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Abstract. Previous work on convexity of neural codes has produced codes that are open-convex
but not closed-convex—or vice-versa. However, why a code is one but not the other, and how to
detect such discrepancies are open questions. We tackle these questions in two ways. First, we
investigate the concept of nondegeneracy introduced by Cruz et al. We extend their results to show
that nondegeneracy precisely captures the situation when taking closures or interiors of open or closed
realizations, respectively, does not change the code that is realized. Second, we give the first general
criteria for precluding a code from being closed-convex (without ruling out open-convexity), unifying
ad-hoc geometric arguments in prior works. One criterion is built on a phenomenon we call a rigid
structure, while the other can be stated algebraically, in terms of the neural ideal of the code. These
results complement existing criteria having the opposite purpose: precluding open-convexity but not
closed-convexity. Finally, we show that a family of codes shown by Jeffs to be not open-convex is in
fact closed-convex and realizable in dimension three.
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1. Introduction. This work focuses on the following question: Which intersec-
tion patterns can be cut out by convex open sets in some Euclidean space, and which
by convex closed sets? Such intersection patterns are called neural codes, as they arise
in neuroscience as representations of the firing patterns of neurons called place cells.
A place cell in someone’s brain fires precisely when the person is in a specific region
of space, called a place field [19]. Because experimental data have shown that place
fields are typically convex, we are interested in the question of which neural codes can
be realized by collections of convex open or convex closed regions. Such codes are,
respectively, open-convexr and closed-convez.

The main way to show that a neural code is neither open-convex nor closed-
convex is to prove that it has what is called a local obstruction [1, 8, 15]. However, it
is possible to have no local obstruction and yet be non—open-convex [11, 17] or non—
closed-convex [2, 9] or both [6]. Indeed, there are neural codes that are open-convex
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but not closed-convex and vice-versa; in this article, we are interested in distinguishing
between these classes.

One way to investigate open-convexity versus closed-convexity codes is to see what
happens when we take closures or interiors of open or closed realizations, respectively.
We strengthen a result of Cruz et al. to show that their concept of nondegeneracy
[2] exactly captures the situation when taking closures or interiors yields another
realization of the code (Theorem 3.1), and so such codes are both open-convex and
closed-convex.

We are also interested in nonlocal obstructions to open- or closed-convexity. Cri-
teria precluding open-convexity arise from the concept of “wheels” [23] and related
ideas [11]. So far, however, there are no analogous criteria for ruling out closed-
convexity [6, Remark 3.5]. Accordingly, we give two such criteria, unifying ad hoc
geometric arguments in prior works [2, 9].

One criterion harnesses a phenomenon we call a rigid structure (see Definition 4.1
and Theorem 4.12). The criterion is similar in spirit to criteria based on wheels and
therefore is widely applicable. Our results here allow us to construct the first infinite
family of codes that are open-convex but not closed-convex (Theorem 4.31). Moreover,
for many codes, our criterion is straightforward to apply—simply by inspection of a
related graph (Theorem 4.15). In general, however, this first criterion can be difficult
to check.

Our second criterion, in contrast, can be read directly from the code; it asks
whether some codewords contain certain subsets of neurons (Theorem 5.1). This
criterion, while somewhat limited in application, nevertheless yields an algebraic sig-
nature of non—closed-convexity, arising in the neural ideal of the code (Corollary 5.8).
In this way, we mirror algebraic signatures that are known for local obstructions [4].

Finally, we investigate an infinite family of codes shown by Jeffs to be not open-
convex [11]. We show that these “sunflower codes” are closed-convex and, moreover,
realizable in dimension three (Theorem 6.3). This is the first family of codes known
to be closed-convex but not open-convex.

The outline of our work is as follows. Section 2 introduces neural codes, convexity,
nondegeneracy, and neural ideals. Section 3 contains our results on nondegeneracy and
embedding dimensions of codes. Our criteria for precluding closed-convexity appear
in sections 4 and 5, and then we present our closed-convex realization of sunflower
codes in section 6. We end with a discussion in section 7.

2. Background. In this section, we introduce convex neural codes (section
2.1), nondegenerate realizations of neural codes (section 2.2), and neural ideals
(section 2.3).

2.1. Neural codes and convexity. For a set Y C R we let int(Y), cl(Y),
and JY denote the interior, closure, and boundary of Y, respectively. If U =
{Uy,Us,...,U,} is a collection of subsets of RY we use the notation int(U) :=
{int(U1),int(Us), .. .,int(U,)} and cl(f) := {cl(Uy), cl(Uz), ..., cl(Uy,)}.

Below we largely follow the notation of Cruz et al. [2].

DEFINITION 2.1. A neural code C on n neurons is a set of subsets of [n] :=
{1,2,...,n}, that is, C C 2[" Each element of C is a codeword.

For convenience, we often use a shorthand for codewords, e.g., 124 in place of
{1,2,4}.

DEFINITION 2.2. Let C be a code on n neurons, and let T C [n]. The code
obtained from C by restricting to 7 is the neural code C|. :=={oc N7t |o € C}.
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DEFINITION 2.3. Let U = {Uy,Us,..., Uy} be a collection of sets in a stimulus
space X C R%.
(i) For o C [n], the atom of o with respect to U, denoted by AY, is the following
subset of X:

AY = (ﬂUZ)\UUj.

i€o j¢o

By convention, the empty intersection is N;cpU; := X.
(ii) The neural code realized by U and X, denoted by code(U, X), is the neural
code on n neurons defined by

o € code(U, X) <= AY +£ ().

In this case, U is a realization of C = code(U, X).

DEFINITION 2.4. A neural code C on n neurons is open-convex (or closed-convex )
if, for some R®, there exist

(i) a collection of convex open (or, respectively, closed) sets U = {U;}1; in RY,
and
(ii) a stimulus space X C R? that contains the union U?_,U;,
such that C = code(U, X). The minimum such value of d (or oo if no such value
exists) is the open embedding dimension (respectively, closed embedding dimension)
of C, which we denote by dim°*(C) (respectively, dim“***4(C) ).

Assumption 2.5. Unless otherwise specified, we will assume that all codes contain
the empty set as a codeword and that X = R? for some d (see [1, Remark 2.19]).

The main way to prove that a code is neither open-convex nor closed-convex is
to show that it has a “local obstruction” [3, 8] or a generalized such obstruction [1,
15]. (Having such an obstruction, however, is not necessary to be non—open-convex
or non—closed-convex [2, 17].) These obstructions are combinatorial and topological,
and we do not give a definition here.

Ezample 2.6 (open-convex but not closed-convex). To our knowledge, only four
neural codes in the literature have been shown to be open-convex but not closed-
convex. The first, a code on 6 neurons, was found by Cruz et al. [2, Lemma 2.9]:

Cor = {123,126, 156,234, 345,456, 12, 16, 23, 34, 45, 56, 0}

(Following the literature, the maximal codewords are in boldface.) Similarly,
Goldrup and Phillipson proved that the following three codes on 5 neurons are open-
convex but not closed-convex [9, Theorem 4.1]:

C6 = {123,125,145,234,12,15,23, 4, 0},
C10 = {134,135,234,245,12,13,24,34,1,2,5,0},
C15 = {123,125,145,234, 345,12, 15,23, 34, 45, (}.
One aim of this work is to give general criteria that in particular show that the

codes Cg,, C6, C10, and C15 are non-closed-convex. See Proposition 4.30 and
Example 5.2.
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123

Fic. 1. A closed-convex realization of the code in (1) (cf. [6, Figure 2]).

Ezample 2.7 (closed-convex but not open-convex). The following is the first code
that was shown to be closed-convex [2] but not open-convex (it is also the first code
known to lack local obstructions and yet be non—open-convex) [17, Theorem 3.1]:

C* = {2345,123,134,145,13,14,23,34,45,3,4,0}.

An infinite family of codes that are closed-convex but not open-convex appears
later in Theorem 6.3.

As mentioned above, codes with local obstructions are neither open-convex nor
closed-convex. Here, however, we are interested in codes without local obstructions.

Ezample 2.8 (neither open-convex nor closed-convex). The following code on 8
neurons is not closed-convex, despite having no local obstructions [6, Theorem 3.2]:

Cs = {12378,1457, 2456, 3468, 278,17, 38,45, 46,2, 0}.

This code is also not open-convex. Indeed, the code obtained from Cg by restrict-
ing to {1,2,3,4,5,6} is (up to permuting neurons) the minimally non—-open-convex
code in [12, Theorem 5.10], and restriction preserves convexity. Another example of
a non-open-convex and non—closed-convex code with no local obstructions is given in
[6, Theorem 3.11].

Examples 2.6 and 2.7 above feature codes with finite open embedding dimension,
but infinite closed embedding dimension—or vice-versa. Next, we see that even when
both embedding dimensions are finite, they can differ.

Ezample 2.9 (nonequality of open and closed embedding dimensions). The fol-
lowing code is both open-convex and closed-convex:

(1) Co:={123,14,24,34,1,2,3,4,0}.

Indeed, a closed-convex realization in R? is shown in Figure 1, and an open-convex
realization in R3 appears in [13, Example 5.5]. We claim that such convex realiza-
tions do not exist in lower dimensions, that is, dim®°**4(Cy) = 2 and dim°P**(Cy) = 3.
First, the open embedding dimension was shown in [3, Table 2]. Next, it is straight-
forward to check that Cyp does not have a closed-convex realization in R (see the
results in [21]).
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Remark 2.10. The open and closed embedding dimensions can differ by any
amount. In section 6, will see “sunflower codes” S,, with closed embedding dimension
at most 3 (Theorem 6.3), but open embedding dimension equal to n [13, section
5]. As for codes with larger closed embedding dimension than open, we posed this
question in an earlier version of this work, and, notably, Jeffs has now constructed such
codes [10].

2.2. Nondegenerate realizations of neural codes. We recall the following
definition introduced by Cruz et al. [2].

DEFINITION 2.11. A collection of subsets U = {U;}*_; of R is nondegenerate if

(i) for every nonempty open set S, C R? and every nonempty atom AY, if
the intersection AY N S, is nonempty, then the interior is also nonempty:
int(AY N S,) # 0; and

(i) for all nonempty o C [n], the following containment holds: ([
a(miEU UZ)

The following result is due to Cruz et al. [2, Lemma 2.11].

