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Abstract

Human Theory of Mind is typically associated with the ability to infer mental
states from observed behavior. In many cases, however, people can also infer the
mental states of agents whose behavior they cannot see, based on the physical
evidence left behind. We hypothesized that this capacity is supported by a
form of mental event reconstruction. Under this account, observers derive social
inferences by reconstructing the agents’ behavior, based on the physical evidence
that revealed their presence. We present a computational model of this idea,
embedded in a Bayesian framework for action understanding, and show that
its predictions match human inferences with high quantitative accuracy. Our
results shed light on how people infer others’ mental states from indirect physical
evidence and on people’s ability to extract social information from the physical
world.

Key words: Computational modeling, Event reconstruction, Social cognition,
Theory of Mind

1. Introduction

As social animals, humans possess a specialized cognitive system to process,
understand, and predict each other’s behavior, known as a Theory of Mind
(Gopnik et al., 1997; Wellman, 2014). Theoretical and empirical work suggests
that human Theory of Mind is instantiated as a mental model that specifies
the causal relation between other people’s unobservable mental states and their
observable actions. That is, Theory of Mind captures how we expect other
people’s thoughts, preferences, and feelings to guide what they do. Equipped
with this intuitive theory, people can infer the mental states that causally give
rise to other people’s observed behavior.

A rapidly growing body of work suggests that the causal model within The-
ory of Mind is structured around an assumption that agents act to maximize

their utilities—the difference between the subjective costs they incur and the
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subjective rewards they obtain—capturing the idea that we intuitively expect
others to act rationally and efficiently (see Jara-Ettinger 2019 for review). Con-
sistent with this view, computational models of mental-state inference via util-
ity maximization reach human-level performance on simple social tasks (Baker
et al., 2017; Jern et al., 2017; Jern & Kemp, 2015; Jern et al., 2011; Jara-Ettinger
et al., 2020), they capture richer forms of social behavior including pedagogy
(Bridgers et al., 2020; Ho et al., 2019) and moral reasoning (Ullman et al., 2009),
they explain social reasoning in early childhood and infancy (Gergely & Csibra,
2003; Jara-Ettinger et al., 2016; Liu et al., 2017; Lucas et al., 2014), and they
have identifiable neural correlates (Collette et al., 2017).

Despite its success, this approach implicitly posits that mental-state infer-
ence requires access to someone’s observable behavior, as it is these observed
actions that enable us to evaluate the plausibility of different mental states. In
some cases, however, people can even infer the mental states of agents whose
behavior we did not get the opportunity to see (Gosling et al., 2002, 2008). For
example, imagine walking into an office building and finding a vacant reception-
ist desk with a chewed-up pencil, a half-filled crossword puzzle, and a cellphone.
From this arrangement of objects, we can immediately infer that the recep-
tionist might have been experiencing anxiety or restlessness (as the pencil was
chewed-up), that they were likely procrastinating or had few tasks to complete
at the moment (as they were working on a crossword), and that they expected
to be gone only momentarily (as they chose to leave their valuable belongings
unattended).

As the example above shows, human mental-state inference is not limited to
an ability to extract mental states from observable actions—we can also infer
mental states from physical scenes with no direct social or temporal information.
How do we achieve this and how fine-grained are these inferences? Here we
propose that social inferences about unobservable agents are supported by a
basic form of event reconstruction, where, upon seeing indirect evidence of an
agent’s presence, we reconstruct what actions they likely took, enabling us to
reason about the mental states that best explain the reconstructed behavior.

While it has long been known that the ability to infer mental states from
observed actions emerges early in infancy (Gergely & Csibra, 2003; Onishi &
Baillargeon, 2005; Woodward, 1998), recent studies suggest that social reasoning
from physical events also emerges early in childhood. By preschool, children can
estimate the difficulty associated with building different physical arrangements

of objects (Gweon et al., 2017); they understand which kinds of actions leave
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physical traces in the environment and which kinds of actions do not (Jacobs
et al., 2021); they can infer what someone knew based on physical evidence
for how they searched an area (Pelz et al., 2020); and they can even detect
the transmission of ideas by comparing artifacts created by different agents
(Pesowski et al., 2020).

This past research suggests that the capacities needed to perform mental-
state inference via event reconstruction might be in place from childhood. How-
ever, to our knowledge, no work has formally explored the event reconstruction
hypothesis or quantitatively evaluated people’s capacity to derive social infer-
ences from indirect physical evidence. Here we present a computational model
of social reasoning from agent-less physical scenes. Given indirect evidence that
someone was present, our model infers what the agent was doing (i.e., recon-
structs their actions) and why (i.e., infers their goals) through a generative
model of how mental states produce actions, and how actions leave observable
evidence.

