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Abstract

Human Theory of Mind is typically associated with the ability to infer mental
states from observed behavior. In many cases, however, people can also infer the
mental states of agents whose behavior they cannot see, based on the physical
evidence left behind. We hypothesized that this capacity is supported by a
form of mental event reconstruction. Under this account, observers derive social
inferences by reconstructing the agents’ behavior, based on the physical evidence
that revealed their presence. We present a computational model of this idea,
embedded in a Bayesian framework for action understanding, and show that
its predictions match human inferences with high quantitative accuracy. Our
results shed light on how people infer others’ mental states from indirect physical
evidence and on people’s ability to extract social information from the physical
world.
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1. Introduction1

As social animals, humans possess a specialized cognitive system to process,2

understand, and predict each other’s behavior, known as a Theory of Mind3

(Gopnik et al., 1997; Wellman, 2014). Theoretical and empirical work suggests4

that human Theory of Mind is instantiated as a mental model that specifies5

the causal relation between other people’s unobservable mental states and their6

observable actions. That is, Theory of Mind captures how we expect other7

people’s thoughts, preferences, and feelings to guide what they do. Equipped8

with this intuitive theory, people can infer the mental states that causally give9

rise to other people’s observed behavior.10

A rapidly growing body of work suggests that the causal model within The-11

ory of Mind is structured around an assumption that agents act to maximize12

their utilities—the di↵erence between the subjective costs they incur and the13
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subjective rewards they obtain—capturing the idea that we intuitively expect14

others to act rationally and e�ciently (see Jara-Ettinger 2019 for review). Con-15

sistent with this view, computational models of mental-state inference via util-16

ity maximization reach human-level performance on simple social tasks (Baker17

et al., 2017; Jern et al., 2017; Jern & Kemp, 2015; Jern et al., 2011; Jara-Ettinger18

et al., 2020), they capture richer forms of social behavior including pedagogy19

(Bridgers et al., 2020; Ho et al., 2019) and moral reasoning (Ullman et al., 2009),20

they explain social reasoning in early childhood and infancy (Gergely & Csibra,21

2003; Jara-Ettinger et al., 2016; Liu et al., 2017; Lucas et al., 2014), and they22

have identifiable neural correlates (Collette et al., 2017).23

Despite its success, this approach implicitly posits that mental-state infer-24

ence requires access to someone’s observable behavior, as it is these observed25

actions that enable us to evaluate the plausibility of di↵erent mental states. In26

some cases, however, people can even infer the mental states of agents whose27

behavior we did not get the opportunity to see (Gosling et al., 2002, 2008). For28

example, imagine walking into an o�ce building and finding a vacant reception-29

ist desk with a chewed-up pencil, a half-filled crossword puzzle, and a cellphone.30

From this arrangement of objects, we can immediately infer that the recep-31

tionist might have been experiencing anxiety or restlessness (as the pencil was32

chewed-up), that they were likely procrastinating or had few tasks to complete33

at the moment (as they were working on a crossword), and that they expected34

to be gone only momentarily (as they chose to leave their valuable belongings35

unattended).36

As the example above shows, human mental-state inference is not limited to37

an ability to extract mental states from observable actions—we can also infer38

mental states from physical scenes with no direct social or temporal information.39

How do we achieve this and how fine-grained are these inferences? Here we40

propose that social inferences about unobservable agents are supported by a41

basic form of event reconstruction, where, upon seeing indirect evidence of an42

agent’s presence, we reconstruct what actions they likely took, enabling us to43

reason about the mental states that best explain the reconstructed behavior.44

While it has long been known that the ability to infer mental states from45

observed actions emerges early in infancy (Gergely & Csibra, 2003; Onishi &46

Baillargeon, 2005; Woodward, 1998), recent studies suggest that social reasoning47

from physical events also emerges early in childhood. By preschool, children can48

estimate the di�culty associated with building di↵erent physical arrangements49

of objects (Gweon et al., 2017); they understand which kinds of actions leave50
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physical traces in the environment and which kinds of actions do not (Jacobs51

et al., 2021); they can infer what someone knew based on physical evidence52

for how they searched an area (Pelz et al., 2020); and they can even detect53

the transmission of ideas by comparing artifacts created by di↵erent agents54

(Pesowski et al., 2020).55

This past research suggests that the capacities needed to perform mental-56

state inference via event reconstruction might be in place from childhood. How-57

ever, to our knowledge, no work has formally explored the event reconstruction58

hypothesis or quantitatively evaluated people’s capacity to derive social infer-59

ences from indirect physical evidence. Here we present a computational model60

of social reasoning from agent-less physical scenes. Given indirect evidence that61

someone was present, our model infers what the agent was doing (i.e., recon-62

structs their actions) and why (i.e., infers their goals) through a generative63

model of how mental states produce actions, and how actions leave observable64

evidence.65

In Experiment 1, we first tested whether our model matched human infer-66

ences in a task where participants had to infer an agent’s entry point into a67

room and their goal, all from a single pile of cookie crumbs that revealed their68

presence (see Figure 1). In Experiment 2, we then explicitly tested people’s69

ability to reconstruct the actions they believe di↵erent agents took based on70

indirect physical evidence of their presence, lending further support to the idea71

that the inferences in Experiment 1 were supported by an ability to reconstruct72

events. Finally, if social reasoning from physical scenes is supported by event73

reconstruction, people should be able to also infer how many agents might have74

been present in a room, based on how many paths they need to reconstruct to75

explain the scene. We tested this prediction in Experiment 3. Combined, our76

results suggest that people have a nuanced capacity to infer mental states from77

indirect evidence, and that these inferences are based on a basic capacity to78

“enhance” physical scenes by inferring agents’ spatiotemporal behavior based79

on the indirect evidence that they leave behind. All studies were approved by80

the Yale University Institutional Review Board (protocol: “Online reasoning”81

#2000020357).82

2. Computational Framework83

Our model builds on a growing body of work showing that mental-state at-84

tribution is instantiated as Bayesian inference over a generative model of utility-85
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maximizing action plans (Baker et al., 2009, 2017; Jara-Ettinger et al., 2020;86