LEMMA 2.12. Let U = {U;}™_, be a collection of conver sets in R%. Then

(i) if every U; is open and U satisfies Definition 2.11(ii), then U also satisfies
Definition 2.11(i);

(ii) if every U; is closed and U satisfies Definition 2.11(i), then U also satisfies
Definition 2.11(ii).

aU;) €

€0

Ezample 2.13. For the code C = {1, 2,0}, the open-convex realization in R given
by the intervals U; = (—1,0) and Us = (0,1) is degenerate, but U; = (—1,0) and
Us = (1,2) define a realization that is nondegenerate. Similarly, for C = {12, 1, 2,0},
the closed-convex realization of U; = [—1,0] and Us = [0,1] is degenerate, while
Uy = [-1,1] and Uy = [0,2] define a realization that is nondegenerate. Finally, the
closed-convex realization shown in Figure 1 is degenerate, as the atom of the codeword
123 has empty interior.

The following result is also due to Cruz et al. [2, Theorem 2.12].

PROPOSITION 2.14. Let U = {U;}_, be a nondegenerate collection of convex sets
in RY. Then

(i) if every U; is open, then code(U,RY) = code(cl(U),R?); and

(ii) if every U; is closed, then code(U,R?) = code(int(U), R?).

In the next section, we prove a converse to Proposition 2.14 (see Theorem 3.1).

PROPOSITION 2.15. Let C be a neural code. Let d, (respectively, d.) be the min-
imum value (or 0o if no such value exists) such that C = code(U,R%) (respectively,

C = code(U,R%)) for some nondegenerate collection of convex open (respectively,
closed) sets U in R% (respectively, R% ). Then d, = d..

Proof. The first implication of Proposition 2.14 implies the inequality d, > d.,
and the second implication implies the opposite inequality, dy < d.. ]

In light of Proposition 2.15, we introduce the following definition, which captures
the minimal dimension in which a code has a nondegenerate open-convex or closed-
convex realization.

DEFINITION 2.16. The nondegenerate embedding dimension of a neural code C,
denoted by dim™"°¢(C), is the value of do = d. in Proposition 2.15.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.
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PROPOSITION 2.17. For every neural code C, the following inequalities hold:
(2) dim®Pe"(C) < dim™"d8(C) and dim®**°d(C) < dim™"d°e(C).

Proof. Every nondegenerate, open-convex (respectively, closed-convex) realization
of C is also an open-convex (respectively, closed-convex) realization of C. ]

We will investigate when the inequalities (2) are equalities (for instance, see
Theorem 3.3). The following examples show that these inequalities are not equal-
ities in general.

Ezample 2.18. We saw that the code Cy in Example 2.9 satisfies dim°"*"(Cp) =
3 and dim®***4(Cy) = 2. We claim that dim™"¥(Cy) = 3. Indeed, viewing the
3-dimensional realization of Cy in [13, Example 5.5] as a closed realization, it is easy
to check that Definition 2.11(i) holds, and so by Lemma 2.12(ii), the realization is
nondegenerate. Now Proposition 2.17 implies that dim™"°&(C,) = 3.

Other codes with dim®**4(C) < dim™"°¢(C) are found in [13, section 6] and [6,
Lemma 3.3].
Next, we consider some related questions.

Question 2.19.

(1) Is there a code C with dim®P*™(C) < dim™™¢(C) < co?
(2) Is there a code C with dim°”*(C) < oo and dim“***!(C) < oo, but
dim™4°8(C) = 00?

We posed these questions in an earlier version of this work, and recently Jeffs
resolved both questions affirmatively [10]. Notably, his constructions rely on our
theory of rigid structures, which appears later in this article (section 4).

In Question 2.19(1), if we remove the requirement that the nondegenerate em-
bedding dimension is finite, then we can find several such codes, as in the following
example.

Ezample 2.20. For codes C that are open-convex but not closed-convex (such as
those in Example 2.6), dim°**™(C) < oo while dim"*"4°¢(C) = co. Similarly, for codes
that are closed-convex but not open-convex (as in Example 2.7), dim®**4(C) < oo
but dim™*"4°8(C) = 0.

2.3. The neural ideal and its canonical form. In this subsection, we intro-
duce neural ideals, which capture all the information in a neural code. Neural ideals
have been harnessed to study convexity and other properties of neural codes [4, 5, 7,
16, 20, 22].

A pseudo-monomial in Fa[zy, 2o, ...,2,] is a polynomial of the form
1€0 JET

where 0,7 C [n] with c N7 = (). Each v € {0,1}" defines a pseudo-monomial p,,
which is the characteristic function for v (i.e., p,(xz) = 1 if and only if z = v):
Py 1= H(l —v; —x;) = H x; H (14 ;).
i=1 {ilvi=1}  {jlv;=0}
For a codeword o C [n] (e.g., 0 = 134 with n = 4), we let v(o) € {0,1}" denote
the corresponding 0/1 vector (e.g., v(c) = (1,0,1,1)). That is, v(0); = 1 if and only
ifieo.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.
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DEFINITION 2.21. Let C be a neural code on n neurons. The neural ideal Je of C

is the ideal in Fax1, 22, ..., Ty] generated by all characteristic functions p, for v & C:
Jo = {pu | v €C}).
A pseudo-monomial f in an ideal J in Fa[x1, 2o, ..., x,] is minimal if there does

not exist a pseudo-monomial g € J, where g # f, such that f = gh for some h €
Fg[l’l,l’g, v ,Zn].

DEFINITION 2.22. The canonical form of a neural ideal Je, which we denote by
CF(J¢), is the set of all minimal pseudo-monomials of Jc.

The canonical form CF(J¢) is a generating set for the neural ideal Je [5], and
there is software for efficiently computing Je and CF(J¢) [20].

Ezample 2.23. The canonical forms for the codes in Example 2.6 are as follows:

CF(Jcs)
= {(z1 + 1)xs, (x2 + Das, zszs, (1 + 1)aza(xs + 1), 212024, X2 (23 + 1)24,
xoxaxs, T1(x2 + 1) (x5 + 1), x124(25 + 1), 12324},
CF(Jc1o)
={(xz2+ 1)(x3 + 1)zg, (x1 + Das(xg + 1), 12425, (22 + 1) 2425,
(21 + 1)xz325, 222325, 32425, T1 (3 + 1)ag, z1 (23 + 1)5,
T1ToT3, T1T2Tq, T1T2xs5, ToTs (g + 1), xo(xs + s},
CF(Jco1s)
={z1(xa+ 1) (x5 + 1), x124(x5 + 1), (23 + D)ag(xs + 1), (21 + Dzo(zs + 1),
12924, To(x3 + 1)xg, Toxsxs, T12324, (1 + D)zows, (1 + 1) (24 + 1)z5,
x1(xo + Das, (xo + Vas(xs + 1), 212325, xowsxs, x3(xs + 1)as}.
Pseudo-monomials in Je (and thus in the canonical form) can be translated into

relationships among receptive fields. To state this result, we need the following nota-
tion for o C [n]:

Ty = Hml and U, := ﬂ U;.
i€ 1€
(As mentioned earlier, recall that the empty intersection is the full space X.) The
following result is due to Curto et al. [5, Lemma 4.2].

LEMMA 2.24. Let X be a stimulus space, let U = {U;}7, be a collection of
subsets of X, and consider the code C = code(U, X). Then for every pair of subsets
0,7 C [n],

v [[A+a)ede = U, C|JU.
iET 1ET
In particular, 5 € Jo <= U, = 0.

The relations U, = @ and U, C U;e,U;, as long as c N7 =0 and U, NU; #
for all i € 7, are called receptive-field relationships (RF relationships). There are
more types of RF relationships [5, 7, 18], but here we do not need them. We will use
Lemma 2.24 in section 5 to prove a criterion that precludes closed-convexity.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.
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3. Degenerate and nondegenerate codes. The main result of this section,
Theorem 3.1, shows that the concept of nondegeneracy exactly captures when the
operations of taking interiors or closures yield the same code, thereby clarifying (as
Cruz et al. articulated [2]) that nondegeneracy is the “correct” setting for studying
convexity of neural codes.

THEOREM 3.1. Let U = {U;}?_, be a collection of convex sets in R%.

(i) Assume every U; is open. Then the collection U is nondegenerate if and only
if code (U,RY) = code(cl(U),RY).

(ii) Assume every U; is closed. Then the collection U is nondegenerate if and
only if code (U, RY) = code(int(U), R?).

Theorem 3.1 follows directly from Proposition 2.14 (due to Cruz et al. [2]) and
Proposition 3.2.

PROPOSITION 3.2. Let U = {U;}7, be a degenerate collection of convex sets in
R<. Then

(i) if every U; is open, then code(U,R?) # code(cl(Ud),R?); and
(ii) if every U; is closed, then code(U,R?) # code(int(i), R?).

Proof. (i) Assume that U is degenerate and every U; is open and convex. By
Lemma 2.12, there exists some nonempty o C [n] such that

(3) Noui ¢ a(ﬂ U)
i€o i€o

We claim that N;c,U; = 0. To prove our claim, assume for contradiction that
NicoU; # 0, and so there exists some y € NicoU;. (See Figure 2 for the case of
lo| = 2.) We will show the containment N;c,0U; C 9(N;e,U;), contradicting (3).
Accordingly, let = € N;c,0U;. By construction, x # y, because x is on the boundary
of the open set U; (for any ¢ € o) and so is not in U; (whereas y € U;). Consider
the line segment L from 2 (which is in OU; for all i € o) to y (which is in U; for all
i € 0). Let L denote the line that is the affine span of L (so, L € L). Then, for
i € o, the intersection U; N L, which contains y, is an open subinterval of L (because
U; is open and convex), and it is straightforward to check that = is an endpoint of
this subinterval. We conclude that L \ {z} C U; (for all i € o).