In Experiment 1, we first tested whether our model matched human infer-
ences in a task where participants had to infer an agent’s entry point into a
room and their goal, all from a single pile of cookie crumbs that revealed their
presence (see Figure 1). In Experiment 2, we then explicitly tested people’s
ability to reconstruct the actions they believe different agents took based on
indirect physical evidence of their presence, lending further support to the idea
that the inferences in Experiment 1 were supported by an ability to reconstruct
events. Finally, if social reasoning from physical scenes is supported by event
reconstruction, people should be able to also infer how many agents might have
been present in a room, based on how many paths they need to reconstruct to
explain the scene. We tested this prediction in Experiment 3. Combined, our
results suggest that people have a nuanced capacity to infer mental states from
indirect evidence, and that these inferences are based on a basic capacity to
“enhance” physical scenes by inferring agents’ spatiotemporal behavior based
on the indirect evidence that they leave behind. All studies were approved by
the Yale University Institutional Review Board (protocol: “Online reasoning”
#2000020357).

2. Computational Framework

Our model builds on a growing body of work showing that mental-state at-

tribution is instantiated as Bayesian inference over a generative model of utility-
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maximizing action plans (Baker et al., 2009, 2017; Jara-Ettinger et al., 2020;
Jern et al., 2017; Jern & Kemp, 2015; Jern et al., 2011; Lucas et al., 2014). In
our model, however, rather than evaluating unobservable mental states against
observable actions, we model how people might use physical evidence to recon-
struct the actions that an agent took, and use these reconstructed actions to
attribute mental states.

To make our focus concrete, consider a situation like the ones shown in
Figure la. Each of these displays represents a room with three possible goals
(A in blue, B in orange, and C in green), two different doors (1 at the top in
both rooms and 2 on the bottom and left, respectively), a set of walls (shown
in dark gray), and a small pile of cookie crumbs that reveals that someone was
previously in this room. Although we cannot see where this agent came from,
what actions they took, or what goal they were pursuing, the cookie crumbs
nonetheless contain information that we might be able to extract. In Figure la
(left), the cookie crumbs intuitively reveal that the agent entered through door
1 and that they were likely pursuing goal A or C, but not goal B. In Figure
la (right), the cookie crumbs intuitively reveal that the agent was pursuing
goal C, but it is unclear whether they entered through door 1 or door 2. Our
computational model aims to explain how we performed these inferences.

JEE e B

(a)

Example Stimuli

T

Model Event Reconstructions

(b)

Figure 1: (a) Example stimuli from Experiment 1. Potential goals are positioned in the
corners, labeled alphabetically, and color-coded. Doors are shown in yellow and coded numer-
ically. Walls are shown in dark gray. Each trial included a pile of cookie crumbs positioned
in a part of the room. (b) Visualizations of the underlying event reconstruction performed by
our computational model for the examples above. Each line represents an inferred possible
path, color-coded to indicate time, moving from light green to dark blue.

Formally, we model the environment as a gridworld, where the possible states
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of the world are given by the different positions in space that agents can occupy.
At each time step, we assume that agents can move in any of the four cardinal
directions and that these actions successfully move them in their intended direc-
tion (except when attempting to cross a wall, in which case the agent remains
in the same position as they were before).

Given an observed static scene s (a gridworld with a set of goals, doors, walls,
and a pile of cookie crumbs), the objective is to infer where the agent entered
the room from (a door d) and which goal they pursued (a goal g), formally

expressed as

p(d, gls) o< £(s|d, g)p(d, g), (1)

where £(s|d, g) is the likelihood of encountering scene s if an agent had indeed
pursued goal g after entering through door d, and p(d, g) is the prior over doors
and goals.

According to our proposal, the ability to compute the likelihood function
is mediated by a capacity to reconstruct the agent’s actions. Under this view,
if we can reconstruct the actions that the agent took, then judgments about
the agent’s entry point and goal are immediately revealed, as these are part
of the reconstructed behavior (i.e., if we have access to the full reconstructed
behavior, we can “see” where the agent entered from and where they were going).
Formally, this idea can be implemented by expressing the likelihood function as

how do agents
pursue goals?

Usld.g) = @ X p(tld, g). (2)

teT .
€ how do actions
leave traces?

Here t = (§,d) is a trajectory (from the set of all possible trajectories T), which
consists of an ordered sequence of pairs of states and actions that the agent took.
p(s|t) is the probability that an agent who took trajectory ¢ would produce the
observed scene s, and p(t|g,d) is the probability that the agent would take
trajectory ¢ if they entered from door d with the intention to pursue goal g.
This equation reveals the two components critical to our theory: an expectation
of how agents navigate to complete their goals (p(t|d, g)), and an expectation of
how agents’ actions leave observable traces in the environment (p(s|t)).