Jern et al., 2017; Jern & Kemp, 2015; Jern et al., 2011; Lucas et al., 2014). In87

our model, however, rather than evaluating unobservable mental states against88

observable actions, we model how people might use physical evidence to recon-89

struct the actions that an agent took, and use these reconstructed actions to90

attribute mental states.91

To make our focus concrete, consider a situation like the ones shown in92

Figure 1a. Each of these displays represents a room with three possible goals93

(A in blue, B in orange, and C in green), two di↵erent doors (1 at the top in94

both rooms and 2 on the bottom and left, respectively), a set of walls (shown95

in dark gray), and a small pile of cookie crumbs that reveals that someone was96

previously in this room. Although we cannot see where this agent came from,97

what actions they took, or what goal they were pursuing, the cookie crumbs98

nonetheless contain information that we might be able to extract. In Figure 1a99

(left), the cookie crumbs intuitively reveal that the agent entered through door100

1 and that they were likely pursuing goal A or C, but not goal B. In Figure101

1a (right), the cookie crumbs intuitively reveal that the agent was pursuing102

goal C, but it is unclear whether they entered through door 1 or door 2. Our103

computational model aims to explain how we performed these inferences.104

Figure 1: (a) Example stimuli from Experiment 1. Potential goals are positioned in the
corners, labeled alphabetically, and color-coded. Doors are shown in yellow and coded numer-
ically. Walls are shown in dark gray. Each trial included a pile of cookie crumbs positioned
in a part of the room. (b) Visualizations of the underlying event reconstruction performed by
our computational model for the examples above. Each line represents an inferred possible
path, color-coded to indicate time, moving from light green to dark blue.

Formally, we model the environment as a gridworld, where the possible states105
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of the world are given by the di↵erent positions in space that agents can occupy.106

At each time step, we assume that agents can move in any of the four cardinal107

directions and that these actions successfully move them in their intended direc-108

tion (except when attempting to cross a wall, in which case the agent remains109

in the same position as they were before).110

Given an observed static scene s (a gridworld with a set of goals, doors, walls,111

and a pile of cookie crumbs), the objective is to infer where the agent entered112

the room from (a door d) and which goal they pursued (a goal g), formally113

expressed as114

p(d, g|s) / `(s|d, g)p(d, g), (1)

where `(s|d, g) is the likelihood of encountering scene s if an agent had indeed115

pursued goal g after entering through door d, and p(d, g) is the prior over doors116

and goals.117

According to our proposal, the ability to compute the likelihood function118

is mediated by a capacity to reconstruct the agent’s actions. Under this view,119

if we can reconstruct the actions that the agent took, then judgments about120

the agent’s entry point and goal are immediately revealed, as these are part121

of the reconstructed behavior (i.e., if we have access to the full reconstructed122

behavior, we can “see” where the agent entered from and where they were going).123

Formally, this idea can be implemented by expressing the likelihood function as124

`(s|d, g) =
X

t2T
p(s|t)| {z }

how do actions
leave traces?

⇥

how do agents
pursue goals?z }| {
p(t|d, g). (2)

Here t = (~s,~a) is a trajectory (from the set of all possible trajectories T), which125

consists of an ordered sequence of pairs of states and actions that the agent took.126

p(s|t) is the probability that an agent who took trajectory t would produce the127

observed scene s, and p(t|g, d) is the probability that the agent would take128

trajectory t if they entered from door d with the intention to pursue goal g.129

This equation reveals the two components critical to our theory: an expectation130

of how agents navigate to complete their goals (p(t|d, g)), and an expectation of131

how agents’ actions leave observable traces in the environment (p(s|t)).132

To compute the expectations for how agents complete their goals, we used133

the standard framework previously developed in computational models of goal134
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inference (Baker et al., 2009, 2017; Jara-Ettinger et al., 2020) through Markov135

Decision Processes (MDPs)—a planning framework that makes it possible to136

compute the action plan or policy that maximizes an agent’s utility function137

(Bellman, 1957). Classical MDPs are designed to produce a single trajectory138

that fulfills the agent’s goal as e�ciently as possible. In the cases that we con-139

sider, however, there are often multiple trajectories that can be equally e�cient.140

As such, using a simple MDP can erroneously treat an e�cient trajectory as141

unlikely if it is not an exact match to the solution that the MDP produced.142

To solve this problem, we built a probabilistic MDP that creates a probability143

distribution over all possible action plans, assigning higher probability to tra-144

jectories that are more e�cient. Formally, we achieved this by softmaxing the145

MDP’s value function when building the probabilistic policy. We used a low146

temperature parameter to identify all possible action plans that are equally (or147

approximately equally) e�cient, enabling us to implement the expectation that148

agents navigate e�ciently towards their goals. Using a probabilistic MDP, the149

probability that an agent would take trajectory t, starting from door d with the150

intention to fulfill goal g is given by151

p(t|g, d) =
|t|Y

i=1

p(ai|si, g), (3)

where p(ai|si, g) is the probability of taking action ai in state si, and the state152

sequence is given by trajectory t.153

Finally, in our paradigm, we assume that the agent has a uniform probability154

of dropping the pile of cookie crumbs at any point in their path. The probability155

of observing scene s if the agent took trajectory t is therefore given by p(s|t) =156

