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Abstract: Excessive phytoplankton growth, or blooms, in coastal oceans, can be
beneficial to coastal fisheries production and ecosystem function, but also can cause
major environmental problems !, yet detailed characterizations of bloom incidence
and distribution are not available worldwide. Here, we map daily marine coastal algal
blooms between 2003 and 2020 using global satellite observations at 1-km spatial
resolution. We found that algal blooms occurred in 126 of the 153 coastal countries
examined. Globally, the spatial extent (+13.2%) and frequency (+59.2%) of blooms
increased significantly (P<0.05) over the study period, whereas blooms weakened in
tropical and subtropical areas of the Northern Hemisphere. We documented the
relationship between the bloom trends and ocean circulation, and identified the
stimulatory effects of recent increases in sea surface temperature. Our compilation of
daily mapped coastal phytoplankton blooms provides the basis for global assessments
of bloom risks and benefits, and for the formulation or evaluation of management or

policy actions.
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Phytoplankton blooms are accumulations of microscopic algae in the surface
layer of fresh and marine water bodies. Although many blooms can occur naturally,
nutrients linked to anthropogenic eutrophication are expected to intensify their
frequency globally 2-*. Many algal blooms are beneficial, fixing carbon at the base of
the food chain and supporting fisheries and ecosystems worldwide. However,
proliferations of algae that cause harm (termed harmful algal blooms or HABs) have
become a major environmental problem worldwide °-’. For instance, the toxins
produced by some algal species can accumulate in the food web, causing fisheries
closures as well as illness or mortality of both marine species and humans #1°, In
other cases, the decay of a dense algal bloom can deplete oxygen in bottom waters,
forming anoxic “dead zones” that can cause fish and invertebrate die-offs and
ecosystem restructuring, with serious consequences for the well-being of coastal
communities !, Unfortunately, algal bloom frequency and distribution are projected

12,13

to increase with future climate change '~'°, with some changes causing adverse effects

on aquatic ecosystems, fisheries, and coastal resources.

Due to substantial heterogeneity in space and time, algal blooms are challenging

to characterize on a large scale >'4

, and hence, present knowledge does not allow us to
answer one of the most fundamental questions: whether algal blooms have changed in
recent decades on a global basis ®'>1, For example, although HAB events have been

compiled into the UNESCO Intergovernmental Oceanographic Commission Harmful

Algae Event Database (HAEDAT) globally since 1985, bloom trends are difficult to
3



56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

resolve due to inconsistent sampling efforts and the diversity of the eco-
environmental/socio-economic impacts ©. Alternatively, satellite data have been used
to monitor the ocean surface continuously since 1997 and have enabled bloom
detection in many coastal regions '”"'°. However, the technical difficulties in dealing
with complex optical features across different types of coastal waters have thus far
prohibited their application globally 2°. To fill this knowledge gap, we developed a
novel method to map global coastal algal blooms and used this tool to examine
satellite images between 2003 and 2020, addressing three fundamental questions: (i)
where and how frequently have global coastal oceans been affected by phytoplankton
blooms? (ii) have the blooms expanded or intensified over the past two decades, both

globally and regionally? and (iii) what are the potential drivers?

Mapping global coastal phytoplankton bloom

We generated a satellite-based dataset of phytoplankton bloom occurrence to
characterize the spatial and temporal patterns of algal blooms in coastal oceans
globally. The dataset was derived using global, 1-km resolution daily observations
from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard NASA’s
Aqua satellite, and all 0.76 million images acquired by this satellite mission between
2003 and 2020 were used. We developed an automated method to detect
phytoplankton blooms using MODIS images (Extended Data Fig. 1) (see Methods). In
this study, we define a phytoplankton bloom as the accumulation of microscopic algae
at the ocean surface that exhibits satellite-detectable fluorescence signals 2'. However,

whether a bloom produces toxins or is harmful to humans or the marine environment
4
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is not distinguishable from satellites. We delineated bloom-affected areas (i.e., the
areas where algal blooms were detected), and enumerated the bloom count at the 1-
km pixel level (i.e., the number of detected blooms per pixel) (Fig. 1). We further
estimated bloom frequency (dimensionless) by integrating the bloom count and
affected areas within 1°x1° grid cells (see Methods), and this metric was used to
examine temporal dynamics in bloom intensity. Validation with independent satellite
samples selected via several visual inspection techniques showed an overall accuracy
level of >95% for our method, and comparisons using discrete events in HAEDAT ©
indicated that we successfully identified bloom counts at 79.3% of the historical HAB
events in that database (Extended Data Figs. 2-6). We examined phytoplankton
blooms in the exclusive economic zones of 153 coastal countries and in 54 large
marine ecosystems (LMEs) (Extended Data Fig. 7). Our study area encompasses
global continental shelves and outer margins of coastal currents, which offer the
majority of marine resources available for human use (see Methods).Of the 153
coastal countries examined, 126 were observed with phytoplankton blooms (Fig. 1).
The total bloom-affected area was 31.47 million km?, equivalent to ~24.2% of the
global land area and ~8.6% of the global ocean area, with a median bloom count of
4.3 per year during the past two decades (Fig. 1b). Europe (9.52 million km? or 30.3%
of the total affected area) and North America (6.78 million km? or 21.5%) contributed
the largest bloom areas. In contrast, the most frequent blooms were found around
Africa and South America (median bloom counts >6.3 per year). Australia

experienced the lowest frequency (2.4 per year) and affected area (2.84 million km? or



100  9.0%) of blooms.

101 Phytoplankton blooms frequently occurred in the eastern boundary current

102 systems (i.e., California, Benguela, Humboldt, and Canary), northeastern United

103  States (US), Latin America, the Baltic Sea, Northern Black Sea, and the Arabian Sea
104  (Fig. 1a). Five LMEs were found with the most frequent blooms (annual median

105  bloom count >15), including Patagonian Shelf, Northeast US continental Shelf, the
106  Baltic Sea, Gulf of California, and Benguela Current (Extended Data Fig. 7). These
107  hotspots are often reported with a high incidence of algal blooms, some of which are
108  HABs, driven by either coastal upwelling or pronounced anthropogenic nutrient

109  enrichment *2%26, European LMEs mostly showed large proportions of bloom-

110  affected areas, and some also with frequent bloom occurrences. By contrast, Asian
111 LMEs mainly exhibited infrequent blooms, given their large affected areas. We

112 identified more bloom events in estuarine regions than along coasts in regions without
113 major river discharge (P<0.05, Extended Data Fig. 8), highlighting the critical role of

114  terrestrial nutrient sources on coastal algal blooms .

115  Long term trends

116 The total global bloom-affected area has expanded by 3.97 million km? (or

117 13.2%) from 2003 to 2020, or 0.14 million km? yr-! (P<0.05, Fig. 2). Furthermore, the
118  number of countries with significant bloom expansion was ~1.6 times those with a
119  decreasing trend. The global median bloom frequency showed an increasing rate of

120 59.2% (+2.19% yr'!, P<0.05) over the observed period. Spatially, areas showing
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significant increasing trends (£<0.05) in bloom frequency were 77.6% larger than
those with the opposite trends (Fig. 2). Globally, our analysis revealed overall
consistent fluctuations between the bloom-affected area and bloom frequency between
2003 and 2020 (Fig. 2b). However, there was no significant relationship between
bloom extent and frequency in 23 countries and 10 LMEs over the past two decades,
underscoring the spatial and temporal variability of algal blooms and the importance

of continued satellite monitoring.