To compute the expectations for how agents complete their goals, we used

the standard framework previously developed in computational models of goal
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inference (Baker et al., 2009, 2017; Jara-Ettinger et al., 2020) through Markov
Decision Processes (MDPs)—a planning framework that makes it possible to
compute the action plan or policy that maximizes an agent’s utility function
(Bellman, 1957). Classical MDPs are designed to produce a single trajectory
that fulfills the agent’s goal as efficiently as possible. In the cases that we con-
sider, however, there are often multiple trajectories that can be equally efficient.
As such, using a simple MDP can erroneously treat an efficient trajectory as
unlikely if it is not an exact match to the solution that the MDP produced.
To solve this problem, we built a probabilistic MDP that creates a probability
distribution over all possible action plans, assigning higher probability to tra-
jectories that are more efficient. Formally, we achieved this by softmaxing the
MDP’s value function when building the probabilistic policy. We used a low
temperature parameter to identify all possible action plans that are equally (or
approximately equally) efficient, enabling us to implement the expectation that
agents navigate efficiently towards their goals. Using a probabilistic MDP, the
probability that an agent would take trajectory ¢, starting from door d with the
intention to fulfill goal g is given by

It]

p(tlg,d) = Hp(ai|5i,9)a (3)
i=1

where p(a;|s;, g) is the probability of taking action a, in state s;, and the state
sequence is given by trajectory t.

Finally, in our paradigm, we assume that the agent has a uniform probability
of dropping the pile of cookie crumbs at any point in their path. The probability
of observing scene s if the agent took trajectory ¢ is therefore given by p(s|t) =

1/]t| if the pile of cookie crumbs lies within the trajectory and 0 otherwise.

2.1. Implementation Details

To generate testable predictions, we set a number of parameters in our model
prior to data collection. We began by setting a uniform prior distribution over
doors and goals, such that agents were equally likely to enter through any of
the doors and equally likely to pursue any of the goals. Next, to model the
forces that shape agents’ actions, we assumed that agents incur a constant cost
of 1 for any action that they take, and that goals produced numerical rewards
over the range 0 — 100. Finally, to make our MDP probabilistic, we applied a

temperature parameter 7 = 0.15 to the value function. This parameter was set
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a priori to ensure that the model would give equal probability to all paths that
were equally efficient, while only placing a negligible probability on erroneous
and inefficient trajectories.

Model inferences were obtained via Monte Carlo methods, sampling 1000
combinations of doors and goals and 1000 trajectories conditioned on the se-
lected door and goal. Figure 1b visualizes our model’s inferred trajectories for
the examples shown in Figure la, with each line corresponding to a sample from
the posterior distribution, color-coded to indicate time, moving from light green
to dark blue. These visualizations show how our model reconstructs the agents’
probable spatiotemporal behavior, which in turn reveal the agent’s entry point
and goal, matching the intuitive inferences associated with these examples in

the introduction.

3. Experiment 1

In Experiment 1, we tested our model in a task where people had to infer
which goal an agent was pursuing and where they came from, all from a sin-
gle piece of indirect evidence about their presence. If people’s ability to infer
goals from physical evidence is mediated by event reconstruction, then their
judgments should show a quantitative fit to our model predictions, including

fine-grained patterns of uncertainty.

3.1. Participants

40 U.S. participants (as determined by their IP address) were recruited using
Amazon Mechanical Turk (M = 37.02 years, SD = 11.20 years).

3.2. Stimuli

Stimuli consisted of 23 gridworld images, like those in Figure la. Each
gridworld was 7-by-7 squares in size and represented a room that contains three
goal squares (A in blue, B in orange, and C in green), up to three doors (labeled
1, 2, and 3), and a pile of cookie crumbs. The goals were always in the same
corners, but the position of the doors and the pile of cookie crumbs varied
between trials. In addition to these three features, a subset of trials included
walls (shown by the dark gray squares in Figure 1a) that agents could not walk
through.

Our stimuli set was designed to capture different types of inferences while

also controlling for features that simple heuristics could exploit (e.g., ensuring
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that the target goal was not always the one closest to the cookie crumbs, and
that it could not be determined by projecting a straight line that intersected the
entrance and the location of the cookie crumbs). We began by considering four
different possible inference patterns: full certainty (assigning probability close to
1 to a hypothesis; D trials), full negative certainty (assigning probability close
to 0 to a hypothesis, while also not having full certainty over two remaining
hypotheses; N trials), partial certainty (assigning a higher probability to one of
the hypotheses; P trials), and no certainty (assigning a uniform distribution to
the hypothesis space; U trials).

We first designed seven single-door trials that captured each of these in-
ference patterns in goal inference (two D, N, and P trials, and one U trial;
schematic versions shown in Figure 3a). We then designed 16 additional tri-
als with multiple doors by combining every possible inference pattern for the
goal the agent was pursing and the entrance that they took (schematic versions

shown in Figure 3b).

8.8. Procedure
Participants read a brief tutorial that explained the logic of the task. After

learning how to interpret the images, participants were told that agents were
equally likely to enter the room from any of the doors with the intention of
going directly to one of the three goals (to remove the possibility that agents
pursue multiple goals, or wander aimlessly before selecting one). After the
introduction, participants completed a questionnaire that ensured they had read
and understood the instructions. Participants that failed at least one question
were redirected to the beginning of the instructions and given a second chance
to participate in the study. Participants that failed the questionnaire twice were
not permitted to participate in the study.