Now, take an open neighborhood B (in RY) of x. Fix ig € 0. As z € 9U;,, there
exists a point z € B\ U;, and so z € B \ (N;je,U;). On the other hand, every point
z" on the line segment L that is sufficiently close to (but not equal to) x is in B and
also in U; for all ¢ € 0. Hence, B contains a point 2z’ that is in N;e,U; and also a
point z that is not (see Figure 2). We conclude that = € 9(N;e,U;), and so we have
reached a contradiction. Our claim therefore is true.

Our claim implies that no codeword of code(U/, R?) contains o. On the other hand,
the containment (3) implies that (), OU; is nonempty, and hence [, cl(U;) is also
nonempty. So, some codeword of code(cl(Uf), R?) contains o, and thus code(U, RY) #
code(cl(U), R?).

(ii) Assume that U is degenerate and every U; is closed and convex. By Lemma
2.12, there exist a nonempty open set S, C R? and an atom A% such that the following
set is nonempty but has empty interior:

(4) Ans, = (ﬂUZ) n{RENTy) | NS, = (ﬂUi> nz,

i€c j¢e i€c
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B~~~
e
/

U

F1a. 2. Ideas in the proof of Proposition 3.2(i), when o = {1,2}.

where Z := (ﬂjgc(Rd N U;)) N S,. This set Z is open (as it is the intersection of
open sets). Therefore, taking the interiors of the sets in (4) (and recalling that taking
interiors and intersections commute; see, e.g., [2, Lemma A.1]) yields

(5) 0 =int (4¥NS,) = (ﬂint(Uﬂ) Nint(Z) = (ﬂint(U,»)> nZz.

i€c i€c

We claim that the intersection (1, int(U;) is empty. We prove this claim by
contradiction. Accordingly, assume there exists y € ;.. int(U;). As the set in (4) is
nonempty, there exists x € ([);,c.Ui;) N Z. Let L denote the line segment from z to
y (the |c¢| = 2 case looks much like what is depicted in Figure 2). For i € ¢, we have
the containment (L \ {z}) C int(U;), because z € U;, y € int(U;), and U; is convex.
Next, x is in the open set Z, so all points 2’ on L that are sufficiently close to, but
not equal to, z are also in Z. Hence, all such points 2’ are in ([, int(U;)) N Z, which
contradicts (5). So, our claim is true.

We conclude the following:

Aint@) — (ﬂint(Ui)> ~ | Umt) ) € (o) = 0.

icc jéc ico

i€c

Thus, ¢ is not a codeword of code(int(U/),R?), but is a codeword of
code(U,RY). 0
We end this section by proving one case when the inequalities (2) on embedding

dimensions from Proposition 2.17 are in fact equalities—and then discussing two more
such cases.

THEOREM 3.3. Let C be a neural code on n neurons. If n < 3, then all embedding
dimensions are equal:

(6> dim®Pe" (C) = dimnondeg (C) — dimclosed (C) .

Proof. For n < 2, this result is easy to check (dim™°"4°8(C) = 1 for all such codes).

Assume n = 3. By Proposition 2.17, it suffices to prove the desired equalities (6)
for codes C that are open-convex or closed-convex.

First consider the case when C is open-convex. A list of these codes and their
open embedding dimensions can be read off (through their simplicial complex) from
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C6)1235

Fic. 3. The code C6, viewed as the union of two rigid structures. Dotted lines indicate pairs
of codewords arising from distinct rigid structures, with one contained in the other.

[3, Table 2]. For those codes with dim°"*"(C) = 1, the equalities (6) are easy to check.
Now consider the case when dim®”*"(C) = 2. An open-convex realization U (in R?)
of C is shown in [3, Figure 7], and cl(i/) is easily seen to also realize C. We conclude
from Theorem 3.1 that U is nondegenerate, and so the equalities (6) hold.

Now consider the remaining case: C is closed-convex. Then C has no local ob-
structions [2, Proposition 2.6] and so (as n < 3) is open-convex [3]. So, by the prior
case, we are done. 0

Theorem 3.3 does not extend to codes on n = 4 neurons (recall the code in
Examples 2.9 and 2.18).

Remark 3.4. In a prior version of this article, we posed the following two conjec-
tures, which, if true, would yield more cases in which Theorem 3.3 could be extended:

(1) For a code C, if dim®°®**(C) = 1 or dim®***¥(C) = 1, then dim™"°¢(C) = 1.

(2) For a code C, if dim°P**(C) = dim®***(C), then dim°***(C) = dim™"*¢(C).
Both conjectures have been resolved recently by Jeffs [10]. The first conjecture is true.
The second, however, is not. Interestingly, Jeffs’s constructions for this second result
rely in a crucial way on our theory of rigid structures, which is the topic we turn to
next.

4. Precluding closed-convexity using rigid structures. In this section, we
elucidate the geometric mechanisms that underlie the known cases of neural codes
that are open-convex but non—closed-convex. Specifically, we give a criterion for non—
closed-convexity in terms of “rigid structures” (Theorem 4.12), a special case of which
can be read directly from the code (Theorem 4.15), and then show that these results
apply to the relevant codes we saw earlier (Proposition 4.30).

As this section is somewhat long, we give the reader a more detailed outline.
In section 4.1, we define rigid structures and codeword-containment graphs (Defi-
nitions 4.1 and 4.9) and use these concepts to preclude closed-convexity. Next, in
section 4.2, we give sufficient conditions for rigidity when the codeword-containment
graph is a path (Proposition 4.18), and then, in section 4.3, we use that result to
prove Theorem 4.15. Finally, we illustrate our results through many examples in
section 4.4.

4.1. Rigid structures. We begin by motivating the idea behind rigid structures
through the code C6 = {123,125,145,234,12,15,23,4,0} from Example 2.6. In
Figure 3, we show the nonempty codewords divided into two pieces: The top can be
viewed as the restriction of the code to the set of neurons {1,2,3,5}, and the bottom
is Uy. Also, each piece (as we will see below) is “rigid” in the sense that the union (of
the corresponding atoms) is convex in every closed-convex realization (of a restricted
code). The reason for non—closed-convexity is now apparent: In order for the ends of
the two rigid structures to fit together—the atom for 145 is contained in the region
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TABLE 1.
For each code, we list two rigid structures and the resulting distinguished subcode. See Propo-
sition 4.30.

Code R, 0) (¢, ) Distinguished subcode
c6 (1235, U) 4 {145,234}
C10 (34,U) 5 {135,245}
C15 (345, U) (12,N) {123,125}
Cor (1456, L) (23,N) {123,234}

indicated by 15 and similarly for 234 and 23—one of the structures must “bend” and
therefore is not convex.

DEFINITION 4.1. Let C be a code on n neurons. Let O # o C [n]. A pair (o,0)
is a rigid structure of C if one of the following holds:
(1) O=n, or
(2) O = U, and there ezists a set o' with o C o’ C [n] such that the union U;c,U;
is convez in every closed-convex realization U = {U;},_ s of C| .

Remark 4.2. Definition 4.1(1) lacks an extra condition, because the intersection
NicoU; (unlike the union in Definition 4.1(2)) is automatically convex in every convex
realization.

€0

Remark 4.3. In Definition 4.1(2), we can always choose o’ = [n], but checking this
condition is generally easier when ¢’ C [n]. Indeed, in this section, we are interested
in proving that a code C has no closed-convex realization—but the restricted code
C |J/ may have such realizations, and so may be easier to analyze.

Example 4.4. Let C be a code on n neurons. If there is a neuron j that is
contained in every nonempty codeword of C, then ([n],U) is a rigid structure. Indeed,
for such a code C, we have U;c[,)U; = Uj for every convex realization U = {U;};;.

In general, it is challenging to check whether a given pair (o, U) is a rigid structure,
but we succeed in obtaining a sufficient result in this direction (Proposition 4.18).
Before turning to that topic, our aim is to state and prove our criterion for non—
closed-convexity (Theorem 4.12). To do so, we need several definitions and lemmas.
We begin by formalizing how two rigid structures “fit together.”

DEFINITION 4.5. Let C be a code on n neurons. Assume that (R,) and (€, D)
are rigid structures of C. The distinguished subcode arising from (R, ) and (€, )
is the neural code consisting of all codewords o € C such that

(1) if O =U, then RNo # 0

(2) if O =n, then R C o;

(3) if A=U, then €No # 0; and
(4) if A=n, then € C 0.

)

Remark 4.6. In Definition 4.5, the roles of R and € are symmetric; that is,
conditions (1) and (2) match conditions (3) and (4), respectively.

Remark 4.7. Distinguished subcodes do not contain the empty codeword.
Examples of distinguished subcodes appear later in this section (see Table 1).

LEMMA 4.8 (realization of distinguished subcode). Let C be a code on n neurons.
Assume that (R, ) and (€, ) are rigid structures of C. Let C' be the distinguished
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subcode arising from (R, ) and (€, A). Let U = {U;}_, be a realization of C in
some RY. Let

U — {Ui/}ie[n] = {Ul N (OjgmUj) n (AkGCUk)}ie[n] .

Then C' is the code realized by U'; that is, C' = code(U’, X), where X = Ujcp,, Uy’

Proof. Consider o C [n]. By definition, o € C’ if and only if o € C and conditions
(1)—(4) in Definition 4.5 hold. This is equivalent to the following conditions:
AF#0  and AV C(OjenU;)  and  AY C (Ageeli);

ie., AY N (OjenU;) N (AkeeUy) is nonempty. Hence, o € C' if and only if o €

code(U’, X). a

DEFINITION 4.9. The codeword-containment graph of a neural code C is the
(undirected) graph with vertex set consisting of all codewords of C and edge set {(o,T) |
ocCToro DT}

Ezample 4.10. The codeword-containment graph of C6|i235, displayed below,
mirrors the top part of Figure 3.

15 125 12 123 23

The following lemma is essentially due to Jeffs, Lienkaemper, and Youngs [14,
Lemma 2.1].

