset \} is the path \sigma 3 - \sigma 4 - \cdot \cdot \cdot  - \sigma q - \sigma 1. The triplewise-intersection property for this path
holds by hypothesis. Hence, Proposition 4.18 implies that (\frakC ,\cup ) is a rigid structure,
as desired.

The distinguished subcode arising from (R,\cap ) and (\frakC ,\cup ) is \{ \tau \in \scrC | R = \sigma 2 \subseteq 
\tau and \tau \cap \frakC \not = \emptyset \} = \{ \sigma 1, \sigma 3\} , and the resulting codeword-containment graph is discon-
nected (\sigma 1 \nsubseteq \sigma 3 and \sigma 1 \nsupseteq \sigma 3). So, by Theorem 4.12, \scrC is not closed-convex.

Remark 4.29. From the proof of Theorem 4.15, we see that codes satisfying
the hypotheses of that theorem have many choices of rigid structures (R,\cap ) and
([n] \smallsetminus R,\cup ) that can be used to prove non--closed-convexity. For instance, for the
code C15 (from Example 4.16), R can be chosen to be any of the following subsets of
\{ 1, 2, 3, 4, 5\} : 12, 15, 45, 34, and 23.

4.4. Examples. Here we show that four of the five known non--closed-convex
codes that are open-convex (those listed in Table 1), can be handled by Theorem
4.12. The rigid structures that we use are listed in Table 1 and some are shown
schematically in Figures 3 and 5.

Proposition 4.30. The codes C6, C10, C15, and \scrC Cr (from Example 2.6) satisfy
the hypotheses of Theorem 4.12, where the rigid structures are those in Table 1, and
are therefore non--closed-convex.

Proof. For the code C6, we saw in Example 4.19 that (R,\bigcirc ) := (1235,\cup ) is a rigid
structure. We also consider the rigid structure (\frakC ,\bigtriangleup ) := (4,\cap ). The resulting distin-
guished subcode is C6\prime = \{ 145, 234\} , which has disconnected codeword-containment
graph. So, by Theorem 4.12, the code C6 is not closed-convex.

Next, we consider the code C10. Applying Proposition 4.18 to C10| 1234 and
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134 CHAN, JOHNSTON, LENT, RUYS DE PEREZ, AND SHIU

C10|123413 134 34 234 24

1 2

12

U5
135 2455

Fig. 5. The code C10, with two rigid structures (shaded). Dotted lines indicate pairs of code-
words arising from distinct rigid structures, with one contained in the other.

234

34

34545

456

6

126

12 123

23

Fig. 6. An open-convex realization of \scrD 5 in \BbbR 2.

R = \{ 3, 4\} , the codeword-containment graph \Gamma is the path 13 - 134 - 34 - 234 - 24,
and the intersections 13 \cap 134 \cap 34 = 3, 134 \cap 34 \cap 234 = 34, and 34 \cap 234 \cap 24 = 4
are nonempty. We conclude that (34,\cup ) is a rigid structure of C10. The other rigid
structure we consider is (5,\cap ). The resulting distinguished subcode is \{ 135, 245\} , and
so, as above, the code C10 is not closed-convex.

Finally, the codes C15 and \scrC Cr were already analyzed in Example 4.16 (see also
the proof of Theorem 4.15).

Next, we give the first infinite family of codes that are open-convex but non--
closed-convex.

Theorem 4.31. For n \geq 5, the following neural code is open-convex but not
closed-convex:

\scrD n = \{ 12,123, 23,234, 34, . . . , (n - 2)(n - 1)n, (n - 1)n,

12(n+ 1), n+ 1, (n - 1)n(n+ 1), \emptyset \} .(10)

Proof. It is straightforward to check that the open-convex realization of \scrD 5 shown
in Figure 6 extends to all \scrD n, for n \geq 5.
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NONDEGENERATE NEURAL CODES 135

12 123 234 34 · · · (n− 2)(n− 1)n (n− 1)n

12(n+ 1) n+ 1 (n− 1)n(n+ 1)

Fig. 7. The code \scrD n, viewed as the union of two rigid structures. Dotted lines indicate pairs
of codewords arising from distinct rigid structures, with one contained in the other.

U4 = U5 ∪ U6

C8|1237817 12378 38

278

2

1457 245645 46 3468

Fig. 8. The code \scrC 8. The shaded region at the top is rigid. Dotted lines indicate pairs of
codewords, one contained in the other, arising from distinct regions.

We apply Proposition 4.18 to the code \scrD n and R = \{ 1, 2, . . . , n\} . The resulting
graph \Gamma is the path on the codewords---in that order, from 12 to (n - 1)n---shown in
line (10). The consecutive triplewise intersections are easily seen to be nonempty, and
so ([n],\cup ) is a rigid structure of the code. See Figure 7. The other rigid structure we
consider is (n+1,\cap ). The resulting distinguished subcode is \{ 12(n+1), (n - 1)n(n+1)\} ,
and so by Theorem 4.12, \scrD n is not closed-convex.

Remark 4.32. Recall that closed-convexity is ``minor-closed"" with respect to the
partial order defined in [12] (see [13, Proposition 9.3]). It would therefore be inter-
esting to see whether, with respect to this partial order, the codes \scrD n are minimally
non--closed-convex.