Participants completed all 23 trials in a random order. On each trial, par-
ticipants answered a multiple-choice attention-check question (“Which corner is
farthest from Door 1 (there may be more than one)?”) and were asked to infer
the agent’s goal (“Which corner is the person going for?”) using three contin-
uous sliders, one for each goal (each ranging from 0, labeled as “definitely no,”
to 1, labelled as “definitely”). Trials with at least two doors included a third
question that asked participants to infer the agent’s entry point (“Which door
did they come from?”) using one slider per door. Participants were allowed

to submit their responses for each trial only when they correctly answered the
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Figure 2: Results from Experiment 1. Each point corresponds to a judgment, with model
predictions on the z-axis and mean participant judgments on the y-axis. Color indicates
inference type and the dotted line shows the best linear fit with 95% confidence bands (in

light gray).

attention-check question. Otherwise, participants were prompted to “please pay

attention and try again.”

3.4. Results

Participant judgments were first normalized within-trial (such that every
distribution over goals or doors added up to 1) and then averaged across par-
ticipants. Figure 2 shows the results from Experiment 1. Overall, our model
showed a correlation of r = 0.94 (95% CI: 0.91 — 0.96) with participant judg-
ments, and the strength of the model fit was similar when looking only at goal
inferences (r = 0.95; 95% CI: 0.92 —0.97) or door inferences (r = 0.92; 95% CI:
0.86 — 0.95).

Figure 3 shows our model’s results as a function of trial. In each subplot,
the image at the top shows an abstract schematic of the trial, with the pile of
cookie crumbs marked as a brown square. This figure reveals how our model not
only predicted participant judgments in situations where the agent’s entry point
and goal were clear, it also matched participant judgments in its expression of

uncertainty. Critically, our model’s uncertainty reflects how well it was able
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Figure 3: Detailed results from Experiment 1. From top to bottom, each row of subplots
corresponds to the D, N, P, and U trials for goal inferences, respectively. (a) Results for trials
that only had one door. (b) Results for trials that had more than one door. From left to
right, each column of subplots corresponds to the D, N, P, and U trials for door inferences,
respectively. The goals A, B, and C are indicated by the blue, orange, and green squares,
respectively. The doors are sequentially numbered in a clockwise fashion, with door 1 starting
from the top (or from the right if there is no top door). Walls are marked as dark gray
squares and the pile of cookie crumbs are indicated by the brown squares. Red lines represent
mean participant judgments and blue lines represent our model’s predictions. Error bars on
participant judgments represent 95% bootstrapped confidence intervals.

to reconstruct the event, becoming less confident as a function of how much
conflict there is in entry points and goals across different hypothetical event
reconstructions. The fact that this event-based uncertainty matched participant
judgments with quantitative accuracy suggests that participants may have also
been performing these inferences via some form of event reconstruction.

One alternative possibility is that participant judgments were driven by su-
perficial features of the stimuli, rather than by event reconstruction. We tested
this possibility through a multinomial logistic regression trained to predict par-
ticipant goal inferences as a function of the distance between the pile of cookie
crumbs and each goal, the average distance between the pile of cookie crumbs
and each door, the number of doors, and all of their interactions. To train

this regression, we transformed participant judgments into a one-hot vector,
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marking 1 for the goal with the highest probability and 0 for the rest, and im-
plemented LASSO regularization (Tibshirani, 1996) to avoid overfitting. We
generated the alternative model’s predictions in a leave-one-out fashion—that
is, the predictions for each trial consisted of the output of a regression trained
on all remaining trials.

Even though this alternative model was trained on the qualitative structure
of participant judgments, it nonetheless only produced a correlation of r = 0.49
(95% CI: 0.30—0.63) with participant judgments, which was substantially lower
than the one produced by our model (Ar = 0.46; 95% CI: 0.33 — 0.65). These
results show that, while superficial features can capture the broad structure of
participant judgments, they fail to do so at our model’s level of granularity,
further suggesting that people’s inferences were centered on a form of Bayesian

event reconstruction.

4. Experiment 2

In Experiment 1 we found that people can infer where an agent was going
and where they came from, all from a single piece of indirect evidence about
their presence. Participant judgments were quantitatively predicted by a model
centered on an ability to reconstruct what happened. If our account is correct,
then people should also be able to explicitly reconstruct the actions that an agent

took in a way similar to our model. We test this prediction in Experiment 2.

4.1. Participants

40 U.S. participants (as determined by their IP address) were recruited using
Amazon Mechanical Turk (M = 38.25 years, SD = 11.02 years).

4.2. Stimuli

The stimuli were the same as those from Experiment 1 (see Figure la for

examples and Figure 3 for schematic versions).

4.83. Procedure
Participants read a brief tutorial that explained the logic of the task. Partic-

ipants were then instructed on how to draw their paths. After the introduction,
participants completed a questionnaire that ensured they had read and un-
derstood the instructions. Participants that failed at least one question were

redirected to the beginning of the instructions and given a second chance to

11
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participate in the study. Participants that failed the questionnaire twice were
not permitted to participate in the study.

