

Social inferences from physical evidence via Bayesian event reconstruction

Michael Lopez-Brau, Joseph Kwon, Julian Jara-Ettinger

Department of Psychology, Yale University

Abstract

Human Theory of Mind is typically associated with the ability to infer mental states from observed behavior. In many cases, however, people can also infer the mental states of agents whose behavior they cannot see, based on the physical evidence left behind. We hypothesized that this capacity is supported by a form of mental event reconstruction. Under this account, observers derive social inferences by reconstructing the agents' behavior, based on the physical evidence that revealed their presence. We present a computational model of this idea, embedded in a Bayesian framework for action understanding, and show that its predictions match human inferences with high quantitative accuracy. Our results shed light on how people infer others' mental states from indirect physical evidence and on people's ability to extract social information from the physical world.

Key words: Computational modeling, Event reconstruction, Social cognition, Theory of Mind

¹ 1. Introduction

² As social animals, humans possess a specialized cognitive system to process,
³ understand, and predict each other's behavior, known as a *Theory of Mind*
⁴ (Gopnik et al., 1997; Wellman, 2014). Theoretical and empirical work suggests
⁵ that human Theory of Mind is instantiated as a mental model that specifies
⁶ the causal relation between other people's unobservable mental states and their
⁷ observable actions. That is, Theory of Mind captures how we expect other
⁸ people's thoughts, preferences, and feelings to guide what they do. Equipped
⁹ with this intuitive theory, people can infer the mental states that causally give
¹⁰ rise to other people's observed behavior.

¹¹ A rapidly growing body of work suggests that the causal model within The-
¹² ory of Mind is structured around an assumption that agents act to maximize
¹³ their utilities—the difference between the subjective costs they incur and the

14 subjective rewards they obtain—capturing the idea that we intuitively expect
15 others to act rationally and efficiently (see Jara-Ettinger 2019 for review). Consistent
16 with this view, computational models of mental-state inference via util-
17 ity maximization reach human-level performance on simple social tasks (Baker
18 et al., 2017; Jern et al., 2017; Jern & Kemp, 2015; Jern et al., 2011; Jara-Ettinger
19 et al., 2020), they capture richer forms of social behavior including pedagogy
20 (Bridgers et al., 2020; Ho et al., 2019) and moral reasoning (Ullman et al., 2009),
21 they explain social reasoning in early childhood and infancy (Gergely & Csibra,
22 2003; Jara-Ettinger et al., 2016; Liu et al., 2017; Lucas et al., 2014), and they
23 have identifiable neural correlates (Collette et al., 2017).

24 Despite its success, this approach implicitly posits that mental-state infer-
25 ence requires access to someone’s observable behavior, as it is these observed
26 actions that enable us to evaluate the plausibility of different mental states. In
27 some cases, however, people can even infer the mental states of agents whose
28 behavior we did not get the opportunity to see (Gosling et al., 2002, 2008). For
29 example, imagine walking into an office building and finding a vacant reception-
30 ist desk with a chewed-up pencil, a half-filled crossword puzzle, and a cellphone.
31 From this arrangement of objects, we can immediately infer that the recep-
32 tionist might have been experiencing anxiety or restlessness (as the pencil was
33 chewed-up), that they were likely procrastinating or had few tasks to complete
34 at the moment (as they were working on a crossword), and that they expected
35 to be gone only momentarily (as they chose to leave their valuable belongings
36 unattended).

37 As the example above shows, human mental-state inference is not limited to
38 an ability to extract mental states from observable actions—we can also infer
39 mental states from physical scenes with no direct social or temporal information.
40 How do we achieve this and how fine-grained are these inferences? Here we
41 propose that social inferences about unobservable agents are supported by a
42 basic form of *event reconstruction*, where, upon seeing indirect evidence of an
43 agent’s presence, we reconstruct what actions they likely took, enabling us to
44 reason about the mental states that best explain the reconstructed behavior.

45 While it has long been known that the ability to infer mental states from
46 observed actions emerges early in infancy (Gergely & Csibra, 2003; Onishi &
47 Baillargeon, 2005; Woodward, 1998), recent studies suggest that social reasoning
48 from physical events also emerges early in childhood. By preschool, children can
49 estimate the difficulty associated with building different physical arrangements
50 of objects (Gweon et al., 2017); they understand which kinds of actions leave

51 physical traces in the environment and which kinds of actions do not (Jacobs
52 et al., 2021); they can infer what someone knew based on physical evidence
53 for how they searched an area (Pelz et al., 2020); and they can even detect
54 the transmission of ideas by comparing artifacts created by different agents
55 (Pesowski et al., 2020).

56 This past research suggests that the capacities needed to perform mental-
57 state inference via event reconstruction might be in place from childhood. How-
58 ever, to our knowledge, no work has formally explored the event reconstruction
59 hypothesis or quantitatively evaluated people’s capacity to derive social inferences
60 from indirect physical evidence. Here we present a computational model
61 of social reasoning from agent-less physical scenes. Given indirect evidence that
62 someone was present, our model infers what the agent was doing (i.e., recon-
63 structs their actions) and why (i.e., infers their goals) through a generative
64 model of how mental states produce actions, and how actions leave observable
65 evidence.

66 In Experiment 1, we first tested whether our model matched human inferences
67 in a task where participants had to infer an agent’s entry point into a
68 room and their goal, all from a single pile of cookie crumbs that revealed their
69 presence (see Figure 1). In Experiment 2, we then explicitly tested people’s
70 ability to reconstruct the actions they believe different agents took based on
71 indirect physical evidence of their presence, lending further support to the idea
72 that the inferences in Experiment 1 were supported by an ability to reconstruct
73 events. Finally, if social reasoning from physical scenes is supported by event
74 reconstruction, people should be able to also infer how many agents might have
75 been present in a room, based on how many paths they need to reconstruct to
76 explain the scene. We tested this prediction in Experiment 3. Combined, our
77 results suggest that people have a nuanced capacity to infer mental states from
78 indirect evidence, and that these inferences are based on a basic capacity to
79 “enhance” physical scenes by inferring agents’ spatiotemporal behavior based
80 on the indirect evidence that they leave behind. All studies were approved by
81 the Yale University Institutional Review Board (protocol: “Online reasoning”
82 #2000020357).

83 **2. Computational Framework**

84 Our model builds on a growing body of work showing that mental-state at-
85 tribution is instantiated as Bayesian inference over a generative model of utility-

86 maximizing action plans (Baker et al., 2009, 2017; Jara-Ettinger et al., 2020;
 87 Jern et al., 2017; Jern & Kemp, 2015; Jern et al., 2011; Lucas et al., 2014). In
 88 our model, however, rather than evaluating unobservable mental states against
 89 observable actions, we model how people might use physical evidence to recon-
 90 struct the actions that an agent took, and use these reconstructed actions to
 91 attribute mental states.

92 To make our focus concrete, consider a situation like the ones shown in
 93 Figure 1a. Each of these displays represents a room with three possible goals
 94 (A in blue, B in orange, and C in green), two different doors (1 at the top in
 95 both rooms and 2 on the bottom and left, respectively), a set of walls (shown
 96 in dark gray), and a small pile of cookie crumbs that reveals that someone was
 97 previously in this room. Although we cannot see where this agent came from,
 98 what actions they took, or what goal they were pursuing, the cookie crumbs
 99 nonetheless contain information that we might be able to extract. In Figure 1a
 100 (left), the cookie crumbs intuitively reveal that the agent entered through door
 101 1 and that they were likely pursuing goal A or C, but not goal B. In Figure
 102 1a (right), the cookie crumbs intuitively reveal that the agent was pursuing
 103 goal C, but it is unclear whether they entered through door 1 or door 2. Our
 104 computational model aims to explain how we performed these inferences.

