Journal of Number Theory 235 (2022) 328-357

Contents

Journal

www.elsevier.com /locate/jnt

lists available at ScienceDirect

 JOURNALOF

of Number Theory

General Section

Coprime partitions and Jordan totient functions

Daniela Bubboloni ®*, Florian Luca

)]

Check for
Updates

b,c,d

? Department of Mathematics and Informatics U. Dini, University of Florence,

viale Morgagni 67/a, 50134 Firenze, Italy
b School of Mathematics, University of th
Braamfontein 2000, Johannesburg, South
¢ Research Group in Algebraic Structures
University, Jeddah, Saudi Arabia

e Witwatersrand,1 Jan Smuts,
Africa
and Applications, King Abdulaziz

d Centro de Ciencias Matemdticas UNAM, Morelia, Mezico

ARTICLE INFO

ABSTRACT

Article history:

Received 12 July 2020

Received in revised form 19 May
2021

Accepted 20 May 2021

Available online 28 July 2021
Communicated by F. Pellarin

MSC:
05A17
11P81
11A25
11N37

Keywords:

Coprime compositions

Coprime partitions

Generalized Jordan totient functions

We show that while the number of coprime compositions of
a positive integer n into k parts can be expressed as a Q-
linear combination of the Jordan totient functions, this is
never possible for the coprime partitions of n into k parts. We
also show that the number pj (n) of coprime partitions of n
into k parts can be expressed as a C-linear combination of the
Jordan totient functions, for n sufficiently large, if and only
if k € {2,3} and in a unique way. Finally we introduce some
generalizations of the Jordan totient functions and we show
that pj (n) can be always expressed as a C-linear combination
of them.

© 2021 Elsevier Inc. All rights reserved.

* Corresponding author.

E-mail addresses: daniela.bubboloni@unifi.it (D. Bubboloni), Florian.Luca@wits.ac.za (F. Luca).

https://doi.org/10.1016/j.jnt.2021.05.017

0022-314X/© 2021 Elsevier Inc. All rights reserved.


https://doi.org/10.1016/j.jnt.2021.05.017
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jnt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnt.2021.05.017&domain=pdf
mailto:daniela.bubboloni@unifi.it
mailto:Florian.Luca@wits.ac.za
https://doi.org/10.1016/j.jnt.2021.05.017

D. Bubboloni, F. Luca / Journal of Number Theory 235 (2022) 328-357 329

1. Introduction

The study of partitions with a fixed number k of parts satisfying some coprimality
condition [5] has revealed to be very fruitful for analyzing the normal covering number
~v(Syp) of the symmetric group S,, [6], that is, the smallest number of conjugacy classes
of proper subgroups needed to cover S,. If o € S,, and k is the number of orbits of (o)
on {1,...,n} then the unordered list p(c) = [z1,..., 2] of the sizes x; of those orbits
is a partition of n into k parts called the type of 0. Now, by a basic result of group
theory, two permutations are conjugate if and only if they have the same type. Thus,
the conjugates of some subgroups Hy, ..., Hs cover S, if and only if for every partition p
of n there exists H; containing at least a permutation of type p. We emphasize that the
problem of determining the normal covering number of a finite group arises from Galois
theory and is linked to the investigation of integer polynomials having a root modulo p,
for every prime number p (see [3, Section 1], [7] and [16]).

Fortunately, in order to efficiently bound «(.S,,), it is not necessary to deal with parti-
tions into k parts for every possible k < n and the focus is on k = 2, 3,4 (see [4, Sections
5-6] and [8, Remark 1.2(c) and Sections 6-7]). Recently, using knowledge about parti-
tions into three parts Bubboloni, Praeger and Spiga [8, Theorem 1.1] have shown that,
for n > 20 even, v(S,) > % (1 —/1- 4/7r2> - @nw‘l. Similar results about S, for
n odd are not known and the research could greatly benefit from knowing more about
partitions into four parts, especially those satisfying suitable coprimality conditions. A
point of force in this direction is the fact that the primitive subgroups of S,, containing a
permutation splitting into four cycles have been recently determined [12]. To start with,
one should find an exact formula for the number p)(n) of coprime partitions of n into
four parts. This initial and somewhat narrow motivation inspired the present paper.

Looking to the case k = 4, we immediately realized that many considerations could
be indeed carried on for every k > 2, shedding light on the number p)(n) of coprime
partitions of n into k parts. The idea relies on one hand, on representing those expressions
as linear combinations of classic number theoretic functions and, on the other hand, on
having a method which leads to an effective computation of py(n) and pj.(n). This has
appeared in the past in a number of papers concerning pi(n) but we did not see it
for pj(n). In fact a formula for pj.(n) seems to be of recent interest in the scientific
community (see [13, Question 2]).