LEMMA 4.11. Let U = {U;}; be a collection of closed convex sets in R, Let
C = code(U, X), for some stimulus space X C R? that contains every U;. Let L be a
line segment in RY, and let AY | AY ... ,qu be the atoms that L intersects (in order,
from one endpoint of L to the other, so an atom may appear more than once in this
list). Then (01,02), (02,03), ..., (04—1,04) are edges in the codeword-containment

graph of C.

Proof. Each intersection U; N L is either empty or a closed interval in L. Label
the set of all endpoints of these intervals as follows.

Do b1 D2 e pr
. . . . L
By construction, each open interval (p;,pj+1), for j =0,1,...,T—1, is contained
in some atom AZ{,’j (with v; € C). So, it suffices to show that the atom containing the

u

Tj’

endpoint p;, denoted by A
holds).

Let i € [n]. We consider three cases. If p; is the right endpoint of U; N L, then
i € (15 Nvj). If p; is the left endpoint of U; N L, then 4 is in both 7; and v;. If p;
is not an endpoint of U; N L, then i is either in both 7; and v; or in neither set. We
therefore obtain the desired containment v; C 7. 0

satisfies v; C 7; (and so, by symmetry, v; C 741 also

The intuition behind the next result is shown in Figure 4. When the intersec-
tion between two rigid structures R and € is disconnected (more precisely, when
the atoms they have in common generate a disconnected codeword-containment
graph), then one of the structures cannot be convex, and hence the code is not
closed-convex.
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¢

Fic. 4. Idea behind Theorem 4.12: If the intersection of two rigid structures R and € is
disconnected, then at least one of R and € is nonconvez.

THEOREM 4.12 (criterion for precluding closed-convexity). Let C be a code on
n neurons. Assume that (R, ) and (€, A) are rigid structures of C. Let C' be the
distinguished subcode arising from (R, ) and (€, A). If the codeword-containment
graph of C' is disconnected, then C is not closed-conver.

Proof. Assume that (R, (0) and (€, A) are rigid structures of C, and assume that
the resulting distinguished subcode, denoted by C’, is disconnected.

Suppose for contradiction that there is a closed-convex realization U = {U;}7_; of
C. Let o and 7 be codewords of C in distinct connected components of the codeword-
containment graph of C’. Let L be a line segment from a point in the atom AY to
a point in the atom AY. By Lemma 4.8, both endpoints of L are in (O;enU;) N
(AkeeUk). Also, by Lemma 4.11 (and the fact that o and 7 are not in the same
connected component of the codeword-containment graph of C’), L intersects some
atom AY for some codeword v € C that is not a vertex of the codeword-containment
graph of C’. Thus, v is a noncodeword of C’.

Hence, by Lemma 4.8, the atom AY does not intersect OjenU; or does not
intersect AjeeU;. We conclude that L, which by assumption intersects A,Lf, is not
fully contained in OjenU; or is not fully contained in AjeeU; (even though the
endpoints of L are in those sets). Thus, OjenU; or AjceU; is not convex, and so
(R, Q) or (€,A) is not rigid (Definition 4.1). This is a contradiction. d

Remark 4.13. The notation € was chosen because we view one of the rigid
structures as a “connector” of two ends of the other rigid structure fR.

The following corollary is the case of Theorem 4.12 when the two rigid structures
coincide.

COROLLARY 4.14. Let C be a code on n neurons. Assume that (R,0) is a
rigid structure of C. Let C' be the neural code consisting of all codewords o € C
such that (1) if O = U, then RNo # 0; and (2) if O =N, then R C o. If the
codeword-containment graph of C' is disconnected, then C is not closed-convez.

The next result represents a special case of Theorem 4.12: when the codeword-
containment graph of a code is a cycle and a certain triplewise-intersection condition
holds.

THEOREM 4.15 (cycle criterion for precluding closed-convexity). Let C be a code
on n neurons. Assume that the codeword-containment graph of C ~\ {0} is a cycle:
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01
9q 02
o3
o5
04
If, additionally, for alli=1,2,...,q, the intersection o;No;11N0;2 is nonempty

(where 0441 := 01 and oqq2 = 02), then C is not closed-convex.

The proof of Theorem 4.15 appears in section 4.3; we first need results (in the next
subsection) that help us check whether a given a subset of neurons is rigid. Indeed, in
general, being able to check rigidity is the main difficulty in applying Theorem 4.12.

Example 4.16. The codeword-containment graphs of C15 \ {0} and Cc, ~ {0}
are, respectively, the following cycle graphs.

125 123
12 15 23 12
234 126
123 145
34 16
23 45
345 156
234 345 45 56
34 456

All triplewise-intersection conditions are easy to check (e.g., 125N15N145 = 15 #
(). Hence, Theorem 4.15 implies that both C15 and Cg, are non—closed-convex.

Remark 4.17. When a code’s codeword-containment graph is a cycle, as in The-
orem 4.15, this is often revealed in a “pinwheel” in an open-convex realization of the
code (if the code is open-convex). Such a pinwheel is depicted in Figure 6 in the proof
of Theorem 4.31, and also in [9, Appendix B] (for the code C15) and [2, Figure 2(a)]
(for the code Ccy).

4.2. A sufficient condition for rigidity. In this subsection, we show that
rigid structures arise whenever the codeword-containment graph of a code—or a sub-
code arising in a specific way from a subset of neurons—is a path (Lemma 4.24 and
Proposition 4.18). The proof of Proposition 4.18, which appears at the end of this
subsection, relies on a minimum-distance argument (see Lemma 4.21) and is similar
to (and inspired by) related proofs in [2, 9].

PROPOSITION 4.18 (criterion for rigidity). Let C be a code on n neurons. Let
0 # R C [n]. Let T be the codeword-containment graph of the code {T € C | TNR # 0}.
Assume T is a path:

o} 09 o3 Oq

r

If, for all i = 1,2,...,q9 — 2, the intersection o; N\ o;+1 N 042 is nonempty, then
(R, V) is a rigid structure of C.
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Ezample 4.19. We claim that, for the code C6 = {125,234,145,123,4,23,15,
12,0} from Example 2.6, (1235, U) is a rigid structure. To see this, we apply Proposi-
tion 4.18 to C6|y1,2,3,53 with 9t = 1235: The graph I' is the path 15—-125—-12—123-23,
and the intersections 15N 125N 12 =1, 125N 12N 123 = 12, and 12N 123N 23 = 2
are all nonempty.

In section 4.4, we analyze more codes using Proposition 4.18.

Remark 4.20 (triplewise-intersection condition). The triplewise-intersection con-
dition in Theorem 4.15 and Proposition 4.18— (0; N1 Noj12) # @ — can be viewed
as a “brace” condition that forbids a closed-convex realization from “bending” at
the atom of o;41. This condition can not be removed. Indeed, consider the code
{12,1,2,0}. For R = {1,2}, the graph T is a path, the intersection 1 N 12N 2 is
empty, and the following closed-convex realization shows that (93,U) is not a rigid
structure.

]112
2

The rest of this subsection is dedicated to proving Proposition 4.18, beginning
with the following lemma.

LEMMA 4.21. Let Vi, Vo, Wi, Wy be closed sets in some R If Vi and Vs are
convex, and

(i) VinVa #0,
(ii) V1 C (Vo UW;) and Vo C (V3 U W), and
(iii) Vi N Vo n Wy N Wy = 0,
then V1 U V5 is conver.

Proof. Let p € V7 and ¢ € V5, and let L = pg be the line segment between p
and ¢g. Assume for a contradiction that L ¢ V; UV, (and in particular p ¢ V5 and
q ¢ V1)

First, we claim that L N V; NV, = (. To see this, assume that there exists
r € LNV NV, Then, by convexity of V; and Vs, we have pr C V; and gr C V5. This
implies that L = pr U gr is contained in V; U V5, which contradicts our hypothesis.
So, our claim is true.

The line segment L is compact. Also, V3 NV, is closed and, by (i), nonempty.
Hence, there exists z € (V1 N V3) that realizes the (positive) distance between L and
Vi N Va. That is, dist(x, L) < dist(y, L) for all y € (V1 N V).

Define Ly = px and Ly = gz. We claim that the three points p, ¢,z are not
collinear. Indeed, none of the points is on the line segment defined by the other two:
(1) z ¢ L because dist(z, L) > 0, (2) p &€ Lo because p ¢ Vo D Lo, and, symmetrically,
(3) ¢ ¢ Li. Hence, p,q,x define a triangle, which we depict here together with V;
and V5.

Next, we claim that Ly N V5 = {z}. Indeed, any point x # y € Ly C V] satisfies
dist(y, L) < dist(x, L), and so (by construction of x) such a point y is not in Va.
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The line segment Ly is covered by Vo and Wy, because Ly C V; and by (ii).
However, by the above claim, V5 covers only an endpoint of Li; so, (because Wy is
closed) W7 must cover all of L;. We conclude that 2 € W; and so (by symmetry)
x € Wy also. Thus, z € V1 N Vo N Wy N Wa, which contradicts (iii). 1]

Remark 4.22. Lemma 4.21 becomes false if “closed sets” is replaced by “open
sets.”

The following lemma pertains to when the codeword-containment graph is a path.

LEMMA 4.23. Let C be a code on n neurons. Let I' be the codeword-containment

graph of the code C . {0}. Assume that T is a path.

o1 (o) o3 Oq
... . T

Then the following conditions hold:

(1) Interval Condition. If C is closed-convex, then for all i € [n], either
e no codeword of C contains i, or
o there exists a “left endpoint” L; and a “right endpoint” R; with 1 < L; <
R; < q such that the codewords between the two endpoints are precisely
those containing i (that is, L; <{ < R, <=1 € ay).
(2) Alternating-Containment Condition. The containment relations be-
tween subsequent codewords alternate, so that one of the following holds:

(7) 01g0'220'3§0'42"' or O'19_02§_0'320’4§_"'

Here, the mazximal codewords of C are indicated in bold.