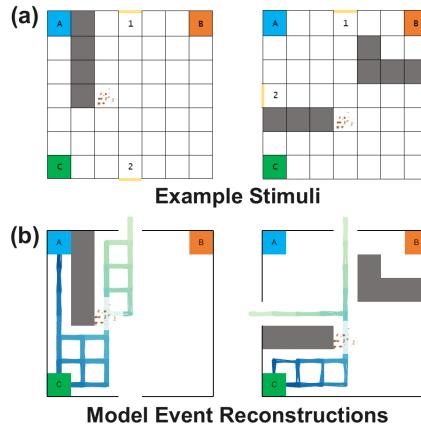


Figure 1: (a) Example stimuli from Experiment 1. Potential goals are positioned in the corners, labeled alphabetically, and color-coded. Doors are shown in yellow and coded numerically. Walls are shown in dark gray. Each trial included a pile of cookie crumbs positioned in a part of the room. (b) Visualizations of the underlying event reconstruction performed by our computational model for the examples above. Each line represents an inferred possible path, color-coded to indicate time, moving from light green to dark blue.

105 Formally, we model the environment as a gridworld, where the possible states

106 of the world are given by the different positions in space that agents can occupy.
 107 At each time step, we assume that agents can move in any of the four cardinal
 108 directions and that these actions successfully move them in their intended direc-
 109 tion (except when attempting to cross a wall, in which case the agent remains
 110 in the same position as they were before).

111 Given an observed static scene s (a gridworld with a set of goals, doors, walls,
 112 and a pile of cookie crumbs), the objective is to infer where the agent entered
 113 the room from (a door d) and which goal they pursued (a goal g), formally
 114 expressed as

$$p(d, g|s) \propto \ell(s|d, g)p(d, g), \quad (1)$$

115 where $\ell(s|d, g)$ is the likelihood of encountering scene s if an agent had indeed
 116 pursued goal g after entering through door d , and $p(d, g)$ is the prior over doors
 117 and goals.

118 According to our proposal, the ability to compute the likelihood function
 119 is mediated by a capacity to reconstruct the agent’s actions. Under this view,
 120 if we can reconstruct the actions that the agent took, then judgments about
 121 the agent’s entry point and goal are immediately revealed, as these are part
 122 of the reconstructed behavior (i.e., if we have access to the full reconstructed
 123 behavior, we can “see” where the agent entered from and where they were going).
 124 Formally, this idea can be implemented by expressing the likelihood function as

$$\ell(s|d, g) = \sum_{t \in \mathbb{T}} \underbrace{p(s|t)}_{\substack{\text{how do actions} \\ \text{leave traces?}}} \times \overbrace{p(t|d, g)}^{\substack{\text{how do agents} \\ \text{pursue goals?}}}. \quad (2)$$

125 Here $t = (\vec{s}, \vec{a})$ is a trajectory (from the set of all possible trajectories \mathbb{T}), which
 126 consists of an ordered sequence of pairs of states and actions that the agent took.
 127 $p(s|t)$ is the probability that an agent who took trajectory t would produce the
 128 observed scene s , and $p(t|d, g)$ is the probability that the agent would take
 129 trajectory t if they entered from door d with the intention to pursue goal g .
 130 This equation reveals the two components critical to our theory: an expectation
 131 of how agents navigate to complete their goals ($p(t|d, g)$), and an expectation of
 132 how agents’ actions leave observable traces in the environment ($p(s|t)$).

133 To compute the expectations for how agents complete their goals, we used
 134 the standard framework previously developed in computational models of goal

135 inference (Baker et al., 2009, 2017; Jara-Ettinger et al., 2020) through Markov
 136 Decision Processes (MDPs)—a planning framework that makes it possible to
 137 compute the action plan or *policy* that maximizes an agent’s utility function
 138 (Bellman, 1957). Classical MDPs are designed to produce a single trajectory
 139 that fulfills the agent’s goal as efficiently as possible. In the cases that we con-
 140 sider, however, there are often multiple trajectories that can be equally efficient.
 141 As such, using a simple MDP can erroneously treat an efficient trajectory as
 142 unlikely if it is not an exact match to the solution that the MDP produced.
 143 To solve this problem, we built a probabilistic MDP that creates a probability
 144 distribution over all possible action plans, assigning higher probability to tra-
 145 jectories that are more efficient. Formally, we achieved this by softmaxing the
 146 MDP’s value function when building the probabilistic policy. We used a low
 147 temperature parameter to identify all possible action plans that are equally (or
 148 approximately equally) efficient, enabling us to implement the expectation that
 149 agents navigate efficiently towards their goals. Using a probabilistic MDP, the
 150 probability that an agent would take trajectory t , starting from door d with the
 151 intention to fulfill goal g is given by

$$p(t|g, d) = \prod_{i=1}^{|t|} p(a_i|s_i, g), \quad (3)$$

152 where $p(a_i|s_i, g)$ is the probability of taking action a_i in state s_i , and the state
 153 sequence is given by trajectory t .

154 Finally, in our paradigm, we assume that the agent has a uniform probability
 155 of dropping the pile of cookie crumbs at any point in their path. The probability
 156 of observing scene s if the agent took trajectory t is therefore given by $p(s|t) =$
 157 $1/|t|$ if the pile of cookie crumbs lies within the trajectory and 0 otherwise.

158 *2.1. Implementation Details*

159 To generate testable predictions, we set a number of parameters in our model
 160 prior to data collection. We began by setting a uniform prior distribution over
 161 doors and goals, such that agents were equally likely to enter through any of
 162 the doors and equally likely to pursue any of the goals. Next, to model the
 163 forces that shape agents’ actions, we assumed that agents incur a constant cost
 164 of 1 for any action that they take, and that goals produced numerical rewards
 165 over the range 0 – 100. Finally, to make our MDP probabilistic, we applied a
 166 temperature parameter $\tau = 0.15$ to the value function. This parameter was set

¹⁶⁷ *a priori* to ensure that the model would give equal probability to all paths that
¹⁶⁸ were equally efficient, while only placing a negligible probability on erroneous
¹⁶⁹ and inefficient trajectories.

¹⁷⁰ Model inferences were obtained via Monte Carlo methods, sampling 1000
¹⁷¹ combinations of doors and goals and 1000 trajectories conditioned on the se-
¹⁷² lected door and goal. Figure 1b visualizes our model’s inferred trajectories for
¹⁷³ the examples shown in Figure 1a, with each line corresponding to a sample from
¹⁷⁴ the posterior distribution, color-coded to indicate time, moving from light green
¹⁷⁵ to dark blue. These visualizations show how our model reconstructs the agents’
¹⁷⁶ probable spatiotemporal behavior, which in turn reveal the agent’s entry point
¹⁷⁷ and goal, matching the intuitive inferences associated with these examples in
¹⁷⁸ the introduction.

¹⁷⁹ 3. Experiment 1

¹⁸⁰ In Experiment 1, we tested our model in a task where people had to infer
¹⁸¹ which goal an agent was pursuing and where they came from, all from a sin-
¹⁸² gle piece of indirect evidence about their presence. If people’s ability to infer
¹⁸³ goals from physical evidence is mediated by event reconstruction, then their
¹⁸⁴ judgments should show a quantitative fit to our model predictions, including
¹⁸⁵ fine-grained patterns of uncertainty.

¹⁸⁶ 3.1. Participants

¹⁸⁷ 40 U.S. participants (as determined by their IP address) were recruited using
¹⁸⁸ Amazon Mechanical Turk ($M = 37.02$ years, $SD = 11.20$ years).

¹⁸⁹ 3.2. Stimuli

¹⁹⁰ Stimuli consisted of 23 gridworld images, like those in Figure 1a. Each
¹⁹¹ gridworld was 7-by-7 squares in size and represented a room that contains three
¹⁹² goal squares (A in blue, B in orange, and C in green), up to three doors (labeled
¹⁹³ 1, 2, and 3), and a pile of cookie crumbs. The goals were always in the same
¹⁹⁴ corners, but the position of the doors and the pile of cookie crumbs varied
¹⁹⁵ between trials. In addition to these three features, a subset of trials included
¹⁹⁶ walls (shown by the dark gray squares in Figure 1a) that agents could not walk
¹⁹⁷ through.

