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Abstract
Given a lattice polygon P with g interior lattice points, we can associate to P two
moduli spaces: the moduli space of algebraic curves that are non-degenerate with
respect to P and the moduli space of tropical curves of genus g with Newton polygon
P .We completely classify the possible dimensions such amoduli space can have in the
tropical case. For non-hyperelliptic polygons, the dimension must be between g and
2g+1 and can take on any integer value in this range, with exceptions only in the cases
of genus 3, 4, and 7. We provide a similar result for hyperelliptic polygons, for which
the range of dimensions is from g to 2g−1. In the case of non-hyperelliptic polygons,
our results also hold for the moduli space of algebraic curves that are non-degenerate
with respect to P .
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1 Introduction

Let P be a convex lattice polygon, two-dimensional with g ≥ 2 interior lattice points.
Castryck and Voigt [4] associated with P the space MP of algebraic curves that are
non-degenerate with respect to P . These are the algebraic curves that can be defined
by a Laurent polynomial f (x, y) ∈ k[x±1, y±1] with Newton polygon1 P such that
for every face τ of P , the polynomial f |τ has no singularities in (k∗)2; here f |τ
is obtained from f by only including those terms corresponding to (i, j) ∈ τ . By
[4, Proposition 1.7], such a curve as genus g, so it is natural to consider MP as a
locus withinMg , the coarse moduli space of algebraic curves of genus g; due to this
relationship, we refer to the number of interior lattice points of P as the genus of P .
Castryck and Voigt then define the moduli space of non-degenerate curves of genus g
by fixing g and taking the union of all MP where P has genus g:

Mnd
g =

⋃

g(P)=P

MP .

This union can be taken to be finite [4, §2], so computing dim(Mnd
g ) is reduced to

computing the maximum value of dim(MP ) for fixed g. By [4, §1], this maximum is
equal to 3 for g = 2, 6 for g = 3, 17 for g = 7, and 2g + 1 otherwise. Their work
does not, however, address the question of what all possible values of dim(MP ) for
fixed g are.

The authors of [2] presented analogs to these algebraic moduli spaces in the setting
of tropical geometry, in particular tropical plane curves. A tropical plane curve Γ is
defined by a tropical polynomial f (x, y) over the min-plus semiring [7] and has the
structure of a one-dimensional polyhedral complex, consisting of edges and raysmeet-
ing at vertices. The Newton polygon P of f encodes a great deal of information about
Γ ; in particular, Γ is dual to a certain subdivision of P , induced by the coefficients of
f . Under this duality, the vertices of the tropical curve are in bijection with the faces
in the subdivision; bounded edges between vertices in the curve correspond to and are
perpendicular to interior edges in the subdivision that separate the faces associated
with the vertices; and unbounded edges correspond to and are perpendicular to exte-
rior edges of the Newton polygon. A subdivided lattice polygon and a dual tropical
curve are illustrated in Fig. 1. When the subdivision consists only of triangles of area
1/2, we call the subdivision a unimodular triangulation, and we call the tropical curve
smooth. The first Betti number of Γ is called the genus of Γ , and for a smooth plane
tropical curve is equal to the genus of P .

To study tropical plane curves in a moduli-theoretic setting, we associate to any
tropical curve a metric graph called its skeleton, which is the smallest subset of the
tropical curve that admits a deformation retract [2, §1]. More concretely, it can be
obtained by removing rays, then iteratively removing leaves, and finally smoothing
over 2-valent vertices. This skeletonization process is illustrated in Fig. 2. A key object
of study in [2] is then MP ; the space of all metric graphs of genus (that is, first Betti

1 If f (x, y) = ∑
i, j ci, j x

i y j , the Newton polygon P of f is the convex hull of those (i, j) ∈ Z
2 with

ci, j �= 0.
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Fig. 1 A unimodular triangulation of a lattice polygon and a smooth tropical curve of genus 5 dual to it

Fig. 2 A tropical curve and its genus 5 skeleton obtained by deleting the “loose” ends and then “smoothing
over” the graph

number) is equal to g that arise as the skeleton of some smooth tropical plane curve
with Newton polygon P . This is viewed as a locus within Mg , the moduli space of
all metric graphs of genus g [1]. In parallel to the algebraic case, one can define the
moduli space of tropical plane curves of genus g by fixing g and taking the union of
all MP where P has genus g:

M
planar
g =

⋃

g(P)=P

MP .

As in [4], the union can be taken to be finite, so once again dim(M
planar
g ) is equal to

the maximum value of dim(MP ) for fixed g. Indeed, for this tropical moduli space,
one can restrict the union to so-called maximal polygons, as defined in Section 2 (this
restriction cannot be made in the algebraic world, as discussed in [4, §11]). As argued
in [2, §3], we have dim(MP ) ≤ dim(MP ); it is proved in [2, Theorem 1.1] that for
every g exists a polygon P of genus g and with dim(MP ) ≥ dim(Mnd

g ). It follows

that dim(M
planar
g ) = dim(Mnd

g ). As with [4], only the maximum value of dim(MP ),
rather than all possible values, is computed.

In this paper, we study the possible values of dim(MP ) and dim(MP ), where the
number of interior points g of P is fixed. We refer to the former dimension as the
algebraic moduli dimension of P and to the latter as the tropical moduli dimension of
P . If we refer to the moduli dimension of a polygon without an adjective, we mean
the tropical moduli dimension. These dimensions are of great interest to both toric
geometers and to tropical geometers, as they are the dimensions of the spaces that
together assemble to form Mnd

g and M
planar
g . In the event that P has a collection of

interior points that are not all collinear, we call P non-hyperelliptic, and we have the
following strong relationship between dim(MP ) and dim(MP ).
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Theorem 1 (Theorem 1.4 in [6]) If P is non-hyperelliptic, then the algebraic and
tropical moduli dimensions of P are equal:

dim(MP ) = dim(MP ).

Thus when P is non-hyperelliptic, we may refer to the moduli dimension of P
without any ambiguity.

Our main result in the non-hyperelliptic case is the following.

Theorem 2 There exists a non-hyperelliptic polygon P of genus g ≥ 3 with
dim(MP ) = d if and only if

l(g) ≤ d ≤ u(g),

where

l(g) =
{
g + 1 if g ∈ {4, 7}
g otherwise

and

u(g) =

⎧
⎪⎨

⎪⎩

2g if g = 3

2g + 2 if g = 7

2g + 1 otherwise.

Using the fact that dim (MP ) = dim (MP ) for any non-hyperelliptic polygon P ,
we immediately obtain the following result for algebraic curves.

Corollary 1 Theorem 2 still holds if we replace MP withMP .

When our polygon has all g ≥ 2 interior lattice points collinear, we call it hyper-
elliptic. By [4, Lemma 5.1], if an algebraic curve is non-degenerate with respect to
a polygon P , then that curve is a hyperelliptic curve if and only if P is a hyperellip-
tic polygon, justifying this terminology. Hyperelliptic polygons of genus g admit a
complete and concrete classification, as proved in [9] and recalled in our Theorem 6.
We accomplish a much more complete result for hyperelliptic polygons in the tropical
setting: we determine the tropical moduli dimension of every single hyperelliptic
polygon (see Proposition 7). Such a concrete result can readily be used to prove the
hyperelliptic version of Theorem 2:

Theorem 3 There exists a hyperelliptic polygon P of genus g ≥ 2 with dim(MP ) = d
if and only if

g ≤ d ≤ 2g − 1.
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Our paper is organized as follows: In Sect. 2, we establish terminology and notation
and present previously known results on triangulations and moduli spaces. In Sect. 3,
we prove Theorem 2, with particular care given to determining precisely when the
lower bound is achieved in the non-hyperelliptic case. Finally, in Sect. 4 we prove
Theorem 3 and present other results for hyperelliptic polygons.

2 Background and definitions

In this section, we recall necessary background on lattice polygons, tropical curves,
and dimensions of moduli spaces. For a more detailed presentation on lattice polygons
very relevant to our work here, we refer the reader to [3].

2.1 Lattice polygons

A lattice point in R
2 is any point in Z

2, i.e., a point with integer coordinates. We say
that two lattice points (a, b) and (c, d) are visible to one another if the line segment
(a, b)(c, d) contains no other lattice points; or equivalently if gcd(a − c, b − d) = 1.

A set S in R
2 (or a higher-dimensional Rn) is convex if for any two points u, v ∈ S,

the line segment uv connecting them is a subset of S. The convex hull conv(u1, . . . , un)
of a collection of points u1, . . . , un is the smallest convex set containing them. 2 The
convex hull of a finite collection of points is a polygon, which has a finite number of
one-dimensional facets forming its boundary, with those facets meeting at vertices.
We say that P is a lattice polygon if every vertex of P is a lattice point. Throughout
this paper, we will assume all polygons are two-dimensional convex lattice polygons,
unless otherwise stated.

For such a polygon P , we partition the lattice points P ∩ Z
2 into two sets: the

boundary lattice points (or simply boundary points) on the facets of P , and the interior
lattice points (or simply interior points) in the interior of P . Recall that the number
of interior points of P is called the genus of P . These numbers are related to the area
of P by the following result:

Theorem 4 (Pick’s Theorem, [8]) If P is a (not necessarily convex) lattice polygon
with b boundary points and g interior points, the area of P is g + b

2 − 1.