1/|t| if the pile of cookie crumbs lies within the trajectory and 0 otherwise.157

2.1. Implementation Details158

To generate testable predictions, we set a number of parameters in our model159

prior to data collection. We began by setting a uniform prior distribution over160

doors and goals, such that agents were equally likely to enter through any of161

the doors and equally likely to pursue any of the goals. Next, to model the162

forces that shape agents’ actions, we assumed that agents incur a constant cost163

of 1 for any action that they take, and that goals produced numerical rewards164

over the range 0 � 100. Finally, to make our MDP probabilistic, we applied a165

temperature parameter ⌧ = 0.15 to the value function. This parameter was set166
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a priori to ensure that the model would give equal probability to all paths that167

were equally e�cient, while only placing a negligible probability on erroneous168

and ine�cient trajectories.169

Model inferences were obtained via Monte Carlo methods, sampling 1000170

combinations of doors and goals and 1000 trajectories conditioned on the se-171

lected door and goal. Figure 1b visualizes our model’s inferred trajectories for172

the examples shown in Figure 1a, with each line corresponding to a sample from173

the posterior distribution, color-coded to indicate time, moving from light green174

to dark blue. These visualizations show how our model reconstructs the agents’175

probable spatiotemporal behavior, which in turn reveal the agent’s entry point176

and goal, matching the intuitive inferences associated with these examples in177

the introduction.178

3. Experiment 1179

In Experiment 1, we tested our model in a task where people had to infer180

which goal an agent was pursuing and where they came from, all from a sin-181

gle piece of indirect evidence about their presence. If people’s ability to infer182

goals from physical evidence is mediated by event reconstruction, then their183

judgments should show a quantitative fit to our model predictions, including184

fine-grained patterns of uncertainty.185

3.1. Participants186

40 U.S. participants (as determined by their IP address) were recruited using187

Amazon Mechanical Turk (M = 37.02 years, SD = 11.20 years).188

3.2. Stimuli189

Stimuli consisted of 23 gridworld images, like those in Figure 1a. Each190

gridworld was 7-by-7 squares in size and represented a room that contains three191

goal squares (A in blue, B in orange, and C in green), up to three doors (labeled192

1, 2, and 3), and a pile of cookie crumbs. The goals were always in the same193

corners, but the position of the doors and the pile of cookie crumbs varied194

between trials. In addition to these three features, a subset of trials included195

walls (shown by the dark gray squares in Figure 1a) that agents could not walk196

through.197

Our stimuli set was designed to capture di↵erent types of inferences while198

also controlling for features that simple heuristics could exploit (e.g., ensuring199
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that the target goal was not always the one closest to the cookie crumbs, and200

that it could not be determined by projecting a straight line that intersected the201

entrance and the location of the cookie crumbs). We began by considering four202

di↵erent possible inference patterns: full certainty (assigning probability close to203

1 to a hypothesis; D trials), full negative certainty (assigning probability close204

to 0 to a hypothesis, while also not having full certainty over two remaining205

hypotheses; N trials), partial certainty (assigning a higher probability to one of206

the hypotheses; P trials), and no certainty (assigning a uniform distribution to207

the hypothesis space; U trials).208

We first designed seven single-door trials that captured each of these in-209

ference patterns in goal inference (two D, N, and P trials, and one U trial;210

schematic versions shown in Figure 3a). We then designed 16 additional tri-211

als with multiple doors by combining every possible inference pattern for the212

goal the agent was pursing and the entrance that they took (schematic versions213

shown in Figure 3b).214

3.3. Procedure215

Participants read a brief tutorial that explained the logic of the task. After216

learning how to interpret the images, participants were told that agents were217

equally likely to enter the room from any of the doors with the intention of218

going directly to one of the three goals (to remove the possibility that agents219

pursue multiple goals, or wander aimlessly before selecting one). After the220

introduction, participants completed a questionnaire that ensured they had read221

and understood the instructions. Participants that failed at least one question222

were redirected to the beginning of the instructions and given a second chance223

to participate in the study. Participants that failed the questionnaire twice were224

not permitted to participate in the study.225

Participants completed all 23 trials in a random order. On each trial, par-226

ticipants answered a multiple-choice attention-check question (“Which corner is227

farthest from Door 1 (there may be more than one)?”) and were asked to infer228

the agent’s goal (“Which corner is the person going for?”) using three contin-229

uous sliders, one for each goal (each ranging from 0, labeled as “definitely no,”230

to 1, labelled as “definitely”). Trials with at least two doors included a third231

question that asked participants to infer the agent’s entry point (“Which door232

did they come from?”) using one slider per door. Participants were allowed233

to submit their responses for each trial only when they correctly answered the234
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Figure 2: Results from Experiment 1. Each point corresponds to a judgment, with model
predictions on the x-axis and mean participant judgments on the y-axis. Color indicates
inference type and the dotted line shows the best linear fit with 95% confidence bands (in
light gray).