The entire Southern Hemisphere was primarily characterized by increased bloom
frequency, although weakened blooms were also found on occasion. In the Northern
Hemisphere, the low latitude (<30°N) coasts were mainly featured with strong bloom
weakening (Fig. 2a), primarily in the California Current System and the Arabian Sea.
Bloom strengthening was found in the northern Gulf of Mexico and the East and South
China Seas, albeit at smaller magnitudes. At higher latitudes, weakening blooms were
mainly detected in the northeastern North Atlantic and the Okhotsk Sea in the
northwestern North Pacific. Globally, the largest increases in bloom frequency were
observed in six major coastal current systems, including Oyashio (+6.31% yr!), Alaska
(+5.22% yr!), Canary (+4.28% yr!), Malvinas (+3.02% yr'), Gulf Stream (+2.42% yr-

1, and Benguela (+2.30% yr!) (Fig. 2a & Fig. 3).

Natural and anthropogenic impacts

Increases in sea surface temperature (SST) can stimulate bloom occurrence. We

found significant positive correlations (P<0.05) between the annual mean bloom
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frequency and the coincident SST (SST data were averaged over the growth window
of algal blooms within a year, see Methods and Extended Data Fig. 9) in several high
latitude regions (>40°N), such as the Alaska Current (r=0.44), the Oyashio Current
(r=0.48), and the Baltic Sea (r=0.41) (see Fig. 3). These findings agree with previous
studies, where the bloom-favorable seasons in these temperate seas have been
extended under warmer temperatures >7-2°. However, this temperature-based
mechanism did not apply to regions with inconsistent trends between SST and bloom
frequency, particularly for the substantial bloom weakening in the tropical and

subtropical areas (Fig. 2a and Fig. 3b).

Climate changes can also affect ocean circulation, altering ocean mixing and the
transport of nutrients that drive the growth of marine phytoplankton and bloom
formation 30-32. We used the spatial SST gradient (in °C m™!' decade™!) as a proxy for
the magnitude of oceanic mesoscale currents (or time-varying velocity of kinetic
energy, known as EKE) by following the methods of a previous study 33, and
examined its impacts on algal blooms (see Methods). The trend in the SST gradient
appeared more spatially aligned to bloom frequency than SST. We found significant
positive correlations (P<0.05) between the SST gradient and bloom frequency for
various coastal current systems, including the Canary (r=0.84), Malvinas (r=0.83),
California (r=0.81), Benguela (r=0.73), Gulf Stream (r=0.61), and Oyashio (r=0.58)

currents.

Trends in bloom frequency in subtropical eastern boundary upwelling regions

(i.e., California, Benguela, and Canary Currents) followed the changes in mesoscale
8
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currents (Fig. 3a&c). In the California Current System, the decrease in bloom
frequency was likely due to the weakened upwelling (represented by a reduced SST
gradient and increased SST) and thus lower nutrient supply 2°. Conversely, the Canary
and Benguela Currents were characterized by strengthened upwelling and increased
bloom frequency. The two western boundary current systems at high latitudes (i.e.,
Malvinas and Oyashio), albeit characterized by less pronounced upwelling 34,
exhibited a similar mechanism to the subtropical eastern boundary regions. For the
subtropical western boundary Gulf Stream current, the strengthened current jets
(manifested as larger SST gradient) brought more nutrients from the continental shelf
33, triggering more algal blooms. Nevertheless, whether these changes in oceanic
mesoscale activities were responses to wind, stratification, the shear of ocean currents,

or other factors 33, requires region-based investigations.

Global climate events, represented as the Multivariate El Nifio—Southern
Oscillation (ENSO) index (MEI) 3¢, also showed connections with coastal bloom
frequency. The minimum MEI in 2010 (i.e., a strong La Nifa year) was followed by a
low bloom frequency in the following year, and the largest MEI in 2015 (i.e., a strong
El Nifio year) was followed by the strongest bloom frequency in 2016 (Extended Data

Fig. 10a and Fig. 2b).

Changes in anthropogenic nutrient enrichment may have also contributed to the
bloom trends *’. For example, the decline in bloom frequency in the Arabian Sea,
without clear linkages to SST or SST gradient changes, could result from decreased

fertilizer use in the surrounding countries (such as Iran) (Extended Data Fig. 10). By
9
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contrast, the bloom strengthening in some Asian countries could be attributed to
surges in fertilizer use 3®. We examined trends in fertilizer usage (either nitrogen or
phosphorus) and bloom frequency and found high positive correlations in China, Iran,
Vietnam, and the Philippines. Paradoxically, decreased fertilizer uses and increased
bloom frequency were identified in some countries, suggesting that nutrient control
efforts might have been counterbalanced by the stimulatory effects of climate
warming or other factors. Furthermore, the intensified aquaculture industry in
Finland, China, Algeria, Guinea, Vietnam, Argentina, Russia, and Uruguay may also
be linked to their increased bloom incidence, as suggested by the significant positive
correlations (r>0.5, P<0.05) between their aquaculture production and bloom
frequency. A similar relationship between aquaculture expansion and positive trends
in HAB incidence was reported from an analysis of HAEDAT data 6. However,
analogous positive feedbacks for fertilizer or aquaculture were not found in many
other countries. As such, an ecosystem model incorporating terrestrial and oceanic
nutrient transport and nutrient-plankton relationships of different species * is required

to quantify the contributions of natural and anthropogenic factors to algal blooms '“.

Future implications

We acknowledge that our criteria for a detectable bloom event is operationally
defined by sensor sensitivities and other factors, and that the bloom count metric used
here may underestimate algal bloom incidence, particularly compared to harmful
events entered in HAEDAT. For example, in a recent global analysis of the HAEDAT

events, Hallegraeff et al. ® report a dozen or more events per year for each of nine
10
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regions over a 33-year study period, compared to the global median bloom count of
4.3 in this study. There are several possible explanations for this discrepancy, such as
the many low cell concentration HABs that are not detectable from space but that can
still cause harm, as well as sensor sensitivities and algorithm thresholds. Furthermore,
our bloom count was averaged over all 1-km pixels within the EEZs, while HAEDAT
entries are based on discrete sampling regions. This underestimation does not,
however, alter the trends and other conclusions of this study, as the metrics used here
were constant across time and space. Underestimates would have been uniform across
regions globally. In this regard, it is of note that the Hallegraeff et al. study ° found a
significant linkage between the number of HAEDAT events over time and the global

expansion of aquaculture production, as was also found in this study.

