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Abstract: Excessive phytoplankton growth, or blooms, in coastal oceans, can be 20 

beneficial to coastal fisheries production and ecosystem function, but also can cause 21 

major environmental problems 1,2, yet detailed characterizations of bloom incidence 22 

and distribution are not available worldwide. Here, we map daily marine coastal algal 23 

blooms between 2003 and 2020 using global satellite observations at 1-km spatial 24 

resolution. We found that algal blooms occurred in 126 of the 153 coastal countries 25 

examined. Globally, the spatial extent (+13.2%) and frequency (+59.2%) of blooms 26 

increased significantly (P<0.05) over the study period, whereas blooms weakened in 27 

tropical and subtropical areas of the Northern Hemisphere. We documented the 28 

relationship between the bloom trends and ocean circulation, and identified the 29 

stimulatory effects of recent increases in sea surface temperature. Our compilation of 30 

daily mapped coastal phytoplankton blooms provides the basis for global assessments 31 

of bloom risks and benefits, and for the formulation or evaluation of management or 32 

policy actions.  33 
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Main 34 

Phytoplankton blooms are accumulations of microscopic algae in the surface 35 

layer of fresh and marine water bodies. Although many blooms can occur naturally, 36 

nutrients linked to anthropogenic eutrophication are expected to intensify their 37 

frequency globally 2-4. Many algal blooms are beneficial, fixing carbon at the base of 38 

the food chain and supporting fisheries and ecosystems worldwide. However, 39 

proliferations of algae that cause harm (termed harmful algal blooms or HABs) have 40 

become a major environmental problem worldwide 5-7. For instance, the toxins 41 

produced by some algal species can accumulate in the food web, causing fisheries 42 

closures as well as illness or mortality of both marine species and humans 8-10. In 43 

other cases, the decay of a dense algal bloom can deplete oxygen in bottom waters, 44 

forming anoxic “dead zones” that can cause fish and invertebrate die-offs and 45 

ecosystem restructuring, with serious consequences for the well-being of coastal 46 

communities 1,11. Unfortunately, algal bloom frequency and distribution are projected 47 

to increase with future climate change 12,13, with some changes causing adverse effects 48 

on aquatic ecosystems, fisheries, and coastal resources. 49 

Due to substantial heterogeneity in space and time, algal blooms are challenging 50 

to characterize on a large scale 5,14, and hence, present knowledge does not allow us to 51 

answer one of the most fundamental questions: whether algal blooms have changed in 52 

recent decades on a global basis 6,15,16. For example, although HAB events have been 53 

compiled into the UNESCO Intergovernmental Oceanographic Commission Harmful 54 

Algae Event Database (HAEDAT) globally since 1985, bloom trends are difficult to 55 
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resolve due to inconsistent sampling efforts and the diversity of the eco-56 

environmental/socio-economic impacts 6. Alternatively, satellite data have been used 57 

to monitor the ocean surface continuously since 1997 and have enabled bloom 58 

detection in many coastal regions 17-19. However, the technical difficulties in dealing 59 

with complex optical features across different types of coastal waters have thus far 60 

prohibited their application globally 20. To fill this knowledge gap, we developed a 61 

novel method to map global coastal algal blooms and used this tool to examine 62 

satellite images between 2003 and 2020, addressing three fundamental questions: (i) 63 

where and how frequently have global coastal oceans been affected by phytoplankton 64 

blooms? (ii) have the blooms expanded or intensified over the past two decades, both 65 

globally and regionally? and (iii) what are the potential drivers? 66 

Mapping global coastal phytoplankton bloom 67 

We generated a satellite-based dataset of phytoplankton bloom occurrence to 68 

characterize the spatial and temporal patterns of algal blooms in coastal oceans 69 

globally. The dataset was derived using global, 1-km resolution daily observations 70 

from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard NASA’s 71 

Aqua satellite, and all 0.76 million images acquired by this satellite mission between 72 

2003 and 2020 were used. We developed an automated method to detect 73 

phytoplankton blooms using MODIS images (Extended Data Fig. 1) (see Methods). In 74 

this study, we define a phytoplankton bloom as the accumulation of microscopic algae 75 

at the ocean surface that exhibits satellite-detectable fluorescence signals 21. However, 76 

whether a bloom produces toxins or is harmful to humans or the marine environment 77 
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is not distinguishable from satellites. We delineated bloom-affected areas (i.e., the 78 

areas where algal blooms were detected), and enumerated the bloom count at the 1-79 

km pixel level (i.e., the number of detected blooms per pixel) (Fig. 1). We further 80 

estimated bloom frequency (dimensionless) by integrating the bloom count and 81 

affected areas within 1°×1° grid cells (see Methods), and this metric was used to 82 

examine temporal dynamics in bloom intensity. Validation with independent satellite 83 

samples selected via several visual inspection techniques showed an overall accuracy 84 

level of >95% for our method, and comparisons using discrete events in HAEDAT 6 85 

indicated that we successfully identified bloom counts at 79.3% of the historical HAB 86 

events in that database (Extended Data Figs. 2-6). We examined phytoplankton 87 

blooms in the exclusive economic zones of 153 coastal countries and in 54 large 88 

marine ecosystems (LMEs) (Extended Data Fig. 7). Our study area encompasses 89 

global continental shelves and outer margins of coastal currents, which offer the 90 

majority of marine resources available for human use (see Methods).Of the 153 91 

coastal countries examined, 126 were observed with phytoplankton blooms (Fig. 1). 92 

The total bloom-affected area was 31.47 million km2, equivalent to ~24.2% of the 93 

global land area and ~8.6% of the global ocean area, with a median bloom count of 94 

4.3 per year during the past two decades (Fig. 1b). Europe (9.52 million km2 or 30.3% 95 

of the total affected area) and North America (6.78 million km2 or 21.5%) contributed 96 

the largest bloom areas. In contrast, the most frequent blooms were found around 97 

Africa and South America (median bloom counts >6.3 per year). Australia 98 

experienced the lowest frequency (2.4 per year) and affected area (2.84 million km2 or 99 
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9.0%) of blooms. 100 

Phytoplankton blooms frequently occurred in the eastern boundary current 101 

systems (i.e., California, Benguela, Humboldt, and Canary), northeastern United 102 

States (US), Latin America, the Baltic Sea, Northern Black Sea, and the Arabian Sea 103 

(Fig. 1a). Five LMEs were found with the most frequent blooms (annual median 104 

bloom count >15), including Patagonian Shelf, Northeast US continental Shelf, the 105 

Baltic Sea, Gulf of California, and Benguela Current (Extended Data Fig. 7). These 106 

hotspots are often reported with a high incidence of algal blooms, some of which are 107 