attention-check question. Otherwise, participants were prompted to “please pay235

attention and try again.”236

3.4. Results237

Participant judgments were first normalized within-trial (such that every238

distribution over goals or doors added up to 1) and then averaged across par-239

ticipants. Figure 2 shows the results from Experiment 1. Overall, our model240

showed a correlation of r = 0.94 (95% CI: 0.91 � 0.96) with participant judg-241

ments, and the strength of the model fit was similar when looking only at goal242

inferences (r = 0.95; 95% CI: 0.92� 0.97) or door inferences (r = 0.92; 95% CI:243

0.86� 0.95).244

Figure 3 shows our model’s results as a function of trial. In each subplot,245

the image at the top shows an abstract schematic of the trial, with the pile of246

cookie crumbs marked as a brown square. This figure reveals how our model not247

only predicted participant judgments in situations where the agent’s entry point248

and goal were clear, it also matched participant judgments in its expression of249

uncertainty. Critically, our model’s uncertainty reflects how well it was able250
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Figure 3: Detailed results from Experiment 1. From top to bottom, each row of subplots
corresponds to the D, N, P, and U trials for goal inferences, respectively. (a) Results for trials
that only had one door. (b) Results for trials that had more than one door. From left to
right, each column of subplots corresponds to the D, N, P, and U trials for door inferences,
respectively. The goals A, B, and C are indicated by the blue, orange, and green squares,
respectively. The doors are sequentially numbered in a clockwise fashion, with door 1 starting
from the top (or from the right if there is no top door). Walls are marked as dark gray
squares and the pile of cookie crumbs are indicated by the brown squares. Red lines represent
mean participant judgments and blue lines represent our model’s predictions. Error bars on
participant judgments represent 95% bootstrapped confidence intervals.

to reconstruct the event, becoming less confident as a function of how much251

conflict there is in entry points and goals across di↵erent hypothetical event252

reconstructions. The fact that this event-based uncertainty matched participant253

judgments with quantitative accuracy suggests that participants may have also254

been performing these inferences via some form of event reconstruction.255

One alternative possibility is that participant judgments were driven by su-256

perficial features of the stimuli, rather than by event reconstruction. We tested257

this possibility through a multinomial logistic regression trained to predict par-258

ticipant goal inferences as a function of the distance between the pile of cookie259

crumbs and each goal, the average distance between the pile of cookie crumbs260

and each door, the number of doors, and all of their interactions. To train261

this regression, we transformed participant judgments into a one-hot vector,262
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marking 1 for the goal with the highest probability and 0 for the rest, and im-263

plemented LASSO regularization (Tibshirani, 1996) to avoid overfitting. We264

generated the alternative model’s predictions in a leave-one-out fashion—that265

is, the predictions for each trial consisted of the output of a regression trained266

on all remaining trials.267

Even though this alternative model was trained on the qualitative structure268

of participant judgments, it nonetheless only produced a correlation of r = 0.49269

(95% CI: 0.30�0.63) with participant judgments, which was substantially lower270

than the one produced by our model (�r = 0.46; 95% CI: 0.33 � 0.65). These271

results show that, while superficial features can capture the broad structure of272

participant judgments, they fail to do so at our model’s level of granularity,273

further suggesting that people’s inferences were centered on a form of Bayesian274

event reconstruction.275

4. Experiment 2276

In Experiment 1 we found that people can infer where an agent was going277

and where they came from, all from a single piece of indirect evidence about278

their presence. Participant judgments were quantitatively predicted by a model279

centered on an ability to reconstruct what happened. If our account is correct,280

then people should also be able to explicitly reconstruct the actions that an agent281

took in a way similar to our model. We test this prediction in Experiment 2.282

4.1. Participants283

40 U.S. participants (as determined by their IP address) were recruited using284

Amazon Mechanical Turk (M = 38.25 years, SD = 11.02 years).285

4.2. Stimuli286

The stimuli were the same as those from Experiment 1 (see Figure 1a for287

examples and Figure 3 for schematic versions).288

4.3. Procedure289

Participants read a brief tutorial that explained the logic of the task. Partic-290

ipants were then instructed on how to draw their paths. After the introduction,291

participants completed a questionnaire that ensured they had read and un-292

derstood the instructions. Participants that failed at least one question were293

redirected to the beginning of the instructions and given a second chance to294
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participate in the study. Participants that failed the questionnaire twice were295

not permitted to participate in the study.296

Participants completed all 23 trials in a random order. On each trial, partic-297

ipants were asked to infer the path they thought the agent took, given the pile298

of cookie crumbs. Participants generated their paths by sequentially clicking299

on the squares they believed the agent walked through. Participants were only300

allowed to proceed when they had successfully generated a valid path, which301

consisted of paths that started at a door, ended at a goal, and passed through302

the pile of cookie crumbs. Participants were allowed to reset the drawn path as303

many times as they wished.304

4.4. Model Predictions305

To evaluate the participant-generated path reconstructions, we used our306

framework to calculate307

p(t|s) / p(s|t)p(t), (4)

where p(s|t) is the likelihood of a trajectory t generating scene s and p(t) is the308

prior over possible trajectories. Here, p(s|t) = 1/|t| (like in Equation 2) and p(t)309

is obtained by marginalizing over the agents’ potential entry points and goals,310

as follows:311

p(t) =
X

d,g

p(t|d, g)p(d, g). (5)