Given P , we let the interior polygon Pint be the convex hull of all interior points
of P . Note that Pint may be the empty set, a single point, a line segment, or a two-
dimensional convex lattice polygon; we call P non-hyperelliptic if dim(Pint) = 2,
and hyperelliptic if dim(Pint) = 1. (This terminology does not cover polygons with at
most one interior lattice point.) For P non-hyperelliptic, we call the boundary of Pint
the interior boundary of P , and any lattice points of the interior boundary are called
interior boundary points.

In the special case of a non-hyperelliptic polygon P , there is a close relationship
between P and Pint. For a two-dimensional lattice polygon Q, let τ1, . . . , τn denote

2 “Smallest” heremeans that for any convex setC containing u1, . . . , un , we also have conv(u1, . . . , un) ⊂
C .
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Fig. 3 An interior vertex v can
only see boundary lattice points
p on the relaxations of its
incident facets

τ1
τ2

τ
(−1)
1

τ
(−1)
2

vp

the 1-dimensional facets of Q, and letHτi denote the half-plane defined by τi , so that

Q =
n⋂

i=1

Hτi .

We can describe Hτi as the set of all points (x, y) satisfying ai x + bi y ≤ ci , where

ai , bi , ci are relatively prime integers. We then let H(−1)
τi denote the set of all points

(x, y) satisfying ai x + bi y ≤ ci + 1 and define the relaxed polygon of Q to be

Q(−1) =
n⋂

i=1

H(−1)
τi

.

Note that every facet of Q(−1) is contained in H(−1)
τi for some facet τi of Q; we refer

to this facet of Q(−1) the relaxed facet of τi . We remark that although Q(−1) is a
polygon, it need not be a lattice polygon. However, in the case that Q = Pint for some
non-hyperelliptic lattice polygon P , we do have that P(−1)

int is a lattice polygon and
is in fact a lattice polygon containing P with the same set of interior lattice points
[3,4]. If P = P(−1)

int , we say that P is a maximal polygon, since it is maximal under
containment among all polygons with Pint as the interior polygon.

Remark 1 Let P be a non-hyperelliptic polygon with Q its two-dimensional interior
polygon. Let v be a vertex of Q incident to facets τ1 and τ2, where rotating τ1 clockwise
toward τ2 passes through Q. Suppose that p is a lattice point on the boundary of P
that is visible from v, where the line of sight does not intersect Q outside of v. Then
the line of sight must be strictly between τ1 and τ2 counterclockwise, as illustrated
in Fig. 3. This means p is either between τ1 and its relaxed edge, between τ2 and its
relaxed edge, or both, without lying on either τi . The only lattice points in those range
are on the relaxed facets themselves. Thus, p must be on the relaxed facet of τ1 or of
τ2.

Lattice polygons can be mapped to lattice polygons using unimodular transforma-
tions. These are affine linearmaps that sendZ

2 to itself and are of the form p 	→ Ap+v,
where A is a 2 × 2 integer matrix with determinant ±1 and v ∈ Z

2 is a translation
vector. We say that two lattice polygons P and Q are equivalent if there exists a
unimodular transformation t such that t(P) = Q. Several equivalent polygons are
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Fig. 4 Four equivalent polygons

(0, 0)

(6, 4)
(−3.5, 2)

(−2.5, 0)
(
√
2,

√
2)

(π, π)

Fig. 5 Three line segments, with lattice points highlighted and endpoints labeled; from left to right, their
lattice lengths are 2, 1, and π − √

2

illustrated in Fig. 4; the leftmost can be transformed into the other three using the
matrices

(
0 1
1 0

)
,
(
1 −1
0 1

)
, and

(
2 1
1 1

)
.

As illustrated by these equivalent polygons, the Euclidean length of the edges of a
polygon is not preserved under unimodular transformations; for instance, sending the
first to the third turns a vertical edge of length 1 into a diagonal edge of length

√
2.

This leads us to consider instead the lattice length of the edges of lattice polygons,
or in general of any line segments with rational slope. The lattice length �(S) of
a line segment S with rational slope is the quotient of its Euclidean length by the
determinant of the one-dimensional sublattice of Z

2 contained in the affine hull of
S. Since unimodular transformations preserve the Z

2 lattice, they preserve the lattice
length of line segments. In the case that S has both endpoints in Z

2, then its lattice
length is simply |S ∩ Z

2| − 1. (For an arbitrary line segment S with rational slope, we
can also compute �(S) as 1

λ
�(S′), where λ > 0 and S′ is a translated copy of λS with

both endpoints of S′ in Z
2.) Several line segments of various lattice lengths appear in

Fig. 5; note that computing the lattice length by counting up lattice points only works
when both endpoints are lattice points.

We close this subsection with a brief discussion of subdivisions of polygons; see
[5, §2.3] for more details. LetP ⊂ R

2 be a finite point set, and letL = {1, 2, . . . , |P|}
be a set of labels for the elements of P . A cell on P is a pair (� ⊂ L, P ⊂ R

2) where
P = conv(P(�)) (that is, P is the convex hull of the points in P corresponding to the
elements of of �). A cell F = (�′, P ′) is a face of another cell C = (�, P) if P ′ is a
geometric face of P , and if �′ labels all points labeled by � that are in P . A subdivision
S of P is then a collection of cells on P satisfying the following conditions:

– if C ∈ S and F is a face of C , then F ∈ S;
– if C1 and C2 are cells, then their intersection is a face of both C1 and C2; and
– the union of all cells is the convex hull of P .

A subdivision is called a triangulation if every 2-dimensional cell is a a triangle. A
subdivision is called fine if it cannot be refined any further; we remark that any fine
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Fig. 6 A lattice polygon, lifted points from a height function and lower convex hull, and the induced
subdivision

subdivision is a triangulation where every point of P is the vertex of some triangle. A
triangulation is called unimodular if every 2-dimensional cell has area 1

2 . (By Pick’s
theorem, this is the smallest possible area.) A subdivision of a convex lattice polygon
P is defined to be a subdivision of P = P ∩ Z

2. A subdivision of a convex lattice
polygon is fine if and only if it is unimodular [5, Corollary 9.3.6].

We will be mostly interested in regular subdivisions in this paper. We say that a
subdivision S of P is regular if there exists a height function ω : (P ∩Z

2) → R∪∞3

such that the faces of the lower convex hull of the image of ω, when projected back
down onto P , yields the cells of S. In this case, we say that ω induces S. A lattice
polygon is illustrated in Fig. 6, followed by the lower convex hull of its lattice points
lifted according to someω, and finally the induced regular subdivision, which happens
to be a unimodular triangulation.

2.2 Tropical plane curves

Tropical plane curves are defined over the min-plus semiring [7]. A polynomial in two
variables over this ring can be written in classical notation as

p(x, y) = min
(i, j)

(
ci, j + i x + j y

)
,

where only finitely many of the ci, j ∈ R are distinct from ∞ (the “zero” element
of the semiring). The tropical curve defined by p(x, y) is the set of all points in R

2

where the minimum of p(x, y) is achieved by at least two terms. The subdivision of
the Newton polygon P to which the curve is dual is the regular subdivision induced
by the height function ω : P ∩Z

2 → R∪∞ defined by ω(i, j) = ci, j . As with lattice
polygons, we measure lengths of edges on tropical curves using their lattice lengths.

Given a regular unimodular triangulation T of a lattice polygon P with genus
g ≥ 2, we present the construction of the moduli space MT of all skeletons of

3 We do not allow ω to be ∞ at vertices of P .
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smooth tropical curves dual to T ; see [2, §2] for more details. First we compute the
secondary coneΣ(T ) ⊂ R

P∩Z2
, which is the (closure of the) set of all height functions

ω : P ∩ Z
2 → R that induce the triangulation T . Let E denote the set of bounded

edges in a tropical curve dual to T . There exists a linear map λ : Σ(T ) → R
E

that takes a height function ω and computes from it the lattice length of each edge in
E in the tropical curve whose tropical polynomial has the coefficient ω(i, j) on the
term xi � y j . Thus λ(Σ(T )) is, up to closure, the set of all possible edge lengths on
a tropical curve dual to T . To obtain the lengths on the skeleton of such a tropical
curve, we apply another linear map κ : R

E → R
3g−3. This map deletes those edges

that do not contribute to the skeleton and adds up the lengths on any edges that are
concatenated in the skeletonization process. (The number 3g − 3 comes from the fact
that any connected, trivalent, planar graph with g bounded faces has 3g − 3 edges
due to Euler’s formula.) We then define MT := (κ ◦ λ)(Σ(T )). As the image of a
polyhedral cone under a linear map, it has a well-defined dimension; we will refer to
this as the moduli dimension of T .

Recall that MP denotes the closure of the space of all metric graphs that are the
skeleton of some smooth tropical plane curve with Newton polygon P . Since every
such tropical curve arises from some regular unimodular triangulation of P , we have
that

MP =
⋃

T
MT ,

where the union is taken over all regular unimodular triangulations T of P . Since there
are finitely many such T , we thus have that the (tropical) moduli dimension of P is the
maximum value of dim(MT ). Thus studying the moduli dimension of a triangulation
is of paramount importance.