Let J; denote the Jordan totient function of degree ¢ > 0. In [2], it is proved that
ph(n) = % holds for n > 4. It is also clear that ph(n) = # holds for n > 3. So,
one can ask if similar results could hold for every k. We show that those two situations
are pure miracles, because pj.(n) is in fact a C-linear combination of the Jordan totient
functions for n sufficiently large just in those two cases (Theorem 1). The feeling is that
the class of the Jordan totient functions is too restrictive and some generalizations of
them are needed. We consider then three generalizations which are finely linked together:
the Jordan root totient functions, the Jordan modulo totient functions and the Jordan-
Dirichlet totient functions (Section 1). The first two generalizations seem not to be
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present in the literature. The third ones appeared in [9] in order to investigate the values
of the cyclotomic polynomial at the roots of unity and admit easy and manageable
formulas. We show that p}, is a C-linear combination of the Jordan root totient functions
(Theorem 1). Relying on the partial fraction decomposition of the generating function
of pr(n) and classical results about linearly recurrent sequences, we explicitly find the
coefficients of such C-linear combination and show how to deduce the expression of the
Jordan root totient functions involved. To that last purpose the idea is to split a Jordan
root totient function in a C-linear combination of Jordan modulo totient functions,
which in turn can be determined by suitable Jordan-Dirichlet totient functions, choosing
some particular Dirichlet characters. Our concrete approach is proposed in detail for
ke {234},

We close noticing that the use of generalizations of Jordan totient functions is present
in the very recent research. For instance in [14], Moree et al. introduce the Jordan
totient quotients of weight w in order to study the average of the normalized derivative
of cyclotomic polynomials.

2. Basic facts
2.1. Notation

We denote by N the set of positive integers and by Ny the set of non-negative integers.
Let n € N. We denote by Q(n) the number of prime factors of n counted with multiplicity
and by w(n) the number of distinct prime factors of n, where Q(1) = w(1) = 0. Moreover
we define §(n) = lem{m € N : m < n}. As usual, ¢ denotes the Euler’s totient function
and p the Mobius function. For k € Ny, set [k] = {n € N :n < k} and [k]o = {n € Ny :
n < k}. In particular, [0] = & while [0], = {0}.

Let f: Ng — C. Then f is called an integer periodic function if

M(f):={m' e N:Vn,k € Ny, f(n+km') = f(n)} # 2.

The number m := min M (f) is the period of f and M(f) = {km : k € N}.

The function f is called a quasi-polynomial of degree d € Ny if, for every j € [d]o,
there exists an integer periodic function f; with period m; € N and f4 not identically
zero such that

d
fln) = ij(n)nj for all n € Ny.
§=0

The minimum positive integer in ﬂ;lzo M(f;) equals lem{m,; : j € [d]o} and is called the
quasi—period of f. Note that the quasi-polynomials form a vector space over C which
includes the integer periodic functions as well as the polynomials.
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Given a sequence (ay, ) >, of complex numbers for some k € Ny, its generating function
is the formal power series

E anz”.

n>k

With one exception (Proposition 2), in all instances we are treating in this paper, a,, has
polynomial growth. That is, |a,| = O(n®) holds for all n > k with some s € N. In the
exceptional case a, has exponential growth; that is |a,| = exp(O(n)). Thus, the power
series above has the radius of convergence at least 1 in all cases except the exceptional
case for which the radius of convergence is positive. So, we think of it as an analytic
function in some open disk.

For n € N we denote the group of n-roots of unity U,, = {z € C : 2" = 1}. It
is well known that U, is cyclic with ¢(n) generators called primitive n-roots of unity.
Among the primitive n-roots of unity e’ is called the principal n-root of unity. Every
w € U :=,en Un is called a root of unity. If P(X) € C[X], we denote its degree by
deg(P).

2.2. The Jordan totient functions and their generalizations

Throughout this section, let k& be a non-negative integer. We first recall the basic
properties of the Jordan totient function Jy : N — Ny of degree k. For every n € N, by
definition, we have

Ti(n) = d*pu(n/d). (1)

dln

Note that J; is a Dirichlet convolution of multiplicative functions, and thus it is a
multiplicative function. Moreover,

alo) =S utwfay = {§ i ) @)
d|n

is the neutral element with respect to the Dirichlet %-product of arithmetic functions.
The values of Ji(n) for k > 1 can be easily computed in terms of the prime divisors
of n by the formula

which makes clear that
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For the scope of our paper it is fundamental to consider some variations of the Jordan
totient functions.

We define, for a root of unity w, the w-Jordan totient function of degree k denoted
Jrw : N = C which associates to n € N the complex number

Jihwy(n) := Z wld* u(n/d). (3)

d|n

We call those functions the Jordan root totient functions." Note that they are general-
izations of the Jordan totient functions because Ji 1) = Ji. However, those functions
are not multiplicative when w # 1.

We define next, for every m € N and j € [m—1]o, the Jordan modulo totient functions
of degree k denoted le’m : N — C which associates to n € N the integer

JMmy = Y dFu(n/d).
dln
d=j (mod m)

Note that those functions cannot be interpreted as convolutions of multiplicative
functions because the sum is not extended to all the divisors of n. In particular, they are
not multiplicative in general. Since J,S71 = J the Jordan modulo totient functions are
generalizations of the Jordan totient functions as well.