¹⁹⁸ Our stimuli set was designed to capture different types of inferences while
¹⁹⁹ also controlling for features that simple heuristics could exploit (e.g., ensuring

200 that the target goal was not always the one closest to the cookie crumbs, and
201 that it could not be determined by projecting a straight line that intersected the
202 entrance and the location of the cookie crumbs). We began by considering four
203 different possible inference patterns: full certainty (assigning probability close to
204 1 to a hypothesis; D trials), full negative certainty (assigning probability close
205 to 0 to a hypothesis, while also not having full certainty over two remaining
206 hypotheses; N trials), partial certainty (assigning a higher probability to one of
207 the hypotheses; P trials), and no certainty (assigning a uniform distribution to
208 the hypothesis space; U trials).

209 We first designed seven single-door trials that captured each of these in-
210 ference patterns in goal inference (two D , N , and P trials, and one U trial;
211 schematic versions shown in Figure 3a). We then designed 16 additional tri-
212 als with multiple doors by combining every possible inference pattern for the
213 goal the agent was pursuing and the entrance that they took (schematic versions
214 shown in Figure 3b).

215 *3.3. Procedure*

216 Participants read a brief tutorial that explained the logic of the task. After
217 learning how to interpret the images, participants were told that agents were
218 equally likely to enter the room from any of the doors with the intention of
219 going directly to one of the three goals (to remove the possibility that agents
220 pursue multiple goals, or wander aimlessly before selecting one). After the
221 introduction, participants completed a questionnaire that ensured they had read
222 and understood the instructions. Participants that failed at least one question
223 were redirected to the beginning of the instructions and given a second chance
224 to participate in the study. Participants that failed the questionnaire twice were
225 not permitted to participate in the study.

226 Participants completed all 23 trials in a random order. On each trial, par-
227 ticipants answered a multiple-choice attention-check question (“Which corner is
228 farthest from Door 1 (there may be more than one)?”) and were asked to infer
229 the agent’s goal (“Which corner is the person going for?”) using three contin-
230 uous sliders, one for each goal (each ranging from 0, labeled as “definitely no,”
231 to 1, labelled as “definitely”). Trials with at least two doors included a third
232 question that asked participants to infer the agent’s entry point (“Which door
233 did they come from?”) using one slider per door. Participants were allowed
234 to submit their responses for each trial only when they correctly answered the

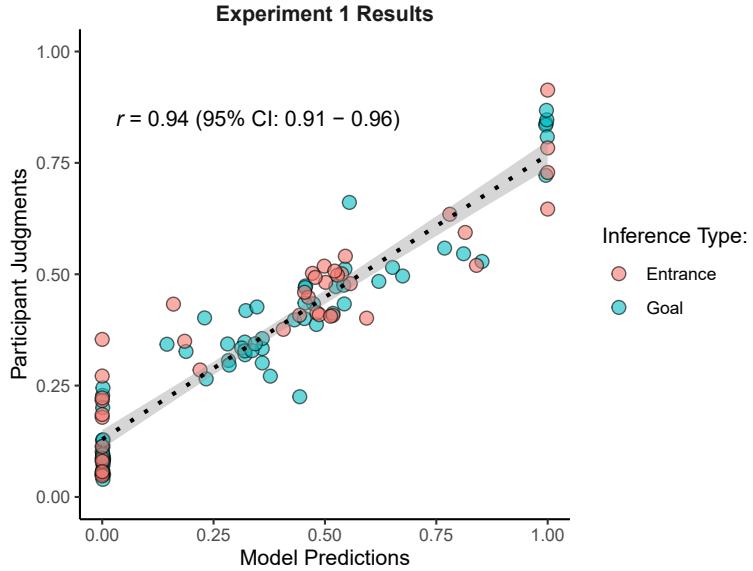


Figure 2: Results from Experiment 1. Each point corresponds to a judgment, with model predictions on the x -axis and mean participant judgments on the y -axis. Color indicates inference type and the dotted line shows the best linear fit with 95% confidence bands (in light gray).

235 attention-check question. Otherwise, participants were prompted to “please pay
 236 attention and try again.”

237 3.4. Results

238 Participant judgments were first normalized within-trial (such that every
 239 distribution over goals or doors added up to 1) and then averaged across par-
 240 ticipants. Figure 2 shows the results from Experiment 1. Overall, our model
 241 showed a correlation of $r = 0.94$ (95% CI: 0.91 – 0.96) with participant judg-
 242 ments, and the strength of the model fit was similar when looking only at goal
 243 inferences ($r = 0.95$; 95% CI: 0.92 – 0.97) or door inferences ($r = 0.92$; 95% CI:
 244 0.86 – 0.95).

245 Figure 3 shows our model’s results as a function of trial. In each subplot,
 246 the image at the top shows an abstract schematic of the trial, with the pile of
 247 cookie crumbs marked as a brown square. This figure reveals how our model not
 248 only predicted participant judgments in situations where the agent’s entry point
 249 and goal were clear, it also matched participant judgments in its expression of
 250 uncertainty. Critically, our model’s uncertainty reflects how well it was able

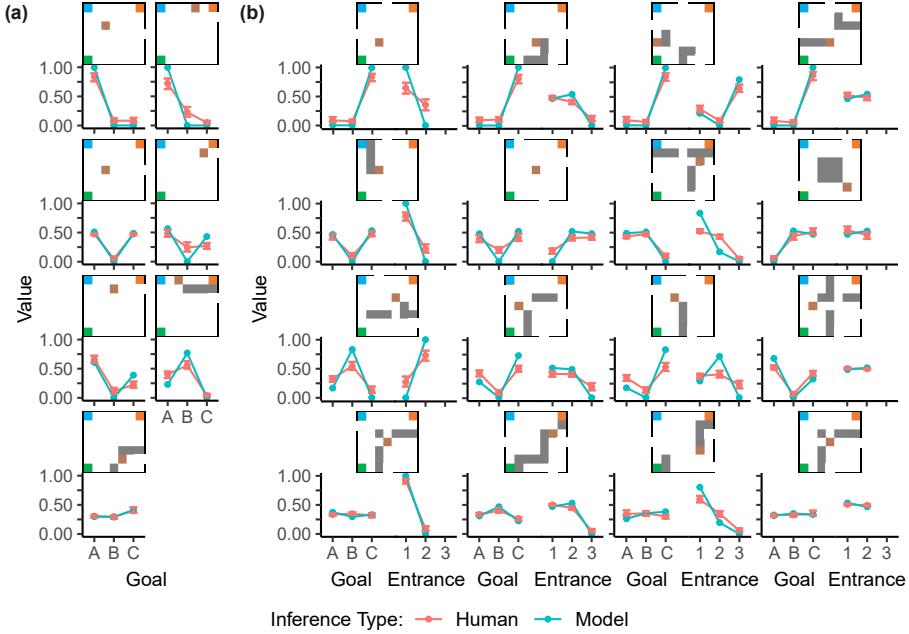


Figure 3: Detailed results from Experiment 1. From top to bottom, each row of subplots corresponds to the D , N , P , and U trials for goal inferences, respectively. (a) Results for trials that only had one door. (b) Results for trials that had more than one door. From left to right, each column of subplots corresponds to the D , N , P , and U trials for door inferences, respectively. The goals A, B, and C are indicated by the blue, orange, and green squares, respectively. The doors are sequentially numbered in a clockwise fashion, with door 1 starting from the top (or from the right if there is no top door). Walls are marked as dark gray squares and the pile of cookie crumbs are indicated by the brown squares. Red lines represent mean participant judgments and blue lines represent our model's predictions. Error bars on participant judgments represent 95% bootstrapped confidence intervals.