For any subdivision T of P , a radial edge of T is an edge that connects a boundary
point p of Pint with a boundary point of P without passing through the interior of
Pint. For example, the upper-left interior lattice point in the polygon P of Figure 1 is
incident to five edges connecting it to the boundary of P , but only four of them are
radial: the one with slope −2 passes through the interior of Pint.

As in [6], we classify each boundary point p of Pint based on the structure of T as
follows:

p has

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Type 1 if it is incident to 1 radial edge

Type 2 if it is incident to at least 2 radial edges and the

boundary points of P it connects to are all collinear

Type 3 if it is incident to at least 3 radial edges and the

boundary points of P it connects to are not all collinear.

Note that the Type of p will depend on the choice of subdivision T .
A triangulation of a polygon, along with the classification of its interior boundary

points into Types 1, 2, and 3, is pictured in Fig. 7. We remark that the condition for
Type 2 does not require the boundary points of P to be on the same facet; for instance,
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Fig. 7 A lattice polygon with its interior polygon, and examples of points of Type 1, Type 2, and Type 3
with their radial edges

the lower-left interior point in Fig. 7 has Type 2, even though the points it is connected
to are on two different facets of P .

The following result allows us to compute the moduli dimension of a triangulation
based on this classification of interior boundary points.

Theorem 5 (Theorem 1.2 in [6]) If T is a regular unimodular triangulation of a
non-hyperelliptic polygon P with genus g, then

dim(MT ) = g − 3 + #{type 2 points} + 2 · #{type 3 points}.

Let b1, b2, and b3 denote the numbers of Type 1, Type 2, and Type 3 points in a
triangulation. In order to compute dim(MP ) for a non-hyperelliptic polygon P , it
suffices to maximize the value of

g − 3 + b2 + 2b3

over all regular, unimodular triangulations T of P . Of course, this number could also
be computed for a non-regular, unimodular triangulation, and it is reasonable to ask
whether it can be any larger in the non-regular case. By [6, §4-5], there does exist a
regular unimodular triangulation that achieves the maximum possible value. In other
words, the maximum of g − 3+ b2 + 2b3 over all unimodular triangulations is equal
to the maximum of g − 3 + b2 + 2b3 over regular unimodular triangulations.

Example 1 Consider the two unimodular triangulations of the same lattice polygon
appearing on the left in Fig. 8. The three interior lattice points are all interior boundary
points. The first triangulation has three points of Type 3, while the second has two of
Type 3 and one of Type 2. According to Theorem 5, the first triangulation T1 should
have moduli dimension g − 3 + b2 + 2b3 = 3 − 3 + 0 + 2 · 3 = 6, while the second
triangulation T2 should havemoduli dimension g−3+b2+2b3 = 3−3+1+2·2 = 5.
We will verify this by determining which edge lengths are achievable in the skeleton
of a tropical curve dual to each triangulation.

Letting Γ1 and Γ2 denote tropical curves dual to T1 and T2, we note that both have
the same combinatorial type of skeleton, namely the complete graph on 4 vertices
illustrated to the right in Fig. 8. By symmetry, we may assume that the lengths of the
edges of the skeletons are a through f , as labeled. ForΓ1, wemay choose a, b, c freely.
From there (up to closure), we can choose d, e, f to be any real numbers satisfying
d ≥ a + b, e ≥ b + c, and f ≥ a + c. We find a similar situation with Γ2, except
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a

b

c

d

e

f

Fig. 8 Two regular unimodular triangulations of a lattice polygon of genus 3, with dual tropical curves that
have the same combinatorial type of skeleton

Fig. 9 A polygon and a triangulation, both of which have moduli dimension 3, along with a tropical curve

that we may not choose f : although there are multiple ways to draw the purple edge,
we always have that the total lattice length is equal to a due to the slopes of the line
segments contributing to the length f . Thus, while there are 6 degrees of freedom in
choosing skeletal edge lengths for Γ1, there are only 5 for Γ2, as predicted by Theorem
5.

Since dim(MP ) = maxT {dim(MT )}, we have dim(MP ) ≥ dim(T1) = 6. There
are several ways to see that dim(MP ) = 6. Using Theorem 5, we see that the largest
conceivable value of a moduli dimension occurs when all interior boundary points are
of Type 3; this gives an upper bound for g = 3 of g−3+b2+2b3 = 3−3+0+2·3 = 6,
so indeed dim(MP ) ≤ 6. Alternatively, any skeleton arising from P has 3g − 3 = 6
edges, so the number of degrees of freedom in choosing edge lengths is certainly no
larger than 6.
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For a more extreme example, we consider another polygon of genus 3, pictured
in Fig. 9 along with a unimodular triangulation and a dual tropical curve; it has the
same skeleton as the curves in Fig. 8. We may choose the edge lengths a, b, and c
freely, but this then determines the other three edge lengths in the skeleton, since there
are only two contributing edges in the tropical curve for each and so can be drawn
in a unique way. Thus, the moduli dimension of the triangulation is 3, as predicted
by the fact that all three interior points are Type 2. In fact, the moduli dimension of
the polygon is equal to 3: no interior lattice point can be connected to more than two
boundary points, so three points of Type 2 is the best we can do. This polygon is thus
a non-hyperelliptic polygon with moduli dimension equal to its genus; in Corollary
2 we will see that this occurs precisely when the polygon has exactly three boundary
lattice points.

3 Moduli dimensions of non-hyperelliptic polygons

The main goal of this section is to prove Theorem 2. Throughout we will use the
formula g − 3+ b2 + 2b3 for the moduli dimension of a triangulation. We remind the
reader that to compute the moduli dimension of a polygon P , it suffices to maximize
the value of g − 3 + b2 + 2b3 over all unimodular triangulations of P; we need not
worry about regularity by [6, §5].

Our strategy in this section is as follows. First, we will determine lower bounds
on dim(MP ), showing that dim(MP ) ≥ g + 1 unless P is a triangle with exactly
three boundary points, in which case dim(MP ) = g. Then we determine for which
values of g such a triangle exists. From there, we perform an interpolation argument,
varying between polygons with moduli dimensions from g + 1 to 2g + 1 to achieve
all intermediate values.

A key result for computing dim(MP ) will be the following lemma.

Lemma 1 Let P be a non-hyperelliptic polygon. There exists a regular unimodular
triangulation T of P such that

(i) dim(MT ) = dim(MP ),
(ii) the boundary of Pint appears in T , and
(iii) all edges exterior to Pint are radial edges.

We remark that the first triangulation in Fig. 8 satisfies conditions (i) and (ii), but
not (iii): the lower-leftmost diagonal edge is exterior to Pint, but is not a radial edge,
since it connects two boundary points of P . We could modify this triangulation to
a triangulation satisfying all three conditions by “flipping” this edge to connect the
lower-left corner to P to the lower-left corner of Pint

Proof The existence of such a triangulation T follows readily from work in [6] on so-
called beehive triangulations. A beehive triangulation is any unimodular triangulation
of P that includes the boundary of Pint; that connects the vertices vi of Pint to the
closest lattice points of P on the relaxations of the interior facets incident to vi ;
and that completes the triangulation of the resulting width-one polygons between
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the boundaries of P and Pint via radial edges in any way that maximizes b2 + 2b3.
Although beehive triangulations need not be regular, there does exist a regular beehive
triangulation for any non-hyperelliptic polygon [6, §4, §5], and any regular beehive
triangulation T has dim(MT ) = dim(MP ) [6, Lemma 3.7]. ��

Our argument for a lower bound on dim(MP ) will start with three results: first for
polygons with four or more vertices; then for triangles with four or more boundary
points; and finally for polygons whose boundary points are all vertices, including
triangles with exactly 3 boundary points. For each, we set the notation that v1, . . . , vn
and w1, . . . , wm are the vertices of Pint and P , respectively, ordered cyclically.

Proposition 1 If P is a non-hyperelliptic polygon with at least 4 vertices, then
dim(MP ) ≥ g + 1.

Proof Let T be a regular beehive triangulation of P; the key properties we will use
are that T includes the boundary of Pint and that T has the same moduli dimension as
P . Let b1, b2, and b3 the numbers of interior lattice points of Types 1, 2, and 3 in T .
Now consider the coarser subdivision T ′ obtained by ignoring all lattice points besides
v1, . . . , vn and w1, . . . , wm . We may still classify the interior points v1, . . . , vn into
Types 1, 2, and 3, and we note that their type can only decrease in passing from T
to T ′. Thus letting b′

1, b
′
2, and b′

3 denote the numbers of Type 1, Type 2, and Type 3
points in T ′, we have b′

2 +2b′
3 ≤ b2 +2b3. We will show that b′

2 +2b′
3 ≥ 4, implying

that dim(MP ) = g − 3 + b2 + 2b3 ≥ g − 3 + 4 = g + 1.
By [5, Lemma 3.1.3], there are a total of 3(m + n) −m − 3 = 2m + 3n − 3 edges

in T ′. Of these, m are boundary facets of P; and since T ′ includes the boundary of
Pint, another 2n − 3 edges form a fine triangulation of Pint. This gives us that there
are n + m ≥ n + 4 radial edges in T ′, each of which is incident to exactly one of the
n vertices of Pint.