It is immediately observed that the Jordan root totient functions are C-linear combi-
nations of the Jordan modulo totient functions. More precisely, consider J ,,) for some
w € U and some k € Nj. Let m be the minimum positive integer such that w € U,,.
Then, for every n > 1, we have

m—1 m—1
Ty () =D ! Y du(n/d) = W I (n). (4)
Jj= dn 7=0
d=j (mod m)

Thus, J(x,.) = Z;-n:_ol wl JI
We finally recall a definition from [9]. For a Dirichlet character x, the function Ji(x; -) :
N — C is defined by associating to every n € N the complex number

Te(n) =Y x(d)d"u(n/d).

d|n

We call those functions the Jordan-Dirichlet totient functions. Since x is totally mul-
tiplicative, the function Ji(y;-) is a Dirichlet convolution of multiplicative functions,
and thus it is a multiplicative function. Note that if 1 is the unique Dirichlet character

1 The definition (3) can be given for a generic w € C, but that has no interest for the scope of the present
paper.
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modulo 1 (called the trivial character), that is the function 1(z) = 1 for every x € Z,
we have that Ji(1;-) = Ji. Thus, the functions Ji(x; ) are generalizations of the Jordan
totient function Ji. The values Ji(x;n) can be explicitly computed when y is assigned
(see, for example, [9, Lemma 6]). Moreover, the Jordan-Dirichlet totient functions are
C-linear combinations of the Jordan modulo totient functions.

Lemma 1. Let k be a non-negative integer and x be a Dirichlet character modulo m for
m a positive integer. Writen € N asn = H p°?. Then

pPln
cp>1,p prime

(4)

TiOcn) =n* [ x> NOEEaP
o < pk)

p prime

(#3) If (n,m) =1, then

(iid) i
TG =Y x(G) ™. (6)

Proof. (i) Using that x is totally multiplicative, we have

TeOGp™) = > x(d)d p(p® d) = —x(pr~H)p*Fr = + x(pr)pFer
d|p°r

_ 7X(p)cp71plc(cp*1) + X(p)cppkcp _ X(p)cpflpkcp (X(p) _ k) )

Hence, by the multiplicativity of Ji(x;-), we obtain

ntin = I sbern = T x5 (i)~ ¢ )
Pl

pln p
p prime p prime
_ 1
=it T o (x) - ).
pln
p prime

(i) Since (n,m) = 1 we have that, for every prime p dividing n, x(p) # 0 holds. Thus,
the result follows immediately by (7) using again that x is totally multiplicative.
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(441) Since the Dirichlet characters modulo m are periodic of period m, we have

=Y x(@d*u(n/d)=>" > x(j)d"u(n/d)
Jj=1 d|

d|n n
d=j (mod m)

m
Z )™ (n). O

We now briefly discuss how it is possible to express the Jordan modulo totient func-
tions by the Jordan-Dirichlet totient functions.

Recall that there are exactly ¢(m) Dirichlet characters modulo m so that, once m
is fixed, the equalities in (6) give ¢(m) independent linear equations in the m variables
Jg’m for j € [m — 1]p with vanishing coefficient for the j such that ged(j,m) > 1. From
those equations one can easily find the expression for J, ,z’m, with ged(j, m) = 1, in terms
of the Jx(x;-). In fact, by the orthogonality relations for characters, we have

R = s SOXGAG) for () =1, (™)

The computation of J,z’m when s := ged(j, m) > 1 reduces to that of ka/s’m/s which,
since j/s and m/s are coprime, is carried out through formula (7). More precisely we
have

0 if stn
J,m - .
G (”)‘{skJ,g/S”"/S<n/s> it s|n.

Indeed, let j' = j/s and m’ = m/s. If d is a positive integer such that d | n and d = j
(mod m), then we have

d=sj +ksm' =s(j ' +km') | n (8)
for some k € Ny. In particular, if at least one such d exists then s | n. Hence, if s { n
then we have J}"™(n) = 0. Assume now that s | n and let n’ = n/s. By (8), it follows
immediately that
{deN:d|n,d=j (modm)}={sd eN:d |n',d =3 (modm')}.

Then

Ty =S (sd) ! ) = s ),
d'|n’
d'=j" (mod m’)
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2.3. Compositions and partitions

Let k € N. A k-composition of n € N is an ordered k-tuple z = (z1,...,2) where,
for every j € [k], z; € N and 2?21 xj = n. Let ¢x(n) be the number of k-compositions
of n. Then ¢x(n) =0 for all n < k and it is well known that, for every n > k, we have

am = () = o)
Consider now the corresponding polynomial
(X—1)- (X —k+1) = ,
Cp(X) = G 1 :;akineQ[X]v

and note that cix(n) = Ci(n) holds, not only for n > k but for all n > 1 because any
positive integer less than k is a root of Cy(X). Thus,

k-1
cr(n) = Z akwmi forall n>1. (10)
i=0

We call C(X) the k-composition polynomial. Recalling ([10, Definition 8.1]) that the
Stirling numbers of the first kind s(k, ¢) are given for 1 <i < k by