HABs, driven by either coastal upwelling or pronounced anthropogenic nutrient 108 

enrichment 9,22-26. European LMEs mostly showed large proportions of bloom-109 

affected areas, and some also with frequent bloom occurrences. By contrast, Asian 110 

LMEs mainly exhibited infrequent blooms, given their large affected areas. We 111 

identified more bloom events in estuarine regions than along coasts in regions without 112 

major river discharge (P<0.05, Extended Data Fig. 8), highlighting the critical role of 113 

terrestrial nutrient sources on coastal algal blooms 3. 114 

Long term trends 115 

The total global bloom-affected area has expanded by 3.97 million km2 (or 116 

13.2%) from 2003 to 2020, or 0.14 million km2 yr-1 (P<0.05, Fig. 2). Furthermore, the 117 

number of countries with significant bloom expansion was ~1.6 times those with a 118 

decreasing trend. The global median bloom frequency showed an increasing rate of 119 

59.2% (+2.19% yr-1, P<0.05) over the observed period. Spatially, areas showing 120 
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significant increasing trends (P<0.05) in bloom frequency were 77.6% larger than 121 

those with the opposite trends (Fig. 2). Globally, our analysis revealed overall 122 

consistent fluctuations between the bloom-affected area and bloom frequency between 123 

2003 and 2020 (Fig. 2b). However, there was no significant relationship between 124 

bloom extent and frequency in 23 countries and 10 LMEs over the past two decades, 125 

underscoring the spatial and temporal variability of algal blooms and the importance 126 

of continued satellite monitoring. 127 

The entire Southern Hemisphere was primarily characterized by increased bloom 128 

frequency, although weakened blooms were also found on occasion. In the Northern 129 

Hemisphere, the low latitude (<30°N) coasts were mainly featured with strong bloom 130 

weakening (Fig. 2a), primarily in the California Current System and the Arabian Sea. 131 

Bloom strengthening was found in the northern Gulf of Mexico and the East and South 132 

China Seas, albeit at smaller magnitudes. At higher latitudes, weakening blooms were 133 

mainly detected in the northeastern North Atlantic and the Okhotsk Sea in the 134 

northwestern North Pacific. Globally, the largest increases in bloom frequency were 135 

observed in six major coastal current systems, including Oyashio (+6.31% yr-1), Alaska 136 

(+5.22% yr-1), Canary (+4.28% yr-1), Malvinas (+3.02% yr-1), Gulf Stream (+2.42% yr-137 

1), and Benguela (+2.30% yr-1) (Fig. 2a & Fig. 3). 138 

Natural and anthropogenic impacts 139 

Increases in sea surface temperature (SST) can stimulate bloom occurrence. We 140 

found significant positive correlations (P<0.05) between the annual mean bloom 141 



8 
 

frequency and the coincident SST (SST data were averaged over the growth window 142 

of algal blooms within a year, see Methods and Extended Data Fig. 9) in several high 143 

latitude regions (>40°N), such as the Alaska Current (r=0.44), the Oyashio Current 144 

(r=0.48), and the Baltic Sea (r=0.41) (see Fig. 3). These findings agree with previous 145 

studies, where the bloom-favorable seasons in these temperate seas have been 146 

extended under warmer temperatures 27-29. However, this temperature-based 147 

mechanism did not apply to regions with inconsistent trends between SST and bloom 148 

frequency, particularly for the substantial bloom weakening in the tropical and 149 

subtropical areas (Fig. 2a and Fig. 3b). 150 

Climate changes can also affect ocean circulation, altering ocean mixing and the 151 

transport of nutrients that drive the growth of marine phytoplankton and bloom 152 

formation 30-32. We used the spatial SST gradient (in °C m-1 decade-1) as a proxy for 153 

the magnitude of oceanic mesoscale currents (or time-varying velocity of kinetic 154 

energy, known as EKE) by following the methods of a previous study 33, and 155 

examined its impacts on algal blooms (see Methods). The trend in the SST gradient 156 

appeared more spatially aligned to bloom frequency than SST. We found significant 157 

positive correlations (P<0.05) between the SST gradient and bloom frequency for 158 

various coastal current systems, including the Canary (r=0.84), Malvinas (r=0.83), 159 

California (r=0.81), Benguela (r=0.73), Gulf Stream (r=0.61), and Oyashio (r=0.58) 160 

currents. 161 

Trends in bloom frequency in subtropical eastern boundary upwelling regions 162 

(i.e., California, Benguela, and Canary Currents) followed the changes in mesoscale 163 
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currents (Fig. 3a&c). In the California Current System, the decrease in bloom 164 

frequency was likely due to the weakened upwelling (represented by a reduced SST 165 

gradient and increased SST) and thus lower nutrient supply 25. Conversely, the Canary 166 

and Benguela Currents were characterized by strengthened upwelling and increased 167 

bloom frequency. The two western boundary current systems at high latitudes (i.e., 168 

Malvinas and Oyashio), albeit characterized by less pronounced upwelling 34, 169 

exhibited a similar mechanism to the subtropical eastern boundary regions. For the 170 

subtropical western boundary Gulf Stream current, the strengthened current jets 171 

(manifested as larger SST gradient) brought more nutrients from the continental shelf 172 

35, triggering more algal blooms. Nevertheless, whether these changes in oceanic 173 

mesoscale activities were responses to wind, stratification, the shear of ocean currents, 174 

or other factors 33, requires region-based investigations. 175 

Global climate events, represented as the Multivariate El Niño–Southern 176 

Oscillation (ENSO) index (MEI) 36, also showed connections with coastal bloom 177 

frequency. The minimum MEI in 2010 (i.e., a strong La Niña year) was followed by a 178 

low bloom frequency in the following year, and the largest MEI in 2015 (i.e., a strong 179 

El Niño year) was followed by the strongest bloom frequency in 2016 (Extended Data 180 

Fig. 10a and Fig. 2b). 181 

Changes in anthropogenic nutrient enrichment may have also contributed to the 182 

bloom trends 37. For example, the decline in bloom frequency in the Arabian Sea, 183 

without clear linkages to SST or SST gradient changes, could result from decreased 184 

fertilizer use in the surrounding countries (such as Iran) (Extended Data Fig. 10). By 185 

https://en.wikipedia.org/wiki/El_Ni%C3%B1o%E2%80%93Southern_Oscillation
https://en.wikipedia.org/wiki/El_Ni%C3%B1o%E2%80%93Southern_Oscillation
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contrast, the bloom strengthening in some Asian countries could be attributed to 186 

surges in fertilizer use 38. We examined trends in fertilizer usage (either nitrogen or 187 

phosphorus) and bloom frequency and found high positive correlations in China, Iran, 188 