Remark 4.33. Another direction for future work is to use the results in this section
to scan codes on 6 neurons for non--closed-convexity, like was done for open-convexity
in the work of Ruys de Perez, Matusevich, and Shiu [23].

The next example is a non--closed-convex code that, as far as we know, does not
satisfy the hypotheses of Theorem 4.12 but may indicate a way to extend our results.

Example 4.34. We revisit the non--closed-convex code \scrC 8 from Example 2.8. It
has a rigid structure (shown in Figure 8). Informally, this structure must ``bend"" to
intersect the required atoms in the rest of the code, and so \scrC 8 is non--closed-convex.
It would be interesting in the future to generalize our results to accommodate this
code.

We end this section by showing how rigid structures can be used to preclude
closed-convexity, even when the results in this section do not directly apply (or are
difficult to apply). The idea, which we illustrate in the following example, is to replace
a rigid structure (which is necessarily convex) by a new neuron.
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Example 4.35. Consider the following code on 8 neurons:

\scrD = \{ 12467,2678,123,138,345,456,
1246, 1267, 2467, 267, 467, 12, 13, 45, 46, 67, 3, 8, \emptyset \} .

By applying Lemma 4.24 to the restricted code \scrD | 4567, we conclude that (4567,\cup )
is a rigid structure of \scrD | 4567 and thus (by definition) is also a rigid structure of \scrD ,
shown with shading here.

22 CHAN, JOHNSTON, LENT, RUYS DE PEREZ, AND SHIU

U4 = U5 ∪ U6

C8|1237817 12378 38

278

2

1457 245645 46 3468

Fig. 8. The code C8. The shaded region at the top is rigid. Dotted lines indicate pairs of
codewords, one contained in the other, arising from distinct regions.

Example 4.34. We revisit the non-closed-convex code C8 from Example 2.8. It
has a rigid structure (shown in Figure 8). Informally, this structure must “bend” to
intersect the required atoms in the rest of the code, and so C8 is non-closed-convex.
It would be interesting in the future to generalize our results to accommodate this
code.

We end this section by showing how rigid structures can be used to preclude
closed-convexity, even when the results in this section do not directly apply (or are
difficult to apply). The idea, which we illustrate in the following example, is to replace
a rigid structure (which is necessarily convex) by a new neuron.

Example 4.35. Consider the following code on 8 neurons:

D = {12467,2678,123,138,345,456,
1246, 1267, 2467, 267, 467, 12, 13, 45, 46, 67, 3, 8, ∅} .

By applying Lemma 4.24 to the restricted code D|4567, we conclude that (4567,∪) is a
rigid structure of D|4567 and thus (by definition) is also a rigid structure of D, shown
with shading here:

13 123 12

3

345

45

456

46

467
67

1246
12467

1267

2467

267

8138 2678

Next, as U4 ∪U5 ∪U6 ∪U7 is convex (in every closed-convex realization of D), we
can introduce a new neuron B for which UB = U4 ∪U5 ∪U6 ∪U7. More precisely, letNext, as U4 \cup U5 \cup U6 \cup U7 is convex (in every closed-convex realization of \scrD ), we
can introduce a new neuron B for which UB = U4 \cup U5 \cup U6 \cup U7. More precisely, let
\widetilde \scrD be the code obtained from \scrD by adding neuron B to every codeword that contains
at least one neuron from the set \{ 4, 5, 6, 7\} . It follows that \scrD and \widetilde \scrD are equivalent
(from the point of view of analyzing closed-convexity). The following restricted code
is (up to relabeling neurons) the code C10:

\widetilde \scrD | 1238B = \{ 123,12B,138,28B,3B, 12, 13, 2B, 3, 8, B, \emptyset \} .

Results in this section (and also those in the next section) show that C10 is non--
closed-convex, and thus so is \widetilde \scrD , and hence \scrD as well.

Remark 4.36. We have already used rigid structures to show that the code C6 is
non--closed-convex (Proposition 4.30). Another way to see this uses the ``new neuron""
idea in the previous example. Namely, as (1235,\cup ) is a rigid structure, we let R denote
a new neuron with UR = U1 \cup U2 \cup U3 \cup U5. Then, one can check that this new code
has (at R) a ``local obstruction"" to convexity (which precludes closed-convexity), as
in [3, 8].

5. Precluding closed-convexity using RF relationships. In this section,
we introduce a second criterion for precluding closed-convexity, which, unlike the one
in the previous section (Theorem 4.12), can be checked directly from a neural code
or its neural ideal (Theorem 5.1). The conditions in our criterion, which are listed in
Table 2, capture the RF relationships that lead to non--closed-convexity in some codes
in the literature. Accordingly, our proof unifies arguments made in [9]. Additionally,
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NONDEGENERATE NEURAL CODES 137

Table 2.
Properties of a neural code \scrC , the equivalent RF relationships, and the equivalent conditions on

the neural ideal J\scrC .