XX -1 (X—k+1)=>_s(k,i) X,

=1

it immediately follows that for every i € [k — 1]p we have

s(k,i+1)
_ 1 11
A (k — 1)| ( )
In particular, ay -1 = (kfll)l so that
ck(n) = 1 n*1 4 0(n*2?)
(k—1)! ’

with the implied constant in the Landau symbol depending on k.
The generating function of ¢, (n) is well known ([11, Example 1.6]) and given by

k

Z cr(n)z" = (li—z)k

n>1

The above equality can be obviously rewritten in terms of the k-composition polynomial
as
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k

> G = (12)

n>1

Since in the above sums the first £ — 1 terms are zero we deduce that

ﬁ:Z(”Zk_v =3 Culn + k)" (13)

n>0 n>0

A k-partition of n € N is an unordered k-tuple x = [z1,...,2;] where, for every
j € k], z; € Nand n = 2521 xj. Both for compositions and for partitions z, the
numbers 1, ...,z are called the terms of z. Let pg(n) be the number of k-partitions of
n. Again we have pi(n) = 0 for all n < k. The formulas for py(n) for k = 2,3 are known
(see, for example, [1, page 81]). The generating function of pg(n) is also well-known and
given by ([11, page 45])

k

D pr(n)" = 1—2)(1—52).--(1—,21@)' (14)

n>1

Partitions and compositions are strictly linked and in many occasions one deduces
formulas from the ones starting from those for the other one. But dealing with parti-
tions is considerably harder than dealing with compositions and formulas become more
complicate.

A k-composition (a k-partition) of n is called coprime provided that ged(zy, ..., zr) =
1 or, equivalently, if ged(z1,...,z5,n) = 1. We denote with ¢} (n) and with pj (n) the
number of coprime k-compositions and k-partitions of n respectively. It is easy to check
that cx(n) = 324, ¢ (n/d), as well as pr(n) = >, pi.(n/d). Hence, by Mébius inversion,
we also have

= p(n/d) ci(d), (15)
d|n

and

n) =Y u(n/d)py(d). (16)
dln

3. Coprime k-compositions and asymptotics

Since it is well known that
J(n) = {(z1,...,25) e NF: Vi€ [k], 1 < x; <n, ged(z,...,25,n) =1},

the role of the Jordan totient functions in describing the number of coprime compositions
or partitions is reasonably expected. For instance, in [2, Theorem 1.1, Theorem 2.2] it is
shown that
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ph(n) = Jlé”) for all n >3, (17)
and
ps(n) = J21(2n) for all n > 4. (18)

In the following proposition we describe the easy case of compositions and determine
the asymptotic behavior of both coprime compositions and partitions. We stress that
part (i) and (i) are not a novelty. For instance they appear in [21, page 2]. We reprove
briefly them, for completeness.

Proposition 1. Let k € N and ay; as in (11), for i € [k — 1]o. Then the following facts
hold:

(i) For everyn > 1, we have cj(n) = Zf:_ol agi Ji(n). In particular, cj.(n) is a Q-linear
combination of the Jordan totient functions.
(i) For k > 2, we have

cp(n) = ﬁﬁg,l(n) +0(n*72).

(éii) For k > 2, we have

1

Mg Homt) (19)

pr(n) =
and

L () + O(E2).

P = =1y

In all the above formulas all the implied constants in the Landau symbols depend on k.
Proof. (i) By (10), for every n > 1, we have ci(n) = Zf;ol ap;n'. Hence, recalling the
definition (1) and using (15), we get

k—1 k—1
) = unfd)ex(@d) = S p(n/d) S aned = 3 agii(n).
d|n i=0 =0

d|n

1

For (#i1), estimate (19) is formula (4.3) in [17]. Without the estimate of the error term
it is attributed to the 1926 paper of Schur [18]. With the error term, it is attributed to
Nathanson [15]. The estimate of p)(n) for k = 2,3 comes immediately from (17) and
(18). For k > 4 it follows instead from (19) and (16) since in this case

(1) It follows immediately by (i) and by (11), since ag x—1 =
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Z,u Ypr(n/d) = 'Zu Y(n/d)F 1+ 0 Z(g)k_g

d|n d|n

— 1 k—2 1
= 7]{'(}{;—1)'Jk_1(n)+0 n de_2

d>1
1

= mjk—l(”) + O(nk72)- U

The above proposition gives, among other things, an easy formula for calculating ¢} (n)
in terms of the prime divisors of n. For instance, by (9), we have

2 —3n+2 5 —6n*+11ln—6
ca(n)=n—1, c;;(n):% and 04(n):n n;— "

Thus from Proposition 1(4), we get for every n > 2,

pin LAV b
and
¢y(n) = %Jg(n) — hn)+ 16—1J1(n)
o) ) (o)

One can wonder if similar easy formulas could hold for partitions too, just adapting the
coeflicients of the Jordan totient functions. Formulas (17) and (18) seem encouraging in
this direction. However, in [2] it is observed that the situation becomes very complicated
for k£ > 4 and no information is given for the general approach. Our paper aims to explain
in which sense and why complications do arise.

Note that, since p’(2) # J1(2) as well as p5(3) # ‘]21—(23) the limitations on n in (17) and
in (18) cannot be eliminated but, in principle, one cannot exclude that the small cases
for n could be included in a more rich formula involving as terms other Jordan totient
functions.