4.5. Results312

Our computational framework enables us to calculate the probability as-313

signed to each path generated by participants. However, directly interpret-314

ing these probabilities is di�cult, as they are sensitive to the length of the315

path and to the number of competing paths that fulfill a goal e�ciently. To316

make our results easier to interpret, we compared our model’s evaluations of317

the participant-generated path reconstructions with that of a baseline model.318

This baseline model used a uniform transition function over all actions, exclud-319

ing the one that would generate a transition to the previous state (to prevent320

infinite back-and-forth loops). We then computed the Bayes factor for each321

reconstructed path by dividing the probability of that path, as predicted by322

our model (i.e., p(t|s)), by the probability predicted by the baseline model. A323
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Figure 4: Comparison of reconstructed paths generated by our model and participants in
Experiment 2. From left to right, each column of subplots corresponds to the D, N, P, and U
trials for goal inferences, respectively. (a) Results for trials that only had one door. (b) Results
for trials that had more than one door. From top to bottom, each row of subplots corresponds
to the D, N, P, and U trials for door inferences, respectively. The goals A, B, and C are
indicated by the blue, orange, and green squares, respectively. The doors are sequentially
numbered in a clockwise order, with door 1 starting from the top (or from the right if there
is no top door). Walls are marked as dark gray squares and the pile of cookie crumbs are
indicated by the brown squares. Each line represents a reconstructed path, color-coded to
indicate time, moving from light orange to dark red (for participants) or light green to dark
blue (for the model).
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Bayes factor greater than one would indicate that our model explains partic-324

ipant judgments better than the baseline model; a Bayes factor less than one325

would indicate that the baseline model explains participant judgments better326

than our model.327

Our model outperformed the baseline model on all trials. The average Bayes328

factor in our experiment was 16935.33 (lowest factor = 7933.79; highest factor329

= 84383.12), meaning that our model was 16,000 times more likely to produce330

the participant-generated path reconstructions relative to the baseline model331

(t(39) = 9.10, p < 0.001 using a Bayes factor of 1 as the reference level).332

Figure 4 shows trial-by-trial results from Experiment 2. Each trial is pre-333

sented twice, with our model’s path reconstructions on the left and participant-334

generated path reconstructions on the right. All paths are color-coded to in-335

dicate time (with darker colors occurring later in time). For both our model336

and participants, the higher path density indicates where the majority inferred337

the agent to have traveled. As this figure shows, the distribution of participant-338

generated path reconstructions largely matched those generated by our model339

(although participants were more likely to generate suboptimal paths).340

5. Do explicit event reconstructions in Experiment 2 predict infer-341

ences from Experiment 1?342

The previous results showed that that people can not only reconstruct agents’343

probable actions, but do so in a way similar to our model. According to our344

proposal, this event reconstruction underlies people’s capacity to infer mental345

states from indirect physical evidence. If this is the case, then the information346

implicitly encoded in the path reconstructions from Experiment 2 should have347

predictive power over the inferences that participants made in Experiment 1.348

To test this possibility, we extracted the goals and doors from the participant-349

generated path reconstructions. To achieve this, we calculated the proportion of350

paths that originated from each possible entrance, and the proportion of paths351

that reached each possible goal, and compared these values to the corresponding352

goal and door inferences from Experiment 1. Figure 5 shows the results from this353

analysis. Overall, the goals and doors extracted from the participant-generated354

path reconstructions showed a correlation of r = 0.89 (95% CI: 0.83 � 0.92)355

with the inferences participants made in Experiment 1, and the strength of this356

fit was similar when looking only at goals (r = 0.88; 95% CI: 0.80 � 0.93) or357

doors (r = 0.90; 95% CI: 0.82 � 0.95). Furthermore, when we compared these358
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extracted goals and doors against our model’s predictions in Experiment 1, we359

found a correlation of r = 0.86 (95% CI: 0.79 � 0.91), and a similar fit when360

looking only at goals (r = 0.85; 95% CI: 0.76 � 0.91) or doors (r = 0.88; 95%361

CI: 0.78� 0.93).362

Critically, participants in Experiment 2 could only generate a single path per363

trial. By combining the paths of multiple participants, we were able to reveal364

distributions over goals and doors that quantitatively resembled the inferences365

participants made in Experiment 1. The fact that these distributions predicted366

inferences from Experiment 1 suggests that generated paths were samples from367

the posterior distribution (rather than maximum likelihood or maximum a pos-368

teriori estimates, which would not contain enough information to reconstruct369

the full probability distribution over inferences). This analysis suggests that370

people had access to and sampled their paths in accordance to these goal and371

door distributions.372
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0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Implicit inferences obtained from

 path reconstructions (Experiment 2)

Ex
pl

ic
it 

in
fe

re
nc

es
 (E

xp
er

im
en

t 1
)

Inference Type:

Entrance

Goal

Figure 5: Comparison between the extracted goals and doors from Experiment 2 and the
participant inferences from Experiment 1. Color indicates inference type and the dotted line
shows the best linear fit with 95% confidence bands (in light gray).

6. Experiment 3373

Experiment 1 showed that people can infer an agent’s goals and origins, and374

that these inferences exhibit the quantitative structure predicted by a model of375
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event reconstruction. Experiment 2 further showed that people could explicitly376

reconstruct the paths in a way similar to our model. In Experiment 3, we test a377

further prediction of our account: If our model of event reconstruction is correct,378

then people should not only be able to infer a single agent’s probable actions379

and goals, but also be able to estimate how many agents might have been in a380

room, based on how many path reconstructions are needed to explain a given381

scene.382

6.1. Participants383

40 U.S. participants (as determined by their IP address) were recruited using384

Amazon Mechanical Turk (M = 37.62 years, SD = 11.94 years).385

6.2. Stimuli386

Our stimuli consisted of 15 gridworld images that were similar to those in387

Experiment 1 with the di↵erence that each trial now has two piles of cookie388

crumbs instead of one (see Figure 6 for examples). Our stimuli set was designed389

to capture di↵erent types of inferences that our model supports. Specifically,390

we designed three di↵erent trials for each of the following possible inference391

patterns: high certainty that one agent was in the room (definitely one, or D1,392

trials), partial certainty that one agent was in the room (probably one, or P1,393

trials), uncertainty whether it was one or two agents in the room (uncertain, or394