Our next step is to reduce to the case that no interior vertex is incident to more than
3 radial edges. Assume for the moment that at least one interior vertex vi is incident to
more than 3 radial edges, as illustrated in Fig. 10. Note that vi can only be connected
to vertices on the two relaxations of the edges of Pint incident to vi , as noted in Remark
1. Each relaxed edge has at most two vertices, and so vi is connected to at most (and
thus exactly) four boundary vertices. We note that vi and vi+1 share visibility to the
exterior boundary points w j and w j+1. Therefore, the radial edge viw j+1 can be
replaced with vi+1w j in the subdivision. Perform such replacements for any interior
vertex that is incident to more than 3 radial edges. If performing this operation at
some vi and vi+1 causes vi+1 to have more than 3 radial edges, this means that both
vi and vi+1 were Type 3 points to begin with, and we have dim(MP ) ≥ g + 1. If this
never happens, then we can iteratively change our subdivision T ′ so that no interior
vertex is connected to more than three radial edges. (Likewise, we change T to be any
unimodular refinement of T ′; since we are providing a lower bound on dimension,
there is no harm in changing to another triangulation.)

It now suffices to handle the case where T ′ has at most 3 radial edges per interior
vertex. There are at least n+4 radial edges, and the n interior vertices are each incident
to somewhere between 1 and 3 of them. We therefore have b′

1 + b′
2 + b′

3 = n and
b′
1 + 2b′

2 + 3b′
3 ≥ n + 4, when subtracted give us b′

2 + 2b′
3 ≥ 4, as desired. ��
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Fig. 10 An interior vertex
incident to four radial edges in
T ′, and a modification that
replaces viw j+1 with vi+1w j

vi vi+1

wj

vi vi+1

wj

w1

w2

w

v1

v2

w3σ
τ

w1

w2

w

w3

w1

w2

w

w3

Fig. 11 The labeling of lattice points and facets; a triangulation of the point set consisting of interior and
boundary vertices; and a triangulation with w added. In this example, v1 changes from a Type 1 point to a
Type 2 point

Proposition 2 If P is a non-hyperelliptic triangle with at least four boundary points,
then dim(MP ) ≥ g + 1.

Proof Since P has at least four boundary points, some facet of P , say σ = w1w2,
contains a non-vertex boundary point; call it w. Choose τ to be a facet of Pint that σ

is contained in the relaxation τ (−1); by relabeling, we may assume that the endpoints
of τ are v1 and v2. This is illustrated on the left in Fig. 11.

Let T be a fine triangulation of the point set {w1, w2, w3, v1, . . . , vn} such that:

– the boundary facets of Pint are edges in T ;
– there are no edges connecting the boundary of P to itself; and
– v1 is connected to both w1 and w2, while v2 is only connected to w2.

Such a triangulation T is illustrated in the middle of Fig. 11. To see that such a
triangulation exists, note that all the required edges can be drawn without creating
conflict, and then completed to a fine triangulation; there will be no edge connecting
the boundary of P to itself, since this could only occur between w and w3, but this is
blocked by the edges involving v1, v2, w1, w2; there will be no edge connecting v2 to
w1, since this would cross the edge connecting v1 tow2. Since there are precisely three
boundary points in use, the Type of an interior boundary point in this triangulation is
equal to the number of radial edges to which it is incident . Let bi denote the number
of points of Type i in this triangulation. There are a total of n + m = n + 3 edges,
meaning that b1 + 2b2 + 3b3 = n+ 3. Since n = b1 + b2 + b3, we have b2 + 2b3 = 3
for this triangulation. Since v2 is not connected to w1 by a radial edge, we know that
v2 has Type 1 (if it is only connected to w2) or Type 2 (if it is connected to w2 and to
w3).

Now add w into our point set and build a new triangulation as follows: remove
the edge in T from v1 to w2, and connect both v1 and v2 to w. Whatever Type of
point v1 was before, it still is after this operation. If v2 had been Type 1, then it has
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become Type 2 (since it goes from one to two radial edges); and if it had been Type
2, then it has become Type 3 (since w,w2, and w3 are not collinear). For this new
triangulation, we have b2 + 2b3 = 4. Add in any remaining lattice points of P and
refine to a unimodular triangulation, which will satisfy b2 + 2b3 ≥ 4. Even if it is not
regular, there must exist a regular unimodular triangulation of P attaining this value
(or larger) for b2 + 2b3. We conclude that dim(MP ) ≥ g + 1. ��
Proposition 3 If P is a non-hyperelliptic polygon whose boundary points are all ver-
tices, then dim(MP ) ≤ g − 3+m, where m is the number of vertices of P. If m = 3,
we have equality, so dim(MP ) = 3.

Proof Let N denote the number of boundary lattice points of Pint. Consider a trian-
gulation T as in Lemma 1. By [6, Lemma 3.3], the number of radial edges in T is
(g − g(1)) + m = N + m, where g (respectively g(1)) is the genus of P (respectively
Pint).

We claim an interior boundary point u of Type k in T is incident to at most k radial
edges. This is always true for Type 1 and Type 3 points. For Type 2 points, we note
that no three consecutive boundary points of P are collinear, since all boundary points
are vertices; thus, a point has Type 3 if and only if it is incident to 3 or more boundary
points. It follows that b1 + 2b2 + 3b3 is at most the total number of radial edges in T ,
so we have b1 + 2b2 + 3b3 ≤ N + m, or

b1 + 2b2 + 3b3 − m ≤ N .

Since N equal b1 + b2 + b3, it follows that

b1 + 2b2 + 3b3 − m ≤ b1 + b2 + b3,

or

b2 + 2b3 ≤ m.

Thus, dim(MP ) = dim(MT ) = g − 3 + b2 + 2b3 ≤ g − 3 + m, as claimed.
If m = 3, then the Type of an interior boundary point u in T is in fact equal to the

number of radial edges incident to u; this is because a point has Type 3 if and only if
it is connected to all three boundary points. This gives us N + 3 = b1 + 2b2 + 3b3,
which by the above argument leads to dim(MP ) = dim(MT ) = g − 3 + 3 = g. ��

We summarize the previous three results in the following corollary.

Corollary 2 If P is a non-hyperelliptic polygon, then dim(MP ) ≥ g, with dim(MP ) =
g if and only if P has exactly three boundary points.

Having established a lower bound on dim(MP ), we must now determine which
values are actually achievable. We first handle the case of dim(MP ) = g. Combining
the previous results, we see that a non-hyperelliptic lattice polygon of genus g has
moduli dimension g if and only if it has exactly three boundary points. For many
values of g, we can quickly find such a lattice triangle, as detailed in the following
example.
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Fig. 12 Polygons with moduli dimension equal to their genus

Example 2 In this example, we present non-hyperelliptic lattice triangles of genus g
with exactly 3 boundary lattice points for all g ≡ 0 mod 3 and g ≡ 2 mod 3.
Several of the polygons we will present are illustrated in Fig. 12 (0 mod 3 in the
first row, 2 mod 3 in the second). First we claim that the triangle with vertices at
(1, 0), (0, 3), and (2k + 1, 1) has exactly three boundary points and genus 3k for
k ≥ 1. The lack of other boundary points follows from the fact that gcd(−1, 3) =
gcd(2k, 1) = gcd(2k + 1,−2) = 1. For the genus, note that the area of the polygon
is 1

2

∣∣det
( −1 3
2k 1

)∣∣ = 1
2 |−1 − 6k| = 3k + 1

2 . By Pick’s theorem, the area of the triangle
is also equal to g + 3

2 − 1 = g + 1
2 , since it has exactly 3 boundary points. Since

3k + 1
2 = g + 1

2 , we have g = 3k as claimed. An identical argument shows that the
triangle with vertices at (0, 0), (1, 3), and (2k+2, 1) has exactly three boundary points
and genus 3k + 2 for k ≥ 1. Moreover, all these polygons are non-hyperelliptic; for
instance, each has the points (1, 1), (1, 2), and (2, 1) as interior lattice points.

When g ≡ 1 mod 3, the situation is more subtle and will require the use of the
following lemma.

Lemma 2 A lattice triangle has exactly three boundary lattice points and has genus g
if and only if it is equivalent to a triangle of the form

conv((0, 0), (0, 1), (2g + 1, b))

where 0 ≤ b ≤ 2g + 1 and gcd(2g + 1, b) = gcd(2g + 1, b − 1) = 1.

Proof Let T be a lattice triangle. First assume T has exactly three boundary points and
has genus g. Since every edge of T has lattice length 1, after a unimodular transfor-
mation we may assume that T has two of its vertices at (0, 0) and (0, 1). Letting (a, b)
be the other vertex, we perform further unimodular transformations so that a, b ≥ 0:
a ≥ 0 can be achieved with a reflection about a vertical line, possible with a transla-
tion, and similarly for b ≥ 0. Finally, iteratively applying the shearing transformation(

1 0−1 1

)
, we may assume that 0 ≤ b ≤ a.