Inspired by (17) and (18), we then consider four problems:

Problem 1. Determine the k > 2 such that p} (n) is a C-linear combination of the Jordan
root totient functions in the entire domain n > 1.

Problem 2. Determine the k > 2 such that pj (n) is a C-linear combination of the Jordan
modulo totient functions in the entire domain n > 1.
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Problem 3. Determine the k& > 2 such that pj,(n) is a C-linear combination of the Jordan
totient functions in the entire domain n > 1.

Problem 4. Determine the k& > 2 such that pj,(n) is a C-linear combination of the Jordan
totient functions in a domain n > N for some suitable N € N depending on k.

4. Sequences with rational generating functions

The next classical result is called the Binet formula for linear recurrences. See, for
example, Theorem C.1 in [19]. The same contents appear also, with some minor further
details, in [20, Sections 4.1-4.4].

Proposition 2. Let P(X) = [[;_,(1 - a;X)% € C[X] be a polynomial with P(0) = 1,
and distinct nonzero roots afl, .o,agt € C*, s > 1, of multiplicities by, ..., by, respec-
tively. Given Q(X) € C[X] of degree smaller than deg(P) write the Taylor expansion of

Q(2)/P(2) as

Z
5= 2w for |zl < max {lal}. (20)

( n>0

Then, for every j € [s], there exists uniquely determined P;(X) € C[X] of degree at most
bj — 1 such that

ay, = Z Pj(n)aj  for all n > 0. (21)

If ged(P(X),Q(X)) =1, then Pj(X) has degree exactly bj —1 for j € [s]. Conversely, if
P;(X) € C[X] are polynomials of degree at most b; — 1 and ay, is given by formula (21)
then formula (20) holds with some polynomial Q(X) € C[X] of degree less than deg(P).

The data P;(X) for j € [s] can be computed in the following way. We focus on the
case gcd(P(X), Q(X)) = 1 which is important for our scope. Then b; is the order of the
pole o~ in the rational function % Of course we have b :=3"_, b; = deg(P) and

if ¢, € C* is the leading coefficient of P, using that P(0) = 1, we see that

S S
z>:ch<Z_a;1)bj: s b Hl_aﬂ J_H(l_ajz)bj-
J=1 HJ 1% j=1 j=1

Hence, by partial fractions decomposition we get

s b

2y oy el 2

j=11i=1 ]:11:1
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where

1 . (=) Q(2)
ki (bj —)! zEE}l D% ( IJD(Z) ) 7

and D! denotes the derivation of order ¢ € Ny with respect to the variable z. Observe
that, for every j € [s], we have s;;, # 0 because otherwise the order of the pole a:tin

J
% would be less than b;. Putting

rji = (70@')7;8]‘1‘, (23)

from (22) and (13) we then obtain

z ZZZQZ (n+i)ajz" ZZ ZTW (n+i) | ajz"

j=11i=1n>0 n>0j5=1 \i=1

—ZZP ;L", where ; Zrﬂ (n+1)

n>0j=1
has degree exactly b; — 1 since rj,, # 0. By identifying coefficients we get

ap = z:Pj(n)oz}I forall n>0.

An explicit expression for the coeflicients of the polynomials P; can be obtained as
follows. Fix j € [s]. We have

b; bj i—1
E r;;Ci(n + 1) g Tji E Qg n+z

1=1 =0
b; i—1 £ / bj i—1i4i—1

—t
Tji § § 437 (t) T]zaM( >

i=1 £=0 t=0 1=1 t=0 4=t
bj—1 b; i—1

= . . i TiiQip K nt
. Jile ¢ .
Thus,
bj—1 b;

i—1
14
= Z ujmt, where wuj; = Z eriaig(Jie_t. (24)
t=0

i=t+1 =t
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Now recall that the a;; are explicitly given by (11) in terms of the Stirling numbers and
the rj; are explicitly given by (23).

Example 1.

(i) Let A(X) € C[X] be of degree at most ¢. The sequence of general term a,, :== A(n)
for n > 0 satisfies (21) with s =1, a3 =1 and by = ¢ + 1. Thus,

Zan = Q(Z for |z] <1

Z)t+1
n>0

holds with some Q(X) € C[X] of degree at most ¢.

(ii) For w € U,,, the function T, : Ny — C defined, for every n € Ny, by T,,(n) = w™
are m integer periodic functions of period m which form a basis for the C-vector
space of periodic functions of period m. If T" is an integer periodic function of period
m € N, then there exists Q(X) € C[X] with degree less than m such that

> T(n) Q) for  |z| < 1. (25)

T 1—em
n>0

Indeed, in order to show that there exists a unique choice of ¢, € C, for w € U,,,
such that ' =Y ¢, T, it is sufficient to note that the linear system in the variables

(Cw)wGUm

= chwk for k=0,1,....m—1
WEUm

has coefficient matrix given by the invertible Vandermonde matrix with columns
(1,w,...,w™ YT for w € U,,. Thus, the sequence of general term a, = T(n)
satisfies (21) with s =m, by =--- =b,,, = 1 and {1, ..., @} = U,,. Hence, there
exists Q(X) € C[X] with the required properties such that (25) holds.