UN, trials), partial certainty that two agents were in the room (probably two,395

or P2, trials), and high certainty that two agents were in the room (definitely396

two, or D2, trials).397

6.3. Procedure398

The procedure was nearly identical to Experiment 1, except that partici-399

pants were shown two piles of cookie crumbs and were told that their task was400

to infer if one or two agents had been in the room. After the introduction, par-401

ticipants completed a questionnaire that ensured they had read and understood402

the instructions. Participants that failed at least one question were redirected403

to the beginning of the instructions and given a second chance to participate in404

the study. Participants that failed the questionnaire twice were not permitted405

to participate in the study.406

Participants completed all 15 trials in a random order. On each trial, par-407

ticipants answered a multiple-choice attention-check question (“Which corner408

is the farthest walk from Door 1? If there is more than one correct answer,409
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(c)

(a) (b)

(d)

Figure 6: (a-d) Example stimuli from Experiment 3 for D1, P1, P2, and D2 trials, respectively
(see Experiment 3 Stimuli for details). Potential goals are positioned in the corners, labeled
alphabetically, and color-coded. Doors are shown in yellow and coded numerically. Walls are
shown in dark gray. Each trial included two piles of cookie crumbs positioned in various parts
of the room.

just choose one of them.”) and were asked to infer how many agents were in410

the room (“How many people were in the room?”) using a continuous slider411

(ranging from 0, labelled as “definitely one,” to 1, labelled as “definitely two”).412

Participants were allowed to submit their responses for each trial only when413

they correctly answered the attention-check question. Otherwise, participants414

were told to “please pay attention and try again.”415

6.4. Model Predictions416

To predict how many agents might have been in a scene we computed the417

probability that a agents were in scene s, through418

p(a|s) / p(s|a)p(a), (6)

where p(a) is a prior over the number of agents that could have been present.419

In natural contexts, this prior should reflect the statistics of how often di↵erent420

agents might interact in di↵erent environments. To model our experiment,421

however, we used a simple uniform prior over the possibility of having one422

or two agents. This prior was then weighted by the likelihood of a particular423

number of agents a generating scene s, given by424

p(a|s) /

8
<

:

P
t2T p(s|t)p(t) a = 1

P
t1,t22T p(s|t1, t2)p(t1)p(t2) a = 2

(7)
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r = 0.76 (95% CI: 0.43 − 0.91)
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Figure 7: Results from Experiment 3. Each point corresponds to a judgment, with model
predictions on the x-axis and mean participant judgments on the y-axis. The dotted line
shows the best linear fit with 95% confidence bands (in light gray).

To compute the likelihood that two trajectories explain the scene (i.e., p(s|t1, t2)),425

we modified our generative model to sample two sets of entry points, goals,426

and trajectories at a time instead of one, where the likelihood is defined as427

1/(|t1| + |t2|) if there was a scene match (i.e., both piles of cookie crumbs lie428

within both trajectories, and each trajectory was responsible for one of the429

cookie crumbs) and 0 otherwise.430

6.5. Results431

Participant judgments were averaged across trials and compared against our432

model’s predictions. Figure 7 shows the results from Experiment 3. Partici-433

pant’s relative confidence about the number of agents in the scene was quan-434

titatively similar to our model’s predictions, yielding a correlation of r = 0.76435

(95% CI: 0.43� 0.91).436

Figure 8 shows our model’s results as a function of each trial. In each subplot,437

the image at the top shows an abstract schematic of the trial, with both piles438

of cookie crumbs marked as brown squares. From left to right, each column439

corresponds to the D1, P1, UN, P2, and D2 trials, respectively. This figure440

reveals how our model quantitatively predicts participant judgments across the441
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various trials and levels of uncertainty.442

Interestingly, the model fit in Experiment 3 was lower relative to Experiment443

1. Under our account, this di↵erence arises because Experiment 3 requires re-444

constructing paths for a single agent, reconstructing paths from multiple agents,445

and weighting their relative probability of generating the observed scene. Con-446

sistent with this, we found higher mismatches between our model and partici-447

pants in the P trials (MSE = 0.053) over the D (MSE = 0.021) and U trials448

(MSE = 0.019). That is, participants struggled more in trials that relied on449

a capacity to make precise comparisons between the number of single-agent450

reconstructions and two-agent reconstructions.451

Hum
an

Mod
el

Hum
an

Mod
el

Hum
an

Mod
el

Hum
an

Mod
el

Hum
an

Mod
el

0.00

0.50

1.00

0.00

0.50

1.00

0.00

0.50

1.00

Inference Type

Pr
ob

ab
ilit

y 
of

 T
w

o 
Ag

en
ts

Figure 8: Detailed results from Experiment 3. From left to right, each column corresponds to
D1, P1, UN, P2, and D2 trials, respectively. Red bars represent mean participant judgments
and blue bars represent our model’s predictions. Error bars on participant judgments represent
95% bootstrapped confidence intervals.