We claim that a = 2g+1. To see this, we compute the area of A in two ways. First,
by Pick’s theorem, it is equal to g + 1

2 . Second, it is equal to
1
2

∣∣det
(
0 1
a b

)∣∣ = |a|
2 = a

2 ,
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where we use the fact that a ≥ 0. Solving g + 1
2 = a

2 , we find a = 2g + 1, as
claimed. Thus, if T is a triangle with exactly three lattice points, up to equivalence it
has vertices (0, 0), (0, 1), and (2g+1, b), where 0 ≤ b ≤ 2g+1 and gcd(2g+1, b) =
gcd(2g + 1, b − 1) = 1.

Now assume that T is equivalent to a triangle T ′ of the form

conv((0, 0), (0, 1), (2g + 1, b))

where 0 ≤ b ≤ 2g + 1 and gcd(2g + 1, b) = gcd(2g + 1, b − 1) = 1. We need to
show that T has only three boundary lattice points and has genus g; it suffices to show
the same holds for T ′. The edges of T ′ are spanned by the vectors 〈0, 1〉, 〈2g + 1, b〉,
and 〈2g + 1, b − 1〉. Since the components of the these vectors are relatively prime
integers, there are no lattice points on the edges of T ′ besides their endpoints. Thus,
T ′ has only three boundary points. From there, the fact that T ′ has genus g follows
from the same Pick’s theorem argument from earlier in the proof. ��

We apply this lemma for several small values of g in the following example.

Example 3 We claim that for g ∈ {4, 7}, any triangle of genus g with exactly 3 bound-
ary lattice points is hyperelliptic. When g = 4, a lattice triangle with exactly 3 lattice
boundary points may be assumed by Lemma 2 to have vertices at (0, 0), (0, 1), and
(9, b)where0 ≤ b ≤ 9andgcd(b, 9) = gcd(b−1, 9) = 1. It follows thatb ∈ {2, 5, 8}.
However, all three choices of b yield a hyperelliptic polygon. A similar phenomenon
occurs for g = 7, where the third vertex is (15, b)where b ∈ {2, 8, 14}, again yielding
only hyperelliptic triangles. However, when g = 10, we do manage to find a non-
hyperelliptic triangle with exactly three lattice boundary points, namely the triangle
with vertices at (0, 0), (0, 1), and (21, 5).

Our next result determines precisely when there exists a polygon of genus g with
exactly three boundary points; note that any such polygon must be a triangle.

Proposition 4 There exists a non-hyperelliptic triangle of genus g with exactly three
boundary points if and only if g ≥ 3 with g /∈ {4, 7}.
Proof Certainly g ≥ 3 is a necessary condition, since g ≤ 2 yields a hyperelliptic
polygon. We have seen in Examples 2 and 3 that our claim holds when g ≡ 0 mod 3,
when g ≡ 2 mod 3, and when g ∈ {4, 7, 10}. Now assume g ≡ 1 mod 3 and
g ≥ 13. To prove that there exists a hyperelliptic triangle of genus g with exactly 3
boundary points, by Lemma2 it suffices to show that there exists bwith 0 ≤ b ≤ 2g+1
such that conv((0, 0), (0, 1), (2g + 1, b)) is non-hyperelliptic.

Since g ≡ 1 mod 3, we know 3|(2g + 1), so we can write 2g + 1 = 3r for some
r . Since 2g + 1 is odd, so too is r . We will choose b so that it satisfies the following
two criteria:

– 4 ≤ b ≤ 2g+1
2

– gcd(b, 2g + 1) = gcd(b − 1, 2g + 1) = 1

First let us argue that this is possible. Note that exactly two of r + 1, r + 2, and r + 3
are coprime to 3r , since only one is divisible by 3. If they are consecutive, we choose
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b to the larger of the two. If r +2 is divisible by 3, then choosing b = r +4 will work.
In each case the fact that b ≥ 4 will follow from the fact that g ≥ 13.

Now we argue that our choice of b will yield T non-hyperelliptic. The non-vertical
edges of T lie on the lines defined by y = b−1

2g+1 x +1 and by y = b
2g+1 x , respectively.

Consider the width w(h) of the horizontal cross section of T at height h ∈ Z. Since it
has nowidth at height 0, we have h(0) = 0; for other heights, we’re going from the line
defined by y = b−1

2g+1 x+1 to the line defined by y = b
2g+1 x . Thus, the width is x2−x1,

where h = b−1
2g+1 x1+1 and h = b

2g+1 x2. Solving for x1 and x2 gives x1 = (h−1)(2g+1)
(b−1)

and x2 = h(2g+1)
b . Thus, we have w(h) = x2 − x1 = h(2g+1)

b − (h−1)(2g+1)
(b−1) =

(2g + 1)
(
h
b − h−1

b−1

)
= (2g+1)(b−h)

b(b−1) .

First note that since b ≤ 2g+1
2 , we have w(1) = (2g+1)(b−1)

b(b−1) = 2g+1
b ≥ 2. This

means that the points (1, 1) and (1, 2) are interior to T . Next wewill argue thatw(2) ≥
1, which will imply that there is an interior lattice point of T at height 2. This means
we wish to show that (2g+1)(b−2)

b(b−1) ≥ 1, or equivalently that (2g+1)(b−2) ≥ b(b−1).

Since b ≥ 4, we have b − 2 ≥ b/2, so it suffices to show (2g + 1) b2 ≥ b(b − 1). This
occurs when 2g+1 ≥ 2(b−1), which certainly holds since 2g+1 ≥ 2b. Thus, there
are at least two interior points at height 1 and at least one interior point at height two,
implying that T is non-hyperelliptic. This completes the proof. ��

We are now ready to prove ourmain theorem for non-hyperelliptic polygons. Recall
the definitions

l(g) =
{
g + 1 if g ∈ {4, 7}
g otherwise

and

u(g) =

⎧
⎪⎨

⎪⎩

2g if g = 3

2g + 2 if g = 7

2g + 1 otherwise.

Proof (Proof of Theorem 2) Let P be a non-hyperelliptic polygon of genus g. The
upper bound dim(MP ) ≤ u(g) follows from [2, Theorem 1.1]. The lower bound
�(g) ≤ dim(MP ) follows from a combination of Corollary 2 and Proposition 4. It
remains to show that all values of d with �(g) ≤ d ≤ u(g) are in fact the moduli
dimension of some non-hyperelliptic polygon of genus g. First we will show that all
values of d between g + 1 and 2g + 1 are achieved.

For g = 2h even, set P to be the rectangle conv ((0, 0), (0, 3), (h + 1, 0), (h + 1, 3));
for g = 2h + 1 odd, set P to be the trapezoid conv ((0, 0), (0, 3), (h + 3, 0), (h, 3)).
We claim that the polygon P has genus g, and dim(MP ) = 2g + 1 for
g > 3 and dim(MP ) = 2g for g = 3; this was proved in [2, Theorem
1.1]. Define Q to be a subpolygon of P with the same interior polygon, in
the even case as conv ((1, 0), (0, 3), (h + 1, 1), (h + 1, 2)) and in the odd case as
conv ((1, 0), (0, 3), (h + 2, 1), (h + 1, 2)). These polygons P and Q for the even
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(0, 3)

(0, 0) (h + 1, 0)

(h + 1, 3)

(1, 0)
(h + 1, 1)

(h + 1, 2)

(0, 3)

(0, 0) (h + 3, 0)

(h, 3)

(1, 0)

(0, 3)

(0, 3)

(h + 2, 1)

(h + 1, 2)

Fig. 13 The polygon P on the left and Q on the right, in the even case (top) and the odd case (bottom)

and odd cases are illustrated in Fig. 13. Because Q only has 4 boundary points
(all vertices), an optimal triangulation will only yield moduli dimension g + 1 by
Proposition 3. Thus, we have dim(MQ) = g + 1. Consider a sequence of convex
lattice polygons P = P0 � P1 � P2 � · · · � Pk = Q, where Pi has exactly
one more lattice point than Pi+1. Since Pint = Qint, all these polygons have genus
g. By [6, §5], if P ′′ ⊂ P ′ and P ′ has exactly one more lattice point than P ′′, then
dim(MP ′) − 1 ≤ dim(MP ′′) ≤ dim(MP ′). In other words, moduli dimension can
drop by at most one if we remove a single lattice point. Letting ai = dim(Pi ), we thus
have a0 = 2g + 1, ak = g + 1, and ai − 1 ≤ ai+1 ≤ ai . It follows that the set of
numbers {a0, a1, . . . , ak} must contain every integer from between g + 1 and 2g + 1.
In other words, every integer between g + 1 and 2g + 1 must be equal to dim(MPi )

for some i .
We now have that all values of d between g + 1 and 2g + 1 are achieved as the

moduli dimension of some polygon of genus g; the same is true for d = g when
g /∈ {4, 7} by Proposition 4. This gives us all values of d with �(g) ≤ d ≤ u(g) when
g �= 7. For g = 7, we also need a polygon achieving the moduli dimension 2g + 2;
this is furnished by the polygon H4,4,2,6 in [2, Theorem 1.1], completing the proof.