(iii) Let k > 2. Then pi(n) is representable as a quasi-polynomial by

pr(n) = Pi(n) + S(n),

where P;(X) € Q[X] has degree k — 1 and S(n) is a quasi-polynomial of degree
|k/2] — 1 and quasi—period §(k). P; is called the polynomial part of py.
By (14), we have

k

D pr(n)" = T A1) (1R

n>1

so that Proposition 2 applies with



342 D. Bubboloni, F. Luca / Journal of Number Theory 235 (2022) 328-357

Pz)=(1-2)(1-2%)---(1-2%) and Q(z)= 2",

which are coprime. The roots of P are the elements of V = Uf;zl U,, and, since V'
is closed under inversion, we have that V' coincides with the set of the inverses of
the roots of P. Let s = |V|. Note that V is expressible as the disjoint union V' =
L% _{w € Uy, : w is primitive}. Thus, since k > 2, we have s = anzl o(m) > 2.
We order its elements w1, . . .,w, considering the primitive m-roots of unity starting
from m = 1 and finishing with m = k. Hence w; = 1,wps = —1. Let b; > 1 be the
multiplicity of w; for j € [s]. Clearly if w; is a primitive m-root of unity for some
m € [k], we have that b; = |k/m|. In particular, by = k, by = |k/2]. Then we have

pr(n) =Y _ Pj(n)w) forall n>1 (26)
j=1

by the explicitly computable P;(X) € C[X] of degree b; — 1, j € [s], given in (24).
Thus pg, is a quasi—polynomial and the expression (26) can be split into

pr(n) = Pi(n) + Z Pj(n)wj forall n>1.
j=2

Define then S(n) := Z§:2 Pj(n)w}. By Proposition 2 and the above remarks we
know that its degree is [k/2| — 1 because wo has multiplicity |k/2]| and the mul-
tiplicities of the remaining roots w; for j > 3 are at most |k/2|. The statement
about the period is also clear.

(iv) If k > 2, there exists no P(X) € C[X] such that

pr(n) = P(n) forall n>1. (27)

Furthermore, if k£ > 4, there exists no P(X) € C[X] and no integer periodic function
T such that

pr(n) = P(n)+T(n) forall n>1. (28)

Indeed, by (i) and (i), the generating function of the sequence appearing in the right—
hand side of (28) is of the form

Q) ., R()

29
(1 —2)tt1 1 —zm’ (29)
whereas the generating function of the sequence appearing in the left-hand side is
k
: (30)

(1—2)1—22)---(1—2k)’
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For k > 4, the rational function appearing at (30) has z = —1 as a pole of multiplicity
|k/2] > 2, which is not the case for the rational function indicated at (29), so equality
(28) is impossible. The fact that (27) is also impossible for k£ = 2,3 is also immediate.

5. Coprime partitions and Jordan functions

We are now ready to solve Problems 1-4.
Theorem 1. Let k > 2. Then the following facts hold:

(i) py, s a C-linear combination of the Jordan root totient functions in the entire do-
main n > 1.

(i7) p), is a C-linear combination of the Jordan modulo totient functions in the entire
domain n > 1.

(17) pl(n) is not a C-linear combination of the Jordan totient functions in the entire
domain n > 1.

() If pi.(n) is a C-linear combination of the Jordan totient functions in a domain
n > Ny, for some suitable Ny, € N depending on k, then p(n) is a rational multiple
of Jy—1(n) and k € {2,3}. Further, the minimal value of Ny is k + 1 for both
ke {2,3}.

In both cases (i) and (ii) above the coefficients of the linear combinations are easily
computable.

Proof. In Example 1(iii) we have seen that
= Z Pj(n)wj forall n>1 (31)

for suitable explicitly computable P;(X) € C[X] of degree b; — 1, j € [s] and

{wi, . ws} = U _, U
(i) By (16), (31) and (24), we have

s bj—1

=2 Pildwu(n/d) = ZZZW p(n/d)
dln j=1 n j=1 t=0
s bj—1 s bj—1

—Z Zthdedt (n/d) = Z ZujtJ(th) (32)
j=1 t=0 Jj=1 t=0

which expresses explicitly pj, as a C-linear combination of Jordan root totient functions.
(73) It follows immediately by (7) and (4).
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(7i7) Assume the contrary. Then there exist s € N and ¢; € C for alli =0,...,s, such
that

pi(n) = ZciJi(n) forall n > 1.
i=0

Writing the above relation for all d | n and using (16), we then get for every n > 1,

pr(n) = Zpk(d) = chﬂi(d) = ZCiZJi(d) = Zcz’ni = P(n),
i=0

d|n d|n =0 =0 din

where P(X) =7 ;X" € C[X], against Example 1(iv).