Proof. Assume that the Interval Condition does not hold. Then, there exists a
closed-convex realization U = {U;}, of C, and, additionally, for some neuron i € [n],
there exist three codewords oy, , 0y,, oo, With €1 < ¢35 < {3 such that i € (oy, N oyy)
but ¢ ¢ o4,. Then, by Lemma 4.11 and the construction of ', every line segment from
the atom of oy, to the atom of o/, is not completely contained in U;. Hence, U; is
nonconvex, which is a contradiction.

Next, we verify the Alternating-Containment Condition. If the containments
0r—1 C 0, C0pg1 Or 0,1 2 0y 2 0pq1 hold for some 7, then (0,-1,0,41) is an edge
of I', which contradicts the fact that I' is a path. 0

We use Lemmas 4.21 and 4.23 to prove the next result, which is the special case
of Proposition 4.18 when the rigid structure fR is the set of all n neurons. In turn,
Lemma 4.24 will be used to prove Proposition 4.18.

LEMMA 4.24. Let C be a code on n neurons. Let I' be the codeword-containment
graph of the code C ~. {0}. Assume that T is a path.

o1 (o) o3 Oq
- .. . T

If, for all i = 1,2,...,q — 2, the intersection o; N 0o;+1 N 042 is nonempty, then
([n],V) is a rigid structure of C.

Proof. Let U = {U;}_, be a closed-convex realization of C. We must show
Uie[mU: is convex.
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By Lemma 4.23, for all ¢ € [n], either U; is empty or there exist left and right
endpoints, L; and R;, respectively, with 1 < L; < R; < ¢, such that L; </ < R; <=
i € o¢. Lemma 4.23 also implies that subsequent codewords alternate, as in (7).

When we have containments o,._1 C o, 2 0,41, the index r of the maximal
codeword o, is a right endpoint of all U; with ¢ € (o, \ 0,41) and is a left endpoint
of all U; with j € (o, \ 0,—1). Furthermore, indices ¢ of nonmaximal codewords o,
are not endpoints, unless £ = 1 or £ = q. We will use these facts below.

If ¢ =1, then U; = Uj for all 4, j € oy and, additionally, Uy, = () for all k € [n]~\o01;
hence the union Uje[,,U; is convex. If ¢ = 2, then we have oy C o2 (or the reverse
containment, which is symmetric), and so U;c[,,)U; = U; for any j € o1; hence, this
union is convex. So, assume for the rest of the proof that ¢ > 3.

We relabel the U;’s as follows:

e Pick U; to be a “leftmost” receptive field (i.e., Ly = 1) of maximal width
(i.e., Ry is maximal among all U; with L; = 1). Notice that Ry > 1 holds:
the triplewise-intersection condition (and the ¢ > 3 assumption) imply that
there is some 7 € (01 NoaNos), and so L; = 1 and R; > 3 for this i.

— If Ry = g, then relabel all remaining U,’s arbitrarily.
— Otherwise, continue to the next step.
e Pick U; to be some U; such that i € (op,—1 Nor, Nog,+1) (the triplewise-
intersection condition implies that such an ¢ exists, and the inequalities 1 <
Ry < q guarantee that 1 < Ry — 1 and Ry +1 < q). Thus, Ly < Ry < Rs.

— If Ry = q, then relabel all remaining U;’s arbitrarily.
— Otherwise, continue to the next step.
e Successively pick Us, Uy, ...,U,, (for some m < n) in the same way (that
is, Uy, for k > 3, is chosen to be some U; such that i € (op,_,—1 NoRr,_, N
JR,;_1+1))a so that Ry < R3 < -+ < R, = qand L3 < Ry, Ly < Rs,...,
L., < Rp,_1. Relabel the remaining U,’s arbitrarily.
By construction, U™, U; = U™ ,U;. So, it suffices to prove (by induction) that
the union U¥_, U; is convex for all k = 1,2,...,m.
The base case (k = 1) is true by assumption. For induction, assume that U¥_, U;
is convex for some 1 < k < m — 1. We will show that Ufill U; is convex by applying
Lemma 4.21. To this end, let V] = Ui?:lUi and Vo = Ugy1. Both Vi and V; are closed

and convex by hypothesis, and we depict them schematically here.

Vi=Ur U Vo = U4

Li=1 Ly Ry, Rit1

By construction, Ly = 1 < Lyy1 < Rg < Rgg1, 80 Vi € Vo and Vy 2 Vo. The
intersection V3 NV5 is nonempty: It consists of all atoms between the endpoints Ly
and Ry.

Next, we construct a closed set W that covers all atoms to the left of L. Let

L={0]1<¢< Liy1 and oy is a maximal codeword of C}.
Let £ € £. If £ =1 (so, o1 is a maximal codeword), pick i, € (o1 \ 02); hence,

U;, contains the atom of ;. If £ # 1, proceed as follows. Pick iy € (04—1 \ 0p41)
(which exists because otherwise oy—1 C gy41, which would contradict the fact that T’
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is a path). Hence, iy € 0y—1 C oy and so U;, contains the atoms of oy_; and ;. On
the other hand, i; ¢ o¢41 implies that the right endpoint of U;, is R;, = € < Lj1.
It follows that Wy := UpeU;, is a closed set such that Vi C (Vo UTWA).
We define Wy similarly. Let

R ={r| Ry <r < Ry and o, is a maximal codeword of C}.

Let r € R. If r = g, pick j, € (04 \ 04—1); hence, U;, contains the atom of o,..
If r < g, proceed as follows. Pick j,. € (6,41 \ 0,—1) (which exists because otherwise
or+1 C or—1, which is a contradiction). Hence, j, € 0,41 C 0., and so Uj, contains
the atoms of o, and o,41. On the other hand, j, ¢ o,_; implies that L; =r > Ry41.
Hence, W5 := U,erUj, is a closed set such that Vo C (V3 U Wa).

Now Vi, Vo, Wy, Wy satisfy hypotheses (i) and (ii) of Lemma 4.21. It remains
only to check (iii). We saw above that the right endpoint of every U;, is at most
Li1, and the left endpoint of every U, is at least Ry. Also, Lyy1 < Ry. Thus,
(Wi N Wa) = (UsecUs,) N (UrecUj,.) = 0, and so (iii) holds. Thus, the union UFH'U;
is convex. 0

One might hope to now prove Proposition 4.18 by applying Lemma 4.24 to a
restricted code Clgz. However, this does not always work. For instance, for the code
Ccor with R = 1456, the restricted code Cc,|m generates a codeword-containment
graph I" that is not a path: The codewords 12,126, 16, 156, which form a path in Cg,.,
become 1,16, 16,156 in Cc,|oz, and so a vertex is lost and a nonpath edge is added
in I'. To circumvent this problem, we introduce redundant neurons i;o and 156 that
“remember” the original atoms so that, with the redundant neurons, the restricted
codewords—1i12, 164126412, 16, 156—again form a path.

The following definition explains how to add redundant neurons (this is in contrast
to the focus, in [12], on removing redundant neurons).

DEFINITION 4.25. Let C be a code on n neurons, and let ¢ C [n]. The code
obtained by adding a redundant neuron g for o is the code on n+ 1 neurons obtained
from C by replacing each codeword T € C that contains o with 7 U {io}.

LEMMA 4.26 (adding redundant neurons preserves convexity and codeword-
containment). Let C be a code on n neurons, and let o C [n]. Let C be obtained
from C by adding a redundant neuron iy for o. Then
(1) If {Ui}iem) is a realization (or closed-convex realization) of C, then
{Ui}iein) U {Ui, := Us} is a realization (or closed-convex realization) of C.
Conversely, if {Ui}ienU{Ui,} is a realization (or closed-conver realization)
of C, then {Ui}icm) is a realization (or closed-convex realization) of C.

(2) The following is an inclusion-preserving bijection:

C—cC ,
T = (T~ {io}).
Proof. Part (1) is due to Jeffs [12], and part (2) is straightforward to check. 0O

LEMMA 4.27 (redundant neurons and rigid structures). Let C be a code on n
neurons. Consider subsets R C [n] and o C [n] such that c NR # 0. Let C be
obtained from C by adding a redundant neuron ig for o. Then R is a rigid structure
of C if and only if R U {ip} is a rigid structure of C.
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Proof. The assumption o "R # @ implies that, in every realization {U;};c[n) U
{Ui, } of C, we have U;enU; = U, U (UjenUj). Now the desired result follows from
Lemma 4.26(1). |

We are now ready to prove our criterion for rigidity (Proposition 4.18).

Proof of Proposition 4.18. Let C be obtained from C by adding a redundant
neuron 4, for every codeword w € C that contains at least one neuron of R (that is,
wNR # 0) and at least one neuron outside of R (that is, w € R). Let Z be the set
of all such redundant neurons 4., added to C. _ B

Consider the following functions between subsets of the codes C, C, and C|nuz:

(8)
(reClrNR£0 L FeC|7NR£0 D{FN(RUTL) |7eCand TNR £ 0}

(9) — (Cluz) ~ {0},

given by ¢(7) := (TN [n]), and (T) := 7N (RUZ). (We will prove the equality (9)
below.)

The map ¢ is an inclusion-preserving bijection by (repeated application of)
Lemma 4.26(2). The map % is inclusion-preserving and surjective by construction.
We claim that 1 is also injective. To show this, it suffices to show (as ¢ is bijective)
that 1o¢~! is injective. To this end, let 71,7 € C be such that 7NN # §, T, NR # 0,
and 7 # 2. We must show that 71 N (RUZ) # 7 N (RUI), where (for j =1,2) 7;
denotes the codeword in C that corresponds to 7;:

7= Ui i € Tand w C 7).

The assumption 71 # 79 implies that there exists a neuron k € [n] such that
k € (m N 72) or k € (12~ 71). By relabeling if necessary, we may assume that
k € (11 \ 12). We consider two cases, based on whether k& € R. If k € R, then
k€ (TiN(RUL)) N\ (T2N(RUIL)) (here, we also use the fact that k& € (11\72) C (T1\72)).
We now consider the remaining case, when k ¢ . Then i, € 71 (as 1 NR # ), and
ir, & T2 (because 71 € 72). Hence, asi,, € Z, we have i, € (T1N(RUZL))\ (72N(RUT)).
Thus, our claim holds.