The major contribution of our study is to provide the first spatially and
temporally consistent characterization of global coastal algal blooms between 2003
and 2020. Globally, increasing trends in algal bloom area and frequency are apparent.
Regionally, however, trends were non-uniform due to the compounded effects of
climate changes (e.g., changes in SST and SST gradient and climate extremes),
anthropogenic eutrophication, and aquaculture development. Our daily mapping of
bloom events offers valuable baseline information to understand the mechanisms
underlying the formation, maintenance, and dissipation of algal blooms >*°. This
could aid in developing forecasting models (on either global or regional scales) that
can help minimize the consequences of harmful blooms, and can also help in policy

decisions relating to the control of nutrient discharges and other HAB-stimulatory

11
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factors. Noting again that many blooms are beneficial, particularly in terms of their

positive impacts on ecosystems as well as wild and farmed fisheries, the results here

can also contribute toward policies and management actions that sustain those

beneficial blooms.

References

1

10

11

12

13

Breitburg, D. ef al. Declining oxygen in the global ocean and coastal waters.
Science 359 (2018).

Anderson, D. M. Turning back the harmful red tide. Nature 388, 513-514,
doi:10.1038/41415 (1997).

Michael Beman, J., Arrigo, K. R. & Matson, P. A. Agricultural runoff fuels large
phytoplankton blooms in vulnerable areas of the ocean. Nature 434, 211-214
(2005).

Heisler, J. et al. Eutrophication and harmful algal blooms: A scientific
consensus. Harmful Algae 8, 3-13 (2008).

Anderson, D. M., Cembella, A. D. & Hallegraeff, G. M. Progress in
understanding harmful algal blooms: paradigm shifts and new technologies for
research, monitoring, and management. Annual Review of Marine Science 4,
143-176 (2012).

Hallegraeft, G. M. et al. Perceived global increase in algal blooms is attributable
to intensified monitoring and emerging bloom impacts. Communications Earth
& Environment 2, 117 (2021).

Smith, V. H. Eutrophication of freshwater and coastal marine ecosystems a
global problem. Environmental Science and Pollution Research 10, 126-139
(2003).

Fleming, L. E. et al. Review of Florida red tide and human health effects.
Harmful algae 10, 224-233 (2011).

Richlen, M. L., Morton, S. L., Jamali, E. A., Rajan, A. & Anderson, D. M. The
catastrophic 2008-2009 red tide in the Arabian gulf region, with observations
on the identification and phylogeny of the fish-killing dinoflagellate
Cochlodinium polykrikoides. Harmful Algae 9, 163-172 (2010).

Hallegraeft, G. & Bolch, C. Unprecedented toxic algal blooms impact on
Tasmanian seafood industry. Microbiology Australia 37, 143-144 (2016).

Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine
ecosystems. science 321, 926-929 (2008).

Barton, A. D., Irwin, A. J., Finkel, Z. V. & Stock, C. A. Anthropogenic climate
change drives shift and shuffle in North Atlantic phytoplankton communities.
Proceedings of the National Academy of Sciences 113, 2964-2969 (2016).
Gobler, C. J. Climate change and harmful algal blooms: insights and perspective.
Harmful algae 91, 101731 (2020).

12



269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Zohdi, E. & Abbaspour, M. Harmful algal blooms (red tide): a review of causes,
impacts and approaches to monitoring and prediction. International Journal of
Environmental Science and Technology 16, 1789-1806 (2019).

Wells, M. L. et al. Future HAB science: Directions and challenges in a changing
climate. Harmful Algae 91, 101632,
doi:https://doi.org/10.1016/j.hal.2019.101632 (2020).

Rabalais, N. N., Turner, R. E., Diaz, R. J. & Justi¢, D. Global change and
eutrophication of coastal waters. ICES Journal of Marine Science 66, 1528-
1537 (2009).

Blondeau-Patissier, D., Gower, J. F., Dekker, A. G., Phinn, S. R. & Brando, V.
E. A review of ocean color remote sensing methods and statistical techniques
for the detection, mapping and analysis of phytoplankton blooms in coastal and
open oceans. Progress in Oceanography 123, 123-144 (2014).

Wolny, J. L. et al. Current and future remote sensing of harmful algal blooms in
the Chesapeake Bay to support the shellfish industry. Frontiers in Marine
Science 7, 337 (2020).

Stumpf, R. ef al. Monitoring Karenia brevis blooms in the Gulf of Mexico using
satellite ocean color imagery and other data. Harmful Algae 2, 147-160 (2003).
Bernard, S., Kudela, R. M., Robertson Lain, L. & Pitcher, G. Observation of
Harmful Algal Blooms with Ocean Colour Radiometry. (2021).

Hu, C. et al. Red tide detection and tracing using MODIS fluorescence data: A
regional example in SW Florida coastal waters. Remote Sensing of Environment
97, 311-321 (2005).

Andersen, J. H. ef al. Long-term temporal and spatial trends in eutrophication
status of the Baltic Sea. Biological Reviews 92, 135-149,
doi:https://doi.org/10.1111/brv.12221 (2017).

Gomez, F. & Boicenco, L. An annotated checklist of dinoflagellates in the Black
Sea. Hydrobiologia 517, 43-59 (2004).

Townsend, D. W., Pettigrew, N. R. & Thomas, A. C. Offshore blooms of the red
tide dinoflagellate, Alexandrium sp., in the Gulf of Maine. Continental Shelf
Research 21, 347-369 (2001).

Pitcher, G., Figueiras, F., Hickey, B. & Moita, M. The physical oceanography
of upwelling systems and the development of harmful algal blooms. Progress
in Oceanography 85, 5-32 (2010).

Lopez-Cortés, D. J. et al. The State of Knowledge of Harmful Algal Blooms of
Margalefidinium polykrikoides (a.k.a. Cochlodinium polykrikoides) in Latin
America. Frontiers in Marine Science 6, doi:10.3389/fmars.2019.00463 (2019).
Anderson, D. M. et al. Evidence for massive and recurrent toxic blooms of
Alexandrium catenella in the Alaskan Arctic. Proceedings of the National
Academy of Sciences 118 (2021).

Griffith, A. W., Doherty, O. M. & Gobler, C. J. Ocean warming along temperate
western boundaries of the Northern Hemisphere promotes an expansion of
Cochlodinium polykrikoides blooms. Proceedings of the Royal Society B 286,
20190340 (2019).

13



313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346

29

30

31

32

33

34

35

36

37

38

39

40

Conley, D. J. Save the Baltic Sea. Nature 486, 463-464, doi:10.1038/486463a
(2012).

Mahadevan, A., D’Asaro, E., Lee, C. & Perry Mary, J. Eddy-Driven
Stratification Initiates North Atlantic Spring Phytoplankton Blooms. Science
337, 54-58, doi:10.1126/science.1218740 (2012).

Chelton Dudley, B., Gaube, P., Schlax Michael, G., Early Jeffrey, J. & Samelson
Roger, M. The Influence of Nonlinear Mesoscale Eddies on Near-Surface
Oceanic Chlorophyll. Science 334, 328-332, doi:10.1126/science.1208897
(2011).