��
The fact that every intermediate moduli dimension between the upper and lower

bounds is achieved is not somethingwe can take for granted. For instance, if we restrict
our attention to maximal non-hyperelliptic polygons, it is no longer the case that all
intermediate values are achieved as a moduli dimension. Recall that a lattice polygon
is called maximal if it is not properly contained in any lattice polygon of the same
genus. These polygons are particularly interesting from the perspective of tropical
geometry. As shown in [2, Lemma 2.4], if P ⊆ Q where P and Q have the same
number of interior lattice points, then MP ⊆ MQ . (This does not hold for MP and
MQ , as discussed in [4, §11].) It follows that the moduli space of all tropical plane

curves M
planar
g can be decomposed as
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M
planar
g =

(
⋃

P

MP

)
∪ MTg ,

where the main union is taken over all maximal non-hyperelliptic lattice polygons of
genus g, and where Tg = conv((0, 0), (0, 2), (2g+2, 0)) is the standard hyperelliptic
triangle of genus g.

Proposition 5 Let g ≥ 20. If g is even, there does not exist any maximal non-
hyperelliptic polygon of moduli dimension 2g− 1. If g is odd, there does not exist any
maximal non-hyperelliptic polygon of dimension 2g.

Proof The key polygons P of genus g in this proof will be those whose interior
polygon Pint has genus g(1) = 0. For g ≥ 7, we know by [9, Theorem 4.1.2] that Pint
is equivalent to a trapezoid4 Ta,b with vertices at (0, 0), (0, 1), (b, 0), and (a, 1)where
0 ≤ a ≤ b and b ≥ 1. By [11, Proposition 4.1], Ta,b is an interior polygon if and only
if a ≥ 1

2b − 1, or equivalently a ≥ g−2
3 . For such a Ta,b, the vertices of T (−1)

a,b are
(−1,−1), (−1, 2), (2b − a + 1,−1), and (2a + 1 − b, 2).

Let us compute the moduli dimension of T (−1)
a,b . By [6, Lemma 3.7], to do this

we may connect the interior vertices to their corresponding boundary vertices, add in
the boundary of the interior polygon, and produce a “zigzag” pattern on the resulting
width-1 polygons. For the interior points at height 0, this yields two points of Type 3
and b − 2 points of Type 2 (contributing b − 2 + 2 · 2 = b + 2 to b2 + 2b3). Before
implementing the zigzag pattern for the top strip, there are two points (the interior
vertices) at height 1 already of Type 2. Each lattice point at height 2 beyond (0, 0)
allows us to promote one point at that height by one type, increasing b2 + 2b3 by one,
until we get to the point that every interior point has been maximized as Type 3 for a
vertex or Type 2 otherwise (yielding b2 + 2b3 = g − 4 + 2 · 4 = g + 4). There are
2a − b + 2 lattice points at height 2, so the final value of b2 + 2b3 is

min{g + 4, b + 2 + 2a − b + 1} = min{g + 4, 2a + 3}.

This yields a moduli dimension of

min{2g + 1, g + 2a + 2}.

Recalling that g−2
3 ≤ a ≤ g

2 , the only value of a for which the minimum is 2g + 1 is
a = ⌊ g

2

⌋
. For a = ⌊ g

2

⌋ − 1, the moduli dimension is g + 2a + 3 = g + 2
⌊ g
2

⌋
, which

equals 2g for g even and 2g − 1 for g odd. Decreasing a from here causes the moduli

dimension to drop by 2 at a time, until reaching g +
⌈
g−2
3

⌉
+ 2. In particular, for g

even, none of these polygons have moduli dimension 2g− 1, and for g odd none have
moduli dimension 2g.

It remains to show that no other maximal non-hyperelliptic polygon has moduli
dimension 2g − 1 or 2g. Any other such polygon has g(1) ≥ 1. Let r (1) denote the
number of interior boundary points, so that g = r (1) + g(1). By the main theorem

4 If a = 0, then Ta,b is a triangle.
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of [13], we know that the number of boundary points of a convex lattice polygon
of positive genus is at most twice its genus plus seven, so r (1) ≤ 2g(1) + 7. Thus,
g = r (1) + g(1) ≤ 3g(1) + 7, which implies g(1) ≥ (g − 7)/3. Since we’ve assumed
g ≥ 20, we have g(1) ≥ (20− 7)/3 > 4, so g(1) ≥ 5. By [4, Corollary 10.6], we have
that dim(MP ) ≤ 2g + 3 − g(1) for any maximal non-hyperelliptic polygon P . This
also serves as an upper bound on dim(MP ). Since g(1) ≥ 5, we have dim(MP ) ≤
2g+ 3− 5 = 2g− 2. Thus, no maximal non-hyperelliptic polygon with g(1) ≥ 1 and
g ≥ 20 has moduli dimension 2g − 1 or 2g. This completes the proof. ��

Further investigation into the achievable moduli dimensions of maximal non-
hyperelliptic polygons would be an interesting direction for future research.

4 Moduli dimensions of hyperelliptic polygons

We now move on to the case of hyperelliptic polygons, which have all interior lattice
points collinear. These are somewhat simpler to describe than non-hyperelliptic poly-
gons, and in fact a complete classification of hyperelliptic polygons of genus g ≥ 2
was carried out in [9] and is also presented in [3]. We recall that result here.

Theorem 6 ( [9]) If P is a hyperelliptic polygon of genus g ≥ 2, then it is equivalent
to precisely one of the following polygons, sorted into three classes.

1. Class 1:

where g ≤ i ≤ 2g
2. Class 2:

where (a) 0 ≤ i ≤ g and 0 ≤ j ≤ i ; or (b) g < i ≤ 2g+1 and 0 ≤ j ≤ 2g− i +1
3. Class 3:

where (a) 0 ≤ k ≤ g+1 and 0 ≤ i ≤ g+1−k and 0 ≤ j ≤ i ; or (b) 0 ≤ k ≤ g+1
and g + 1 − k < i ≤ 2g + 2 − 2k and 0 ≤ j ≤ 2g − i − 2k + 1

If we are considering a hyperelliptic polygon in one of these forms, each of its
lattice points is of the form (a, b) where 0 ≤ b ≤ 2. We refer to the value of b as the
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Fig. 14 Unimodular triangulations of a hyperelliptic lattice polygon; tropical curves dual to those triangu-
lations; and the corresponding skeletons

height of the lattice point (a, b). We also differentiate between several of the interior
lattice points of such a polygon P . The two lattice points (1, 1) and (g, 1) are called the
end interior points, with all other interior lattice points called middle interior points.

Things are also simpler on the side of the tropical plane curves that havehyperelliptic
Newton polygons. Three unimodular triangulations of a hyperelliptic polygon are
illustrated in the left of Fig. 14, followed by tropical curves dual to those triangulations,
followed by the skeletons of those curves. As with any smooth tropical plane curve Γ ,
there will be a bounded region of R

2 \ Γ for each interior lattice point of the Newton
polygon P; the skeleton can be thought of as encoding how these bounded regions
sit relative to one another. Due to the collinearity of the interior lattice points of a
hyperelliptic polygon P , there is a natural left-to-right ordering on these faces; the
only possible relationships between the i th face and the (i + 1)th face are that they
either share a common edge (when the corresponding interior lattice points of P are
joined by an edge in the triangulation), or are separated by a bridge (otherwise). The
upshot of this is that the skeleton of a smooth tropical curve with hyperelliptic Newton
polygon is always a particular type of graph called a chain [2, §6].

We define a chain of genus g to be any trivalent graph that arises from the following
construction. Start with a path graph with g − 1 vertices. Duplicate each edge to a
bi-edge and attach two loops to the two endpoints. This gives us a 4-regular graph.
For each 4-valent node, we resolve it into two 3-valent nodes in one of two ways, one
giving a shared edge between two bounded faces and one giving a bridge connecting
two bounded faces. The starting 4-regular graph, the two allowed resolutions for each
node, and the resulting chains for genus 3 are illustrated in Fig. 15. Note that these are
precisely the skeletons that appeared in Fig. 14.

We set the following labeling convention for the edge lengths of a chain, as illus-
trated in Fig. 16. We will assume that our chain has come from an embedding of a
tropical curve, and so has a well-defined orientation of its bounded faces from left to
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e2 e4

Fig. 15 The starting 4-regular graph, the two resolution choices, and the resulting trivalent chains of genus
3
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Fig. 16 The edge length labels for a chain

right. The leftmost edge length is called e, and the rightmost f . For the i th bounded
face where 2 ≤ i ≤ g − 1, we let ui (respectively �i ) denote the length of the upper
(respectively lower) edge bounding that face. Finally, if the i th and (i + 1)th faces are
separated by a bridge, call its length bi,i+1 (and by convention set hi,i+1 = 0), and if
they instead share an edge, call its length hi,i+1 (and by convention set bi,i+1 = 0).