Participants completed all 23 trials in a random order. On each trial, partic-
ipants were asked to infer the path they thought the agent took, given the pile
of cookie crumbs. Participants generated their paths by sequentially clicking
on the squares they believed the agent walked through. Participants were only
allowed to proceed when they had successfully generated a valid path, which
consisted of paths that started at a door, ended at a goal, and passed through
the pile of cookie crumbs. Participants were allowed to reset the drawn path as

many times as they wished.

4.4. Model Predictions

To evaluate the participant-generated path reconstructions, we used our

framework to calculate

p(tls) o< p(s[t)p(t), (4)

where p(s|t) is the likelihood of a trajectory ¢ generating scene s and p(t) is the
prior over possible trajectories. Here, p(s|t) = 1/]t| (like in Equation 2) and p(t)
is obtained by marginalizing over the agents’ potential entry points and goals,

as follows:

p(t) = p(tld, 9)p(d, g). (5)
d,g

4.5. Results

Our computational framework enables us to calculate the probability as-
signed to each path generated by participants. However, directly interpret-
ing these probabilities is difficult, as they are sensitive to the length of the
path and to the number of competing paths that fulfill a goal efficiently. To
make our results easier to interpret, we compared our model’s evaluations of
the participant-generated path reconstructions with that of a baseline model.
This baseline model used a uniform transition function over all actions, exclud-
ing the one that would generate a transition to the previous state (to prevent
infinite back-and-forth loops). We then computed the Bayes factor for each
reconstructed path by dividing the probability of that path, as predicted by
our model (i.e., p(t|s)), by the probability predicted by the baseline model. A

12
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Figure 4: Comparison of reconstructed paths generated by our model and participants in
Experiment 2. From left to right, each column of subplots corresponds to the D, N, P, and U
trials for goal inferences, respectively. (a) Results for trials that only had one door. (b) Results
for trials that had more than one door. From top to bottom, each row of subplots corresponds
to the D, N, P, and U trials for door inferences, respectively. The goals A, B, and C are
indicated by the blue, orange, and green squares, respectively. The doors are sequentially
numbered in a clockwise order, with door 1 starting from the top (or from the right if there
is no top door). Walls are marked as dark gray squares and the pile of cookie crumbs are
indicated by the brown squares. Each line represents a reconstructed path, color-coded to
indicate time, moving from light orange to dark red (for participants) or light green to dark

blue (for the model).
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Bayes factor greater than one would indicate that our model explains partic-
ipant judgments better than the baseline model; a Bayes factor less than one
would indicate that the baseline model explains participant judgments better
than our model.

Our model outperformed the baseline model on all trials. The average Bayes
factor in our experiment was 16935.33 (lowest factor = 7933.79; highest factor
= 84383.12), meaning that our model was 16,000 times more likely to produce
the participant-generated path reconstructions relative to the baseline model
(t(39) = 9.10, p < 0.001 using a Bayes factor of 1 as the reference level).

Figure 4 shows trial-by-trial results from Experiment 2. Each trial is pre-
sented twice, with our model’s path reconstructions on the left and participant-
generated path reconstructions on the right. All paths are color-coded to in-
dicate time (with darker colors occurring later in time). For both our model
and participants, the higher path density indicates where the majority inferred
the agent to have traveled. As this figure shows, the distribution of participant-
generated path reconstructions largely matched those generated by our model

(although participants were more likely to generate suboptimal paths).

5. Do explicit event reconstructions in Experiment 2 predict infer-

ences from Experiment 17

The previous results showed that that people can not only reconstruct agents’
probable actions, but do so in a way similar to our model. According to our
proposal, this event reconstruction underlies people’s capacity to infer mental
states from indirect physical evidence. If this is the case, then the information
implicitly encoded in the path reconstructions from Experiment 2 should have
predictive power over the inferences that participants made in Experiment 1.
To test this possibility, we extracted the goals and doors from the participant-
generated path reconstructions. To achieve this, we calculated the proportion of
paths that originated from each possible entrance, and the proportion of paths
that reached each possible goal, and compared these values to the corresponding
goal and door inferences from Experiment 1. Figure 5 shows the results from this
analysis. Overall, the goals and doors extracted from the participant-generated
path reconstructions showed a correlation of r = 0.89 (95% CI: 0.83 — 0.92)
with the inferences participants made in Experiment 1, and the strength of this
fit was similar when looking only at goals (r = 0.88; 95% CI: 0.80 — 0.93) or
doors (r = 0.90; 95% CI: 0.82 — 0.95). Furthermore, when we compared these
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extracted goals and doors against our model’s predictions in Experiment 1, we
found a correlation of r = 0.86 (95% CI: 0.79 — 0.91), and a similar fit when
looking only at goals (r = 0.85; 95% CI: 0.76 — 0.91) or doors (r = 0.88; 95%
CI: 0.78 — 0.93).