Boyce, D. G., Petrie, B., Frank, K. T., Worm, B. & Leggett, W. C.
Environmental structuring of marine plankton phenology. Nature Ecology &
Evolution 1, 1484-1494, doi:10.1038/s41559-017-0287-3 (2017).
Martinez-Moreno, J. et al. Global changes in oceanic mesoscale currents over
the satellite altimetry record. Nature Climate Change 11, 397-403 (2021).
Kampf, J. & Chapman, P. in Upwelling systems of the world 31-65
(Springer, 2016).

Lee, T. N., Yoder, J. A. & Atkinson, L. P. Gulf Stream frontal eddy influence on
productivity of the southeast US continental shelf. Journal of Geophysical
Research: Oceans 96, 22191-22205 (1991).

Wolter, K. & Timlin, M. S. El Nino/Southern Oscillation behaviour since 1871
as diagnosed in an extended multivariate ENSO index (MEI. ext). International
Journal of Climatology 31, 1074-1087 (2011).

Glibert, P. M. & Burford, M. A. Globally changing nutrient loads and harmful
algal blooms: recent advances, new paradigms, and continuing challenges.
Oceanography 30, 58-69 (2017).

Lu, C. & Tian, H. Global nitrogen and phosphorus fertilizer use for agriculture
production in the past half century: shifted hot spots and nutrient imbalance.
Earth System Science Data 9, 181-192 (2017).

Falkowski Paul, G., Barber Richard, T. & Smetacek, V. Biogeochemical
Controls and Feedbacks on Ocean Primary Production. Science 281, 200-206,
doi:10.1126/science.281.5374.200 (1998).

Wells, M. L. et al. Harmful algal blooms and climate change: Learning from the
past and present to forecast the future. Harmful algae 49, 68-93 (2015).

14



347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

Figure captions

Fig. 1 | Global patterns of coastal phytoplankton blooms between 2003 and 2020.
(a) Spatial distribution of annual mean bloom count based on daily satellite detections.
(b) Continental and global statistics for annual mean bloom count (SA n=3,846,125; AF
n=2,516,225; EU n=17,703,949; NA n=10,034,286; AS n=5,371,158; AU n=2,781,998
pixel observations). Upper and lower bounds of boxes are first and third quartiles, the
bold bar represents the median value, and the whiskers show a maximum of 1.5 x the
interquartile range. (c) Continental statistics for the long-term annual mean bloom-
affected areas (n=18 years), the percentages show the corresponding contributions to
the global total. The bars represent standard deviations associated with the annual mean
values. AF: Africa, SA: South America, EU: Europe, NA: North America, AS: Asia,

AU: Australia. Open circles are sample data points.

Fig. 2 | Trends of global coastal phytoplankton blooms between 2003 and 2020. (a)
Spatial patterns of the trends in bloom frequency at 1°x1° grid scale. The latitudinal
profiles for positive (pos., red) and negative (neg., blue) trends are presented within the
panels. (b) Interannual variability and trends of annual median bloom frequency (left
axis) and total global bloom-affected areas (right axis), and their linear slopes and
significance (two-sided #-fest) are annotated. The colors of the curves correspond to the
y-axes. The shading associated with bloom frequency represents an uncertainty level of

5% in bloom detection.

Fig. 3 | Impacts of climate changes on phytoplankton blooms. Global patterns of the

15
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374

trends for SST gradient (a) and SST (b) from 2003 to 2020. (¢) Long-term changes in
bloom frequency in different regions and their agreements with SST and the SST
gradient. The locations of these regions are labeled in (a) and (b). Linear slope (S, in %
yr'!) of bloom frequency (black) and the correlation coefficients between bloom
frequency and SST (purple) and the SST gradient (red) are presented within each panel,

cesk”

with statistically significant correlations indicated by . The colors of the curves

correspond with the y-axes.
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Methods
Data sources

Moderate-resolution Imaging Spectroradiometer (MODIS) on the Aqua satellite
provides a global coverage within 1-2 days. All images acquired by this satellite
mission from January 2003 to December 2020 were used in our study to detect global
coastal phytoplankton blooms, totaling 0.76 million images. MODIS Level-1A images
were downloaded from the Ocean Biology Distributed Active Archive Center
(OB.DAAC) at NASA Goddard Space Flight Center (GSFC), and were subsequently
processed with SeaDAS software (Version 7.5) to obtain Rayleigh-corrected
reflectance (Rr, dimensionless, which was converted using the rhos (in sr'!) product
(rthosxm) from SeaDAS) #!, remote sensing reflectance (Rys, sr!) and quality control
flags (i.e., 12_flags). If a pixel was flagged by any of the following, it was then
removed from phytoplankton bloom detection: straylight, cloud, land, high sunglint,
high solar zenith angle, and high sensor zenith angle

(https://oceancolor.gsfc.nasa.gov/atbd/ocl2flags/). MODIS level-3 product for aerosol

optical thicknesses (AOT) at 869-nm was also obtained from OB.DAAC NASA
GSFC (Version R2018.0), which was used to examine the impacts of aerosols on

bloom trends.

We examined the algal blooms in the Exclusive Economic Zones (EEZs) of 153
ocean-bordering countries (excluding the EEZs in the Caspian Sea or around the
Antarctic), 126 of which were found with at least one bloom in the past two decades.
The EEZs dataset is available at
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https://www.marineregions.org/download_file.php?name=World EEZ v11 20191118
.zip. The EEZs are up to 200 nautical miles (or 370 km) away from coastlines, which
include all continental shelf areas and offer the majority of marine resources available
for human use. Regional statistics of algal blooms were also performed for LMEs.
LMESs encompass global coastal oceans and outer edges of coastal currents areas,
which are defined by various distinct features of the oceans, including hydrology,
productivity, bathymetry, and trophically dependent populations #. Of the 66 LMEs
identified globally, we excluded the Arctic and Antarctic regions and examined 54
LME:s. The boundaries of LMEs were obtained from

https://www.sciencebase.gov/catalog/item/55¢c77722e4b08400b1fd8244.

We used the Harmful Algal Event Database (HAEDAT) to validate our satellite-
detected phytoplankton blooms in terms of presence or absence. The HAEDAT
dataset is a collection of records of harmful algal bloom (HAB) events (dataset link:
http://haedat.iode.org), maintained under the UNESCO Intergovernmental
Oceanographic Commission and with data archives since 1985. For each HAB event,
the HAEDAT records its bloom period (ranging from days to months) and
geolocation. We merged duplicate entries when both the recorded locations and times
of the HAEDAT events were very similar to one another, and a total number of 2,609

HAEDAT events were ultimately selected between 2003 and 2020.

We used the 1/4° resolution National Oceanic and Atmospheric Administration
Optimum Interpolated Sea surface temperature (SST) (v. 2.1) data to examine the

potential simulating effects of warming on the global phytoplankton trends. We also
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estimated the SST gradients following the method of Martinez-Moreno 3. As detailed
in Martinez-Moreno 33, the SST gradient can be used as a proxy for the magnitude of
oceanic mesoscale currents (or the time-varying velocity of the kinetic energy, known
as EKE). We used the SST gradient to explore the impacts of ocean circulation

dynamics on algal blooms.