Like in Experiment 1, we also evaluated whether participant judgments could452

be explained by superficial features of the stimuli rather than via event recon-453

struction. We tested this possibility through a logistic regression trained to454

predict participants’ distribution over the number of agents they thought were455

in the room as a function of the distance between each goal and each pile of456

cookie crumbs, the average distance between each pile of cookie crumbs and the457

doors, the number of doors, and all of their interactions. We trained and tested458
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this alternative model in the same way as the one described in Experiment 1.459

Even though this alternative model had access to the qualitative structure of460

participant judgments, it nonetheless produced a correlation of r = 0.19 (95%461

CI: �0.30 � 0.66) with participant judgments, which was substantially lower462

than the one produced by our model (�r = 0.58; 95% CI: 0.12 � 1.17). These463

results extend our findings from Experiments 1 and 2, suggesting that people464

can not only infer an agent’s goals and origins based on indirect evidence of465

their presence, but also whether multiple agents may have been present in a466

given scene.467

7. Discussion468

Research on human action understanding has historically focused on how469

we infer the goals and mental states of agents whose behavior we are observing.470

Our results show that our capacity to reason about others goes beyond face-471

to-face interactions and includes nuanced social inferences from simple physical472

scenes. In Experiment 1, we showed that people can infer an agent’s desires (i.e.,473

where an agent was going) and past actions (i.e., where an agent came from)474

from just a single piece of indirect evidence about their presence. The tight475

correspondence between our model’s predictions and the fine-grained structure476

of participant judgments suggested that these inferences were structured around477

a form of mental event reconstruction, where people infer the actions that an478

agent took and use this reconstructed behavior to make richer social inferences.479

Experiment 2 showed further support for our proposal, revealing that people480

can explicitly reconstruct the actions that someone took in a way similar to481

our model. Furthermore, these explicit reconstructions predicted the inferences482

participants made in Experiment 1, showing a direct link between people’s social483

inferences from physical evidence, and people’s ability to reconstruct behavior.484

Finally, in Experiment 3, we showed that people can use this capacity to infer485

the number of agents that were in a given scene, based on the number of paths486

they needed to reconstruct to explain the scene.487

Our computational model formalized these inferences as the process of re-488

constructing behaviors that can explain the indirect observable evidence. Our489

model’s quantitative fit with participant judgments, as well the failure of our490

alternative models (despite being trained on participant judgments), suggests491

that people were performing similar computations. In particular, the similarity492

between the paths generated by our model and those drawn by participants (see493
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Figure 4) further show that people can indeed reconstruct an agent’s behavior494

through an expectation that agents act rationally and e�ciently.495

The heart of our proposal—expressed in Equation 2 (see Section 2)—posits496

event reconstruction as the key representation that connects two di↵erent cog-497

nitive capacities. The first is a model of how agents act as a function of their498

goals and environmental constraints (i.e., a Theory of Mind). The second is499

a model of how agents’ actions may or may not leave observable traces in the500

environment. In this paper we focused on testing the general framework that we501

proposed, using a simple model of how agents leave traces in the environment.502

However, our computational framework only requires an ability to calculate the503

likelihood of scenes given behaviors (p(s|t) in Equation 2), and the computa-504

tions within this component can be arbitrarily complex. Here we consider two505

richer models that might be employed in future work.506

A first way in which our framework could tackle richer inferences is by using507

a full-fledged model of intuitive physics to evaluate how actions leave traces508

in the environment. A recent body of work in cognitive science has found509

that human intuitive physics is instantiated as a physics engine that supports510

rich probabilistic simulations of how objects and forces interact in the environ-511

ment (Fischer et al., 2016; Battaglia et al., 2013), and that physical simulations512

might underlie how we reason about the interaction between agents and ob-513

jects (Yildirim et al., 2019). Thus, using a physics engine to simulate how the514

forces that agents apply to the world leave observable changes might enable our515

computational framework to handle more complex physical events that contain516

social information.517

A second possible extension lies in changing what we consider to be an518

observable scene. Our focus here was on inference from physical information,519

but recent studies have found that people can also infer other people’s actions520

from social evaluations, such as inferring what someone might have done by521

learning that they were blamed by others about a failure (Davis et al., 2021).522

These inferences might be understood as an extended form of this framework,523

where the second term is replaced with an expectation of how people’s behavior524

causes social outcomes, rather than physical ones.525

Similarly, our computational framework also allows for more complex models526

of agents’ behavior, as long as they can express the likelihood of di↵erent ac-527

tions under di↵erent goals and environmental constraints. In our work, we used528

a model structured on an assumption that agents act rationally and e�ciently529

under perfect knowledge. In future work, we hope to extend this work to use530
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models where agents can have partial or incomplete knowledge of their environ-531

ment (e.g., Baker et al., 2017). This would enable our framework to consider532

situations where indirect evidence reveals an agent’s intention to explore and533

understand their surroundings rather than to complete a known goal.534

While our work focused on adults, some recent research suggests these ca-535

pacities might emerge in early childhood. In particular, preschoolers can judge536

what types of physical constructions (such as di↵erent types of block towers)537

require more physical e↵ort (Gweon et al., 2017), suggesting an early under-538

standing between actions and physical outcomes. At the same age, children539

can also determine what actions are more likely to leave physical traces. For540

example, lifting an upside-down cup filled with rice will likely leave visible rice541

grains after the cup has been repositioned. But it is possible to lift and repo-542

sition an upside-down cup filled with a few large rocks without leaving any543

evidence behind (Jacobs et al., 2021). Moreover, children can also associate544

physical outcomes with the corresponding mental states of the agent who gen-545

erated them (Pelz et al., 2020). Finally, and most strikingly, young children546

can infer the transfer of ideas by seeing how di↵erent agents create artifacts547