Property of neural code RF relationship Neural ideal

Some codeword contains \{ i, j, k\} Uijk \not = \emptyset xixjxk /\in J\scrC 
Some codeword contains \{ i, j,m\} Uijm \not = \emptyset xixjxm /\in J\scrC 
Some codeword contains \{ k, \ell ,m\} Uk\ell m \not = \emptyset xkx\ell xm /\in J\scrC 
No codeword contains \{ i, j, k, \ell \} Uijk\ell = \emptyset xixjxkx\ell \in J\scrC 
No codeword contains \{ i, j, k,m\} Uijkm = \emptyset xixjxkxm \in J\scrC 
Each codeword containing k also contains j or \ell Uk \subseteq (Uj \cup U\ell ) xk(xj + 1)(x\ell + 1) \in J\scrC 
Each codeword containing j also contains i or k Uj \subseteq (Ui \cup Uk) xj(xi + 1)(xk + 1) \in J\scrC 

we obtain a criterion that can be checked from the canonical form (Corollary 5.8) and
therefore is the first algebraic signature for non--closed-convexity (besides signatures
of local obstructions [4]).

Theorem 5.1 (criterion for precluding closed-convexity). Let \scrC be a code on
n neurons. Let i, j, k, l,m \in [n]. If \scrC satisfies the properties in the first column of
Table 2 or, equivalently, the neural ideal J\scrC satisfies the properties in the third column,
then \scrC is not closed-convex.

Proof. The equivalence of columns two and three of Table 2 is due to Lemma
2.24, and the equivalence of columns one and two is straightforward.

Assume for contradiction that \{ U1, U2, . . . , Un\} is a closed-convex realization of \scrC .
By intersecting each Ui with a sufficiently large closed ball (the same ball for all i),
we may assume that each Ui is compact.

The first four RF relationships in Table 2 imply that, for the three sets
Uij , Uk, Um, all pairwise intersections are nonempty but the triplewise intersection
Uij \cap Uk \cap Um = Uijkm is empty. We depict this schematically here.24 CHAN, JOHNSTON, LENT, RUYS DE PEREZ, AND SHIU

Uk

Um

Uij

We can therefore pick distinct points yijm ∈ Uijm and ykℓm ∈ Ukℓm (recall from
Table 2 that Ukℓm ̸= ∅). Let Lm be the line segment joining the two points. We have
Lm ⊆ Um, because both endpoints are in the convex set Um. Next, Lm and Uijk are
compact and disjoint sets (recall that Uijkm = ∅), so there exists a point yijk ∈ Uijk
that achieves the minimum distance from Uijk to Lm (and this distance is positive).

Letting Lij be the line segment from yijm to yijk (so, Lij ⊆ Uij by convexity),
and Lk the line segment from yijk to ykℓm (so, Lk ⊆ Uk by convexity), we have the
following triangle:

yijk

yijm yklm

Lij Lk

Lm

Recall again that Uijkm = ∅, so the line segment Lij ⊆ Uij must exit Um before
entering Uk. Hence, there exists a point yij in the relative interior of the line segment
Lij such that yij ∈ Uij ∖ (Um ∪ Uk).

Next, Lk ⊆ Uk and (from Table 2) Uk ⊆ (Uj ∪Uℓ). Also, the endpoints of Lk are
yijk ∈ Uj and ykℓm ∈ Uℓ. So, Lk is a connected set covered by the nonempty closed
sets Lk ∩Uj and Lk ∩Uℓ. We conclude that there exists a point yjkℓ on Lk that is in
Ujkℓ. Additionally, yjkℓ /∈ Ui (and in particular yjkℓ ̸= yijk) because Uijkℓ = ∅ (see
Table 2).

We conclude that the line segment from yij to yjkℓ, which we denote by Lj , is
contained in Uj and (except for the endpoints) lies in the interior of the triangle. From
Table 2, we have Uj ⊆ (Ui∪Uk). Also, recall that yij ∈ (Ui∖Uk) and yjkℓ ∈ (Uk∖Ui).
Thus, there is a point y′ijk in the relative interior of Lj (and thus in the interior of
the triangle) and also in Uijk. We depict this here:

yijk

yijm yklm

yij yjkl
y′ijk

Lm

Lj

Thus, y′ijk is a point in Uijk that is closer to Lm than yijk is, which is a contra-
diction.

Example 5.2. Theorem 5.1 applies to the codes C6, C10, and C15 from Exam-
ple 2.6, where the values of (i, j, k, ℓ,m) are as listed in Table 3. Hence, these codes
are non-closed-convex, and our result unifies the proofs of non-closed-convexity due
to Goldrup and Phillipson, who first analyzed these codes [9]. See also another such
proof for C15, which uses “order-forcing”, in [14, Example 2.13].

Remark 5.3 (minimum-distance arguments). Like the earlier proof of Lemma 4.21,

We can therefore pick distinct points yijm \in Uijm and yk\ell m \in Uk\ell m (recall from
Table 2 that Uk\ell m \not = \emptyset ). Let Lm be the line segment joining the two points. We have
Lm \subseteq Um, because both endpoints are in the convex set Um. Next, Lm and Uijk are
compact and disjoint sets (recall that Uijkm = \emptyset ), so there exists a point yijk \in Uijk
that achieves the minimum distance from Uijk to Lm (and this distance is positive).