(iv) Let Ny € N be minimum such that, for n > Ny, pj.(n) is a C-linear combination
of the Jordan totient functions. For shortness we set N := Nj. Surely p) (n) cannot be,
for sufficiently large n, a multiple of Jy(n). Thus, there exist s € N and ¢; € C for i € [s]o
with ¢s # 0, such that

pl(n) = Z c;J;(n) forall n> N. (33)

=0

As a consequence of (iii) above we have that N > 2. Thus if n > N, we also have
n > 2 and so Jy(n) = 0. Hence, whatever ¢ is in (33), we can surely guarantee the same
equality adopting ¢y = 0. Let then

pi(n) = ZciJi(n) forall n> N, (34)
i=1

and P(X) =Y."_, ¢;X* € C[X] be the corresponding polynomial. Note that deg(P) = s.
Define the function f% : Ng — C given for every n € N by

IHOEDS <p;<d> - Z@Ji(d)> (3)

d|n
d<N

and by f&(0) = f&(m), where m := §(N — 1).
We claim that

pr(n) = P(n) + f&(n) forall n>1. (36)

Indeed, by (16) and (34), for every n > 1, we have
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pre(n) = _pi(d) =Y pild) + > pi(d)

d|n dn d|n
d<N d>N
= 2P+ 3 > cidi(d)
daN 2y
=> <p;(d) - ZciJi(d)> + ZZCiJi(d)
d|n i=1 djn i=1
d<N

= R+ Y’ = fh(m) + P(n)

We next claim that
fX is an integer periodic function. (37)

In order to prove that it is enough to show that m € M(fX). Let £,n € N. Since every
d < N divides m, we have

filn+om) = 3 <pz<d>—zciJi<d>>

d|n+£€m
d<N
= <p§g(d) - Z@L‘(@) = fx(n).
d|n i=1
d<N

Hence, trivially we also have f%(0 + fm) = f&(m) = f&(0).

By (36) and (37) we then have that py is the sum of a polynomial and of an integer
periodic function. By Example 1(iv) this rules out k > 4, so that k € {2, 3}.

Now, by (19) and by (36), we get

1
k _ k—1 k—2
fr(n)+ P(n) = k!(k—l)!n + O0(n" 7).
K P
By (37), J;A;c(_ri) tends to 0 as n goes to infinity. Thus, nk(i? tends to m as n

goes to infinity, which implies s = deg(P) =k — 1 and ¢;—1 = m In particular, we
have P(X) = Y1 e X1
If k = 2, this gives P(X) = 3 and (34) becomes

o) = 1§”> for all n > N, (38)
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which surely does not hold for N = 2, because p5(2) = 1 # 1/2. We know from (17) that

ph(n) = Jlén) for all n > 3. (39)

Hence, the minimum N such that there exists an expression of ph(n) as a C-linear
combination of the Jordan totient functions for n > N is N = 3 and no other such
expression with N = 3 is possible besides (39).

If k = 3, we then get P(X) =1 X + )f—; and (34) becomes

JQ(TL)
12

ps(n) = c1Ji(n) + for all n > N. (40)

Assume that N = 3. Then, by (40), p5(3) = 1 implies ¢; = 1/6 while p5(4) = 1 implies
c1 = 0, a contradiction. It follows that N > 4. By (18), we know that

pi(n) = ( for all n > 4. (41)

Thus, the minimum N such that there exists an expression of p4(n) as a C-linear com-
bination of the Jordan totient functions for n > N is N = 4. We finally observe that no
other such expression with N = 4 is possible besides (41). Indeed, as previously observed,
the computation of p5(4) by (40) implies c; = 0. O

6. Computation of some generalized Jordan totient functions

In the last two sections of the paper we illustrate how to explicitly find the polynomials
P; of (26) relying on the generating function of pj(n). This allows us to represent p) as a
C-linear combination of Jordan root functions. Next we explain how to explicitly compute
the Jordan modulo totient functions in which those Jordan root totient functions split,
making use of the Jordan-Dirichlet totient functions. We limit ourselves to treat k €
{2,3,4}. Anyway the general method should be clear.

In this section, we gather together all the computations which we will need later.
They illustrate very well how to connect the diverse generalizations of the Jordan totient
functions in order to obtain one from the other. For this reason they are of interest in
themselves. In the next section, we examine separately ph, ps and pj.

Lemma 2. Let n € N and write n = 3"my with ged(3,my) = 1. Then

1 if n=1;

‘ -1 if n=23;
Jo3(n) = 0 if Ip=1 (mod 3), p|my; (42)

0 if b>2;

(—1)2(m)gw(ma)—1 otherwise.
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Proof. For shortness, write f(n) instead of Jj*(n). Then

fy=" Y un/d).
d=1 Elllr?od 3)

If d =1 (mod 3) and d | n, then d | my. Thus, 3° | n/d over all such divisors d and
n/d = 3%(my/d) with 3° and m;/d coprime. Thus, by the multiplicativity of the u
function, we get

fy= > pm/d)= Y pB"p(mi/d) =pB3°)fm).  (43)
d=1 ?Ilr?od 3) dEld(Izéd 3)

Hence, if b > 2 we have f(n) = 0. Let then b € {0, 1}. By (43), it suffices to study f(m1).