Fertilizer uses and aquaculture production for different countries was used to examine
the potential impacts of nutrient enrichment from humans on global phytoplankton
bloom trends. Annual data between 2003 and 2019 on synthetic fertilizer use,
including nitrogen and phosphorus, are available from

https://ourworldindata.org/fertilizers. Annual aquaculture production includes

cultivated fish and crustaceans in marine and inland waters, and sea tanks, and the
data between 2003 and 2018 are available from

https://ourworldindata.org/grapher/aquaculture-farmed-fish-production.

The Multivariate El Nifio/Southern Oscillation (ENSO) Index (MEI), which combines
various oceanic and atmospheric variables *, was used to examine the connections
between ENSO activities and marine phytoplankton blooms. The dataset is available

from https://psl.noaa.gov/enso/me/.

Development of an automated bloom detection method
A recent study by the UNESCO Intergovernmental Oceanographic Commission
revealed that globally reported HAB events have increased 6. However, such an

overall increasing trend was found to be highly correlated with recently intensified
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sampling efforts 6. Once this potential bias was accounted for by examining the ratio
between HAB events to the number of samplings °, there was no significant global
trend in HAB incidence, though there were increases in certain regions. With
synoptic, frequent, and large-scale observations, satellite remote sensing has been
extensively used to monitor algal blooms in oceanic environments '’-!°. For example,
chlorophyll a (Chl-a) concentrations, a proxy for phytoplankton biomass, has been
provided as a standard product by NASA since the proof-of-concept Coastal Zone
Color Scanner (1978-1986) era ***. The current default algorithm used to retrieve
Chl-a products is based on the high absorption of Chl-a at the blue band #%*’, which
often shows high accuracy in the clear open oceans but high uncertainties in coastal
waters. This is because, in productive and dynamic coastal oceans, the absorption of
Chl-a in the blue band can be obscured by the presence of suspended sediments and/or
colored dissolved organic matter (CDOM) 3. To address this problem, various
regionalized Chl-a algorithms have been developed *°. Unfortunately, the
concentrations of the water constituents (i.e., CDOM, sediment, and Chl-a) can vary
substantially across different coastal oceans. As a result, a universal Chl-a algorithm
that can accurately estimate Chl-a concentrations in global coastal oceans is not

currently available.

Alternatively, many spectral indices have been developed to identify
phytoplankton blooms instead of quantifying their bloom biomass, including the
normalized fluorescence line height (nFLH) 2!, red tide index (RI) *°, algal bloom

index (ABI) %8, red-blue difference (RBD) !, K. Brevis bloom index (KBBI) °! and
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red tide detection index (RDI) 3. In practice, the most important task for these index-
based algorithms is to determine their optimal thresholds for bloom classification.
However, such optimal thresholds can be regional-or image-specific 2°, due to the
complexity of optical features in coastal waters and/or the contamination of
unfavorable observational conditions (i.e., thick aerosols, thin clouds, etc.), making it

difficult to apply spectral-index-based algorithms at a global scale.

To circumvent the difficulty in determining unified thresholds for various spectral
indices across global coastal oceans, an approach from a recent study to classify algal
blooms in freshwater lakes >3 was adopted and modified here. In that study, the
remotely sensed reflectance data in three visible bands (i.e., red, green, and blue) were
converted into two-dimensional color space created by the Commission Internationale
del'éclairage (CIE), in which the position on the CIE chromaticity diagram
represented the color perceived by human eyes (Extended Data Fig. 1a). As the algal
blooms in freshwater lakes were manifested as greenish colors, the reflectance of
bloom-containing pixels was expected to be distributed in the green gamut of the CIE
chromaticity diagram; the stronger the bloom, the closer the distance to the upper

border of the diagram (i.e., the greener the water).

Here, the color of phytoplankton blooms in the coastal oceans can be greenish,
yellowish, brownish, or even reddish >*, due to the compositions of bloom species
(i.e., diatoms or dinoflagellates) and the concentrations of different water constituents.
Furthermore, the Chl-a concentrations of the coastal blooms are typically lower than

those in inland waters, thus demanding more accurate classification algorithms. As
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such, the algorithm proposed by Hou et al. 33 was modified when using the CIE
chromaticity space for bloom detection in marine environments. Specifically, we used
the following coordinate conversion formulas to obtain the Xy coordinate values in the

CIE color space:

x=X/(X+Y+Z)
y=Y/(X+Y+Z)
X=2.7689R+1.7517G+1.1302B
Y=1.0000R+4.5907G+0.0601B
7=0.0000R+0.0565G+5.5943B (1)
where the R, G, and B channels represent the R at 748 nm, 678 nm (fluorescence
band), and 667 nm in the MODIS Aqua data, respectively. By contrast, the R, G, and
B channels used in Hou et al. 3 were the red, green, and blue bands. We used the
fluorescence band for the G channel because, for a given region, the 678 nm signal
increases monotonically with the Chl-a concentration for blooms of moderate
frequency >°, which is similar to the response of greenness to freshwater algal blooms.
As such, the converted y value in the CIE coordinate system represents the strength of
the fluorescence. In practice, for pixels with phytoplankton blooms, the converted
colors in the chromaticity diagram will be located within the green, yellow, or orange-
red gamut (see Extended Data Fig. 1a); the stronger the fluorescence signal is, the
closer the distance to the upper border of the CIE diagram (i.e., larger y value). By
contrast, for bloom-free pixels without a fluorescence signal, their converted xy

coordinates will be located in the blue or purple gamut. Therefore, we can determine a
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lower boundary in the CIE two-dimensional coordinate system to separate bloom and

non-bloom pixels, similar to the method proposed by Hou et al. 3.

We selected 53,820 bloom-containing pixels from the MODIS Ric data as training
samples to determine the boundary of the CIE color space. These sample points were
selected from nearshore waters worldwide where frequent phytoplankton blooms have
been reported (Extended Data Fig. 2); the algal species included various species of
dinoflagellates and diatoms 2°. A total of 80 images were used, which were acquired
from different seasons and across various bloom magnitudes, to ensure that the
samples used could almost exhaustively represent the different bloom conditions in

the coastal oceans.

We combined the MODIS FLHRrr. (i.e., fluorescence line height based on Rrc) and
enhanced Red-Green-Blue composite (ERGB) to delineate bloom pixels manually.