Letting Lij be the line segment from yijm to yijk (so, Lij \subseteq Uij by convexity),
and Lk the line segment from yijk to yk\ell m (so, Lk \subseteq Uk by convexity), we have the
following triangle.

24 CHAN, JOHNSTON, LENT, RUYS DE PEREZ, AND SHIU

Uk

Um

Uij

We can therefore pick distinct points yijm ∈ Uijm and ykℓm ∈ Ukℓm (recall from
Table 2 that Ukℓm ̸= ∅). Let Lm be the line segment joining the two points. We have
Lm ⊆ Um, because both endpoints are in the convex set Um. Next, Lm and Uijk are
compact and disjoint sets (recall that Uijkm = ∅), so there exists a point yijk ∈ Uijk
that achieves the minimum distance from Uijk to Lm (and this distance is positive).

Letting Lij be the line segment from yijm to yijk (so, Lij ⊆ Uij by convexity),
and Lk the line segment from yijk to ykℓm (so, Lk ⊆ Uk by convexity), we have the
following triangle:

yijk

yijm yklm

Lij Lk

Lm

Recall again that Uijkm = ∅, so the line segment Lij ⊆ Uij must exit Um before
entering Uk. Hence, there exists a point yij in the relative interior of the line segment
Lij such that yij ∈ Uij ∖ (Um ∪ Uk).

Next, Lk ⊆ Uk and (from Table 2) Uk ⊆ (Uj ∪Uℓ). Also, the endpoints of Lk are
yijk ∈ Uj and ykℓm ∈ Uℓ. So, Lk is a connected set covered by the nonempty closed
sets Lk ∩Uj and Lk ∩Uℓ. We conclude that there exists a point yjkℓ on Lk that is in
Ujkℓ. Additionally, yjkℓ /∈ Ui (and in particular yjkℓ ̸= yijk) because Uijkℓ = ∅ (see
Table 2).

We conclude that the line segment from yij to yjkℓ, which we denote by Lj , is
contained in Uj and (except for the endpoints) lies in the interior of the triangle. From
Table 2, we have Uj ⊆ (Ui∪Uk). Also, recall that yij ∈ (Ui∖Uk) and yjkℓ ∈ (Uk∖Ui).
Thus, there is a point y′ijk in the relative interior of Lj (and thus in the interior of
the triangle) and also in Uijk. We depict this here:

yijk

yijm yklm

yij yjkl
y′ijk

Lm

Lj

Thus, y′ijk is a point in Uijk that is closer to Lm than yijk is, which is a contra-
diction.

Example 5.2. Theorem 5.1 applies to the codes C6, C10, and C15 from Exam-
ple 2.6, where the values of (i, j, k, ℓ,m) are as listed in Table 3. Hence, these codes
are non-closed-convex, and our result unifies the proofs of non-closed-convexity due
to Goldrup and Phillipson, who first analyzed these codes [9]. See also another such
proof for C15, which uses “order-forcing”, in [14, Example 2.13].

Remark 5.3 (minimum-distance arguments). Like the earlier proof of Lemma 4.21,
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Table 3.
Three codes and indices (i, j, k, \ell ,m) for which the codes satisfy the hypotheses of Theorem 5.1.

Code (i, j, k, \ell ,m)

C6 = \{ 123,125,145,234, 12, 15, 23, 4, \emptyset \} (3, 2, 1, 5, 4)
C10 = \{ 134,135,234,245,12, 13, 24, 34, 1, 2, 5, \emptyset \} (1, 3, 4, 2, 5)

C15 = \{ 123,125,145,234,345, 12, 15, 23, 34, 45, \emptyset \} (1, 2, 3, 4, 5)

Recall again that Uijkm = \emptyset , so the line segment Lij \subseteq Uij must exit Um before
entering Uk. Hence, there exists a point yij in the relative interior of the line segment
Lij such that yij \in Uij \smallsetminus (Um \cup Uk).

Next, Lk \subseteq Uk and (from Table 2) Uk \subseteq (Uj \cup U\ell ). Also, the endpoints of Lk are
yijk \in Uj and yk\ell m \in U\ell . So, Lk is a connected set covered by the nonempty closed
sets Lk \cap Uj and Lk \cap U\ell . We conclude that there exists a point yjk\ell on Lk that is in
Ujk\ell . Additionally, yjk\ell /\in Ui (and in particular yjk\ell \not = yijk) because Uijk\ell = \emptyset (see
Table 2).

We conclude that the line segment from yij to yjk\ell , which we denote by Lj , is
contained in Uj and (except for the endpoints) lies in the interior of the triangle. From
Table 2, we have Uj \subseteq (Ui\cup Uk). Also, recall that yij \in (Ui\smallsetminus Uk) and yjk\ell \in (Uk\smallsetminus Ui).
Thus, there is a point y\prime ijk in the relative interior of Lj (and thus in the interior of
the triangle) and also in Uijk. We depict this here.
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Uk

Um

Uij

We can therefore pick distinct points yijm ∈ Uijm and ykℓm ∈ Ukℓm (recall from
Table 2 that Ukℓm ̸= ∅). Let Lm be the line segment joining the two points. We have
Lm ⊆ Um, because both endpoints are in the convex set Um. Next, Lm and Uijk are
compact and disjoint sets (recall that Uijkm = ∅), so there exists a point yijk ∈ Uijk
that achieves the minimum distance from Uijk to Lm (and this distance is positive).