Vietnam, and the Philippines. Paradoxically, decreased fertilizer uses and increased 189 

bloom frequency were identified in some countries, suggesting that nutrient control 190 

efforts might have been counterbalanced by the stimulatory effects of climate 191 

warming or other factors. Furthermore, the intensified aquaculture industry in 192 

Finland, China, Algeria, Guinea, Vietnam, Argentina, Russia, and Uruguay may also 193 

be linked to their increased bloom incidence, as suggested by the significant positive 194 

correlations (r>0.5, P<0.05) between their aquaculture production and bloom 195 

frequency. A similar relationship between aquaculture expansion and positive trends 196 

in HAB incidence was reported from an analysis of HAEDAT data 6. However, 197 

analogous positive feedbacks for fertilizer or aquaculture were not found in many 198 

other countries. As such, an ecosystem model incorporating terrestrial and oceanic 199 

nutrient transport and nutrient-plankton relationships of different species 39 is required 200 

to quantify the contributions of natural and anthropogenic factors to algal blooms 14. 201 

Future implications 202 

We acknowledge that our criteria for a detectable bloom event is operationally 203 

defined by sensor sensitivities and other factors, and that the bloom count metric used 204 

here may underestimate algal bloom incidence, particularly compared to harmful 205 

events entered in HAEDAT. For example, in a recent global analysis of the HAEDAT 206 

events, Hallegraeff et al. 6 report a dozen or more events per year for each of nine 207 
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regions over a 33-year study period, compared to the global median bloom count of 208 

4.3 in this study. There are several possible explanations for this discrepancy, such as 209 

the many low cell concentration HABs that are not detectable from space but that can 210 

still cause harm, as well as sensor sensitivities and algorithm thresholds. Furthermore, 211 

our bloom count was averaged over all 1-km pixels within the EEZs, while HAEDAT 212 

entries are based on discrete sampling regions. This underestimation does not, 213 

however, alter the trends and other conclusions of this study, as the metrics used here 214 

were constant across time and space. Underestimates would have been uniform across 215 

regions globally. In this regard, it is of note that the Hallegraeff et al. study 6 found a 216 

significant linkage between the number of HAEDAT events over time and the global 217 

expansion of aquaculture production, as was also found in this study. 218 

The major contribution of our study is to provide the first spatially and 219 

temporally consistent characterization of global coastal algal blooms between 2003 220 

and 2020. Globally, increasing trends in algal bloom area and frequency are apparent. 221 

Regionally, however, trends were non-uniform due to the compounded effects of 222 

climate changes (e.g., changes in SST and SST gradient and climate extremes), 223 

anthropogenic eutrophication, and aquaculture development. Our daily mapping of 224 

bloom events offers valuable baseline information to understand the mechanisms 225 

underlying the formation, maintenance, and dissipation of algal blooms 5,40. This 226 

could aid in developing forecasting models (on either global or regional scales) that 227 

can help minimize the consequences of harmful blooms, and can also help in policy 228 

decisions relating to the control of nutrient discharges and other HAB-stimulatory 229 
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factors. Noting again that many blooms are beneficial, particularly in terms of their 230 

positive impacts on ecosystems as well as wild and farmed fisheries, the results here 231 

can also contribute toward policies and management actions that sustain those 232 

beneficial blooms. 233 
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Figure captions 347 

Fig. 1 | Global patterns of coastal phytoplankton blooms between 2003 and 2020. 348 

(a) Spatial distribution of annual mean bloom count based on daily satellite detections. 349 

(b) Continental and global statistics for annual mean bloom count (SA n=3,846,125; AF 350 

n=2,516,225; EU n=17,703,949; NA n=10,034,286; AS n=5,371,158; AU n=2,781,998 351 

pixel observations). Upper and lower bounds of boxes are first and third quartiles, the 352 

bold bar represents the median value, and the whiskers show a maximum of 1.5 × the 353 

interquartile range. (c) Continental statistics for the long-term annual mean bloom-354 

affected areas (n=18 years), the percentages show the corresponding contributions to 355 

the global total. The bars represent standard deviations associated with the annual mean 356 

values. AF: Africa, SA: South America, EU: Europe, NA: North America, AS: Asia, 357 

AU: Australia. Open circles are sample data points. 358 

Fig. 2 | Trends of global coastal phytoplankton blooms between 2003 and 2020. (a) 359 

Spatial patterns of the trends in bloom frequency at 1°×1° grid scale. The latitudinal 360 

profiles for positive (pos., red) and negative (neg., blue) trends are presented within the 361 

panels. (b) Interannual variability and trends of annual median bloom frequency (left 362 

axis) and total global bloom-affected areas (right axis), and their linear slopes and 363 

significance (two-sided t-test) are annotated. The colors of the curves correspond to the 364 

y-axes. The shading associated with bloom frequency represents an uncertainty level of 365 

5% in bloom detection. 366 

Fig. 3 | Impacts of climate changes on phytoplankton blooms. Global patterns of the 367 
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trends for SST gradient (a) and SST (b) from 2003 to 2020. (c) Long-term changes in 368 

bloom frequency in different regions and their agreements with SST and the SST 369 

gradient. The locations of these regions are labeled in (a) and (b). Linear slope (S, in % 370 

yr-1) of bloom frequency (black) and the correlation coefficients between bloom 371 

frequency and SST (purple) and the SST gradient (red) are presented within each panel, 372 

with statistically significant correlations indicated by “*”. The colors of the curves 373 

correspond with the y-axes.  374 
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Methods 389 

Data sources 390 

Moderate-resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite 391 

provides a global coverage within 1-2 days. All images acquired by this satellite 392 

mission from January 2003 to December 2020 were used in our study to detect global 393 

coastal phytoplankton blooms, totaling 0.76 million images. MODIS Level-1A images 394 

were downloaded from the Ocean Biology Distributed Active Archive Center 395 

(OB.DAAC) at NASA Goddard Space Flight Center (GSFC), and were subsequently 396 

processed with SeaDAS software (Version 7.5) to obtain Rayleigh-corrected 397 

reflectance (Rrc, dimensionless, which was converted using the rhos (in sr-1) product 398 

(rhos×π) from SeaDAS) 41, remote sensing reflectance (Rrs, sr-1) and quality control 399 

flags (i.e., l2_flags). If a pixel was flagged by any of the following, it was then 400 

removed from phytoplankton bloom detection: straylight, cloud, land, high sunglint, 401 

high solar zenith angle, and high sensor zenith angle 402 

(https://oceancolor.gsfc.nasa.gov/atbd/ocl2flags/). MODIS level-3 product for aerosol 403 

optical thicknesses (AOT) at 869-nm was also obtained from OB.DAAC NASA 404 

GSFC (Version R2018.0), which was used to examine the impacts of aerosols on 405 

bloom trends. 406 

We examined the algal blooms in the Exclusive Economic Zones (EEZs) of 153 407 

ocean-bordering countries (excluding the EEZs in the Caspian Sea or around the 408 