Critically, participants in Experiment 2 could only generate a single path per
trial. By combining the paths of multiple participants, we were able to reveal
distributions over goals and doors that quantitatively resembled the inferences
participants made in Experiment 1. The fact that these distributions predicted
inferences from Experiment 1 suggests that generated paths were samples from
the posterior distribution (rather than maximum likelihood or maximum a pos-
teriori estimates, which would not contain enough information to reconstruct
the full probability distribution over inferences). This analysis suggests that
people had access to and sampled their paths in accordance to these goal and

door distributions.
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Figure 5: Comparison between the extracted goals and doors from Experiment 2 and the
participant inferences from Experiment 1. Color indicates inference type and the dotted line
shows the best linear fit with 95% confidence bands (in light gray).

6. Experiment 3

Experiment 1 showed that people can infer an agent’s goals and origins, and

that these inferences exhibit the quantitative structure predicted by a model of
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event reconstruction. Experiment 2 further showed that people could explicitly
reconstruct the paths in a way similar to our model. In Experiment 3, we test a
further prediction of our account: If our model of event reconstruction is correct,
then people should not only be able to infer a single agent’s probable actions
and goals, but also be able to estimate how many agents might have been in a
room, based on how many path reconstructions are needed to explain a given

scene.

6.1. Participants

40 U.S. participants (as determined by their IP address) were recruited using
Amazon Mechanical Turk (M = 37.62 years, SD = 11.94 years).

6.2. Stimuli

Our stimuli consisted of 15 gridworld images that were similar to those in
Experiment 1 with the difference that each trial now has two piles of cookie
crumbs instead of one (see Figure 6 for examples). Our stimuli set was designed
to capture different types of inferences that our model supports. Specifically,
we designed three different trials for each of the following possible inference
patterns: high certainty that one agent was in the room (definitely one, or D1,
trials), partial certainty that one agent was in the room (probably one, or PI,
trials), uncertainty whether it was one or two agents in the room (uncertain, or
UN, trials), partial certainty that two agents were in the room (probably two,
or P2, trials), and high certainty that two agents were in the room (definitely
two, or D2, trials).

6.3. Procedure

The procedure was nearly identical to Experiment 1, except that partici-
pants were shown two piles of cookie crumbs and were told that their task was
to infer if one or two agents had been in the room. After the introduction, par-
ticipants completed a questionnaire that ensured they had read and understood
the instructions. Participants that failed at least one question were redirected
to the beginning of the instructions and given a second chance to participate in
the study. Participants that failed the questionnaire twice were not permitted
to participate in the study.

Participants completed all 15 trials in a random order. On each trial, par-
ticipants answered a multiple-choice attention-check question (“Which corner

is the farthest walk from Door 17 If there is more than one correct answer,
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Figure 6: (a-d) Example stimuli from Experiment 3 for D1, P1, P2, and D2 trials, respectively
(see Experiment 3 Stimuli for details). Potential goals are positioned in the corners, labeled
alphabetically, and color-coded. Doors are shown in yellow and coded numerically. Walls are
shown in dark gray. Each trial included two piles of cookie crumbs positioned in various parts
of the room.

just choose one of them.”) and were asked to infer how many agents were in
the room (“How many people were in the room?”) using a continuous slider
(ranging from 0, labelled as “definitely one,” to 1, labelled as “definitely two”).
Participants were allowed to submit their responses for each trial only when
they correctly answered the attention-check question. Otherwise, participants

were told to “please pay attention and try again.”

6.4. Model Predictions

To predict how many agents might have been in a scene we computed the

probability that a agents were in scene s, through

p(als) x p(s|a)p(a), (6)

where p(a) is a prior over the number of agents that could have been present.
In natural contexts, this prior should reflect the statistics of how often different
agents might interact in different environments. To model our experiment,
however, we used a simple uniform prior over the possibility of having one
or two agents. This prior was then weighted by the likelihood of a particular

number of agents a generating scene s, given by

> e P(s[t)p(t) a=1

plals) o
Ztl,tQGTP(S|t17t2)p(t1)p(t2) a=2
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Figure 7: Results from Experiment 3. Each point corresponds to a judgment, with model
predictions on the z-axis and mean participant judgments on the y-axis. The dotted line
shows the best linear fit with 95% confidence bands (in light gray).

To compute the likelihood that two trajectories explain the scene (i.e., p(s|t1, t2)),
we modified our generative model to sample two sets of entry points, goals,
and trajectories at a time instead of one, where the likelihood is defined as
1/(|t1] + |t2]) if there was a scene match (i.e., both piles of cookie crumbs lie
within both trajectories, and each trajectory was responsible for one of the

cookie crumbs) and 0 otherwise.

0.5. Results

Participant judgments were averaged across trials and compared against our
model’s predictions. Figure 7 shows the results from Experiment 3. Partici-
pant’s relative confidence about the number of agents in the scene was quan-
titatively similar to our model’s predictions, yielding a correlation of r = 0.76
(95% CI: 0.43 — 0.91).