Letting Lij be the line segment from yijm to yijk (so, Lij ⊆ Uij by convexity),
and Lk the line segment from yijk to ykℓm (so, Lk ⊆ Uk by convexity), we have the
following triangle:

yijk

yijm yklm

Lij Lk

Lm

Recall again that Uijkm = ∅, so the line segment Lij ⊆ Uij must exit Um before
entering Uk. Hence, there exists a point yij in the relative interior of the line segment
Lij such that yij ∈ Uij ∖ (Um ∪ Uk).

Next, Lk ⊆ Uk and (from Table 2) Uk ⊆ (Uj ∪Uℓ). Also, the endpoints of Lk are
yijk ∈ Uj and ykℓm ∈ Uℓ. So, Lk is a connected set covered by the nonempty closed
sets Lk ∩Uj and Lk ∩Uℓ. We conclude that there exists a point yjkℓ on Lk that is in
Ujkℓ. Additionally, yjkℓ /∈ Ui (and in particular yjkℓ ̸= yijk) because Uijkℓ = ∅ (see
Table 2).

We conclude that the line segment from yij to yjkℓ, which we denote by Lj , is
contained in Uj and (except for the endpoints) lies in the interior of the triangle. From
Table 2, we have Uj ⊆ (Ui∪Uk). Also, recall that yij ∈ (Ui∖Uk) and yjkℓ ∈ (Uk∖Ui).
Thus, there is a point y′ijk in the relative interior of Lj (and thus in the interior of
the triangle) and also in Uijk. We depict this here:

yijk

yijm yklm

yij yjkl
y′ijk

Lm

Lj

Thus, y′ijk is a point in Uijk that is closer to Lm than yijk is, which is a contra-
diction.

Example 5.2. Theorem 5.1 applies to the codes C6, C10, and C15 from Exam-
ple 2.6, where the values of (i, j, k, ℓ,m) are as listed in Table 3. Hence, these codes
are non-closed-convex, and our result unifies the proofs of non-closed-convexity due
to Goldrup and Phillipson, who first analyzed these codes [9]. See also another such
proof for C15, which uses “order-forcing”, in [14, Example 2.13].

Remark 5.3 (minimum-distance arguments). Like the earlier proof of Lemma 4.21,

Thus, y\prime ijk is a point in Uijk that is closer to Lm than yijk is, which is a contra-
diction.

Example 5.2. Theorem 5.1 applies to the codes C6, C10, and C15 from Example
2.6, where the values of (i, j, k, \ell ,m) are as listed in Table 3. Hence, these codes are
non--closed-convex, and our result unifies the proofs of non--closed-convexity due to
Goldrup and Phillipson, who first analyzed these codes [9]. See also another such
proof for C15, which uses ``order-forcing,"" in [14, Example 2.13].

Remark 5.3 (minimum-distance arguments). Like the earlier proof of Lemma
4.21, the proof of Theorem 5.1 relies on minimum-distance arguments. Indeed, our
proof is similar to that of Cruz et al. [2, Lemma 2.9] for the code \scrC Cr from Example
2.6, but Theorem 5.1 does not apply to that code. It may be interesting in the future
to prove a result that is similar to Theorem 5.1 and does apply to \scrC Cr.

Remark 5.4 (adding codewords that preserve non--closed-convexity). For a non--
closed-convex code \scrC , Theorem 5.1 can be used to generate a list of nonmaximal
codewords that, when added to \scrC , results in a code that is still non--closed-convex.
For instance, any subset of the following codewords can be added to C6 without
making the code become closed-convex: 3, 34, 45, 5.
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Remark 5.5 (replacing i, j, k, \ell ,m by sets). Theorem 5.1 allows the following
generalization: The properties of neural codes listed in Table 2 involving individual
neurons i, j, k, \ell ,m can be replaced by nonempty sets of neurons I, J,K,L,M (e.g.,
``Some codeword contains \{ i, j, k\} "" becomes ``Some codeword contains I \cup J \cup K"").
The proof of Theorem 5.1 readily accommodates this extension. An alternate proof
is through Jeffs's theory of morphisms of codes [12]. Two key ingredients for this
proof are as follows: Codes that have a surjective morphism to a non--closed-convex
code are non--closed-convex [12, Remark 1.8]), and the properties of neural codes in
Table 2 can be restated in terms of what Jeffs calls ``trunks.""

We expect that we can not remove any of the hypotheses of Theorem 5.1 (the
seven properties listed in Table 2). The following example shows what can happen
with one missing hypothesis.

Example 5.6. Consider the following code: \scrC = \{ 123,124,235,45, 12, 14, 23, 35,
4, 5, \emptyset \} . This code is closed-convex (this follows from results in [2, 9]), but was erro-
neously asserted to be non--closed-convex in a preliminary version of [6]. It is easy to
check that, when (i, j, k, \ell ,m) = (1, 2, 3, 5, 4), the code \scrC satisfies all properties listed
in Table 2 except the one in the third row.