Antarctic), 126 of which were found with at least one bloom in the past two decades. 409 

The EEZs dataset is available at 410 

https://oceancolor.gsfc.nasa.gov/atbd/ocl2flags/
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https://www.marineregions.org/download_file.php?name=World_EEZ_v11_20191118411 

.zip. The EEZs are up to 200 nautical miles (or 370 km) away from coastlines, which 412 

include all continental shelf areas and offer the majority of marine resources available 413 

for human use. Regional statistics of algal blooms were also performed for LMEs. 414 

LMEs encompass global coastal oceans and outer edges of coastal currents areas, 415 

which are defined by various distinct features of the oceans, including hydrology, 416 

productivity, bathymetry, and trophically dependent populations 42. Of the 66 LMEs 417 

identified globally, we excluded the Arctic and Antarctic regions and examined 54 418 

LMEs. The boundaries of LMEs were obtained from 419 

https://www.sciencebase.gov/catalog/item/55c77722e4b08400b1fd8244. 420 

We used the Harmful Algal Event Database (HAEDAT) to validate our satellite-421 

detected phytoplankton blooms in terms of presence or absence. The HAEDAT 422 

dataset is a collection of records of harmful algal bloom (HAB) events (dataset link: 423 

http://haedat.iode.org), maintained under the UNESCO Intergovernmental 424 

Oceanographic Commission and with data archives since 1985. For each HAB event, 425 

the HAEDAT records its bloom period (ranging from days to months) and 426 

geolocation. We merged duplicate entries when both the recorded locations and times 427 

of the HAEDAT events were very similar to one another, and a total number of 2,609 428 

HAEDAT events were ultimately selected between 2003 and 2020. 429 

We used the 1/4° resolution National Oceanic and Atmospheric Administration 430 

Optimum Interpolated Sea surface temperature (SST) (v. 2.1) data to examine the 431 

potential simulating effects of warming on the global phytoplankton trends. We also 432 
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estimated the SST gradients following the method of Martínez-Moreno 33. As detailed 433 

in Martínez-Moreno 33, the SST gradient can be used as a proxy for the magnitude of 434 

oceanic mesoscale currents (or the time-varying velocity of the kinetic energy, known 435 

as EKE). We used the SST gradient to explore the impacts of ocean circulation 436 

dynamics on algal blooms. 437 

Fertilizer uses and aquaculture production for different countries was used to examine 438 

the potential impacts of nutrient enrichment from humans on global phytoplankton 439 

bloom trends. Annual data between 2003 and 2019 on synthetic fertilizer use, 440 

including nitrogen and phosphorus, are available from 441 

https://ourworldindata.org/fertilizers. Annual aquaculture production includes 442 

cultivated fish and crustaceans in marine and inland waters, and sea tanks, and the 443 

data between 2003 and 2018 are available from 444 

https://ourworldindata.org/grapher/aquaculture-farmed-fish-production. 445 

The Multivariate El Niño/Southern Oscillation (ENSO) Index (MEI), which combines 446 

various oceanic and atmospheric variables 43, was used to examine the connections 447 

between ENSO activities and marine phytoplankton blooms. The dataset is available 448 

from https://psl.noaa.gov/enso/mei/. 449 

Development of an automated bloom detection method 450 

A recent study by the UNESCO Intergovernmental Oceanographic Commission 451 

revealed that globally reported HAB events have increased 6. However, such an 452 

overall increasing trend was found to be highly correlated with recently intensified 453 

https://ourworldindata.org/fertilizers
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sampling efforts 6. Once this potential bias was accounted for by examining the ratio 454 

between HAB events to the number of samplings 5, there was no significant global 455 

trend in HAB incidence, though there were increases in certain regions. With 456 

synoptic, frequent, and large-scale observations, satellite remote sensing has been 457 

extensively used to monitor algal blooms in oceanic environments 17-19. For example, 458 

chlorophyll a (Chl-a) concentrations, a proxy for phytoplankton biomass, has been 459 

provided as a standard product by NASA since the proof-of-concept Coastal Zone 460 

Color Scanner (1978–1986) era 44,45. The current default algorithm used to retrieve 461 

Chl-a products is based on the high absorption of Chl-a at the blue band 46,47, which 462 

often shows high accuracy in the clear open oceans but high uncertainties in coastal 463 

waters. This is because, in productive and dynamic coastal oceans, the absorption of 464 

Chl-a in the blue band can be obscured by the presence of suspended sediments and/or 465 

colored dissolved organic matter (CDOM) 48. To address this problem, various 466 

regionalized Chl-a algorithms have been developed 49. Unfortunately, the 467 

concentrations of the water constituents (i.e., CDOM, sediment, and Chl-a) can vary 468 

substantially across different coastal oceans. As a result, a universal Chl-a algorithm 469 

that can accurately estimate Chl-a concentrations in global coastal oceans is not 470 

currently available. 471 

Alternatively, many spectral indices have been developed to identify 472 

phytoplankton blooms instead of quantifying their bloom biomass, including the 473 

normalized fluorescence line height (nFLH) 21, red tide index (RI) 50, algal bloom 474 

index (ABI) 48, red-blue difference (RBD) 51, K. Brevis bloom index (KBBI) 51 and 475 
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red tide detection index (RDI) 52. In practice, the most important task for these index-476 

based algorithms is to determine their optimal thresholds for bloom classification. 477 

However, such optimal thresholds can be regional-or image-specific 20, due to the 478 

complexity of optical features in coastal waters and/or the contamination of 479 

unfavorable observational conditions (i.e., thick aerosols, thin clouds, etc.), making it 480 

difficult to apply spectral-index-based algorithms at a global scale. 481 

To circumvent the difficulty in determining unified thresholds for various spectral 482 

indices across global coastal oceans, an approach from a recent study to classify algal 483 

blooms in freshwater lakes 53 was adopted and modified here. In that study, the 484 

remotely sensed reflectance data in three visible bands (i.e., red, green, and blue) were 485 

converted into two-dimensional color space created by the Commission Internationale 486 

del'éclairage (CIE), in which the position on the CIE chromaticity diagram 487 

represented the color perceived by human eyes (Extended Data Fig. 1a). As the algal 488 

blooms in freshwater lakes were manifested as greenish colors, the reflectance of 489 

bloom-containing pixels was expected to be distributed in the green gamut of the CIE 490 

chromaticity diagram; the stronger the bloom, the closer the distance to the upper 491 

border of the diagram (i.e., the greener the water). 492 

Here, the color of phytoplankton blooms in the coastal oceans can be greenish, 493 

yellowish, brownish, or even reddish 54, due to the compositions of bloom species 494 