The FLHrr image was calculated as:

FLHRrc=Rre678¥F678-[ Rrc667%F6671( Rrc748%F748- Ric667%F667)*x(678-667)/(748-667)] (2)
where Rre667, Rrco78, and Rre7ss are the Ric at 667, 678, and 748 nm, respectively, and
Fe67, Fe78, and Frag are the corresponding extraterrestrial solar irradiance. ERGB
composite images were generated using R of three bands at 555 (R), 488 (G), and
443 nm (B). Although phytoplankton-rich and sediment-rich waters have high FLHR«c
values, they appear as darkish and bright features in the ERGB images (Extended
Data Fig. 3), respectively 3. In fact, visual examination with fluorescence signals and

ERGB has been widely accepted as a practical way to delineate coastal algal blooms
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on a limited number of images >°->7. Note that the FLHR: here was slightly different
from the NASA standard nFLH product %3, as the latter is generated using Ris
(corrected for both Rayleigh and aerosol scattering) instead of R (with residual
impacts of aerosols). However, when using the NASA standard algorithm to further
perform aerosol scattering correction over Rre, 20.7% of our selected bloom-
containing pixels failed to obtain valid Rrs (without retrievals or flagged as low
quality), especially for those with strong blooms (see examples in Extended Data Fig.
4). Likewise, we also found various nearshore regions with invalid Ris retrievals. By
contrast, Rrc had valid data for all selected samples and showed more coverage in
nearshore coastal waters. The differences between Rrs and Rrc were because the
assumptions for the standard atmospheric correction algorithm do not hold for bloom
pixels or nearshore waters with complex optical properties *°. In fact, Ric has been

used as an alternative to Rys in various applications in complex waters 061,

We converted the Rr data of 53,820 selected sample pixels into the xy-coordinates in
the CIE color space (Extended Data Fig. 1a). As expected, these samples of bloom-
containing pixels were located in the upper half of the chromaticity diagram (i.e., the
green, yellow, and orange-red gamut) (Extended Data Fig. 1a). We determined the
lower boundary of these sample points in the chromaticity diagram, which represents
the lightest color and thus the weakest phytoplankton blooms; any point that falls
above this boundary represents stronger blooms. The method to determine the
boundary was similar to Hou et al. 33: we first binned the sample points according to

the x value in the chromaticity diagram and estimated the 1st percentile (Q1%) of the
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corresponding Y for each bin; then, we fit the Q1% using two-order polynomial
regression. Sensitivity analysis with Qo.3% (i.e., three sigma value) resulted in minor
changes (<1%) in the resulting bloom areas for single images. Notably, sample points
were rarely located near white points (x=1/3 and y=1/3, represent equal reflection
from three RGB bands) in the diagram, and we used two polynomial regressions to
determine the boundaries for x values greater and less than 1/3, which can be

expressed as:

y1=4.8093 x>- 3.0958 x + 0.8357  x<1/3 3)

y2=4.9040 x>- 3.5759 x + 0.9862  x>1/3 4)
Based on the above, if a pixel’s xy coordinate (converted from Rrc spectrum) satisfies
the conditions of “x<1/3 and y>y1” or “x>1/3 and y>y2”, it is classified as a “bloom”

pixel.

Depending on the local region and application purpose, the meaning of
“phytoplankton bloom” may differ. Here, for a global application, the pixelwise
bloom classification is based on the relationship (represented using the CIE color
space) between Ric in the 667, 678, and 754-nm bands derived from visual
interpretation of the 80 pairs of FLHrrc and ERGB imagery. Instead of a simple
threshold, we used a lower boundary of the sample points in the chromaticity diagram
to define a bloom. In simple words, a pixel is classified as a bloom if its fluorescence
signal is detectable (i.e., the associated xy coordinate in the CIE color space located
above the lower boundary). Histogram of the nFLH values from the 53,820 training

pixels demonstrated the minimum value of ~0.02 mW c¢cm 2 pm™! (Extended Data Fig.
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l1a), which is in line with the lower-bound signal of K. brevis blooms on the West
Florida shelf 2162, Note that, such a minimum nFLH is determined from the global
training pixels, and it does not necessarily represent a unified lower bound for
phytoplankton blooms across the entire globe, especially considering that
fluorescence efficiency may be a large variable across different regions. Different
regions may have different lower bounds of nFLH to define a bloom, and such
variability is represented by the predefined boundary in the CIE chromaticity diagram
in our study. Correspondingly, although the accuracy of Chl-a retrievals may have
large uncertainties in coastal waters, the histogram of the 53,820 training pixels shows
a lower bound of ~1 mg m~ (Extended Data Fig. 1a). Similarly to nFLH, such a lower
bound may not be applicable to all coastal regions, as different regions may have

different lower bounds of Chl-a for bloom definition.

Although the MODIS cloud (generated by SeaDAS with Ric869<0.027) and associated
straylight flags can be used to exclude most clouds, we found that residual errors from
thin clouds or cloud shadows could affect the spectral shape and cause
misclassification for bloom detections. Thus, we designed two spectral indices to
remove such effects:

Index1 = nRrcass - NRre443 - (NRresss - nRrea43)%0.5 (5)

Index2 = nRresss - nRrea69 - (NRre645-nRre469)*0.5 (6)
where Index1 and Index2 were used to remove cloud shadows and clouds,
respectively. The nRre443, nRicass, and nRiesss in index1 are the normalized R,

obtained by normalizing Rrc4ss. Similar calculations were performed for index2. The
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purpose of normalizations is to eliminate the effect of the absolute magnitude of the
reflectance, so that the thresholds of these two indices are influenced by only the
relative magnitude (i.e., spectral shape). We determined thresholds for Index1 (>0.12)
and Index2 (<0.012) through trial-and-error and ensured that the misclassifications
caused by residual errors from clouds and cloud shadows could be effectively
removed. After applying the cloud/cloud shadow and various other masks that are
associated with 12_flags, we obtained an annual mean valid pixel observation (Nvobs)
of ~2.0x10° for global 1°x1°grid cells, and the fluctuation patterns and trends of
Nvobs, either annually or seasonally, are different from that of the global bloom

frequency and affected areas (see Supplementary Fig. 1).

Assessments of the algorithm performance

In addition to phytoplankton blooms, macroalgal blooms (i.e., Sargassum and Ulva)
frequently occur in many coastal oceans %3-%. To verify whether our CIE-fluorescence
algorithm could eliminate such impacts, we compared the spectra between micro-and
macro-algal blooms (see Extended Data Fig. 1b). We found that the spectral shapes of
Sargassum and Ulva are substantially different from those of microalgae, particularly
for the three bands used for CIE coordinate conversion. The converted xy-coordinates
for macroalgae were located in the purple-red gamut of the CIE diagram, which was
far below the predefined boundary (Extended Data Fig. 1). Moreover, our algorithm is
not affected by highly turbid waters for the following two reasons: first, extremely
high turbidity tends to saturate the MODIS ocean bands %7, which can be easily

excluded; second, without a fluorescence peak, the reflectance of unsaturated turbid
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waters, after conversion to CIE coordinates, will be located below the predefined
boundary (see example in Extended Data Fig. 1b). We also confirmed that the spectral
shapes of coccolithophore blooms are different from dinoflagellates and diatoms (see

example in Extended Data Fig. 1b), and thus they are excluded from our algorithm.

Three different types of validation methods were adopted to demonstrate the
reliability of the proposed CIE-fluorescence algorithm for phytoplankton bloom
detection in global coastal oceans, including visual inspections of the RGB, ERGB,
and FLHRr: images, verifications using independent manually delineated algal

blooms, and comparisons with the reported HAB events from the HAEDAT dataset.