251 to reconstruct the event, becoming less confident as a function of how much
 252 conflict there is in entry points and goals across different hypothetical event
 253 reconstructions. The fact that this event-based uncertainty matched participant
 254 judgments with quantitative accuracy suggests that participants may have also
 255 been performing these inferences via some form of event reconstruction.

256 One alternative possibility is that participant judgments were driven by su-
 257 perficial features of the stimuli, rather than by event reconstruction. We tested
 258 this possibility through a multinomial logistic regression trained to predict par-
 259 ticipant goal inferences as a function of the distance between the pile of cookie
 260 crumbs and each goal, the average distance between the pile of cookie crumbs
 261 and each door, the number of doors, and all of their interactions. To train
 262 this regression, we transformed participant judgments into a one-hot vector,

marking 1 for the goal with the highest probability and 0 for the rest, and implemented LASSO regularization (Tibshirani, 1996) to avoid overfitting. We generated the alternative model’s predictions in a leave-one-out fashion—that is, the predictions for each trial consisted of the output of a regression trained on all remaining trials.

Even though this alternative model was trained on the qualitative structure of participant judgments, it nonetheless only produced a correlation of $r = 0.49$ (95% CI: $0.30 - 0.63$) with participant judgments, which was substantially lower than the one produced by our model ($\Delta r = 0.46$; 95% CI: $0.33 - 0.65$). These results show that, while superficial features can capture the broad structure of participant judgments, they fail to do so at our model’s level of granularity, further suggesting that people’s inferences were centered on a form of Bayesian event reconstruction.

4. Experiment 2

In Experiment 1 we found that people can infer where an agent was going and where they came from, all from a single piece of indirect evidence about their presence. Participant judgments were quantitatively predicted by a model centered on an ability to reconstruct what happened. If our account is correct, then people should also be able to explicitly reconstruct the actions that an agent took in a way similar to our model. We test this prediction in Experiment 2.

4.1. Participants

40 U.S. participants (as determined by their IP address) were recruited using Amazon Mechanical Turk ($M = 38.25$ years, $SD = 11.02$ years).

4.2. Stimuli

The stimuli were the same as those from Experiment 1 (see Figure 1a for examples and Figure 3 for schematic versions).

4.3. Procedure

Participants read a brief tutorial that explained the logic of the task. Participants were then instructed on how to draw their paths. After the introduction, participants completed a questionnaire that ensured they had read and understood the instructions. Participants that failed at least one question were redirected to the beginning of the instructions and given a second chance to

295 participate in the study. Participants that failed the questionnaire twice were
296 not permitted to participate in the study.

297 Participants completed all 23 trials in a random order. On each trial, partic-
298 ipants were asked to infer the path they thought the agent took, given the pile
299 of cookie crumbs. Participants generated their paths by sequentially clicking
300 on the squares they believed the agent walked through. Participants were only
301 allowed to proceed when they had successfully generated a valid path, which
302 consisted of paths that started at a door, ended at a goal, and passed through
303 the pile of cookie crumbs. Participants were allowed to reset the drawn path as
304 many times as they wished.

305 *4.4. Model Predictions*

306 To evaluate the participant-generated path reconstructions, we used our
307 framework to calculate

$$p(t|s) \propto p(s|t)p(t), \quad (4)$$

308 where $p(s|t)$ is the likelihood of a trajectory t generating scene s and $p(t)$ is the
309 prior over possible trajectories. Here, $p(s|t) = 1/|t|$ (like in Equation 2) and $p(t)$
310 is obtained by marginalizing over the agents' potential entry points and goals,
311 as follows:

$$p(t) = \sum_{d,g} p(t|d,g)p(d,g). \quad (5)$$

312 *4.5. Results*

313 Our computational framework enables us to calculate the probability as-
314 signed to each path generated by participants. However, directly interpret-
315 ing these probabilities is difficult, as they are sensitive to the length of the
316 path and to the number of competing paths that fulfill a goal efficiently. To
317 make our results easier to interpret, we compared our model's evaluations of
318 the participant-generated path reconstructions with that of a baseline model.
319 This baseline model used a uniform transition function over all actions, exclud-
320 ing the one that would generate a transition to the previous state (to prevent
321 infinite back-and-forth loops). We then computed the Bayes factor for each
322 reconstructed path by dividing the probability of that path, as predicted by
323 our model (i.e., $p(t|s)$), by the probability predicted by the baseline model. A

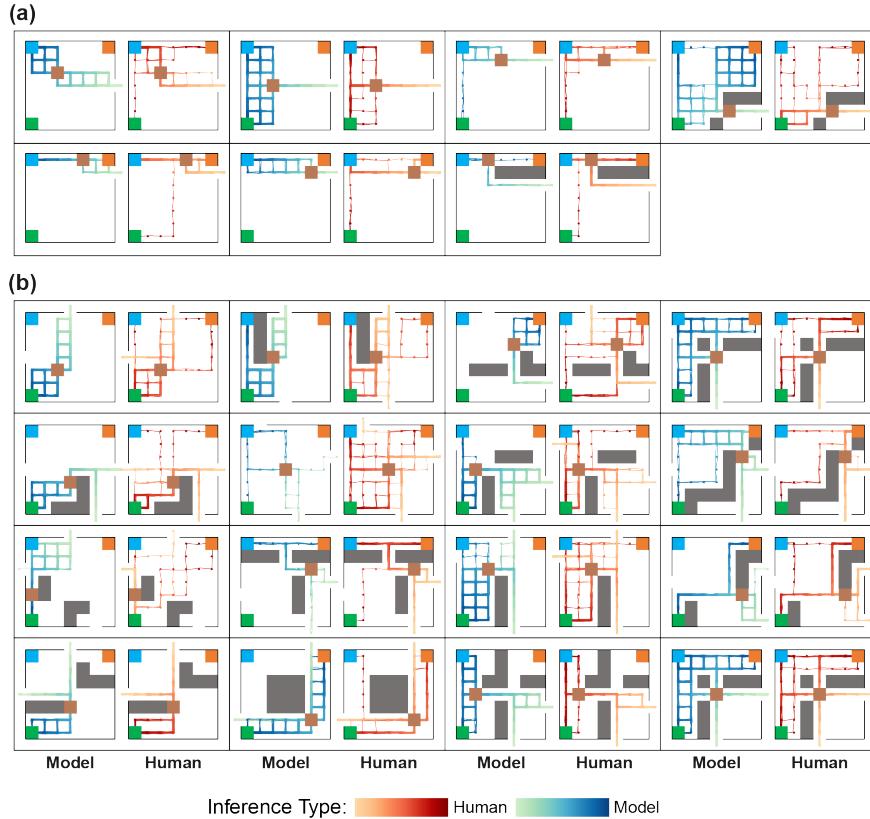


Figure 4: Comparison of reconstructed paths generated by our model and participants in Experiment 2. From left to right, each column of subplots corresponds to the *D*, *N*, *P*, and *U* trials for goal inferences, respectively. (a) Results for trials that only had one door. (b) Results for trials that had more than one door. From top to bottom, each row of subplots corresponds to the *D*, *N*, *P*, and *U* trials for door inferences, respectively. The goals A, B, and C are indicated by the blue, orange, and green squares, respectively. The doors are sequentially numbered in a clockwise order, with door 1 starting from the top (or from the right if there is no top door). Walls are marked as dark gray squares and the pile of cookie crumbs are indicated by the brown squares. Each line represents a reconstructed path, color-coded to indicate time, moving from light orange to dark red (for participants) or light green to dark blue (for the model).

324 Bayes factor greater than one would indicate that our model explains participant
325 judgments better than the baseline model; a Bayes factor less than one
326 would indicate that the baseline model explains participant judgments better
327 than our model.

328 Our model outperformed the baseline model on all trials. The average Bayes
329 factor in our experiment was 16935.33 (lowest factor = 7933.79; highest factor
330 = 84383.12), meaning that our model was 16,000 times more likely to produce
331 the participant-generated path reconstructions relative to the baseline model
332 ($t(39) = 9.10, p < 0.001$ using a Bayes factor of 1 as the reference level).