(i.e., diatoms or dinoflagellates) and the concentrations of different water constituents. 495 

Furthermore, the Chl-a concentrations of the coastal blooms are typically lower than 496 

those in inland waters, thus demanding more accurate classification algorithms. As 497 
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such, the algorithm proposed by Hou et al. 53 was modified when using the CIE 498 

chromaticity space for bloom detection in marine environments. Specifically, we used 499 

the following coordinate conversion formulas to obtain the xy coordinate values in the 500 

CIE color space: 501 

x=X/(X+Y+Z) 502 

y=Y/(X+Y+Z) 503 

X=2.7689R+1.7517G+1.1302B 504 

Y=1.0000R+4.5907G+0.0601B 505 

           Z=0.0000R+0.0565G+5.5943B   (1) 506 

where the R, G, and B channels represent the Rrc at 748 nm, 678 nm (fluorescence 507 

band), and 667 nm in the MODIS Aqua data, respectively. By contrast, the R, G, and 508 

B channels used in Hou et al. 53 were the red, green, and blue bands. We used the 509 

fluorescence band for the G channel because, for a given region, the 678 nm signal 510 

increases monotonically with the Chl-a concentration for blooms of moderate 511 

frequency 55, which is similar to the response of greenness to freshwater algal blooms. 512 

As such, the converted y value in the CIE coordinate system represents the strength of 513 

the fluorescence. In practice, for pixels with phytoplankton blooms, the converted 514 

colors in the chromaticity diagram will be located within the green, yellow, or orange-515 

red gamut (see Extended Data Fig. 1a); the stronger the fluorescence signal is, the 516 

closer the distance to the upper border of the CIE diagram (i.e., larger y value). By 517 

contrast, for bloom-free pixels without a fluorescence signal, their converted xy 518 

coordinates will be located in the blue or purple gamut. Therefore, we can determine a 519 
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lower boundary in the CIE two-dimensional coordinate system to separate bloom and 520 

non-bloom pixels, similar to the method proposed by Hou et al. 53. 521 

We selected 53,820 bloom-containing pixels from the MODIS Rrc data as training 522 

samples to determine the boundary of the CIE color space. These sample points were 523 

selected from nearshore waters worldwide where frequent phytoplankton blooms have 524 

been reported (Extended Data Fig. 2); the algal species included various species of 525 

dinoflagellates and diatoms 20. A total of 80 images were used, which were acquired 526 

from different seasons and across various bloom magnitudes, to ensure that the 527 

samples used could almost exhaustively represent the different bloom conditions in 528 

the coastal oceans. 529 

We combined the MODIS FLHRrc (i.e., fluorescence line height based on Rrc) and 530 

enhanced Red-Green-Blue composite (ERGB) to delineate bloom pixels manually. 531 

The FLHRrc image was calculated as: 532 

FLHRrc=Rrc678×F678-[ Rrc667×F667+( Rrc748×F748- Rrc667×F667)×(678-667)/(748-667)] (2) 533 

where Rrc667, Rrc678, and Rrc748 are the Rrc at 667, 678, and 748 nm, respectively, and 534 

F667, F678, and F748 are the corresponding extraterrestrial solar irradiance. ERGB 535 

composite images were generated using Rrc of three bands at 555 (R), 488 (G), and 536 

443 nm (B). Although phytoplankton-rich and sediment-rich waters have high FLHRrc 537 

values, they appear as darkish and bright features in the ERGB images (Extended 538 

Data Fig. 3), respectively 55. In fact, visual examination with fluorescence signals and 539 

ERGB has been widely accepted as a practical way to delineate coastal algal blooms 540 
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on a limited number of images 55-57. Note that the FLHRrc here was slightly different 541 

from the NASA standard nFLH product 58, as the latter is generated using Rrs 542 

(corrected for both Rayleigh and aerosol scattering) instead of Rrc (with residual 543 

impacts of aerosols). However, when using the NASA standard algorithm to further 544 

perform aerosol scattering correction over Rrc, 20.7% of our selected bloom-545 

containing pixels failed to obtain valid Rrs (without retrievals or flagged as low 546 

quality), especially for those with strong blooms (see examples in Extended Data Fig. 547 

4). Likewise, we also found various nearshore regions with invalid Rrs retrievals. By 548 

contrast, Rrc had valid data for all selected samples and showed more coverage in 549 

nearshore coastal waters. The differences between Rrs and Rrc were because the 550 

assumptions for the standard atmospheric correction algorithm do not hold for bloom 551 

pixels or nearshore waters with complex optical properties 59. In fact, Rrc has been 552 

used as an alternative to Rrs in various applications in complex waters 60,61. 553 

We converted the Rrc data of 53,820 selected sample pixels into the xy-coordinates in 554 

the CIE color space (Extended Data Fig. 1a). As expected, these samples of bloom-555 

containing pixels were located in the upper half of the chromaticity diagram (i.e., the 556 

green, yellow, and orange-red gamut) (Extended Data Fig. 1a). We determined the 557 

lower boundary of these sample points in the chromaticity diagram, which represents 558 

the lightest color and thus the weakest phytoplankton blooms; any point that falls 559 

above this boundary represents stronger blooms. The method to determine the 560 

boundary was similar to Hou et al. 53: we first binned the sample points according to 561 

the x value in the chromaticity diagram and estimated the 1st percentile (Q1%) of the 562 
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corresponding Y for each bin; then, we fit the Q1% using two-order polynomial 563 

regression. Sensitivity analysis with Q0.3% (i.e., three sigma value) resulted in minor 564 

changes (<1%) in the resulting bloom areas for single images. Notably, sample points 565 

were rarely located near white points (x=1/3 and y=1/3, represent equal reflection 566 

from three RGB bands) in the diagram, and we used two polynomial regressions to 567 

determine the boundaries for x values greater and less than 1/3, which can be 568 

expressed as:  569 

y1=4.8093 x2 - 3.0958 x + 0.8357   x<1/3  (3) 570 

y2=4.9040 x2 - 3.5759 x + 0.9862   x>1/3  (4) 571 

Based on the above, if a pixel’s xy coordinate (converted from Rrc spectrum) satisfies 572 

the conditions of “x<1/3 and y>y1” or “x>1/3 and y>y2”, it is classified as a “bloom” 573 

pixel. 574 

Depending on the local region and application purpose, the meaning of 575 

“phytoplankton bloom” may differ. Here, for a global application, the pixelwise 576 

bloom classification is based on the relationship (represented using the CIE color 577 

space) between Rrc in the 667, 678, and 754-nm bands derived from visual 578 

interpretation of the 80 pairs of FLHRrc and ERGB imagery. Instead of a simple 579 

threshold, we used a lower boundary of the sample points in the chromaticity diagram 580 

to define a bloom. In simple words, a pixel is classified as a bloom if its fluorescence 581 

signal is detectable (i.e., the associated xy coordinate in the CIE color space located 582 

above the lower boundary). Histogram of the nFLH values from the 53,820 training 583 

pixels demonstrated the minimum value of ~0.02 mW cm−2 μm−1 (Extended Data Fig. 584 
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1a), which is in line with the lower-bound signal of K. brevis blooms on the West 585 