Figure 8 shows our model’s results as a function of each trial. In each subplot,
the image at the top shows an abstract schematic of the trial, with both piles
of cookie crumbs marked as brown squares. From left to right, each column
corresponds to the D1, PI1, UN, P2, and D2 trials, respectively. This figure

reveals how our model quantitatively predicts participant judgments across the
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various trials and levels of uncertainty.

Interestingly, the model fit in Experiment 3 was lower relative to Experiment
1. Under our account, this difference arises because Experiment 3 requires re-
constructing paths for a single agent, reconstructing paths from multiple agents,
and weighting their relative probability of generating the observed scene. Con-
sistent with this, we found higher mismatches between our model and partici-
pants in the P trials (MSE = 0.053) over the D (MSE = 0.021) and U trials
(MSE = 0.019). That is, participants struggled more in trials that relied on
a capacity to make precise comparisons between the number of single-agent

reconstructions and two-agent reconstructions.
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Figure 8: Detailed results from Experiment 3. From left to right, each column corresponds to
D1, P1, UN, P2, and D2 trials, respectively. Red bars represent mean participant judgments
and blue bars represent our model’s predictions. Error bars on participant judgments represent
95% bootstrapped confidence intervals.

Like in Experiment 1, we also evaluated whether participant judgments could
be explained by superficial features of the stimuli rather than via event recon-
struction. We tested this possibility through a logistic regression trained to
predict participants’ distribution over the number of agents they thought were
in the room as a function of the distance between each goal and each pile of
cookie crumbs, the average distance between each pile of cookie crumbs and the

doors, the number of doors, and all of their interactions. We trained and tested
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this alternative model in the same way as the one described in Experiment 1.
Even though this alternative model had access to the qualitative structure of
participant judgments, it nonetheless produced a correlation of r = 0.19 (95%
CL: —0.30 — 0.66) with participant judgments, which was substantially lower
than the one produced by our model (Ar = 0.58; 95% CI: 0.12 — 1.17). These
results extend our findings from Experiments 1 and 2, suggesting that people
can not only infer an agent’s goals and origins based on indirect evidence of
their presence, but also whether multiple agents may have been present in a

given scene.

7. Discussion

Research on human action understanding has historically focused on how
we infer the goals and mental states of agents whose behavior we are observing.
Our results show that our capacity to reason about others goes beyond face-
to-face interactions and includes nuanced social inferences from simple physical
scenes. In Experiment 1, we showed that people can infer an agent’s desires (i.e.,
where an agent was going) and past actions (i.e., where an agent came from)
from just a single piece of indirect evidence about their presence. The tight
correspondence between our model’s predictions and the fine-grained structure
of participant judgments suggested that these inferences were structured around
a form of mental event reconstruction, where people infer the actions that an
agent took and use this reconstructed behavior to make richer social inferences.
Experiment 2 showed further support for our proposal, revealing that people
can explicitly reconstruct the actions that someone took in a way similar to
our model. Furthermore, these explicit reconstructions predicted the inferences
participants made in Experiment 1, showing a direct link between people’s social
inferences from physical evidence, and people’s ability to reconstruct behavior.
Finally, in Experiment 3, we showed that people can use this capacity to infer
the number of agents that were in a given scene, based on the number of paths
they needed to reconstruct to explain the scene.

Our computational model formalized these inferences as the process of re-
constructing behaviors that can explain the indirect observable evidence. Our
model’s quantitative fit with participant judgments, as well the failure of our
alternative models (despite being trained on participant judgments), suggests
that people were performing similar computations. In particular, the similarity

between the paths generated by our model and those drawn by participants (see
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Figure 4) further show that people can indeed reconstruct an agent’s behavior
through an expectation that agents act rationally and efficiently.

The heart of our proposal—expressed in Equation 2 (see Section 2)—posits
event reconstruction as the key representation that connects two different cog-
nitive capacities. The first is a model of how agents act as a function of their
goals and environmental constraints (i.e., a Theory of Mind). The second is
a model of how agents’ actions may or may not leave observable traces in the
environment. In this paper we focused on testing the general framework that we
proposed, using a simple model of how agents leave traces in the environment.
However, our computational framework only requires an ability to calculate the
likelihood of scenes given behaviors (p(s|t) in Equation 2), and the computa-
tions within this component can be arbitrarily complex. Here we consider two
richer models that might be employed in future work.

A first way in which our framework could tackle richer inferences is by using
a full-fledged model of intuitive physics to evaluate how actions leave traces
in the environment. A recent body of work in cognitive science has found
that human intuitive physics is instantiated as a physics engine that supports
rich probabilistic simulations of how objects and forces interact in the environ-
ment (Fischer et al., 2016; Battaglia et al., 2013), and that physical simulations
might underlie how we reason about the interaction between agents and ob-
jects (Yildirim et al., 2019). Thus, using a physics engine to simulate how the
forces that agents apply to the world leave observable changes might enable our
computational framework to handle more complex physical events that contain
social information.