Given a unimodular triangulation T of a hyperelliptic Newton polygon P , we wish
to consider the constraints on the edge lengths of a skeleton Γ of a dual tropical
curve. There are a few immediate constraints (or lack thereof) on the edge lengths of
Γ . First, all edge lengths must be positive (or nonnegative, after we take closures).
Second, we have ui = �i for all i by [10, Lemma 2.2]. Third, there are no restrictions
on any nonzero bi,i+1’s; this is a general property of bridges in tropical plane curves.
Similarly, if e (or f ) is the length of a loop incident to a bridge, then there are no
restrictions on it. The further inequalities are more subtle and depend on the structure
of the triangulation T .Wewill first handle those coming from the 2nd through (g−1)th

faces and then those pertaining to the extremal edges e and f .
Without loss of generality, we assume that P is of a form from Theorem 6, with

interior lattice points at (i, 1) for 1 ≤ i ≤ g. For each i , let NW (i) denote the x-
coordinate of the leftmost lattice point at height 2 connected to (i, 1); NE(i) that of
the rightmost such point at height 2; and similarly for SW (i) and SE(i) at height 0.
These labels are illustrated in Fig. 17, along with the corresponding cycle from the
tropical curve; the edges are considered as vectors, with labels that will be useful in
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(NW (i), 2) (NE(i), 2)

(SW (i), 0) (SE(i), 0)

v1

v2

w1

w2

w3
w4

x1

x2

Fig. 17 Edges connecting (i, 1) to boundary points at heights 0 and 2 and the cycle corresponding to (i, 1),
with edges considered as vectors

our next proof. Note that the non-vertical edges of a cycle all have integral slope, due
to the slopes of the edges in T .

Lemma 3 Suppose 2 ≤ i ≤ g − 1. The only additional constraint involving ui is

(2i − NW (i) − SW (i))ui ≤ hi,i+1 − hi−1,i ≤ (2i − NE(i) − SE(i))ui ,

with equality if and only if the tropical curve contributes only one edge to the upper
and lower edges of the i th face.

Thiswas originally proven in [12, §3.6];we include our ownproof for completeness.

Proof Order the edges of Γ contributing to the i th face clockwise as vectors, say
as v1, w1, . . . , wm, v2, x1, . . . , xn where v1 = 〈

0, hi−1,i
〉
, where v2 = 〈

0,−hi,i+1
〉
,

where w1, . . . , wm form the upper edge in the skeleton, and where x1, . . . , xn form
the lower edge in the skeleton. An example of this labeling scheme appears on the
right in Fig. 17. Note that it is possible for v1 or v2 to be the zero vector, but all other
vectors are nonzero.

These vectors form a closed cycle if and only if

v1 + w1 + · · · + wm + v2 + x1 + · · · + xn = 〈0, 0〉 ,

which can be rearranged to

−v1 − v2 = w1 + · · · + wm + x1 + · · · + xn .

The first vector is
〈
0, hi,i+1 − hi−1,i

〉
. Now, let ŵ j be the primitive integer vector with

the same direction ofw j , so thatw j = �(w j )ŵ j with � denoting lattice length; set the
same notation for x̂ j . Considering the possible slopes of the edges in T that w j are
dual to, we have that ŵ j = 〈

1, r j
〉
for some integer r j , and similarly we x̂ j = 〈−1, s j

〉

for some integer s j . Our vector sum thus gives us

0 = �(w1) + · · · + �(wm) − �(x1) − · · · − �(xn)
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from the first component, and

hi,i+1 − hi−1,i = �(w1)r1 + · · · + �(wm)rm + �(x1)s1 + · · · + �(xn)sn

from the second. The first sum is equivalent to stating that the upper and lower edges of
the i th face of Γ must be equal in length, which we already knew. For the second sum,
we first remark that r1 > r2 > . . . > rm , since these are the slopes of a convex-down
sequence of edges; and similarly that s1 < s2 < . . . < sn . Replacing each r j with r1
and each s j with sn , we obtain the upper bound

hi,i+1−hi−1,i ≤ �(w1)r1+· · ·+�(wm)r1+�(x1)sn+· · ·+�(xn)sn =(r1+sn)ui ,

where we have equality if and only if no term was decreased, i.e., if m = n = 1.
Similarly, we find the lower bound

hi,i+1−hi−1,i ≥ �(w1)rm+· · ·+�(wm)rm+�(x1)s1+· · ·+�(xn)s1=(rm+s1)ui ,

with equality if and only if m = n = 1.
Note that the vector 〈1, r1〉 is perpendicular to the edge connecting (i, 1) to the

leftmost point at height 2, namely (NW (i), 2). It follows that r1 = i − NW (i).
Similarly, we have rm = i −NE(i). An identical argument shows that s1 = SE(i)− i
and sn = SW (i) − i . Plugging these in to our upper bound of (r1 + sn)ui and lower
bound of (rm + s1)ui gives us the claimed bounds of

(2i − NW (i) − SW (i))ui ≤ hi,i+1 − hi−1,i ≤ (2i − NE(i) − SE(i))ui .

To ensure that there are no additional constraints, we need to show that for fixed ui ,
we can achieve any value of hi,i+1 − hi−1,i in the interior of this range. We can find
hi,i+1 − hi−1,i arbitrarily close to (2i − NE(i) − SE(i))ui by choosing �(w1) and
�(xn) with lattice lengths ui − ε for a very small choice of epsilon, and distributing
the remaining ε of lattice length in any way among the remaining edges. An identical
argument where most lattice length is given to �(wm) and �(x1) gets us hi,i+1−hi−1,i
arbitrarily close to 2i − NW (i) − SW (i))ui , completing the proof. ��

Having dealt with the constraints for the i th cycle where 2 ≤ i ≤ g − 1, we now
consider the edge e. For simplicity, we will assume that no edge in T connects the
boundary to the boundary without cutting through the interior line segment; if there
does exist such an edge, then we can iteratively pare off the triangles formed by such
an edge and the boundary of P and obtain a triangulation T ′ of another hyperelliptic
polygon P ′ of the same genus, realizing the exact same metric graphs.

By Theorem 6, we know that the left end of a hyperelliptic polygon has one of two
shapes, either Shape A (for Classes 1 and 2) or Shape Bk (for Class 3). These shapes
are illustrated in Fig. 18. We say that T has form A(m) with respect to e (resp. form
Bk(m) with respect to e) if the end has shape A (resp. Bk) and if (1, 1) is incident to
exactlym+1 edges in T : one connecting it to (2, 1), andm connecting it to boundary
points.
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Fig. 18 Two shapes of the left
end of a hyperelliptic polygon

(0, 0)

(1, 2)

(0, 0)

(0, 1)

(k, 2)

Shape A Shape Bk

Form A(2) Form A(3) Form A(3) Form A(4)

Fig. 19 Several forms

Lemma 4 Let T be a triangulation of a hyperelliptic polygon P such that no edge
in T connects the boundary to the boundary without cutting through the interior line
segment. Let e and h1,2 be as in Fig. 16. If e is a loop, there are no constraints on its
length. Otherwise:

(a) If P has form A(m) for m ≥ 3, form Bk(m) with k ≥ 2, form B1(m) with m ≥ 4,
or form B0(m) with m ≥ 5, then the only constraint on e is e ≥ h1,2.

(b) If P has form A(2), then e = 2h1,2.
(c) If P has form B0(3), then e = h1,2.
(d) If P has form B0(4) or form B1(3), then the only constraint on e is h1,2 ≤ e ≤

2h1,2.

Moreover, these cases are exhaustive.

Proof By our assumption on T , for Shape A we know e is connected to at least (0, 0)
and (1, 2), and for Shape Bk to (0, 0), (0, 1), and (k, 2); thus, for shape A we have
m ≥ 2, and for shape Bk we have m ≥ 3, meaning our cases listed are exhaustive.

First assume that P has shape A. Several forms of the triangulation T appear in
Fig. 19, along with the face dual to (1, 1) in a tropical curve. Note that Form A(2) can
appear in one way, while form A(3) can appear in two ways. First assumem ≥ 3. The
claimed constraint e ≥ h1,2 is certainly a necessary condition, in order for the first
cycle to close up; to see that it is sufficient, we note that for form A(3) and beyond there
are at least two parallel edges appearing in the face dual to (1, 1) (either horizontal or
with slope 1) that are part of the edge e, allowing unlimited scaling. When m = 2, we
can see that e = 2h1,2 from the triangular structure of the cycle dual to (1, 1).
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Form B0(3) Form B0(4) Form B0(5) Form B1(3) Form B1(4) Form B2(3)

Fig. 20 Several forms of hyperelliptic triangulations

Now assume that P has shape Bk .We illustrate several possible forms for 0 ≤ k ≤ 2
in Fig. 20. For many cases (Bk(m) with k ≥ 2, as well as for B1(m) with m ≥ 4 and
B0(m) with m ≥ 5), the only constraint is e ≥ h1,2. Again, this holds because we
are guaranteed parallel edges contributing to e, allowing for unlimited scaling. Our
last claims are that for B0(3) we find e = h1,2, and for B0(4) and B1(3) we find
h1,2 ≤ e ≤ 2h1,2. These again come from considering the illustrated cycles dual to
(1, 1), and putting more or less length into components of the cycle dual to (1, 1). This
completes the proof. ��

A priori we cannot use our shapes to study the rightmost edge f , since Theorem 6
differentiates between the left and right sides of the polygon. However, every right end
is equivalent to a left end through a reflection and a shearing transformation of the form(
1 N
0 1

)
, meaning that we may indeed conclude that f satisfies the same constraints as

e based on the shape of the polygon at the right end.
We are now ready to compute the moduli dimension of a unimodular triangulation

of a hyperelliptic polygon.