333 Figure 4 shows trial-by-trial results from Experiment 2. Each trial is pre-
334 sented twice, with our model’s path reconstructions on the left and participant-
335 generated path reconstructions on the right. All paths are color-coded to in-
336 dicate time (with darker colors occurring later in time). For both our model
337 and participants, the higher path density indicates where the majority inferred
338 the agent to have traveled. As this figure shows, the distribution of participant-
339 generated path reconstructions largely matched those generated by our model
340 (although participants were more likely to generate suboptimal paths).

341 **5. Do explicit event reconstructions in Experiment 2 predict infer-
342 ences from Experiment 1?**

343 The previous results showed that that people can not only reconstruct agents’
344 probable actions, but do so in a way similar to our model. According to our
345 proposal, this event reconstruction underlies people’s capacity to infer mental
346 states from indirect physical evidence. If this is the case, then the information
347 implicitly encoded in the path reconstructions from Experiment 2 should have
348 predictive power over the inferences that participants made in Experiment 1.
349 To test this possibility, we extracted the goals and doors from the participant-
350 generated path reconstructions. To achieve this, we calculated the proportion of
351 paths that originated from each possible entrance, and the proportion of paths
352 that reached each possible goal, and compared these values to the corresponding
353 goal and door inferences from Experiment 1. Figure 5 shows the results from this
354 analysis. Overall, the goals and doors extracted from the participant-generated
355 path reconstructions showed a correlation of $r = 0.89$ (95% CI: 0.83 – 0.92)
356 with the inferences participants made in Experiment 1, and the strength of this
357 fit was similar when looking only at goals ($r = 0.88$; 95% CI: 0.80 – 0.93) or
358 doors ($r = 0.90$; 95% CI: 0.82 – 0.95). Furthermore, when we compared these

359 extracted goals and doors against our model’s predictions in Experiment 1, we
 360 found a correlation of $r = 0.86$ (95% CI: 0.79 – 0.91), and a similar fit when
 361 looking only at goals ($r = 0.85$; 95% CI: 0.76 – 0.91) or doors ($r = 0.88$; 95%
 362 CI: 0.78 – 0.93).

363 Critically, participants in Experiment 2 could only generate a single path per
 364 trial. By combining the paths of multiple participants, we were able to reveal
 365 distributions over goals and doors that quantitatively resembled the inferences
 366 participants made in Experiment 1. The fact that these distributions predicted
 367 inferences from Experiment 1 suggests that generated paths were samples from
 368 the posterior distribution (rather than maximum likelihood or maximum *a posteriori*
 369 estimates, which would not contain enough information to reconstruct
 370 the full probability distribution over inferences). This analysis suggests that
 371 people had access to and sampled their paths in accordance to these goal and
 372 door distributions.

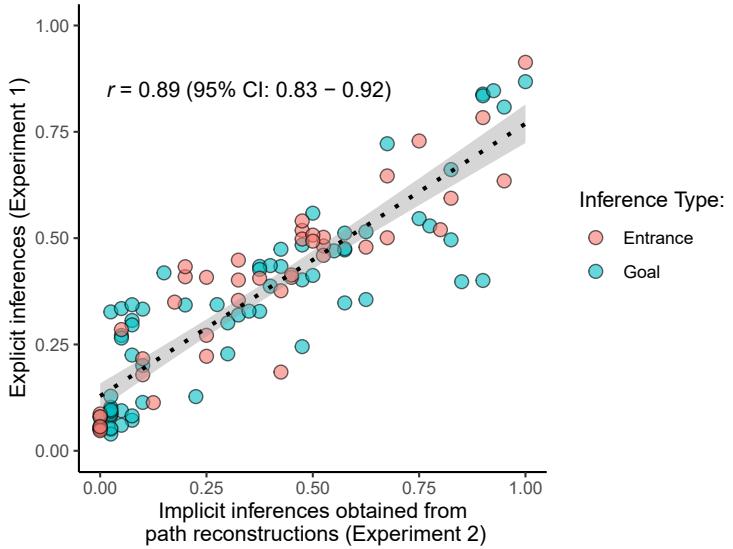


Figure 5: Comparison between the extracted goals and doors from Experiment 2 and the participant inferences from Experiment 1. Color indicates inference type and the dotted line shows the best linear fit with 95% confidence bands (in light gray).

373 **6. Experiment 3**

374 Experiment 1 showed that people can infer an agent’s goals and origins, and
 375 that these inferences exhibit the quantitative structure predicted by a model of

376 event reconstruction. Experiment 2 further showed that people could explicitly
377 reconstruct the paths in a way similar to our model. In Experiment 3, we test a
378 further prediction of our account: If our model of event reconstruction is correct,
379 then people should not only be able to infer a *single* agent’s probable actions
380 and goals, but also be able to estimate how many agents might have been in a
381 room, based on how many path reconstructions are needed to explain a given
382 scene.

383 *6.1. Participants*

384 40 U.S. participants (as determined by their IP address) were recruited using
385 Amazon Mechanical Turk ($M = 37.62$ years, $SD = 11.94$ years).

386 *6.2. Stimuli*

387 Our stimuli consisted of 15 gridworld images that were similar to those in
388 Experiment 1 with the difference that each trial now has two piles of cookie
389 crumbs instead of one (see Figure 6 for examples). Our stimuli set was designed
390 to capture different types of inferences that our model supports. Specifically,
391 we designed three different trials for each of the following possible inference
392 patterns: high certainty that one agent was in the room (definitely one, or $D1$,
393 trials), partial certainty that one agent was in the room (probably one, or $P1$,
394 trials), uncertainty whether it was one or two agents in the room (uncertain, or
395 UN , trials), partial certainty that two agents were in the room (probably two,
396 or $P2$, trials), and high certainty that two agents were in the room (definitely
397 two, or $D2$, trials).

398 *6.3. Procedure*

399 The procedure was nearly identical to Experiment 1, except that participants
400 were shown two piles of cookie crumbs and were told that their task was
401 to infer if one or two agents had been in the room. After the introduction, par-
402 ticipants completed a questionnaire that ensured they had read and understood
403 the instructions. Participants that failed at least one question were redirected
404 to the beginning of the instructions and given a second chance to participate in
405 the study. Participants that failed the questionnaire twice were not permitted
406 to participate in the study.

407 Participants completed all 15 trials in a random order. On each trial, par-
408 ticipants answered a multiple-choice attention-check question (“Which corner
409 is the farthest walk from Door 1? If there is more than one correct answer,

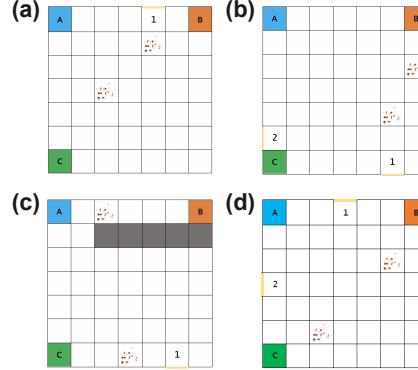


Figure 6: (a-d) Example stimuli from Experiment 3 for $D1$, $P1$, $P2$, and $D2$ trials, respectively (see Experiment 3 Stimuli for details). Potential goals are positioned in the corners, labeled alphabetically, and color-coded. Doors are shown in yellow and coded numerically. Walls are shown in dark gray. Each trial included two piles of cookie crumbs positioned in various parts of the room.

410 just choose one of them.”) and were asked to infer how many agents were in
 411 the room (“How many people were in the room?”) using a continuous slider
 412 (ranging from 0, labelled as “definitely one,” to 1, labelled as “definitely two”).
 413 Participants were allowed to submit their responses for each trial only when
 414 they correctly answered the attention-check question. Otherwise, participants
 415 were told to “please pay attention and try again.”