A second possible extension lies in changing what we consider to be an
observable scene. Our focus here was on inference from physical information,
but recent studies have found that people can also infer other people’s actions
from social evaluations, such as inferring what someone might have done by
learning that they were blamed by others about a failure (Davis et al., 2021).
These inferences might be understood as an extended form of this framework,
where the second term is replaced with an expectation of how people’s behavior
causes social outcomes, rather than physical ones.

Similarly, our computational framework also allows for more complex models
of agents’ behavior, as long as they can express the likelihood of different ac-
tions under different goals and environmental constraints. In our work, we used
a model structured on an assumption that agents act rationally and efficiently

under perfect knowledge. In future work, we hope to extend this work to use
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models where agents can have partial or incomplete knowledge of their environ-
ment (e.g., Baker et al., 2017). This would enable our framework to consider
situations where indirect evidence reveals an agent’s intention to explore and
understand their surroundings rather than to complete a known goal.

While our work focused on adults, some recent research suggests these ca-
pacities might emerge in early childhood. In particular, preschoolers can judge
what types of physical constructions (such as different types of block towers)
require more physical effort (Gweon et al., 2017), suggesting an early under-
standing between actions and physical outcomes. At the same age, children
can also determine what actions are more likely to leave physical traces. For
example, lifting an upside-down cup filled with rice will likely leave visible rice
grains after the cup has been repositioned. But it is possible to lift and repo-
sition an upside-down cup filled with a few large rocks without leaving any
evidence behind (Jacobs et al., 2021). Moreover, children can also associate
physical outcomes with the corresponding mental states of the agent who gen-
erated them (Pelz et al., 2020). Finally, and most strikingly, young children
can infer the transfer of ideas by seeing how different agents create artifacts
(Pesowski et al., 2020), a capacity known as “intuitive archaeology” (Hurwitz
et al., 2019; Schachner et al., 2018). While these results point towards an early
understanding of the relation between the social and physical world, to our
knowledge, it is an open question whether these inferences are also linked to
some form of explicit or implicit event reconstruction.

At first sight, our computational framework appears to suggest that any
creature with some form of naive psychology and naive physics ought to be
able to perform social inferences from physical evidence (i.e., access to the two
key components of Equation 2). This may not be the case, however, because
our model also requires an ability to transfer information across these intuitive
theories (reconstructing behavior via naive psychology and evaluating how they
compare to the environment via naive physics). While this is an open empirical
question, research suggest that intuitive physics and intuitive psychology rely
on separate neural circuitry (Fischer et al., 2016; Saxe & Powell, 2006), leaving
open the question of how these two intuitive theories might work in tandem to
reconstruct other people’s behavior from physical evidence.

One interesting case that suggests such a feat might not be simple comes from
research with vervet monkeys. Vervet monkeys have an astonishing degree of
social intelligence, including a nuanced repertoire of vocal calls to signal different

types of predators, each associated with different escape responses (Seyfarth

22



568

569

570

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

et al., 1980a,b). Yet, vervet monkeys routinely fail to identify predators from
indirect physical evidence. For instance, vervet monkeys fail to infer that a
python is hiding in a nearby bush when they encounter the distinct tracks that
they leave behind. Similarly, vervet monkeys also fail to infer the presence
of a leopard upon encountering a gazelle carcass on a tree (where leopards
usually drag their prey so they can feed in solitude; Cheney & Seyfarth, 1985).
Critically, this failure appears to persist even after vervet monkeys have, in
past events, seen the direct association between the physical evidence and the
predator (Cheney & Seyfarth, 1985, 2008). These results might point to the
possibility that the form of event reconstruction that we present here might
require capacities that go beyond simple physical and social reasoning, as they
involve an ability to combine the two capacities to derive richer inferences than
would be otherwise possible.

Our work also leaves a critical question open. In our experiments, we focused
on situations where people already knew that an agent was previously present.
Our work therefore does not speak to how people recognize that a scene contains
traces of someone’s behavior in the first place. One possibility is that people
engage in a pervasive and constant social analysis of all physical scenes. Doing
s0, however, might be prohibitively costly and unnecessary. As such, it is likely
that people are attuned to the physical signatures that reveal the presence of an
agent, which then trigger social reasoning from physical evidence. Consistent
with this second view, research suggests that people can infer the presence of an
agent based on apparent order (Newman et al., 2010; Keil & Newman, 2015) and
on a sensitivity to human-like errors that people leave behind when interacting
with the world (Lopez-Brau et al., 2021). An open question is how the ability
to detect the presence of an agent interacts with the ability to reconstruct their
behavior and infer their mental states.

Overall, our results illustrate the sophistication of human social intelligence.
Beyond being able to read the mental states of agents that we are personally
interacting with, we can also infer the mental states of agents we have never
encountered, just from minimal indirect evidence that reveals their presence.
Researchers have long argued that humans are unique in their ability to reason
about and navigate the social world (Herrmann et al., 2007). Our work shows
that this ability is not confined to social interactions, but can fundamentally
affect how we reason about the physical world, allowing us to see social meaning
embedded in physical structures, like a pile of rocks, where other animals may

see merely just that: a pile of rocks.
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