First, we selected MODIS Aqua images from different locations where coastal
phytoplankton blooms have been recorded in the published literature. We visually
compared the RGB, ERGB, and FLHr« images, and our algorithm detected bloom
patterns (see examples in Extended Data Fig. 3). Comparisons from various images
worldwide showed that our algorithm could successfully identify regions with high
FLHRr: values and brownish-to-darkish features on the ERGB images, which can be

considered phytoplankton bloom:s.

Second, we delineated additional 15,466 bloom-containing pixels from 35
images covering different coastal areas, using the same visual inspection and manual
delineation method as for the training sample pixels. Moreover, we also selected
14,149 bloom-free pixels (bright or turquoise green colors on ERGB images or low

FLHgr values) within the same images as bloom-containing images. We applied our
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650  algorithm to all these pixels, and compared the algorithm-identified and manually-
651  delineated results. Our CIE-fluorescence algorithm showed high values in both

652  producer and user accuracies (92.04% and 98.63%) (Supplementary Table 1), and
653  appeared effective at identifying bloom pixels and excluding false negatives (blooms

654  classified as non-blooms) and false positives (non-blooms classified as blooms).

655 Third, we validated the satellite-detected phytoplankton blooms using in sifu

656  reported HAB events from the HAEDAT dataset. For each HAB event in the

657 HAEDAT dataset, we obtained all MODIS images over the reported bloom period
658  (from days to months). Within each year, we estimated the ratio between the number
659  of satellite images with “bloom detected” against the number of valid images (see

660  definition above) during the bloom periods across the entire globe (Supplementary
661  Table 1). Moreover, we calculated the number of events with at least one successful
662  satellite bloom detection (Ns), and then estimated the ratio between Ns and the total
663  HAB events for each year. Results showed that substantial amounts (averaged at

664  51.2%) of satellite observations acquired during the HAB event periods were found
665  with phytoplankton blooms by our algorithm. Overall, 79.3% of the global HAB

666  events were successfully identified by satellite. The discrepancies between satellite
667  and in situ observations could be explained by the following reasons: first, our study
668  focused only on the phytoplankton blooms that are resolvable by satellite fluorescence
669  signals; other types of HAB events in the HAEDAT dataset may not have been

670  detectable by satellite observations, such as events with lower phytoplankton biomass

671  but high toxicity, occurrences at the subsurface layers, or fluorescence signals
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overwhelmed by suspended sediments %%7°, Second, although the HAEDAT recorded
HAB events could be sustained for long periods, high biomass of surface algae may
not have occurred every day within this period due to the changes in stratification,
precipitation, wind, vertical migration of cells, and many other factors 7!. Third, the
spatial scale of certain HAB events may have been too small to be identified using the
1-km resolution MODIS observations. Fourth, a reduced MODIS satellite observation
frequency by the contaminations of clouds and land adjacency effects 72. Therefore,
we believe the underestimations of satellite-detected blooms compared to the in situ
reported HAB events were mainly due to inconsistencies between the two

observations rather than uncertainties in our algorithm.

Because Rrc depends not only on water color but also on aerosols (type and
concentration) and solar/viewing geometry, a sensitivity analysis was used to
determine whether such variables could impact bloom detection. Aerosol reflectance
(pa) with different AOTs at 869 nm was simulated using the NASA-recommended
maritime aerosol model (i.e., r75f02, with a relative humidity of 75% and a fine-mode
fraction of 2%). Then, pa of each MODIS band was added to Rr. images, and the
resulting bloom areas with and without added p. were compared. Results showed that
even with a change of 0.02 in AOT at 869 nm, the bloom areas showed minor changes
(<2%) in the tested images; minor changes were also found when we used different
aerosol models to conduct pa simulations 73. Note that 0.02 represents the high end of
the AOT intra-annual variability in coastal oceans (see Extended Data Fig. 5), and the

associated inter-annual changes are much smaller. As such, the use of Rrc instead of
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the fully atmospherically corrected reflectance Ris could have limited impacts on our

detected global bloom trend.

We also tried various index-based algorithms developed in previous studies.
However, results showed that all these methods require image-specific thresholds to
accurately determine algal bloom boundaries for different coastal regions (see
Extended Data Fig. 6). In contrast, although our CIE-fluorescence algorithm may lead
to different bloom thresholds for different regions, it can identify bloom pixels
without adjusting the coefficients and, therefore, is more suitable for global-scale

bloom assessment efforts.

We acknowledge that our satellite-detected algal blooms represent only high
amounts of phytoplankton biomass on the ocean surfaces without distinguishing
whether such blooms produce toxins or are harmful to marine environments.
Furthermore, with only limited spectral information from MODIS, it is difficult to
discriminate the phytoplankton species of algal blooms; such information could help
to improve our understanding of the impacts of these phytoplankton blooms.
However, we expect these challenges to be addressed soon with the scheduled launch
of the Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission by the U.S. NASA
in 2022, where the hyperspectral measurements over a broad spectrum (350-885 nm)

will make species-level classifications possible 7.

Exploring the patterns and trends of global coastal phytoplankton blooms

We applied the CIE-fluorescence algorithm to all MODIS Aqua level-2 Ric
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images, and a total number of 0.76 million images between 2003 and 2020 were
processed. We mapped all detected blooms into 1-km daily scale level-3 composites.
The number of bloom counts within a year for each location can be easily
enumerated, and the long-term annual mean values were then estimated (Fig. 1a). We
further calculated the total global bloom-affected area (i.e., the areas where algal
blooms were detected at least once) for each year and examined their changes over

time (Fig. 2b).

We defined bloom frequency (dimensionless) to represent the density of
phytoplankton blooms for a year by integrating the bloom count and bloom-affected

areas within 1°x1° grid cells within that year, which is expressed as:

n

Bloom frequency = [ZM i] N (7)
i=1

where Mi is the enumerated bloom count for each 1-km resolution pixel in a year
within one 1°x1° grid cell, and n represents the associated number of bloom-affected
pixels in the same cell (i.e., the number of pixels with Mi>0), and N is the total
number of 1-km MODIS pixels in this grid cell. We estimated the bloom frequency
for each year between 2003 and 2020, and determined the long-term trend over global

EEZs through a linear least-squares regression (see Fig. 2a).

Continental and country-level statistics were performed for bloom count, bloom-
affected areas, and bloom frequency (Fig. 1b&c, Supplementary Table 2), using
boundaries for the EEZs of different ocean-bordering countries (see above). Similar

statistics were also conducted for 54 LMEs (Extended Data Fig. 7, Supplementary
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Table 3).

Correlations with SST and SST gradient

To assess the impacts of climate change on long-term trends in coastal phytoplankton
blooms, we correlated the annual mean bloom frequency and the associated SST and
SST gradient in various coastal current systems for grid cells with significant changes
in bloom frequency (Fig. 3¢). The SST and SST gradient were averaged over the
growth window within a year, assuming that the changes within the growth window,
either in water temperatures or ocean circulations, play more important roles in the

bloom trends compared to other seasons 2.