Next, we prove the equality asserted in (9). The containment C is straightforward:
If7NR # 0, then TN(RUZ) # B. As for the reverse containment 2, redundant neurons
i were added only for certain w € C for which w N R # 0; hence, 7N (RUZ) # 0
implies that 7 NN # 0.

To summarize, we have proven that the maps in (8) are inclusion-preserving
bijections and that the equality in (9) holds. Hence, the codeword-containment graph
of Clmuz {0} is isomorphic to the codeword-containment graph of {7 € C | TNR # 0},
which by hypothesis is a path. So, by Lemma 4.24, (R U Z,U) is a rigid structure
of C|lwuz and thus (by definition) is also a rigid structure of C. So, by repeated
application of Lemma 4.27, (R, U) is a rigid structure of the original code C. ]

Remark 4.28 (converse of Proposition 4.18 is false). It is natural to ask about
the converse to the proposition—that is, when I" is a path graph, if (93,U) is a rigid
structure, must the triplewise-intersection condition hold? The answer is “no.” For
instance, when I is the path 1 — 124 — 2 — 234, we have that ({1,2,3,4},U) is rigid
for trivial reasons: This code has no closed-convex realization (because the Interval
Condition is violated by neuron 4). Yet, the triplewise-intersection condition fails:
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1N 124 N2 is empty. On the other hand, requiring the Interval Condition makes
the converse true; this is shown in forthcoming work of Luis Gomez, Loan Tran, and
Elijah Washington.

4.3. Proof of Theorem 4.15. We use Proposition 4.18 to prove the result,
stated earlier, asserting the non—closed-convexity of codes for which the codeword-
containment graph is a cycle and the triplewise-intersection condition holds.

Proof of Theorem 4.15. Assume that the codeword-containment graph of C \ {(}}
is a cycle 01 — 09 — -+ — 04 — 01 (s0, ¢ > 3) and that the triplewise intersections
0; N o;41 N ;1o are nonempty. We first rule out the ¢ = 3 case. In this case, the
three (nonempty) codewords o; are linearly ordered, that is, after relabeling if needed,
01 2 03 2 03. Hence, 01 NoaNos = o3 # 0, which violates the triplewise-intersection
condition.

Assume that ¢ > 4. Relabel, if necessary, so that o; is a maximal codeword.
Hence, 01 2 02. Also, 02 C 03, because if instead we had o2 2 o3, then o1 — o3 would
be an edge of the codeword-containment graph, which is impossible as the graph is
a cycle of length ¢ > 4. We claim that (i) no nonempty codeword of C is properly
contained in o9, and (ii) o7 and o3 are the only codewords that properly contain .
Indeed, either were violated, the codeword-containment graph would contain an edge
from oy to some oy, with k # 1, 3, and hence would not be a cycle. Facts (i) and (ii)
will be used below.

Let R := 09 and € := [n] \ R. The pair (!, N) is automatically a rigid structure,
and we now claim that (€,U) is also a rigid structure. To see this, note that no
nonempty codeword is properly contained in R = o5 and each such codeword contains
at least one neuron from €. Thus, the codeword-containment graph of {r € C | TNC #
(0} is the path 03 —04 —- - - —0y—01. The triplewise-intersection property for this path
holds by hypothesis. Hence, Proposition 4.18 implies that (€,U) is a rigid structure,
as desired.

The distinguished subcode arising from (},N) and (€,U) is {71 € C | R = 02 C
7 and 7TNE # P} = {01, 03}, and the resulting codeword-containment graph is discon-
nected (o1 € o3 and o1 2 03). So, by Theorem 4.12, C is not closed-convex. O

Remark 4.29. From the proof of Theorem 4.15, we see that codes satisfying
the hypotheses of that theorem have many choices of rigid structures (:,N) and
([n] ~ M,U) that can be used to prove non—closed-convexity. For instance, for the
code C15 (from Example 4.16), R can be chosen to be any of the following subsets of
{1,2,3,4,5}: 12, 15, 45, 34, and 23.

4.4. Examples. Here we show that four of the five known non—closed-convex
codes that are open-convex (those listed in Table 1), can be handled by Theorem
4.12. The rigid structures that we use are listed in Table 1 and some are shown
schematically in Figures 3 and 5.

PROPOSITION 4.30. The codes C6, C10, C15, and Cc, (from Example 2.6) satisfy
the hypotheses of Theorem 4.12, where the rigid structures are those in Table 1, and
are therefore non—closed-conver.

Proof. For the code C6, we saw in Example 4.19 that (R, ) := (1235, U) is a rigid
structure. We also consider the rigid structure (€, A) := (4,N). The resulting distin-
guished subcode is C'6' = {145,234}, which has disconnected codeword-containment
graph. So, by Theorem 4.12, the code C6 is not closed-convex.

Next, we consider the code C10. Applying Proposition 4.18 to C10]1234 and
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C10]1234

F1G. 5. The code C10, with two rigid structures (shaded). Dotted lines indicate pairs of code-
words arising from distinct rigid structures, with one contained in the other.

12 123

6 ﬁilv:;:vif:: "

F1G. 6. An open-convex realization of Ds in R2.

R = {3,4}, the codeword-containment graph T is the path 13 — 134 — 34 — 234 — 24,
and the intersections 13N 134 N34 =3, 134N34MN234 =34, and 34N234N24 =4
are nonempty. We conclude that (34,U) is a rigid structure of C10. The other rigid
structure we consider is (5,N). The resulting distinguished subcode is {135,245}, and
s0, as above, the code C'10 is not closed-convex.

Finally, the codes C15 and C¢, were already analyzed in Example 4.16 (see also
the proof of Theorem 4.15). 0

Next, we give the first infinite family of codes that are open-convex but non—
closed-convex.

THEOREM 4.31. For n > 5, the following neural code is open-convex but mot
closed-convex:

D, = {12,123,23,234,34,...,(n— 2)(n — 1)n, (n — 1)n,

(10) 12(n+1),n+1,(n — 1)n(n+1),0}.

Proof. 1t is straightforward to check that the open-convex realization of D5 shown
in Figure 6 extends to all D,,, for n > 5.
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Fic. 7. The code Dy, viewed as the union of two rigid structures. Dotted lines indicate pairs
of codewords arising from distinct rigid structures, with one contained in the other.

Uy = Us UUs

Calaars

278

FiGc. 8. The code Cg. The shaded region at the top is rigid. Dotted lines indicate pairs of
codewords, one contained in the other, arising from distinct regions.

We apply Proposition 4.18 to the code D,, and R = {1,2,...,n}. The resulting
graph I' is the path on the codewords—in that order, from 12 to (n — 1)n—shown in
line (10). The consecutive triplewise intersections are easily seen to be nonempty, and
so ([n], V) is a rigid structure of the code. See Figure 7. The other rigid structure we
consider is (n+1,N). The resulting distinguished subcode is {12(n+1), (n—1)n(n+1)},
and so by Theorem 4.12, D,, is not closed-convex. 0

Remark 4.32. Recall that closed-convexity is “minor-closed” with respect to the
partial order defined in [12] (see [13, Proposition 9.3]). It would therefore be inter-
esting to see whether, with respect to this partial order, the codes D,, are minimally
non-—closed-convex.

Remark 4.33. Another direction for future work is to use the results in this section
to scan codes on 6 neurons for non—closed-convexity, like was done for open-convexity
in the work of Ruys de Perez, Matusevich, and Shiu [23].

The next example is a non—closed-convex code that, as far as we know, does not
satisfy the hypotheses of Theorem 4.12 but may indicate a way to extend our results.

Example 4.34. We revisit the non—closed-convex code Cg from Example 2.8. It
has a rigid structure (shown in Figure 8). Informally, this structure must “bend” to
intersect the required atoms in the rest of the code, and so Cg is non—closed-convex.
It would be interesting in the future to generalize our results to accommodate this
code.

We end this section by showing how rigid structures can be used to preclude
closed-convexity, even when the results in this section do not directly apply (or are
difficult to apply). The idea, which we illustrate in the following example, is to replace
a rigid structure (which is necessarily convex) by a new neuron.
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Ezxample 4.35. Consider the following code on 8 neurons:

D = {12467,2678,123,138, 345, 456,
1246, 1267, 2467, 267, 467, 12, 13,45, 46, 67, 3,8, 0}

By applying Lemma 4.24 to the restricted code D|4567, we conclude that (4567, U)
is a rigid structure of D|4567 and thus (by definition) is also a rigid structure of D,
shown with shading here.

© ®
@
® ® =
®

Next, as Uy UUs UUg U Uy is convex (in every closed-convex realization of D), we
can introduce a new neuron B for which Up = U, U Us U Ug U U7. More precisely, let
D be the code obtained from D by adding neuron B to every codeword that contains
at least one neuron from the set {4,5,6,7}. It follows that D and D are equivalent
(from the point of view of analyzing closed-convexity). The following restricted code
is (up to relabeling neurons) the code C'10:

Dliasss = {123,12B,138,28B, 3B, 12, 13,28, 3,8, B, (}.

Results in this section (and also those in the next section) show that C'10 is non—
closed-convex, and thus so is D, and hence D as well.

Remark 4.36. We have already used rigid structures to show that the code C6 is
non—closed-convex (Proposition 4.30). Another way to see this uses the “new neuron”
idea in the previous example. Namely, as (1235, U) is a rigid structure, we let R denote
a new neuron with Ur = Uy UUs U Us U Us. Then, one can check that this new code
has (at R) a “local obstruction” to convexity (which precludes closed-convexity), as
in [3, 8].

5. Precluding closed-convexity using RF relationships. In this section,
we introduce a second criterion for precluding closed-convexity, which, unlike the one
in the previous section (Theorem 4.12), can be checked directly from a neural code
or its neural ideal (Theorem 5.1). The conditions in our criterion, which are listed in
Table 2, capture the RF relationships that lead to non—closed-convexity in some codes
in the literature. Accordingly, our proof unifies arguments made in [9]. Additionally,
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TABLE 2.
Properties of a neural code C, the equivalent RF relationships, and the equivalent conditions on
the neural ideal J¢.