Theorem 5.1 provides a sufficient condition for being non--closed-convex. As noted
above, the code \scrC Cr shows that this condition is not necessary, even for codes without
local obstructions. Another such code is in the following result.

Proposition 5.7. The code \scrC 8 = \{ 12378,1457,2456,3468, 278, 17, 38, 45, 46,
2, \emptyset \} from Example 2.6 is non--closed-convex but fails to satisfy the hypotheses of
Theorem 5.1.

Proof. As noted earlier, non--closed-convexity was proven in [6].
It will be useful in our proof to examine the code's canonical form, which is as

follows:

\{ x1(x7 + 1), x3(x8 + 1), x3x5, (x4 + 1)x5, x5x8, x1x6,

(x4 + 1)x6, x6x7, x4(x5 + 1)(x6 + 1), (x1 + 1)(x2 + 1)x7,

(x1 + 1)x7(x8 + 1), x2x7(x8 + 1), x2(x7 + 1)x8, (x2 + 1)(x3 + 1)x8,

(x3 + 1)(x7 + 1)x8, (x2 + 1)x7x8, x1x4(x5 + 1), (x1 + 1)x4x7,

x4(x5 + 1)x7, (x1 + 1)x5x7, x2x3(x5 + 1), x2x4(x6 + 1), x2x4x7,

x2x5(x6 + 1), x2x5x7, x2(x5 + 1)x6, (x2 + 1)x5x6, x3x4(x6 + 1),

x2x4x8, (x3 + 1)x4x8, x4(x6 + 1)x8, x4x7x8, x2x6x8, (x3 + 1)x6x8,

x1x2(x3 + 1), x1x2x4, x1x2x5, x1x2(x8 + 1), x1(x2 + 1)x3, x1x3x4,

(x1 + 1)x2x3, x2x3x4, x2x3x6, x2x3(x7 + 1), (x1 + 1)x3x7,

(x2 + 1)x3x7, x3x4x7, x1(x2 + 1)x8, x1(x3 + 1)x8, x1x4x8\} .

Recall from Lemma 2.24 that a pseudomonomial in the canonical form, such as
x1(x7 + 1), indicates a minimal RF relationship, such as U1 \subseteq U7.

We first note that \scrC 8 is symmetric under switching the neurons 1, 5, 7 with, re-
spectively, 3, 6, 8. We must show that no neurons play the roles of i, j, k, l, and m in
Theorem 5.1. We focus on the conditions in rows 1, 2, and 5 in Table 3, which are
together equivalent to the existence of maximal codewords \sigma 1 and \sigma 2 that (i) con-
tain (respectively) ijk and ijm and (ii) are such that \sigma 1 \not = \sigma 2 (so that no codeword
contains ijkm). As \{ i, j\} \subseteq (\sigma 1 \cap \sigma 2), we restrict our attention to pairs of maximal
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codewords of \scrC 8 whose intersection has size at least 2. Up to the symmetry mentioned
above, there are only two options:

\bullet Case A: \{ i, j\} = \{ 4, 5\} = 1457 \cap 2456 = \sigma 1 \cap \sigma 2 (in which case, m \in \{ 2, 6\} 
and k \in \{ 1, 7\} , or vice versa), or

\bullet Case B: \{ i, j\} = \{ 3, 8\} = 12378\cap 3468 = \sigma 1\cap \sigma 2 (in which case, m \in \{ 1, 2, 7\} 
and k \in \{ 4, 6\} , or vice versa).

Before considering the two cases, we first claim that k \not = 2. Indeed, 2 \in \scrC 8, and
so there is no RF relationship with k = 2 of the following form required by row 6 of
Table 3:

Uk \subseteq (Uj \cup U\ell ).(11)

We begin with Case A. We claim that k \not = 6 and m \not = 6. Indeed, the condition in
row 3 of Table 3 requires that some codeword contain k\ell m, and there is no maximal
codeword containing 16 or 67. Therefore, it must be that k \in \{ 1, 7\} and m = 2.

We first consider k = 1. The only minimal RF relationship of the form U1 \subseteq 
\cup p\in \tau Up is U1 \subseteq U7 (this can be checked directly or from the canonical form), so
the required condition (11) (with j \in \{ 4, 5\} ) implies that \ell = 7. Thus, ijk\ell =
\{ 1, 4, 5, 7\} , which is itself a maximal codeword. Thus, the condition in row 4 of Table 3
fails.

The remaining subcase is when k = 7. Only two minimal RF relationship are of
the form U7 \subseteq \cup p\in \tau Up, namely, U7 \subseteq U1 \cup U8 and U7 \subseteq U1 \cup U2. So, as j \in \{ 4, 5\} ,
there is no RF relationship with k = 7 of the form in (11). So, this subcase also does
not fulfill the hypotheses of the theorem.

We turn now to Case B. The possible values for k are 1, 4, 6, 7. For k = 1, there
is a single minimal RF relationship of the form U1 \subseteq \cup p\in \tau Up, namely, U1 \subseteq U7.
So, we can again use (11) (and the assumption \{ i, j\} = \{ 3, 8\} ) to see that \ell = 7.
Thus, ijkl = \{ 1, 3, 7, 8\} , which is contained in the maximal codeword 12378 and so
contradicts the row 4 condition.