Florida shelf 21,62. Note that, such a minimum nFLH is determined from the global 586 

training pixels, and it does not necessarily represent a unified lower bound for 587 

phytoplankton blooms across the entire globe, especially considering that 588 

fluorescence efficiency may be a large variable across different regions. Different 589 

regions may have different lower bounds of nFLH to define a bloom, and such 590 

variability is represented by the predefined boundary in the CIE chromaticity diagram 591 

in our study. Correspondingly, although the accuracy of Chl-a retrievals may have 592 

large uncertainties in coastal waters, the histogram of the 53,820 training pixels shows 593 

a lower bound of ~1 mg m-3 (Extended Data Fig. 1a). Similarly to nFLH, such a lower 594 

bound may not be applicable to all coastal regions, as different regions may have 595 

different lower bounds of Chl-a for bloom definition. 596 

Although the MODIS cloud (generated by SeaDAS with Rrc869<0.027) and associated 597 

straylight flags can be used to exclude most clouds, we found that residual errors from 598 

thin clouds or cloud shadows could affect the spectral shape and cause 599 

misclassification for bloom detections. Thus, we designed two spectral indices to 600 

remove such effects:  601 

Index1 = nRrc488 - nRrc443 - (nRrc555 - nRrc443)×0.5  (5) 602 

Index2 = nRrc555 - nRrc469 - (nRrc645-nRrc469)×0.5      (6) 603 

where Index1 and Index2 were used to remove cloud shadows and clouds, 604 

respectively. The nRrc443, nRrc488, and nRrc555 in index1 are the normalized Rrc, 605 

obtained by normalizing Rrc488. Similar calculations were performed for index2. The 606 
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purpose of normalizations is to eliminate the effect of the absolute magnitude of the 607 

reflectance, so that the thresholds of these two indices are influenced by only the 608 

relative magnitude (i.e., spectral shape). We determined thresholds for Index1 (>0.12) 609 

and Index2 (<0.012) through trial-and-error and ensured that the misclassifications 610 

caused by residual errors from clouds and cloud shadows could be effectively 611 

removed. After applying the cloud/cloud shadow and various other masks that are 612 

associated with l2_flags, we obtained an annual mean valid pixel observation (Nvobs) 613 

of ~2.0×105 for global 1°×1°grid cells, and the fluctuation patterns and trends of 614 

Nvobs, either annually or seasonally, are different from that of the global bloom 615 

frequency and affected areas (see Supplementary Fig. 1). 616 

Assessments of the algorithm performance 617 

In addition to phytoplankton blooms, macroalgal blooms (i.e., Sargassum and Ulva) 618 

frequently occur in many coastal oceans 63-66. To verify whether our CIE-fluorescence 619 

algorithm could eliminate such impacts, we compared the spectra between micro-and 620 

macro-algal blooms (see Extended Data Fig. 1b). We found that the spectral shapes of 621 

Sargassum and Ulva are substantially different from those of microalgae, particularly 622 

for the three bands used for CIE coordinate conversion. The converted xy-coordinates 623 

for macroalgae were located in the purple-red gamut of the CIE diagram, which was 624 

far below the predefined boundary (Extended Data Fig. 1). Moreover, our algorithm is 625 

not affected by highly turbid waters for the following two reasons: first, extremely 626 

high turbidity tends to saturate the MODIS ocean bands 67, which can be easily 627 

excluded; second, without a fluorescence peak, the reflectance of unsaturated turbid 628 
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waters, after conversion to CIE coordinates, will be located below the predefined 629 

boundary (see example in Extended Data Fig. 1b). We also confirmed that the spectral 630 

shapes of coccolithophore blooms are different from dinoflagellates and diatoms (see 631 

example in Extended Data Fig. 1b), and thus they are excluded from our algorithm. 632 

Three different types of validation methods were adopted to demonstrate the 633 

reliability of the proposed CIE-fluorescence algorithm for phytoplankton bloom 634 

detection in global coastal oceans, including visual inspections of the RGB, ERGB, 635 

and FLHRrc images, verifications using independent manually delineated algal 636 

blooms, and comparisons with the reported HAB events from the HAEDAT dataset. 637 

First, we selected MODIS Aqua images from different locations where coastal 638 

phytoplankton blooms have been recorded in the published literature. We visually 639 

compared the RGB, ERGB, and FLHRrc images, and our algorithm detected bloom 640 

patterns (see examples in Extended Data Fig. 3). Comparisons from various images 641 

worldwide showed that our algorithm could successfully identify regions with high 642 

FLHRrc values and brownish-to-darkish features on the ERGB images, which can be 643 

considered phytoplankton blooms. 644 

Second, we delineated additional 15,466 bloom-containing pixels from 35 645 

images covering different coastal areas, using the same visual inspection and manual 646 

delineation method as for the training sample pixels. Moreover, we also selected 647 

14,149 bloom-free pixels (bright or turquoise green colors on ERGB images or low 648 

FLHRrc values) within the same images as bloom-containing images. We applied our 649 
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algorithm to all these pixels, and compared the algorithm-identified and manually-650 

delineated results. Our CIE-fluorescence algorithm showed high values in both 651 

producer and user accuracies (92.04% and 98.63%) (Supplementary Table 1), and 652 

appeared effective at identifying bloom pixels and excluding false negatives (blooms 653 

classified as non-blooms) and false positives (non-blooms classified as blooms). 654 

Third, we validated the satellite-detected phytoplankton blooms using in situ 655 

reported HAB events from the HAEDAT dataset. For each HAB event in the 656 

HAEDAT dataset, we obtained all MODIS images over the reported bloom period 657 

(from days to months). Within each year, we estimated the ratio between the number 658 

of satellite images with “bloom detected” against the number of valid images (see 659 

definition above) during the bloom periods across the entire globe (Supplementary 660 

Table 1). Moreover, we calculated the number of events with at least one successful 661 

satellite bloom detection (Ns), and then estimated the ratio between Ns and the total 662 

HAB events for each year. Results showed that substantial amounts (averaged at 663 

51.2%) of satellite observations acquired during the HAB event periods were found 664 

with phytoplankton blooms by our algorithm. Overall, 79.3% of the global HAB 665 

events were successfully identified by satellite. The discrepancies between satellite 666 

and in situ observations could be explained by the following reasons: first, our study 667 

focused only on the phytoplankton blooms that are resolvable by satellite fluorescence 668 

signals; other types of HAB events in the HAEDAT dataset may not have been 669 

detectable by satellite observations, such as events with lower phytoplankton biomass 670 

but high toxicity, occurrences at the subsurface layers, or fluorescence signals 671 
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overwhelmed by suspended sediments 68-70. Second, although the HAEDAT recorded 672 