Property of neural code RF relationship Neural ideal
Some codeword contains {i, 7, k} Uiji 0 xirir, & Je
Some codeword contains {3, j, m} Uijm # 0 zixjTm ¢ Je
Some codeword contains {k, ¢, m} Ukem # 0 TrTexm ¢ Je

No codeword contains {4, j, k, £} Uijke =0 xixijrRTe € Je

No codeword contains {%, j, k, m} Usijm =0 T, TjxpxTm € Je
Each codeword containing k also contains j or £ U, C (U; UUy) zp(z; +1)(zg+1) € Je
Each codeword containing j also contains ¢ or k U; C(U; UUy) xj(x; +1)(xp +1) € Je

we obtain a criterion that can be checked from the canonical form (Corollary 5.8) and
therefore is the first algebraic signature for non—closed-convexity (besides signatures
of local obstructions [4]).

THEOREM 5.1 (criterion for precluding closed-convexity). Let C be a code on
n neurons. Let i,j,k,l,m € [n]. If C satisfies the properties in the first column of
Table 2 or, equivalently, the neural ideal Je satisfies the properties in the third column,
then C is not closed-convex.

Proof. The equivalence of columns two and three of Table 2 is due to Lemma
2.24, and the equivalence of columns one and two is straightforward.

Assume for contradiction that {Uy,Us,...,U,} is a closed-convex realization of C.
By intersecting each U; with a sufficiently large closed ball (the same ball for all 7),
we may assume that each U; is compact.

The first four RF relationships in Table 2 imply that, for the three sets
Uij, Uk, Uy, all pairwise intersections are nonempty but the triplewise intersection
Uij NU, NUp, = Ujrm is empty. We depict this schematically here.

Usi; Uy

U772

We can therefore pick distinct points yijm € Uijm and yrem € Ugem (recall from
Table 2 that Ugem # 0). Let Ly, be the line segment joining the two points. We have
Ly, C Uy, because both endpoints are in the convex set Up,. Next, L,, and Uj;j are
compact and disjoint sets (recall that U;jrm = 0), so there exists a point y;;x € Uijk
that achieves the minimum distance from Uj; to L,, (and this distance is positive).

Letting L;; be the line segment from y;jm to yijr (so, Li; € U;; by convexity),
and Ly, the line segment from y;jx t0 Yrem (so, Ly € Uy by convexity), we have the
following triangle.

Yijk

L;; Ly,

Yijm Yklm
L””,
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TABLE 3.
Three codes and indices (i, j, k,£,m) for which the codes satisfy the hypotheses of Theorem 5.1.

Code (i,7,k, £, m)
C6 = {123,125,145,234,12,15,23,4,0} (3,2,1,5,4)
C10 = {134,135,234,245,12,13,24,34,1,2,5,0} (1,3,4,2,5)
C15 = {123,125,145,234,345,12,15, 23,34, 45,0} (1,2,3,4,5)

Recall again that U;jkm = 0, so the line segment L;; C U;; must exit U, before
entering Uy. Hence, there exists a point y;; in the relative interior of the line segment
Lij such that Yij € Uij AN (Um U Uk)

Next, L, C Uy and (from Table 2) Uy, C (U; UUy). Also, the endpoints of Ly are
Yijk € U;j and yrem € Up. So, Ly is a connected set covered by the nonempty closed
sets Ly NU; and L NU;. We conclude that there exists a point y;,¢ on Ly, that is in
Ujke. Additionally, y;re ¢ U; (and in particular yjre # vijx) because Ujjre = 0 (see
Table 2).

We conclude that the line segment from y;; to y;x¢, which we denote by Lj, is
contained in U; and (except for the endpoints) lies in the interior of the triangle. From
Table 2, we have U; C (U;UUy). Also, recall that y;; € (U; \Uy) and y,xe € (Up\T;).
Thus, there is a point y';;5 in the relative interior of L; (and thus in the interior of
the triangle) and also in U;;,. We depict this here.

Yijk

yijm L » Ykim

L m

Thus, y'ijk is a point in Uy, that is closer to L,, than y;;i is, which is a contra-
diction. O

Example 5.2. Theorem 5.1 applies to the codes C6, C'10, and C15 from Example
2.6, where the values of (i, j, k, ¢, m) are as listed in Table 3. Hence, these codes are
non—closed-convex, and our result unifies the proofs of non—closed-convexity due to
Goldrup and Phillipson, who first analyzed these codes [9]. See also another such
proof for C15, which uses “order-forcing,” in [14, Example 2.13].

Remark 5.3 (minimum-distance arguments). Like the earlier proof of Lemma
4.21, the proof of Theorem 5.1 relies on minimum-distance arguments. Indeed, our
proof is similar to that of Cruz et al. [2, Lemma 2.9] for the code C¢, from Example
2.6, but Theorem 5.1 does not apply to that code. It may be interesting in the future
to prove a result that is similar to Theorem 5.1 and does apply to Cc;-.

Remark 5.4 (adding codewords that preserve non—closed-convexity). For a non—
closed-convex code C, Theorem 5.1 can be used to generate a list of nonmaximal
codewords that, when added to C, results in a code that is still non—closed-convex.
For instance, any subset of the following codewords can be added to C'6 without
making the code become closed-convex: 3, 34,45, 5.
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Remark 5.5 (replacing i, j, k,¢,m by sets). Theorem 5.1 allows the following
generalization: The properties of neural codes listed in Table 2 involving individual
neurons i, j, k,{,m can be replaced by nonempty sets of neurons I, J, K, L, M (e.g.,
“Some codeword contains {i, 7, k}” becomes “Some codeword contains I U J U K”).
The proof of Theorem 5.1 readily accommodates this extension. An alternate proof
is through Jeffs’s theory of morphisms of codes [12]. Two key ingredients for this
proof are as follows: Codes that have a surjective morphism to a non—closed-convex
code are non—closed-convex [12, Remark 1.8]), and the properties of neural codes in
Table 2 can be restated in terms of what Jeffs calls “trunks.”

We expect that we can not remove any of the hypotheses of Theorem 5.1 (the
seven properties listed in Table 2). The following example shows what can happen
with one missing hypothesis.

Ezample 5.6. Consider the following code: C = {123,124,235,45,12,14, 23, 35,
4,5,(0}. This code is closed-convex (this follows from results in [2, 9]), but was erro-
neously asserted to be non—closed-convex in a preliminary version of [6]. It is easy to
check that, when (4,7, k, ¢, m) = (1,2, 3,5,4), the code C satisfies all properties listed
in Table 2 except the one in the third row.

Theorem 5.1 provides a sufficient condition for being non—closed-convex. As noted
above, the code C¢, shows that this condition is not necessary, even for codes without
local obstructions. Another such code is in the following result.

PROPOSITION 5.7. The code Cs = {12378,1457,2456,3468, 278,17, 38, 45, 46,
2,0} from Ezample 2.6 is non—closed-convex but fails to satisfy the hypotheses of
Theorem 5.1.

Proof. As noted earlier, non—closed-convexity was proven in [6].
It will be useful in our proof to examine the code’s canonical form, which is as
follows:

{z1(x7 + 1), 23(28 + 1), z325, (x4 + 1)25, 528, T1 76,

(x4 + Vg, z6z7, xa(z5 + 1) (26 + 1), (x1 + 1) (22 + 1)27,

(1 4+ Dar(zs + 1), xoxr(zs + 1), x2(x7 + D)as, (x2 + 1)(z3 + 1)zs,
(3 + 1)(x7 + Dag, (x2 + Darag, x1x4(zs + 1), (21 + Dy,
zq(xs + Vg, (x1 + Dasar, waxs(zs + 1), voxs(x6 + 1), 20427,
zows(xe + 1), xawsxr, x2(xs + 1)xg, (x2 + 1)z526, 324(T6 + 1),
Towaxs, (T3 + 1)xgxs, x4(x6 + 1)as, 42778, T2T6xs, (X3 + 1)T62s,
r12o(x3 + 1), x10224, x122T5, T122 (8 + 1), 21 (22 + 1) 23, 212324,
(x1 + V)zows, xox3wy, o376, xox3(x7 + 1), (21 + 1)asar,

(2 + 1)xswy, x3w427, 1 (22 + 1), 21 (T3 + 1) T8, T12478}.

Recall from Lemma 2.24 that a pseudomonomial in the canonical form, such as
x1(x7 + 1), indicates a minimal RF relationship, such as U; C Uy.

We first note that Cg is symmetric under switching the neurons 1,5,7 with, re-
spectively, 3,6,8. We must show that no neurons play the roles of ¢, j, k,l, and m in
Theorem 5.1. We focus on the conditions in rows 1, 2, and 5 in Table 3, which are
together equivalent to the existence of maximal codewords o1 and o9 that (i) con-
tain (respectively) ijk and ijm and (ii) are such that o1 # o2 (so that no codeword
contains ijkm). As {i,j} C (01 No2), we restrict our attention to pairs of maximal
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codewords of Cg whose intersection has size at least 2. Up to the symmetry mentioned
above, there are only two options:
e Case A: {i,j} = {4,5} = 1457 N 2456 = o1 N o3 (in which case, m € {2,6}
and k € {1,7}, or vice versa), or
e Case B: {i,j} = {3,8} = 123783468 = 01 No2 (in which case, m € {1,2,7}
and k € {4,6}, or vice versa).
Before considering the two cases, we first claim that k # 2. Indeed, 2 € Cg, and
so there is no RF relationship with £ = 2 of the following form required by row 6 of
Table 3:

(11) U, C (Uj U Uy).

We begin with Case A. We claim that k& # 6 and m # 6. Indeed, the condition in
row 3 of Table 3 requires that some codeword contain k¢m, and there is no maximal
codeword containing 16 or 67. Therefore, it must be that k € {1,7} and m = 2.

We first consider £ = 1. The only minimal RF relationship of the form U; C
UperUp is Ur C Uz (this can be checked directly or from the canonical form), so
the required condition (11) (with j € {4,5}) implies that ¢ = 7. Thus, ijkl{ =
{1,4,5, 7}, which is itself a maximal codeword. Thus, the condition in row 4 of Table 3
fails.