416 *6.4. Model Predictions*

417 To predict how many agents might have been in a scene we computed the
 418 probability that a agents were in scene s , through

$$p(a|s) \propto p(s|a)p(a), \quad (6)$$

419 where $p(a)$ is a prior over the number of agents that could have been present.
 420 In natural contexts, this prior should reflect the statistics of how often different
 421 agents might interact in different environments. To model our experiment,
 422 however, we used a simple uniform prior over the possibility of having one
 423 or two agents. This prior was then weighted by the likelihood of a particular
 424 number of agents a generating scene s , given by

$$p(a|s) \propto \begin{cases} \sum_{t \in \mathbb{T}} p(s|t)p(t) & a = 1 \\ \sum_{t_1, t_2 \in \mathbb{T}} p(s|t_1, t_2)p(t_1)p(t_2) & a = 2 \end{cases} \quad (7)$$

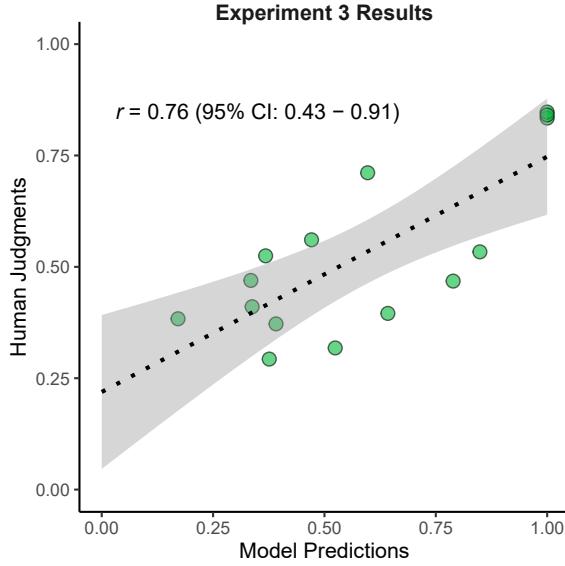


Figure 7: Results from Experiment 3. Each point corresponds to a judgment, with model predictions on the x -axis and mean participant judgments on the y -axis. The dotted line shows the best linear fit with 95% confidence bands (in light gray).

425 To compute the likelihood that two trajectories explain the scene (i.e., $p(s|t_1, t_2)$),
 426 we modified our generative model to sample two sets of entry points, goals,
 427 and trajectories at a time instead of one, where the likelihood is defined as
 428 $1/(|t_1| + |t_2|)$ if there was a scene match (i.e., both piles of cookie crumbs lie
 429 within both trajectories, and each trajectory was responsible for one of the
 430 cookie crumbs) and 0 otherwise.

431 *6.5. Results*

432 Participant judgments were averaged across trials and compared against our
 433 model’s predictions. Figure 7 shows the results from Experiment 3. Participant’s
 434 relative confidence about the number of agents in the scene was quantitatively
 435 similar to our model’s predictions, yielding a correlation of $r = 0.76$
 436 (95% CI: 0.43 – 0.91).

437 Figure 8 shows our model’s results as a function of each trial. In each subplot,
 438 the image at the top shows an abstract schematic of the trial, with both piles
 439 of cookie crumbs marked as brown squares. From left to right, each column
 440 corresponds to the $D1$, $P1$, UN , $P2$, and $D2$ trials, respectively. This figure
 441 reveals how our model quantitatively predicts participant judgments across the

442 various trials and levels of uncertainty.

443 Interestingly, the model fit in Experiment 3 was lower relative to Experiment
444 1. Under our account, this difference arises because Experiment 3 requires re-
445 constructing paths for a single agent, reconstructing paths from multiple agents,
446 and weighting their relative probability of generating the observed scene. Con-
447 sistent with this, we found higher mismatches between our model and partici-
448 pants in the P trials ($MSE = 0.053$) over the D ($MSE = 0.021$) and U trials
449 ($MSE = 0.019$). That is, participants struggled more in trials that relied on
450 a capacity to make precise comparisons between the number of single-agent
451 reconstructions and two-agent reconstructions.

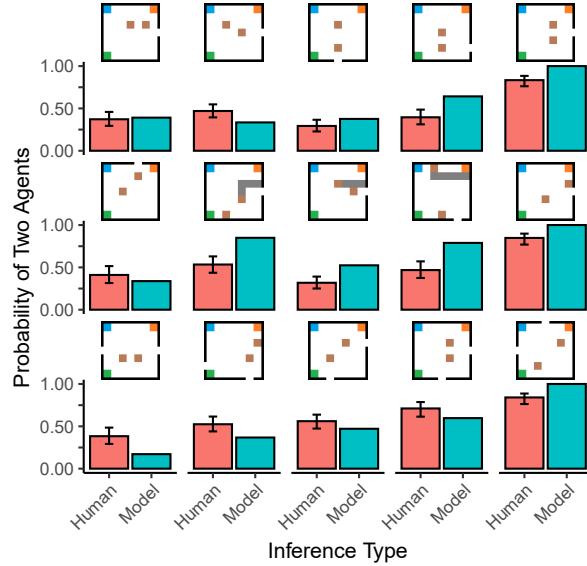


Figure 8: Detailed results from Experiment 3. From left to right, each column corresponds to $D1$, $P1$, UN , $P2$, and $D2$ trials, respectively. Red bars represent mean participant judgments and blue bars represent our model's predictions. Error bars on participant judgments represent 95% bootstrapped confidence intervals.

452 Like in Experiment 1, we also evaluated whether participant judgments could
453 be explained by superficial features of the stimuli rather than via event recon-
454 struction. We tested this possibility through a logistic regression trained to
455 predict participants' distribution over the number of agents they thought were
456 in the room as a function of the distance between each goal and each pile of
457 cookie crumbs, the average distance between each pile of cookie crumbs and the
458 doors, the number of doors, and all of their interactions. We trained and tested

459 this alternative model in the same way as the one described in Experiment 1.
460 Even though this alternative model had access to the qualitative structure of
461 participant judgments, it nonetheless produced a correlation of $r = 0.19$ (95%
462 CI: $-0.30 - 0.66$) with participant judgments, which was substantially lower
463 than the one produced by our model ($\Delta r = 0.58$; 95% CI: $0.12 - 1.17$). These
464 results extend our findings from Experiments 1 and 2, suggesting that people
465 can not only infer an agent's goals and origins based on indirect evidence of
466 their presence, but also whether multiple agents may have been present in a
467 given scene.

468 **7. Discussion**

469 Research on human action understanding has historically focused on how
470 we infer the goals and mental states of agents whose behavior we are observing.
471 Our results show that our capacity to reason about others goes beyond face-
472 to-face interactions and includes nuanced social inferences from simple physical
473 scenes. In Experiment 1, we showed that people can infer an agent's desires (i.e.,
474 where an agent was going) and past actions (i.e., where an agent came from)
475 from just a single piece of indirect evidence about their presence. The tight
476 correspondence between our model's predictions and the fine-grained structure
477 of participant judgments suggested that these inferences were structured around
478 a form of mental event reconstruction, where people infer the actions that an
479 agent took and use this reconstructed behavior to make richer social inferences.
480 Experiment 2 showed further support for our proposal, revealing that people
481 can explicitly reconstruct the actions that someone took in a way similar to
482 our model. Furthermore, these explicit reconstructions predicted the inferences
483 participants made in Experiment 1, showing a direct link between people's social
484 inferences from physical evidence, and people's ability to reconstruct behavior.
485 Finally, in Experiment 3, we showed that people can use this capacity to infer
486 the number of agents that were in a given scene, based on the number of paths
487 they needed to reconstruct to explain the scene.