(Pesowski et al., 2020), a capacity known as “intuitive archaeology” (Hurwitz548

et al., 2019; Schachner et al., 2018). While these results point towards an early549

understanding of the relation between the social and physical world, to our550

knowledge, it is an open question whether these inferences are also linked to551

some form of explicit or implicit event reconstruction.552

At first sight, our computational framework appears to suggest that any553

creature with some form of näıve psychology and näıve physics ought to be554

able to perform social inferences from physical evidence (i.e., access to the two555

key components of Equation 2). This may not be the case, however, because556

our model also requires an ability to transfer information across these intuitive557

theories (reconstructing behavior via näıve psychology and evaluating how they558

compare to the environment via näıve physics). While this is an open empirical559

question, research suggest that intuitive physics and intuitive psychology rely560

on separate neural circuitry (Fischer et al., 2016; Saxe & Powell, 2006), leaving561

open the question of how these two intuitive theories might work in tandem to562

reconstruct other people’s behavior from physical evidence.563

One interesting case that suggests such a feat might not be simple comes from564

research with vervet monkeys. Vervet monkeys have an astonishing degree of565

social intelligence, including a nuanced repertoire of vocal calls to signal di↵erent566

types of predators, each associated with di↵erent escape responses (Seyfarth567
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et al., 1980a,b). Yet, vervet monkeys routinely fail to identify predators from568

indirect physical evidence. For instance, vervet monkeys fail to infer that a569

python is hiding in a nearby bush when they encounter the distinct tracks that570

they leave behind. Similarly, vervet monkeys also fail to infer the presence571

of a leopard upon encountering a gazelle carcass on a tree (where leopards572

usually drag their prey so they can feed in solitude; Cheney & Seyfarth, 1985).573

Critically, this failure appears to persist even after vervet monkeys have, in574

past events, seen the direct association between the physical evidence and the575

predator (Cheney & Seyfarth, 1985, 2008). These results might point to the576

possibility that the form of event reconstruction that we present here might577

require capacities that go beyond simple physical and social reasoning, as they578

involve an ability to combine the two capacities to derive richer inferences than579

would be otherwise possible.580

Our work also leaves a critical question open. In our experiments, we focused581

on situations where people already knew that an agent was previously present.582

Our work therefore does not speak to how people recognize that a scene contains583

traces of someone’s behavior in the first place. One possibility is that people584

engage in a pervasive and constant social analysis of all physical scenes. Doing585

so, however, might be prohibitively costly and unnecessary. As such, it is likely586

that people are attuned to the physical signatures that reveal the presence of an587

agent, which then trigger social reasoning from physical evidence. Consistent588

with this second view, research suggests that people can infer the presence of an589

agent based on apparent order (Newman et al., 2010; Keil & Newman, 2015) and590

on a sensitivity to human-like errors that people leave behind when interacting591

with the world (Lopez-Brau et al., 2021). An open question is how the ability592

to detect the presence of an agent interacts with the ability to reconstruct their593

behavior and infer their mental states.594

Overall, our results illustrate the sophistication of human social intelligence.595

Beyond being able to read the mental states of agents that we are personally596

interacting with, we can also infer the mental states of agents we have never597

encountered, just from minimal indirect evidence that reveals their presence.598

Researchers have long argued that humans are unique in their ability to reason599

about and navigate the social world (Herrmann et al., 2007). Our work shows600

that this ability is not confined to social interactions, but can fundamentally601

a↵ect how we reason about the physical world, allowing us to see social meaning602

embedded in physical structures, like a pile of rocks, where other animals may603

see merely just that: a pile of rocks.604
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theory of rational action. Trends in cognitive sciences, 7 , 287–292.637

Gopnik, A., Meltzo↵, A. N., & Bryant, P. (1997). Words, thoughts, and theories.638

Gosling, S. D., Gaddis, S., & Vazire, S. (2008). First impressions based on the639

environments we create and inhabit. First Impressions , (pp. 334–356).640

Gosling, S. D., Ko, S. J., Mannarelli, T., & Morris, M. E. (2002). A room641

with a cue: Personality judgments based on o�ces and bedrooms. Journal of642

Personality and Social Psychology , 82 , 379.643

Gweon, H., Asaba, M., & Bennett-Pierre, G. (2017). Reverse-engineering the644

process: Adults’ and preschoolers’ ability to infer the di�culty of novel tasks.645

In CogSci .646

Herrmann, E., Call, J., Hernàndez-Lloreda, M. V., Hare, B., & Tomasello,647

M. (2007). Humans have evolved specialized skills of social cognition: The648

cultural intelligence hypothesis. Science, 317 , 1360–1366. doi:10.1126/649

science.1146282.650

Ho, M. K., Cushman, F. A., Littman, M., & Austerweil, J. L. (2019). Commu-651

nication in action: Planning and interpreting communicative demonstrations.652

Journal of Experimental Psychology: General , .653

Hurwitz, E., Brady, T., & Schachner, A. (2019). Detecting social transmission654

in the design of artifacts via inverse planning.655

Jacobs, C., Lopez-Brau, M., & Jara-Ettinger, J. (2021). What happened here?656

children integrate physical reasoning to infer actions from indirect evidence.657

CogSci , .658

Jara-Ettinger, J. (2019). Theory of mind as inverse reinforcement learning.659

Current Opinion in Behavioral Sciences, 29 , 105–110.660

Jara-Ettinger, J., Gweon, H., Schulz, L. E., & Tenenbaum, J. B. (2016). The661
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