Proposition 6 Let T be a unimodular triangulation of a hyperelliptic polygon P of
genus g ≥ 2. Let be be the number of end interior points that are connected to another
interior lattice point and boundary points that are all collinear. Let bm be the number
of middle interior points connected to exactly 2 boundary lattice points. Then, we have

dim(MT ) = 2g − 1 − be − bm

Proof To prove this, we will consider the requirements on our edge lengths. There are
3g − 3 edges in a connected trivalent graph of genus g. The conditions that ui = �i
for 2 ≤ i ≤ g − 1 remove g − 2 degrees of freedom, leaving us with at most 2g − 1
degrees of freedom.

We now ask if there are any other equalities that come out of the length constraints.
For the edges on the i th face with 2 ≤ i ≤ g − 1, by Lemma 3, the only possibility
to have equalities forced are if the upper and lower bounds on hi+1,i − hi−1,i are
equal to one another; in this case, we lose another degree of freedom. This happens
precisely when NW (i) + SW (i) = NE(i) + SE(i). But since NW (i) ≤ NE(i) and
SW (i) ≤ SE(i) this happens precisely when NW (i) = NE(i) and SW (i) = SE(i).
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Fig. 21 The start of a
triangulation of a polygon in
Class 1

This is equivalent to (i, 1) being connected to exactly one boundary point at height 0
and exactly one boundary point at height 2. This is the same as (i, 1) being connected
to exactly two boundary points, since it must be connected to at least 2. Thus, we have
bm more degrees of freedom lost.

Finally, we consider the edges e and f . By Lemma 4, we lose a degree of freedom
in the cases that the form of T is either A(2) or B0(3). But these are precisely the forms
where the corresponding interior end point is only connected to collinear boundary
points. This completes the proof. ��

Now that we can compute the moduli dimension of a hyperelliptic triangulation,
we can move toward finding the moduli dimension of a hyperelliptic polygon. Since
every hyperelliptic polygon of genus g ≥ 2 is equivalent to exactly one of the polygons
from Theorem 6, it is enough to find the moduli dimension of each polygon in this
classification.

Proposition 7 If P is a hyperelliptic polygon of genus g, then

dim(MP ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

2g − 1 if P is in Class 1

min(g + i + j, 2g − 1) if P is in Class 2(a)

2g − 1 if P is in Class 2(b)

min(g + i + j + 1, 2g − 1) if P is in Class 3(a) and k �= 0

min(g + i + j, 2g − 1) if P is in Class 3(a) and k = 0

min(g + i + j + 1, 2g − 1) if P is in Class 3(b),

where i, j, and k are as in the classification.

Proof First assume that P is in Class 1, or in Class 2 with condition (b) satisfied.
Start a triangulation of P as follows. Connect all interior points in a line segment and
connect the point (1, 2) to all interior lattice points. Then for 1 ≤ � ≤ g, connect
the interior lattice point (�, 1) to the boundary points (� − 1, 0) and (�, 0); this is
possible since i ≥ g. The start of this triangulation is depicted in Fig. 21 for a Class 1
polygon. Complete this to a unimodular triangulation in any way; this is guaranteed to
be regular by [14, Proposition 3.4], which states that any unimodular triangulation of
a hyperelliptic polygon is regular. Note that both end interior points are connected to
at least 3 not-all-collinear points, and all middle interior points are connected to two
points at height 0. Thus for this triangulation, d = e = 0, so dim(MP ) ≥ dim(MT ) =
2g−1. Since dim(MP ) ≤ 2g−1 for any hyperelliptic polygon of genus g, we conclude
that dim(MP ) = 2g − 1, as claimed.

Now we assume that P is in Class 2 with condition (a) satisfied; that is, we assume
0 ≤ i ≤ g and 0 ≤ j ≤ i . We wish to show that the moduli dimension is min(g +
i + j, 2g − 1). We cannot do better than 2g − 1, since this is the dimension of the
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Fig. 22 The start of a
triangulation of a polygon in
Class 2(a)

moduli space of all hyperelliptic curves. Let us argue that we cannot do better than
g + i + j . First we remark that in any unimodular triangulation, we connect (1, 1)
to (1, 2) and (0, 0), and we connect (g, 1) to (g + 1, 1), (1 + j, 2), and (i, 0). Thus,
(g, 1) does not contribute to be; (1, 1) does not contribute to be if and only if it is
connected to at least two points at height 0 or 2; and a middle interior point does not
contribute to bm if and only if it is connected to at least two points at height 0 or 2.
Each time one of the relevant g − 1 interior points is connected to at least two points
at height 0 or 2, that uses up one of the edges on the horizontal faces of P . There are
i + j of these, so at most min{g − 1, i + j} of them fail to contribute to be + bm .
Conversely, at least g − 1 − min{g − 1, i + j} = min{0, g − i − j − 1} contribute
to be + bm . Thus for any triangulation T we have dim(MT ) = 2g − 1 − e − d ≤
2g − 1−min{0, g − i − j − 1} = min{2g − 1, g + i + j}. Note that there does exist
a triangulation T achieving this upper bound: for 1 ≤ � ≤ i , connect the lattice point
(�, 1) to (�− 1, 0) and (�, 1); and for i + 1 ≤ � ≤ min{g− 1, j + 1} connect (�, 1) to
(�− i, 2). We conclude that dim(MP ) = min{2g−1, g+ i + j}. Such a triangulation
is illustrated in Fig. 22.

Finally, we move on to Class 3; examples of the three cases we deal with appear
in Fig. 23. In Class 3(a), we have 0 ≤ k ≤ g + 1 and 0 ≤ i ≤ g + 1 − k and
0 ≤ j ≤ i . If k �= 0, the end interior points never contribute to be, so the minimum
we can achieve is g + 1. By the same argument as Class 2(a), we end up getting the
maximum possible dimension as min(g+1+ i + j, 2g−1). When k = 0, the left end
interior point can contribute to be like Class 2(a) so we end up with moduli dimension
min(g+ i + j, 2g− 1). For Class 3(b), we wish to show that the moduli dimension is
min(g + 1 + i + j, 2g − 1). First, note that the left end interior point can contribute
to be if and only if k = 0. However, when this happens, i > g + 1, giving us full
dimension of 2g − 1. Note that g + i + j + 1 > 2g − 1 in this case. The right end
interior point can contribute to be if and only if (k + j, 2), (g + 1, 1), (i, 0) all lie on
a line segment. If they are vertical or the line slopes downward, again i ≥ g + 1 and
we have full dimension of 2g − 1. The only other case is if the line slopes upward or
k + j > g + 1 > i . Note that i + k > g + 1, so 2g − i − 2k + 1 < g − k. Thus,
j < g − k and j + k < g. Thus, such a line is impossible. With both endpoints not
contributing to a loss of degrees of freedom, this now follows the same logic as when
k �= 0 in Class 3(a).

��
We now have an easy proof of Theorem 3.

Proof (Proof of Theorem 3) By Proposition 7 and the fact that i, j ≥ 0, we have that
g ≤ dim(MP ) ≤ 2g − 1 for any hyperelliptic polygon P of genus g. Conversely, let
g ≤ d ≤ 2g − 1. There does indeed exist a hyperelliptic polygon of genus g with
dim(MP ) = d; for instance, choose P to be in Class 2(a) with j = 0 and i = d − g.

��
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3(a), k = 0 3(b)3(a), k �= 0

Fig. 23 The starts of a triangulations for polygons in Class 3(a) with k �= 0, Class 3(a) with k = 0, and
Class 3(b)

We close by considering the relationship between dim(MP ) and dim(MP ) for
hyperelliptic P; recall that for non-hyperelliptic polygons these two numbers are
known to be equal, which allowed us to deduce Corollary 2. First we note that when
P is hyperelliptic, we have by [4, Lemma 5.1] that MP ⊂ Mhyp

g , where Mhyp
g is

the moduli space of all hyperelliptic curves of genus g. This space has dimension
2g−1, so dim(MP ) ≤ dim(Mhyp

g ) = 2g−1. If the (tropical) moduli dimension of a
hyperelliptic polygon is equal to the top possible value of 2g− 1, then since 2g− 1 =
dim(MP ) ≤ dim(MP ) ≤ 2g − 1, we can conclude that dim(MP ) = dim(MP ) =
2g − 1. Thus based on Proposition 7 we have dim(MP ) = dim(MP ) = 2g − 1 in all
of the following cases:
– When P is in Class 1 or Class 2(b).
– When P is in Class 2(a) with i + j ≥ g − 1.
– When P is in Class 3(a) with k �= 0 and i + j + 1 ≥ g − 1.
– When P is in Class 3(a) with k = 0 and i + j ≥ g − 1.
– When P is in Class 3(b) with i + j + 1 ≥ g − 1.

To our knowledge, there is no result determining the dimension of the algebraicmoduli
spacesMP where P is an arbitrary hyperelliptic polygon, sowe cannot easily compare
our tropical formulas to the algebraic case when dim(MP ) < 2g − 1. We conjecture
that dim(MP ) = dim(MP ) for all hyperelliptic polygons P and leave this as an
interesting direction for a future project.
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