For k = 4, there is one minimal RF relationship of the form U4 \subseteq \cup p\in \tau Up, namely,
U4 \subseteq U5 \cup U6. This relationship does not involve j \in \{ 3, 8\} , and so condition (11)
does not hold.

For k = 6, only one minimal RF relationship has the form U6 \subseteq \cup p\in \tau Up, namely,
U6 \subseteq U4. Hence, \ell = 4, and so ijkl = \{ 3, 4, 6, 8\} is a maximal codeword, again
violating the row 4 condition.

Finally, consider k = 7. Only two RF relationships have the form U7 \subseteq \cup p\in \tau Up,
namely, U7 \subseteq U1 \cup U2 and U7 \subseteq U1 \cup U8. It must therefore be that j = 8 and \ell = 1.
So, ijk\ell = \{ 1, 3, 7, 8\} \subseteq \{ 1, 2, 3, 7, 8\} , again contradicting the row 4 condition. Our
proof is now complete.

Corollary 5.8 (precluding closed-convexity using the canonical form). Let \scrC 
be a code on n neurons. Let i, j, k, l,m \in [n]. Suppose that the canonical form of the
neural ideal of \scrC contains the following pseudo-monomials:

(i) xixk(xj + 1), xjxm(xi + 1), and xkxm(x\ell + 1);
(ii) x\sigma and x\tau , for some \sigma \subseteq \{ i, j, k, \ell \} and \tau \subseteq \{ i, j, k,m\} ; and
(iii) xk(xj + 1)(x\ell + 1) and xj(xi + 1)(xk + 1).

Then \scrC is not closed-convex.

Proof. Recall that the canonical form is the set of minimal pseudo-monomials in
the neural ideal. Thus, the presence of the pseudo-monomials in (ii) and (iii) imply
the properties in rows 4--7 in Table 2.
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NONDEGENERATE NEURAL CODES 141

Next, we claim that xixk(xj+1) \in CF(J\scrC ) implies the properties in the first row in
Table 2, specifically, xixjxk /\in J\scrC . To see this, note that otherwise the sum xixk(xj +
1) + xixjxk = xixk would be in J\scrC , which contradicts the fact that xixk(xj + 1) is
minimal. So, by symmetry, the three pseudo-monomials in (i) imply the properties in
rows 1--3 in Table 2.

The corollary now follows from Theorem 5.1.

Example 5.9. We return to the codes C10 and C15. Recall that their canonical
forms are shown in Example 2.23. Corollary 5.8 applies to show that these codes are
non--closed-convex, where the indices (i, j, k, \ell ,m) are as in Table 3, and \sigma = \{ i, j, \ell \} 
and \tau = \{ i, k,m\} .

6. Closed-convexity of sunflower codes. In this section, we focus on a family
of codes, called sunflower codes (Definition 6.1). These codes were introduced by Jeffs,
who showed that they have no local obstructions and yet are non--open-convex 1 [11].
Nevertheless, we show that these codes are closed-convex and moreover can be realized
in \BbbR 3 (Theorem 6.3).

Definition 6.1. Let n \geq 2. The sunflower code, denoted by Sn, is the neural
code on 2n+ 2 neurons that consists of the following codewords:

(1) the empty codeword \emptyset ,
(2) the ``circle-edge"" codeword \sigma \cup \{ n + 1\} for all nonempty proper subsets \sigma of

[n],
(3) the ``petal"" codewords \{ n+ 2\} , \{ n+ 3\} , . . . , \{ 2n+ 2\} ,
(4) the ``petal-end"" codeword \{ 1, 2, . . . , i - 1\} \cup \{ i+1, i+2, . . . , n+1\} \cup \{ n+1+ i\} 

for all 1 \leq i \leq n,
(5) the ``polygon"" codeword \{ 1, 2, . . . , n+ 1\} \cup \{ 2n+ 2\} , and
(6) the ``center"" codeword \{ n+ 2, n+ 3, . . . , 2n+ 2\} .
``Petals"" and ``center"" are terms introduced by Jeffs [11] (the ``petal"" and ``center""

codewords generate a ``sunflower""). The meaning behind these and the other names
of the codewords will be shown in the proof of Theorem 6.3.

Example 6.2. The first two sunflower codes, with codewords listed in the order
given in Definition 6.1, are as follows:

S2 = \{ \emptyset , 13, 23, 4, 5, 6,234,135,1236,456\} ,
S3 = \{ \emptyset , 14, 24, 34, 124, 134, 234, 5, 6, 7, 8,2345,1247,1346,12348,5678\} .

A closed-convex realization of S2 is shown in Figure 9 (another such a realization
is in [6, Figure 2]).

Theorem 6.3 (closed-convexity of sunflowers). The sunflower code S2 is closed-
convex in \BbbR 2. The sunflower code Sn, for n \geq 3, is closed-convex in \BbbR 3.

Proof. A closed-convex realization for S2 is shown in Figure 9. For n \geq 3, we
construct a closed-convex realization in three steps, as follows.

Step One. The restriction of the code Sn to the neurons \{ 1, 2, . . . , n + 1\} is
the code obtained by taking all subsets of \{ 1, 2, . . . , n\} and then adding the neuron
n + 1 to all nonempty subsets. This restricted code has a unique maximal code-
word (namely, \{ 1, 2, . . . , n+ 1\} , which is the restriction of the ``polygon"" codeword).