HAB events could be sustained for long periods, high biomass of surface algae may 673 

not have occurred every day within this period due to the changes in stratification, 674 

precipitation, wind, vertical migration of cells, and many other factors 71. Third, the 675 

spatial scale of certain HAB events may have been too small to be identified using the 676 

1-km resolution MODIS observations. Fourth, a reduced MODIS satellite observation 677 

frequency by the contaminations of clouds and land adjacency effects 72. Therefore, 678 

we believe the underestimations of satellite-detected blooms compared to the in situ 679 

reported HAB events were mainly due to inconsistencies between the two 680 

observations rather than uncertainties in our algorithm. 681 

Because Rrc depends not only on water color but also on aerosols (type and 682 

concentration) and solar/viewing geometry, a sensitivity analysis was used to 683 

determine whether such variables could impact bloom detection. Aerosol reflectance 684 

(ρa) with different AOTs at 869 nm was simulated using the NASA-recommended 685 

maritime aerosol model (i.e., r75f02, with a relative humidity of 75% and a fine-mode 686 

fraction of 2%). Then, ρa of each MODIS band was added to Rrc images, and the 687 

resulting bloom areas with and without added ρa were compared. Results showed that 688 

even with a change of 0.02 in AOT at 869 nm, the bloom areas showed minor changes 689 

(<2%) in the tested images; minor changes were also found when we used different 690 

aerosol models to conduct ρa simulations 73. Note that 0.02 represents the high end of 691 

the AOT intra-annual variability in coastal oceans (see Extended Data Fig. 5), and the 692 

associated inter-annual changes are much smaller. As such, the use of Rrc instead of 693 
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the fully atmospherically corrected reflectance Rrs could have limited impacts on our 694 

detected global bloom trend. 695 

We also tried various index-based algorithms developed in previous studies. 696 

However, results showed that all these methods require image-specific thresholds to 697 

accurately determine algal bloom boundaries for different coastal regions (see 698 

Extended Data Fig. 6). In contrast, although our CIE-fluorescence algorithm may lead 699 

to different bloom thresholds for different regions, it can identify bloom pixels 700 

without adjusting the coefficients and, therefore, is more suitable for global-scale 701 

bloom assessment efforts. 702 

We acknowledge that our satellite-detected algal blooms represent only high 703 

amounts of phytoplankton biomass on the ocean surfaces without distinguishing 704 

whether such blooms produce toxins or are harmful to marine environments. 705 

Furthermore, with only limited spectral information from MODIS, it is difficult to 706 

discriminate the phytoplankton species of algal blooms; such information could help 707 

to improve our understanding of the impacts of these phytoplankton blooms. 708 

However, we expect these challenges to be addressed soon with the scheduled launch 709 

of the Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission by the U.S. NASA 710 

in 2022, where the hyperspectral measurements over a broad spectrum (350-885 nm) 711 

will make species-level classifications possible 74. 712 

Exploring the patterns and trends of global coastal phytoplankton blooms 713 

We applied the CIE-fluorescence algorithm to all MODIS Aqua level-2 Rrc 714 
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images, and a total number of 0.76 million images between 2003 and 2020 were 715 

processed. We mapped all detected blooms into 1-km daily scale level-3 composites. 716 

The number of bloom counts within a year for each location can be easily 717 

enumerated, and the long-term annual mean values were then estimated (Fig. 1a). We 718 

further calculated the total global bloom-affected area (i.e., the areas where algal 719 

blooms were detected at least once) for each year and examined their changes over 720 

time (Fig. 2b). 721 

We defined bloom frequency (dimensionless) to represent the density of 722 

phytoplankton blooms for a year by integrating the bloom count and bloom-affected 723 

areas within 1°×1° grid cells within that year, which is expressed as: 724 

1
 

n

i
i

nBloom frequency M
N=

 
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 
  (7) 725 

where Mi is the enumerated bloom count for each 1-km resolution pixel in a year 726 

within one 1°×1° grid cell, and n represents the associated number of bloom-affected 727 

pixels in the same cell (i.e., the number of pixels with Mi>0), and N is the total 728 

number of 1-km MODIS pixels in this grid cell. We estimated the bloom frequency 729 

for each year between 2003 and 2020, and determined the long-term trend over global 730 

EEZs through a linear least-squares regression (see Fig. 2a). 731 

Continental and country-level statistics were performed for bloom count, bloom-732 

affected areas, and bloom frequency (Fig. 1b&c, Supplementary Table 2), using 733 

boundaries for the EEZs of different ocean-bordering countries (see above). Similar 734 

statistics were also conducted for 54 LMEs (Extended Data Fig. 7, Supplementary 735 
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Table 3). 736 

Correlations with SST and SST gradient 737 

To assess the impacts of climate change on long-term trends in coastal phytoplankton 738 

blooms, we correlated the annual mean bloom frequency and the associated SST and 739 

SST gradient in various coastal current systems for grid cells with significant changes 740 

in bloom frequency (Fig. 3c). The SST and SST gradient were averaged over the 741 

growth window within a year, assuming that the changes within the growth window, 742 

either in water temperatures or ocean circulations, play more important roles in the 743 

bloom trends compared to other seasons 32. 744 

We determined the growth window of phytoplankton blooms for each 1°×1° grid 745 

cell (Extended Data Fig. 9a) using the following method: first, we estimated the 746 

proportion of cumulative bloom-affected pixels within the grid cells for a year. 747 

Second, a generalized additive model 75 was used to determine the shape of the 748 

phenological curves (Extended Data Fig. 9b), where a log link function and a cubic 749 

cyclic regression spline smoother were applied 76,77. Third, the timing of maximum 750 

bloom-affected areas (TMBAA) was then determined by identifying the inflection 751 

point on the bloom growth curve (Extended Data Fig. 9c). To facilitate comparisons 752 

across Northern and Southern Hemispheres, the year in the Southern hemisphere was 753 

shifted forward by 183 days (Extended Data Fig. 9c). We characterized the similarity 754 

of the bloom growth curve between different grid cells and grouped them into three 755 

distinct clusters using a fuzzy c-means cluster analysis method 78,79. We found 756 

uniform distributions of the clusters over large geographic areas. Cluster I is mainly 757 
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distributed in mid-low latitudes (<45°N and <30°S), where the maximum bloom-758 

affected areas were expected in the early period of the year. Cluster II was mostly 759 

found in higher latitudes, with bloom developments (quasi-) synchronized with 760 

increases in SST. Cluster III was detected along the coastlines, where the bloom-761 

affected areas increase throughout the entire year. In practice, the growth window for 762 