488 Our computational model formalized these inferences as the process of re-
489 constructing behaviors that can explain the indirect observable evidence. Our
490 model's quantitative fit with participant judgments, as well the failure of our
491 alternative models (despite being trained on participant judgments), suggests
492 that people were performing similar computations. In particular, the similarity
493 between the paths generated by our model and those drawn by participants (see

494 Figure 4) further show that people can indeed reconstruct an agent’s behavior
495 through an expectation that agents act rationally and efficiently.

496 The heart of our proposal—expressed in Equation 2 (see Section 2)—posits
497 event reconstruction as the key representation that connects two different cog-
498 nitive capacities. The first is a model of how agents act as a function of their
499 goals and environmental constraints (i.e., a Theory of Mind). The second is
500 a model of how agents’ actions may or may not leave observable traces in the
501 environment. In this paper we focused on testing the general framework that we
502 proposed, using a simple model of how agents leave traces in the environment.
503 However, our computational framework only requires an ability to calculate the
504 likelihood of scenes given behaviors ($p(s|t)$ in Equation 2), and the computa-
505 tions within this component can be arbitrarily complex. Here we consider two
506 richer models that might be employed in future work.

507 A first way in which our framework could tackle richer inferences is by using
508 a full-fledged model of intuitive physics to evaluate how actions leave traces
509 in the environment. A recent body of work in cognitive science has found
510 that human intuitive physics is instantiated as a *physics engine* that supports
511 rich probabilistic simulations of how objects and forces interact in the environ-
512 ment (Fischer et al., 2016; Battaglia et al., 2013), and that physical simulations
513 might underlie how we reason about the interaction between agents and ob-
514 jects (Yildirim et al., 2019). Thus, using a physics engine to simulate how the
515 forces that agents apply to the world leave observable changes might enable our
516 computational framework to handle more complex physical events that contain
517 social information.

518 A second possible extension lies in changing what we consider to be an
519 observable scene. Our focus here was on inference from physical information,
520 but recent studies have found that people can also infer other people’s actions
521 from social evaluations, such as inferring what someone might have done by
522 learning that they were blamed by others about a failure (Davis et al., 2021).
523 These inferences might be understood as an extended form of this framework,
524 where the second term is replaced with an expectation of how people’s behavior
525 causes social outcomes, rather than physical ones.

526 Similarly, our computational framework also allows for more complex models
527 of agents’ behavior, as long as they can express the likelihood of different ac-
528 tions under different goals and environmental constraints. In our work, we used
529 a model structured on an assumption that agents act rationally and efficiently
530 under perfect knowledge. In future work, we hope to extend this work to use

531 models where agents can have partial or incomplete knowledge of their environment
532 (e.g., Baker et al., 2017). This would enable our framework to consider
533 situations where indirect evidence reveals an agent’s intention to explore and
534 understand their surroundings rather than to complete a known goal.

535 While our work focused on adults, some recent research suggests these ca-
536 pacities might emerge in early childhood. In particular, preschoolers can judge
537 what types of physical constructions (such as different types of block towers)
538 require more physical effort (Gweon et al., 2017), suggesting an early under-
539 standing between actions and physical outcomes. At the same age, children
540 can also determine what actions are more likely to leave physical traces. For
541 example, lifting an upside-down cup filled with rice will likely leave visible rice
542 grains after the cup has been repositioned. But it is possible to lift and repo-
543 sition an upside-down cup filled with a few large rocks without leaving any
544 evidence behind (Jacobs et al., 2021). Moreover, children can also associate
545 physical outcomes with the corresponding mental states of the agent who gen-
546 erated them (Pelz et al., 2020). Finally, and most strikingly, young children
547 can infer the transfer of ideas by seeing how different agents create artifacts
548 (Pesowski et al., 2020), a capacity known as “intuitive archaeology” (Hurwitz
549 et al., 2019; Schachner et al., 2018). While these results point towards an early
550 understanding of the relation between the social and physical world, to our
551 knowledge, it is an open question whether these inferences are also linked to
552 some form of explicit or implicit event reconstruction.

553 At first sight, our computational framework appears to suggest that any
554 creature with some form of naïve psychology and naïve physics ought to be
555 able to perform social inferences from physical evidence (i.e., access to the two
556 key components of Equation 2). This may not be the case, however, because
557 our model also requires an ability to transfer information across these intuitive
558 theories (reconstructing behavior via naïve psychology and evaluating how they
559 compare to the environment via naïve physics). While this is an open empirical
560 question, research suggest that intuitive physics and intuitive psychology rely
561 on separate neural circuitry (Fischer et al., 2016; Saxe & Powell, 2006), leaving
562 open the question of how these two intuitive theories might work in tandem to
563 reconstruct other people’s behavior from physical evidence.

564 One interesting case that suggests such a feat might not be simple comes from
565 research with vervet monkeys. Vervet monkeys have an astonishing degree of
566 social intelligence, including a nuanced repertoire of vocal calls to signal different
567 types of predators, each associated with different escape responses (Seyfarth

568 et al., 1980a,b). Yet, vervet monkeys routinely fail to identify predators from
569 indirect physical evidence. For instance, vervet monkeys fail to infer that a
570 python is hiding in a nearby bush when they encounter the distinct tracks that
571 they leave behind. Similarly, vervet monkeys also fail to infer the presence
572 of a leopard upon encountering a gazelle carcass on a tree (where leopards
573 usually drag their prey so they can feed in solitude; Cheney & Seyfarth, 1985).
574 Critically, this failure appears to persist even after vervet monkeys have, in
575 past events, seen the direct association between the physical evidence and the
576 predator (Cheney & Seyfarth, 1985, 2008). These results might point to the
577 possibility that the form of event reconstruction that we present here might
578 require capacities that go beyond simple physical and social reasoning, as they
579 involve an ability to combine the two capacities to derive richer inferences than
580 would be otherwise possible.

581 Our work also leaves a critical question open. In our experiments, we focused
582 on situations where people already knew that an agent was previously present.
583 Our work therefore does not speak to how people recognize that a scene contains
584 traces of someone's behavior in the first place. One possibility is that people
585 engage in a pervasive and constant social analysis of all physical scenes. Doing
586 so, however, might be prohibitively costly and unnecessary. As such, it is likely
587 that people are attuned to the physical signatures that reveal the presence of an
588 agent, which then trigger social reasoning from physical evidence. Consistent
589 with this second view, research suggests that people can infer the presence of an
590 agent based on apparent order (Newman et al., 2010; Keil & Newman, 2015) and
591 on a sensitivity to human-like errors that people leave behind when interacting
592 with the world (Lopez-Brau et al., 2021). An open question is how the ability
593 to detect the presence of an agent interacts with the ability to reconstruct their
594 behavior and infer their mental states.

595 Overall, our results illustrate the sophistication of human social intelligence.
596 Beyond being able to read the mental states of agents that we are personally
597 interacting with, we can also infer the mental states of agents we have never
598 encountered, just from minimal indirect evidence that reveals their presence.
599 Researchers have long argued that humans are unique in their ability to reason
600 about and navigate the social world (Herrmann et al., 2007). Our work shows
601 that this ability is not confined to social interactions, but can fundamentally
602 affect how we reason about the physical world, allowing us to see social meaning
603 embedded in physical structures, like a pile of rocks, where other animals may
604 see merely just that: a pile of rocks.

605 **8. Acknowledgments**

606 This work was supported by NSF award BSC-2045778 awarded to JJE. All
607 analysis and materials can be found at https://osf.io/q3ct5/?view_only=f2fa5332eb4545bda9fb5353eb73daab (Lopez-Brau, 2021).

609 **References**

610 Baker, C. L., Jara-Ettinger, J., Saxe, R., & Tenenbaum, J. B. (2017). Rational
611 quantitative attribution of beliefs, desires and percepts in human mentalizing.
612 *Nature Human Behaviour*, 1, 1–10.

613 Baker, C. L., Saxe, R., & Tenenbaum, J. B. (2009). Action understanding as
614 inverse planning. *Cognition*, 113, 329–349.