1 In fact, these codes are minimally non--open-convex with respect to the partial order alluded
to earlier in Remark 4.32.
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U4 U5U6

U1

U2

U3 1236234 135

456

4 56

1323

Fig. 9. A closed-convex realization \scrU = \{ U1, U2, . . . , U6\} of the sunflower code S2; depicted on
the right are atoms labeled by codewords.

234

34

13414

124

24

1234

Fig. 10. Result of Step One for the sunflower code S3.

Thus, the restricted code can be realized by closed-convex sets in \BbbR 2 as a polygon
P (with (2n  - 2) sides) inscribed in a circle so that each ``circle-edge"" atom lies be-
tween the circle and an edge of the polygon [3]. This realization is shown for S3 in
Figure 10.

Specifically, Un+1 is the filled-in circle, and each of U1, U2, . . . , Un is obtained
from this circle by ``slicing off"" some ``circle-edge"" atoms. Thus, the codewords we
have obtained so far are \{ 1, 2 . . . , n+ 1\} (the subset of the ``polygon"" codeword) and
all ``circle-edge"" codewords.

Step Two. We pick a point q in a plane parallel to the one in which the polygon
P lies and define U2n+2 to be the pyramid with base equal to P and top point q.
This is shown in Figure 11 for S3. In this way, the codeword \{ 1, 2 . . . , n + 1\} from
Step One becomes the full ``polygon"" codeword \{ 1, 2 . . . , n + 1\} \cup \{ 2n + 2\} , and all
other codewords from Step One are unaffected. We also obtain the ``petal"" codeword
\{ 2n+ 2\} .

Step Three. To obtain the remaining codewords, we define each of Un+2, Un+3,
. . . , U2n+1 to be a line segment from q to some point in the corresponding ``circle-
edge"" atom. Thus, these line segments (what Jeffs calls petals [11]) all come out of
the circle, meeting at a common point (the center [11]). See Figure 12 for S3. This
procedure generates all remaining codewords (without destroying any old ones): The
shared endpoint q is the atom of the ``center"" codeword, the other endpoints of the
line segments are the atoms of all the ``petal-end"" codewords, and the relative interiors
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12348
8

Fig. 11. Result of Step Two for the sunflower code S3. The codeword 1234 from Step One is
now 12348 (the corresponding atom is the hexagon).

5678

2345

1346

1247

5

6

7

Fig. 12. Result of Step Three for the sunflower code S3.

of the line segments are the atoms of the ``petal"" codewords (except \{ 2n + 2\} which
was already obtained in Step Two).

We conclude that the resulting code is code(\scrU ,\BbbR 3) = Sn.

Remark 6.4. By Theorem 6.3, the sunflower codes satisfy dimclosed(Sn) \leq 3 for
n \geq 3. However, we do not know whether dimclosed(Sn) equals 2 or 3.

7. Discussion. Our work helps clarify how open-convex and closed-convex codes
are related. Some of our results help unify the theories of open-convexity and closed-
convexity: These concepts are the same for nondegenerate codes, although their open
and closed embedding dimensions may differ. Thus, for nondegenerate codes, results
from open-convexity also hold for and thus can be transferred to closed-convexity and
vice versa.

We also introduced a code's nondegenerate embedding dimension, and in the
future we would like more results and bounds on this dimension. Indeed, echoing
Cruz et al. [2], nondegenerate realizations may be well suited for applications, as
their boundaries do not matter (Theorem 3.1).

Another question for future work, posed in Remark 4.32, concerns the infinite
family of codes \scrD n we constructed: Are these codes minimally non--closed-convex
with respect to the partial order defined by Jeffs [12]? In fact, no codes have been
confirmed (or constructed) to be minimally non--closed-convex but also open-convex.
In contrast, there are codes that are minimally non--open-convex but also closed-
convex: The sunflower codes (Definition 6.1) form an infinite family of such codes
[11]. Therefore, it would be interesting to find a family of codes that are minimally
non--closed-convex but open-convex or even just one such example.
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The main contribution of our work concerns codes that are not closed-convex
(but possibly open-convex). Notably, we gave the first general criteria for precluding
closed-convexity. One criterion is built on a novel concept, rigid structures, and we
expect this idea to be fruitful in the future (as it already is in [10]). To this end, we
will need more ways to check whether a code has a rigid structure (Proposition 4.18
is a significant first step).

In contrast, our other criterion is read directly from a code (or its neural ideal)
and, moreover, can often be checked from a code's canonical form. This criterion,
which unifies proofs in previous works, also gives information on which nonmaximal
codewords can be added to a code without making the code become closed-convex
(Remark 5.4). This is remarkable, as analogous results have not yet been stated for
open-convexity.

Going forward, we would like to apply and to improve our new criteria (recall, for
instance, the code in Example 4.34 which our criteria cannot handle), with the aim of
further classifying closed-convex codes on 6 or more neurons. In turn, such a classi-
fication will help elucidate when open-convexity and closed-convexity are essentially
the same concept and when these concepts fundamentally differ.
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