Clusters I and III was set as the entire year, and that for Cluster II was set from day 763 

150 to day 270 within the year. We further found that the TMBAA for Cluster II 764 

showed small changes over the entire period (Extended Data Fig. 9d), indicating 765 

relatively stable phenological cycles for those phytoplankton blooms 32,80. 766 
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Extended data figure captions 883 

Extended Data Fig. 1. | Development of the CIE-fluorescence algorithm to detect 884 

phytoplankton blooms using MODIS satellite imagery. (a). A1: The density plot of 885 

manually delineated bloom-containing pixels in the CIE coordinate system 886 

(n=53,820), and their distribution in the CIE color space (box in A2). A3: Histograms 887 

of nFLH and Chla for the delineated pixels, obtained using NASA standard 888 

algorithms 48,59. (b) MODIS true color composites and selected spectra for 889 

phytoplankton blooms, macroalgal blooms (Ulva and Sargassum), coccolithophore 890 

blooms, and sediment-rich turbid waters. The x-y numbers indicate their 891 

corresponding positions in the CIE coordinate system. The black rectangular boxes in 892 

the three lower panels highlight different spectral shapes between phytoplankton 893 

blooms and other features near the fluorescence band. 894 

Extended Data Fig. 2. | MODIS-detected bloom count within certain years for 895 

several coastal regions with frequently reported blooms. The MODIS 896 

observational year is annotated within each panel, and overlaid points indicate in situ 897 

recorded harmful algal bloom events from the Harmful Algae Event Database 898 

(HAEDAT) within the same year. The lower right panel shows the locations of all the 899 

HAEDAT records that were used for algorithm validations in this study 900 

(Supplementary Table 1), which also demonstrates the increase in sampling effort in 901 

the most recent years. 902 
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Extended Data Fig. 3. | Performance of the CIE-fluorescence algorithm for 903 

phytoplankton bloom detection in 12 selected coastal oceans. From left to right are 904 

the RGB-true color composite, ERGB composite, FLHRrc, and the bloom area (green 905 

pixels) detected by the CIE-fluorescence algorithm. 906 

Extended Data Fig. 4 | Examples showing disadvantages of using NASA standard 907 

Rrs (i.e., with the removal of both Rayleigh and aerosol scattering) in algal bloom 908 

detection. From left to right are the RGB composites, ERGB, nFLH, and the bloom 909 

areas (green pixels) detected by the CIE-fluorescence algorithm (based on Rrc, 910 

without the removal of aerosol scattering). Substantial amounts of invalid Rrs 911 

retrievals can be observed in the red-encircled areas in which severe blooms can be 912 

found. Additionally, nFLH shows high values at cloud edges (yellow-encircled areas), 913 

making it challenging to use a simple threshold to classify blooms. However, such 914 

problems can be circumvented in our CIE-fluorescence algorithm. 915 

Extended Data Fig. 5 | Sensitivity analysis of the impacts of aerosols on bloom 916 

detection. (a) Responses of bloom area (BA) to changes in aerosol optical thickness 917 

(AOT). Aerosol reflectance (ρa) with AOTs of 0.01 and 0.02 at 869-nm is simulated 918 

and added to the MODIS images, and the resulting bloom areas (green pixels) with 919 

and without added ρa are compared. The left columns show the RGB composites, and 920 

the right three columns show the bloom areas under different AOTs. The percentages 921 

of BA changes are annotated in the panels. (b) The standard deviation between the 12 922 
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monthly mean values of AOT in global coastal waters (i.e., 66.7% of the intra-annual 923 

variability), and the histogram is shown in (c). 924 

Extended Data Fig. 6 | Comparison of different index-based algorithms in algal 925 

bloom detection in various coastal regions. Image-specific thresholds (annotated 926 

within the panels) are required (labeled within the panels) for RI 51, ABI (estimated 927 

with FLHRrc) 49, RBD 52, KBBI 52, and RDI 53 to delineate accurate bloom areas (i.e., 928 

high nFLH values, which appear as bright and darkish features on the ERGB images). 929 

The left panels are the bloom areas (green pixels) extracted using our CIE-930 

fluorescence algorithm. The RGB-true color and ERGB composites are shown in 931 

Extended Data Fig. 3. 932 

Extended Data Fig. 7 | Annual median bloom count and the proportion of bloom-933 

affected areas for large marine ecosystems (LMEs). (a) Annual median bloom 934 

count, (b) proportion of bloom-affected areas. The data are ordered from the largest to 935 

the smallest. The LMEs are grouped by continent, and their names, numbers, and 936 

locations are shown in (a) and (b). 937 

Extended Data Fig. 8 | Comparison of bloom counts in the estuarine and non-938 

estuarine regions. Boxplots for long-term mean bloom count in the estuarine 939 

(n=13,622 pixel observations) and non-estuarine (n=361,604 pixel observations) 940 

regions. Comparison analysis was performed by two sided Welch’s t-test 941 

(P<0.001).Upper and lower bounds are first and third quartiles, the bar in the middle 942 

represents the median value, and the whiskers show the minimum and maximum 943 
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values. Sixty-two estuarine zones from large rivers were selected, and the boundary of 944 

each zone was manually delineated according to high-resolution satellite images. 945 

Extended Data Fig. 9 | Clusters of different bloom growth paths. (a) The spatial 946 

distribution of different clusters. The fractions of different clusters across different 947 

latitudes are summarized. (b) The development of the maximum bloom-affected areas 948 

within a year within 1°×1° grid cells, where all global grid cells are grouped into three 949 

distinct clusters according to the similarity of the bloom growth curve. The colored 950 

bond curves represent the mean values of all the grid cells, and their mean SST and 951 

associated standard deviations are shown with dashed lines and gray shading. The 952 

proportions of different clusters in the global bloom-affected areas are annotated. (c) 953 

and (f) The mean timing of the maximum bloom-affected areas (TMBAA) and the 954 

associated standard deviations between 2003 and 2019. The whole year in the 955 

Southern Hemisphere is shifted forward by 183 days in (c). 956 

Extended Data Fig. 10 | Changes in climate extremes, global fertilizer uses, and 957 

fishery production over the past two decades. (a) Changes in the bi-monthly 958 

Multivariate El Niño–Southern Oscillation (ENSO) index (MEI) between 2002 and 959 

2020. Positive and negative MEI values represent EI Niño and La Niña events, 960 

respectively. The dots show annual mean values. (b-c) Trends of nitrogen and 961 

phosphorus from 2003 to 2019 for different countries. (d) Trends of fishery 962 

production from 2003 to 2018. Gray indicates no data. 963 
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