615 Battaglia, P. W., Hamrick, J. B., & Tenenbaum, J. B. (2013). Simulation as an
616 engine of physical scene understanding. *Proceedings of the National Academy
617 of Sciences*, 110, 18327–18332.

618 Bellman, R. (1957). A markovian decision process. *Journal of Mathematics and
619 Mechanics*, (pp. 679–684).

620 Bridgers, S., Jara-Ettinger, J., & Gweon, H. (2020). Young children consider the
621 expected utility of others' learning to decide what to teach. *Nature Human
622 Behaviour*, 4, 144–152.

623 Cheney, D. L., & Seyfarth, R. M. (1985). Social and non-social knowledge in
624 vervet monkeys. *Philosophical Transactions of the Royal Society of London.
625 B, Biological Sciences*, 308, 187–201.

626 Cheney, D. L., & Seyfarth, R. M. (2008). *Baboon metaphysics: The evolution
627 of a social mind*. University of Chicago Press.

628 Collette, S., Pauli, W. M., Bossaerts, P., & O'Doherty, J. (2017). Neural compu-
629 tations underlying inverse reinforcement learning in the human brain. *Elife*,
630 6, e29718.

631 Davis, Z., Allen, K., & Gerstenberg, T. (2021). Who went fishing? inferences
632 from social evaluations. *CogSci proceedings*, .

633 Fischer, J., Mikhael, J. G., Tenenbaum, J. B., & Kanwisher, N. (2016). Func-
634 tional neuroanatomy of intuitive physical inference. *Proceedings of the Na-
635 tional Academy of Sciences*, 113, E5072–E5081.

636 Gergely, G., & Csibra, G. (2003). Teleological reasoning in infancy: The naïve
637 theory of rational action. *Trends in cognitive sciences*, 7, 287–292.

638 Gopnik, A., Meltzoff, A. N., & Bryant, P. (1997). Words, thoughts, and theories.

639 Gosling, S. D., Gaddis, S., & Vazire, S. (2008). First impressions based on the
640 environments we create and inhabit. *First Impressions*, (pp. 334–356).

641 Gosling, S. D., Ko, S. J., Mannarelli, T., & Morris, M. E. (2002). A room
642 with a cue: Personality judgments based on offices and bedrooms. *Journal of
643 Personality and Social Psychology*, 82, 379.

644 Gweon, H., Asaba, M., & Bennett-Pierre, G. (2017). Reverse-engineering the
645 process: Adults' and preschoolers' ability to infer the difficulty of novel tasks.
646 In *CogSci*.

647 Herrmann, E., Call, J., Hernández-Lloreda, M. V., Hare, B., & Tomasello,
648 M. (2007). Humans have evolved specialized skills of social cognition: The
649 cultural intelligence hypothesis. *Science*, 317, 1360–1366. doi:10.1126/
650 science.1146282.

651 Ho, M. K., Cushman, F. A., Littman, M., & Austerweil, J. L. (2019). Commu-
652 nication in action: Planning and interpreting communicative demonstrations.
653 *Journal of Experimental Psychology: General*, .

654 Hurwitz, E., Brady, T., & Schachner, A. (2019). Detecting social transmission
655 in the design of artifacts via inverse planning.

656 Jacobs, C., Lopez-Brau, M., & Jara-Ettinger, J. (2021). What happened here?
657 children integrate physical reasoning to infer actions from indirect evidence.
658 *CogSci*, .

659 Jara-Ettinger, J. (2019). Theory of mind as inverse reinforcement learning.
660 *Current Opinion in Behavioral Sciences*, 29, 105–110.

661 Jara-Ettinger, J., Gweon, H., Schulz, L. E., & Tenenbaum, J. B. (2016). The
662 naïve utility calculus: Computational principles underlying commonsense psy-
663 chology. *Trends in Cognitive Sciences*, 20, 589–604.

664 Jara-Ettinger, J., Schulz, L. E., & Tenenbaum, J. B. (2020). The naïve util-
665 ity calculus as a unified, quantitative framework for action understanding.
666 *Cognitive Psychology*, 123, 101334.

667 Jern, A., & Kemp, C. (2015). A decision network account of reasoning about
668 other people's choices. *Cognition*, 142, 12–38.

669 Jern, A., Lucas, C., & Kemp, C. (2011). Evaluating the inverse decision-making
670 approach to preference learning. *Advances in Neural Information Processing
671 Systems*, 24, 2276–2284.

672 Jern, A., Lucas, C. G., & Kemp, C. (2017). People learn other people's prefer-
673 ences through inverse decision-making. *Cognition*, 168, 46–64.

674 Keil, F. C., & Newman, G. E. (2015). Order, order everywhere, and only an
675 agent to think: The cognitive compulsion to infer intentional agents. *Mind &
676 Language*, 30, 117–139.

677 Liu, S., Ullman, T. D., Tenenbaum, J. B., & Spelke, E. S. (2017). Ten-month-
678 old infants infer the value of goals from the costs of actions. *Science*, 358,
679 1038–1041.

680 Lopez-Brau, M. (2021). Social inferences from physical evidence. URL: https://osf.io/q3ct5/?view_only=f2fa5332eb4545bda9fb5353eb73daab.

682 Lopez-Brau, M., Colombatto, C., Jara-Ettinger, J., & Scholl, B. (2021). Atten-
683 tional prioritization for historical traces of agency. *Vision*, .

684 Lucas, C. G., Griffiths, T. L., Xu, F., Fawcett, C., Gopnik, A., Kushnir, T.,
685 Markson, L., & Hu, J. (2014). The child as econometrician: A rational model
686 of preference understanding in children. *PLOS ONE*, 9, e92160.

687 Newman, G. E., Keil, F. C., Kuhlmeier, V. A., & Wynn, K. (2010). Early under-
688 standings of the link between agents and order. *Proceedings of the National
689 Academy of Sciences*, 107, 17140–17145.

690 Onishi, K. H., & Baillargeon, R. (2005). Do 15-month-old infants understand
691 false beliefs? *Science*, 308, 255–258.

692 Pelz, M., Schulz, L., & Jara-Ettinger, J. (2020). The signature of all things:
693 Children infer knowledge states from static images. *PsyArXiv*, .

694 Pesowski, M., Quy, A., Lee, M., & Schachner, A. (2020). Children use inverse
695 planning to detect social transmission in design of artifacts. *PsyArXiv*, .

696 Saxe, R., & Powell, L. J. (2006). It's the thought that counts: Specific brain
697 regions for one component of theory of mind. *Psychological Science*, 17,
698 692–699.

699 Schachner, A., Brady, T., Oro, K., & Lee, M. (2018). Intuitive archeology:
700 Detecting social transmission in the design of artifacts.

701 Seyfarth, R. M., Cheney, D. L., & Marler, P. (1980a). Monkey responses to
702 three different alarm calls: evidence of predator classification and semantic
703 communication. *Science*, 210, 801–803.

704 Seyfarth, R. M., Cheney, D. L., & Marler, P. (1980b). Vervet monkey alarm
705 calls: semantic communication in a free-ranging primate. *Animal Behaviour*,
706 28, 1070–1094.

707 Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. *Journal
708 of the Royal Statistical Society: Series B (Methodological)*, 58, 267–288.

709 Ullman, T., Baker, C., Macindoe, O., Evans, O., Goodman, N., & Tenenbaum,
710 J. B. (2009). Help or hinder: Bayesian models of social goal inference. In
711 *Advances in Neural Information Processing Systems* (pp. 1874–1882).

712 Wellman, H. M. (2014). *Making minds: How theory of mind develops*. Oxford
713 University Press.

714 Woodward, A. L. (1998). Infants selectively encode the goal object of an actor's
715 reach. *Cognition*, 69, 1–34.

716 Yildirim, I., Saeed, B., Bennett-Pierre, G., Gerstenberg, T., Tenenbaum, J.,
717 & Gweon, H. (2019). Explaining intuitive difficulty judgments by modeling
718 physical effort and risk.