We determined the growth window of phytoplankton blooms for each 1°x1° grid
cell (Extended Data Fig. 9a) using the following method: first, we estimated the
proportion of cumulative bloom-affected pixels within the grid cells for a year.
Second, a generalized additive model 7> was used to determine the shape of the
phenological curves (Extended Data Fig. 9b), where a log link function and a cubic
cyclic regression spline smoother were applied 777, Third, the timing of maximum
bloom-affected areas (TMBAA) was then determined by identifying the inflection
point on the bloom growth curve (Extended Data Fig. 9¢). To facilitate comparisons
across Northern and Southern Hemispheres, the year in the Southern hemisphere was
shifted forward by 183 days (Extended Data Fig. 9¢). We characterized the similarity
of the bloom growth curve between different grid cells and grouped them into three
distinct clusters using a fuzzy c-means cluster analysis method 7%7°. We found

uniform distributions of the clusters over large geographic areas. Cluster I is mainly
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distributed in mid-low latitudes (<45°N and <30°S), where the maximum bloom-
affected areas were expected in the early period of the year. Cluster II was mostly
found in higher latitudes, with bloom developments (quasi-) synchronized with
increases in SST. Cluster III was detected along the coastlines, where the bloom-
affected areas increase throughout the entire year. In practice, the growth window for
Clusters I and III was set as the entire year, and that for Cluster II was set from day
150 to day 270 within the year. We further found that the TMBAA for Cluster 11
showed small changes over the entire period (Extended Data Fig. 9d), indicating

relatively stable phenological cycles for those phytoplankton blooms 3280,
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Extended data figure captions

Extended Data Fig. 1. | Development of the CIE-fluorescence algorithm to detect
phytoplankton blooms using MODIS satellite imagery. (a). Al: The density plot of
manually delineated bloom-containing pixels in the CIE coordinate system
(n=53,820), and their distribution in the CIE color space (box in A2). A3: Histograms
of nFLH and Chla for the delineated pixels, obtained using NASA standard
algorithms #%>. (b) MODIS true color composites and selected spectra for
phytoplankton blooms, macroalgal blooms (Ulva and Sargassum), coccolithophore
blooms, and sediment-rich turbid waters. The x-y numbers indicate their
corresponding positions in the CIE coordinate system. The black rectangular boxes in
the three lower panels highlight different spectral shapes between phytoplankton

blooms and other features near the fluorescence band.

Extended Data Fig. 2. | MODIS-detected bloom count within certain years for
several coastal regions with frequently reported blooms. The MODIS
observational year is annotated within each panel, and overlaid points indicate in situ
recorded harmful algal bloom events from the Harmful Algae Event Database
(HAEDAT) within the same year. The lower right panel shows the locations of all the
HAEDAT records that were used for algorithm validations in this study
(Supplementary Table 1), which also demonstrates the increase in sampling effort in

the most recent years.
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Extended Data Fig. 3. | Performance of the CIE-fluorescence algorithm for
phytoplankton bloom detection in 12 selected coastal oceans. From left to right are
the RGB-true color composite, ERGB composite, FLHRrc, and the bloom area (green

pixels) detected by the CIE-fluorescence algorithm.

Extended Data Fig. 4 | Examples showing disadvantages of using NASA standard
Ris (i.e., with the removal of both Rayleigh and aerosol scattering) in algal bloom
detection. From left to right are the RGB composites, ERGB, nFLH, and the bloom
areas (green pixels) detected by the CIE-fluorescence algorithm (based on R,
without the removal of aerosol scattering). Substantial amounts of invalid Ris
retrievals can be observed in the red-encircled areas in which severe blooms can be
found. Additionally, nFLH shows high values at cloud edges (yellow-encircled areas),
making it challenging to use a simple threshold to classify blooms. However, such

problems can be circumvented in our CIE-fluorescence algorithm.

Extended Data Fig. S | Sensitivity analysis of the impacts of aerosols on bloom
detection. (a) Responses of bloom area (BA) to changes in aerosol optical thickness
(AOT). Aerosol reflectance (pa) with AOTs of 0.01 and 0.02 at 869-nm is simulated
and added to the MODIS images, and the resulting bloom areas (green pixels) with
and without added pa are compared. The left columns show the RGB composites, and
the right three columns show the bloom areas under different AOTs. The percentages

of BA changes are annotated in the panels. (b) The standard deviation between the 12
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monthly mean values of AOT in global coastal waters (i.e., 66.7% of the intra-annual

variability), and the histogram is shown in (¢).

Extended Data Fig. 6 | Comparison of different index-based algorithms in algal
bloom detection in various coastal regions. Image-specific thresholds (annotated
within the panels) are required (labeled within the panels) for RI 3!, ABI (estimated
with FLHR:c) °, RBD 32, KBBI 2, and RDI >3 to delineate accurate bloom areas (i.e.,
high nFLH values, which appear as bright and darkish features on the ERGB images).
The left panels are the bloom areas (green pixels) extracted using our CIE-
fluorescence algorithm. The RGB-true color and ERGB composites are shown in

Extended Data Fig. 3.

Extended Data Fig. 7 | Annual median bloom count and the proportion of bloom-
affected areas for large marine ecosystems (LMEs). (a) Annual median bloom
count, (b) proportion of bloom-affected areas. The data are ordered from the largest to
the smallest. The LMEs are grouped by continent, and their names, numbers, and

locations are shown in (a) and (b).

Extended Data Fig. 8 | Comparison of bloom counts in the estuarine and non-
estuarine regions. Boxplots for long-term mean bloom count in the estuarine
(n=13,622 pixel observations) and non-estuarine (n=361,604 pixel observations)
regions. Comparison analysis was performed by two sided Welch’s t-test
(P<0.001).Upper and lower bounds are first and third quartiles, the bar in the middle

represents the median value, and the whiskers show the minimum and maximum
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values. Sixty-two estuarine zones from large rivers were selected, and the boundary of

each zone was manually delineated according to high-resolution satellite images.

Extended Data Fig. 9 | Clusters of different bloom growth paths. (a) The spatial
distribution of different clusters. The fractions of different clusters across different
latitudes are summarized. (b) The development of the maximum bloom-affected areas
within a year within 1°x1° grid cells, where all global grid cells are grouped into three
distinct clusters according to the similarity of the bloom growth curve. The colored
bond curves represent the mean values of all the grid cells, and their mean SST and
associated standard deviations are shown with dashed lines and gray shading. The
proportions of different clusters in the global bloom-affected areas are annotated. (¢)
and (f) The mean timing of the maximum bloom-affected areas (TMBAA) and the
associated standard deviations between 2003 and 2019. The whole year in the

Southern Hemisphere is shifted forward by 183 days in (¢).

Extended Data Fig. 10 | Changes in climate extremes, global fertilizer uses, and
fishery production over the past two decades. (a) Changes in the bi-monthly
Multivariate El Nifio—Southern Oscillation (ENSO) index (MEI) between 2002 and
2020. Positive and negative MEI values represent EI Nifio and La Nifia events,
respectively. The dots show annual mean values. (b-¢) Trends of nitrogen and
phosphorus from 2003 to 2019 for different countries. (d) Trends of fishery

production from 2003 to 2018. Gray indicates no data.
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