The remaining subcase is when k£ = 7. Only two minimal RF relationship are of
the form U; C Upe-,—Up, namely, U; CUyUUg and U; C Uy UUs,. So, as j € {4,5},
there is no RF relationship with k& = 7 of the form in (11). So, this subcase also does
not fulfill the hypotheses of the theorem.

We turn now to Case B. The possible values for k are 1,4,6,7. For k = 1, there
is a single minimal RF relationship of the form U; C Upe, Uy, namely, U; C Us.
So, we can again use (11) (and the assumption {i,j} = {3,8}) to see that £ = 7.
Thus, ijkl = {1,3,7,8}, which is contained in the maximal codeword 12378 and so
contradicts the row 4 condition.

For k = 4, there is one minimal RF relationship of the form Uy C Upe,U,, namely,
Uy C Us U Ug. This relationship does not involve j € {3,8}, and so condition (11)
does not hold.

For k = 6, only one minimal RF relationship has the form Us C Upe,Up,, namely,
Us C Uy. Hence, £ = 4, and so ijkl = {3,4,6,8} is a maximal codeword, again
violating the row 4 condition.

Finally, consider £ = 7. Only two RF relationships have the form U; C U,e,Up,
namely, Uy C U; UU; and U; C Uy U Ug. It must therefore be that j = 8 and ¢ = 1.
So, ijkt = {1,3,7,8} C {1,2,3,7,8}, again contradicting the row 4 condition. Our
proof is now complete. 0

COROLLARY 5.8 (precluding closed-convexity using the canonical form). Let C
be a code on n neurons. Let i,j,k,l,m € [n]. Suppose that the canonical form of the
neural ideal of C contains the following pseudo-monomials:

(i) zizp(z; + 1), zjzm(x; + 1), and xpxm, (e + 1);

(ii) x5 and x,, for some o C {3, j,k, ¢} and 7 C {i,j, k,m}; and

(iil) zx(z; + 1) (ze+ 1) and zj(x; + 1)(zg + 1).

Then C is not closed-conver.

Proof. Recall that the canonical form is the set of minimal pseudo-monomials in
the neural ideal. Thus, the presence of the pseudo-monomials in (ii) and (iii) imply
the properties in rows 4-7 in Table 2.
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Next, we claim that z;2(z;+1) € CF(J¢) implies the properties in the first row in
Table 2, specifically, z;z;x, ¢ Jc. To see this, note that otherwise the sum z;zx(x; +
1) + z;zx, = x;2; would be in Je, which contradicts the fact that @;zx(xz; + 1) is
minimal. So, by symmetry, the three pseudo-monomials in (i) imply the properties in
rows 1-3 in Table 2.

The corollary now follows from Theorem 5.1. O

Ezample 5.9. We return to the codes C'10 and C'15. Recall that their canonical
forms are shown in Example 2.23. Corollary 5.8 applies to show that these codes are

non—closed-convex, where the indices (i, j, k, £, m) are as in Table 3, and o = {3, j, ¢}
and 7 = {i, k,m}.

6. Closed-convexity of sunflower codes. In this section, we focus on a family
of codes, called sunflower codes (Definition 6.1). These codes were introduced by Jeffs,
who showed that they have no local obstructions and yet are non-open-convex ! [11].
Nevertheless, we show that these codes are closed-convex and moreover can be realized
in R? (Theorem 6.3).

DEFINITION 6.1. Let n > 2. The sunflower code, denoted by Sy, is the neural
code on 2n + 2 neurons that consists of the following codewords:

(1) the empty codeword 0,

(2) the “circle-edge” codeword o U {n + 1} for all nonempty proper subsets o of
],

(3) the “petal” codewords {n + 2},{n +3},...,{2n + 2},

(4) the “petal-end” codeword {1,2,...,i—1}yU{i+1,i+2,...,n+1}U{n+1+i}
forall 1 <i<n,

(5) the “polygon” codeword {1,2,...,n+ 1} U{2n + 2}, and

(6) the “center” codeword {n+2,n+3,...,2n+ 2}.

“Petals” and “center” are terms introduced by Jeffs [11] (the “petal” and “center”
codewords generate a “sunflower”). The meaning behind these and the other names
of the codewords will be shown in the proof of Theorem 6.3.

Ezample 6.2. The first two sunflower codes, with codewords listed in the order
given in Definition 6.1, are as follows:

Sy ={0,13,23,4,5,6,234,135,1236, 456},
Ss = {0,14,24,34,124,134,234,5.6, 7,8, 2345,1247, 1346, 12348, 5678}.

A closed-convex realization of Sy is shown in Figure 9 (another such a realization
is in [6, Figure 2]).

THEOREM 6.3 (closed-convexity of sunflowers). The sunflower code Ss is closed-
convezr in R2. The sunflower code S, for n >3, is closed-conver in R3.

Proof. A closed-convex realization for Sy is shown in Figure 9. For n > 3, we
construct a closed-convex realization in three steps, as follows.

Step One. The restriction of the code S,, to the neurons {1,2,...,n + 1} is
the code obtained by taking all subsets of {1,2,...,n} and then adding the neuron
n + 1 to all nonempty subsets. This restricted code has a unique maximal code-
word (namely, {1,2,...,n + 1}, which is the restriction of the “polygon” codeword).

1 In fact, these codes are minimally non—open-convex with respect to the partial order alluded
to earlier in Remark 4.32.
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Ui 234 23 1236 13 135

Us
Uy Us Us

456

Fi1G. 9. A closed-convex realization U = {U1,Ua,...,Us} of the sunflower code Sa; depicted on
the right are atoms labeled by codewords.

24 234

124 1234 34

14 134

F1a. 10. Result of Step One for the sunflower code S3.

Thus, the restricted code can be realized by closed-convex sets in R? as a polygon
P (with (2™ — 2) sides) inscribed in a circle so that each “circle-edge” atom lies be-
tween the circle and an edge of the polygon [3]. This realization is shown for S in
Figure 10.

Specifically, U, 41 is the filled-in circle, and each of Uy, U,,...,U, is obtained
from this circle by “slicing off” some “circle-edge” atoms. Thus, the codewords we
have obtained so far are {1,2...,n + 1} (the subset of the “polygon” codeword) and
all “circle-edge” codewords.

Step Two. We pick a point ¢ in a plane parallel to the one in which the polygon
P lies and define Us, 42 to be the pyramid with base equal to P and top point q.
This is shown in Figure 11 for S3. In this way, the codeword {1,2...,n + 1} from
Step One becomes the full “polygon” codeword {1,2...,n + 1} U {2n + 2}, and all
other codewords from Step One are unaffected. We also obtain the “petal” codeword
{2n + 2}.

Step Three. To obtain the remaining codewords, we define each of Uy, 2, Uy, 43,
..., U2pt1 to be a line segment from ¢ to some point in the corresponding “circle-
edge” atom. Thus, these line segments (what Jeffs calls petals [11]) all come out of
the circle, meeting at a common point (the center [11]). See Figure 12 for S3. This
procedure generates all remaining codewords (without destroying any old ones): The
shared endpoint ¢ is the atom of the “center” codeword, the other endpoints of the
line segments are the atoms of all the “petal-end” codewords, and the relative interiors
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Fic. 11. Result of Step Two for the sunflower code S3. The codeword 1234 from Step One is
now 12348 (the corresponding atom is the hezagon).

5678

2345

1346

Fic. 12. Result of Step Three for the sunflower code S3.

of the line segments are the atoms of the “petal” codewords (except {2n + 2} which
was already obtained in Step Two).
We conclude that the resulting code is code(U,R3) = S,,. d

Remark 6.4. By Theorem 6.3, the sunflower codes satisfy dim“°**%(S,,) < 3 for
n > 3. However, we do not know whether dim“***(S,,) equals 2 or 3.

7. Discussion. Our work helps clarify how open-convex and closed-convex codes
are related. Some of our results help unify the theories of open-convexity and closed-
convexity: These concepts are the same for nondegenerate codes, although their open
and closed embedding dimensions may differ. Thus, for nondegenerate codes, results
from open-convexity also hold for and thus can be transferred to closed-convexity and
vice versa.

We also introduced a code’s nondegenerate embedding dimension, and in the
future we would like more results and bounds on this dimension. Indeed, echoing
Cruz et al. [2], nondegenerate realizations may be well suited for applications, as
their boundaries do not matter (Theorem 3.1).

Another question for future work, posed in Remark 4.32, concerns the infinite
family of codes D,, we constructed: Are these codes minimally non—closed-convex
with respect to the partial order defined by Jeffs [12]? In fact, no codes have been
confirmed (or constructed) to be minimally non—closed-convex but also open-convex.
In contrast, there are codes that are minimally non—open-convex but also closed-
convex: The sunflower codes (Definition 6.1) form an infinite family of such codes
[11]. Therefore, it would be interesting to find a family of codes that are minimally
non—closed-convex but open-convex or even just one such example.
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The main contribution of our work concerns codes that are not closed-convex
(but possibly open-convex). Notably, we gave the first general criteria for precluding
closed-convexity. One criterion is built on a novel concept, rigid structures, and we
expect this idea to be fruitful in the future (as it already is in [10]). To this end, we
will need more ways to check whether a code has a rigid structure (Proposition 4.18
is a significant first step).

In contrast, our other criterion is read directly from a code (or its neural ideal)
and, moreover, can often be checked from a code’s canonical form. This criterion,
which unifies proofs in previous works, also gives information on which nonmaximal
codewords can be added to a code without making the code become closed-convex
(Remark 5.4). This is remarkable, as analogous results have not yet been stated for
open-convexity.

Going forward, we would like to apply and to improve our new criteria (recall, for
instance, the code in Example 4.34 which our criteria cannot handle), with the aim of
further classifying closed-convex codes on 6 or more neurons. In turn, such a classi-
fication will help elucidate when open-convexity and closed-convexity are essentially
the same concept and when these concepts fundamentally differ.
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