Let x be the unique non principal Dirichlet character modulo 3. Then x(k) =1if k=1

(mod 3), x(k) = —1if k =2 (mod 3) and x(k) = 0 if ged(k,3) > 1. It is easily seen that
1 1

f(m) = B Z (x(d) + Dp(ma/d) = B Z x(d)p(ma/d) + B Z p(ma/d).

d|lmy d|lmy d|mq

Since m; is coprime to 3, by (5), we get for m; > 1

1 1 1
flm) =5 Y x(@ulmi/d) = Sx(ma) [T (1- —
2 2 x(p)
d\ml p‘ml

1

=) II a-n I G+
plma p|ma
p=1 (mod 3) p=2 (mod 3)

B 0 if p|my for some p=1 (mod 3);
T (=1)Rma)getm)=1if =2 (mod 3) for all p | m.

Thus, by (43), taking into consideration that f(1) =1, the formula (42) for f(n) imme-
diately follows. O

Lemma 3. Let n € N.

(i) Then

o(n) if a>2.
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(#91) Write n = 2%m with m odd. Then

ik if n=1;
—1—* if n=2;
B 0 if JIp=1 (mod4), p|m;
J(Ovik)(n) B 2 if n =4
0 if a>3o0ora=2andm>1;
ik (—1)Rm)gw(m) otherwise,
for k=1,3.
(iv) Write n = 3°my with ged(my,3) = 1, and denote by w the principal 3-root of 1.
Then
wk if n=1;
—wk 41 if n=3;
Jouwry(n) = 0 if 3p=1 (mod3), p|my;
0 if b>2;
(wF — W) (=1)R ) gwim)—1 otherwise,
fork=1,2.
Proof. (i) Write n = 2%m with m odd. For n = 1 and n = 2 one makes a direct
computation. For n > 3, note that
Z (n/d) = Zp (2%(m/d)) = p(2%) Zu m/d). (44)
dln d|lm dlm

d odd

If m = 1, then a > 2 and thus p(2*) = 0 so that, by (44), we get Z (n/d) =0.If

dln
d odd

m > 1, then m > 3 so that Z p(m/d) = 0 and, by (44), we again get > q,, p(n/d) = 0.
i d odd

It follows that

0= uln/d) = 3 wln/d)+ S ulnfd)= 3" u(n/d).

d|n d|n d|n d|n
d even d odd d even

Hence,
Jo-n() =Y (=D)uln/d) = = 37 un/d)+ Y pln/d) = 0.

d|n d|n d|n
d odd d even

(71) We start again with the odd d’s getting
Z du(n/d) = Zdu (2%(m/d)) = u(2%) Zdu m/d) = p(2)p(m). (45)

dlm dlm
d odd
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The above calculation proves (i7) if a = 0. If @ > 2, the right-hand side above is zero.
Hence, we have

=N du(n/d)= Y du(n/d) + Z dp(n/d) = du(n/d),
d|n

d|n d|n
d even d odd d even

so that we also have

Ja,-n(n) = Y _(=1)du(n/d) = Z dp(n/d) - Z dp(n/d) = ¢(n).

d|n
d even d odd

Finally, if a = 1, we have n = 2m and then every even divisor of 2m is of the form 2d
for d | m. Thus,

Ja-nn) = Y dum/d) - Y du(2m/d)

d|2m d|2m
d even d odd

=Y (2d)u(2m/2d) + > du(m/d)
dlm dlm

=2 " du(m/d) + ¢(m) = 3¢(m) = 3¢(n).

d|m

(iii) The function fy(n) = *(»~1 defined for odd n and extended to all positive
integers by putting fx(n) = 0 for even n, is totally multiplicative Indeed, if m,n are both
odd, we then have fy(mn) = i*""=1 and fi(m)fr(n) = iFm=Dik(-1) — jk(min=2)

and then the equality

fu(mn) = fr(m) fr(n)
is equivalent to

ik(mn—l) — ik(m+n—2)’

which is equivalent to

1= ik:(mnfmfnJrl) ~k:(m71)(n71),

=1
which holds since both m — 1 and n — 1 are even. If instead at least one of m and n is
even, then mn is even, so that fi(mn) = 0= fr(m)fr(n).

So,

E zkd (n/d) =i*u( (2%) E k=1 m/d)—Z w(2%) (fr * ) (m), (46)
dlm
dodd
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and fi * g is multiplicative. If m = p*, with p an odd prime and A > 1, then

A-l . A
(fox ) () = Y D (p? fd) = —iF0" =D 4 gkt =D
dlp*
0 if  p=1 (mod 4);
L4 (=1 if p=3 (mod4), 2|\
(=D)(1+ (=Dk*Y) if p=3 (mod 4), 21\

So, if k = 1,3, we get that (fx * p)(p*) equals 0 when p = 1 (mod 4) and equals
2(—1)* if p=3 (mod 4). We thus get that for m > 1,

0 if p=1 (mod 4) for some p | m

(fx * p)(m) = {(_1)Q(M)2w(m) if p=3(mod4)for all p|m. (47)

If @ = 0, then n = m is odd and thus, by (46), we get

Joam(n) =Y i*u(n/d) = (i w)(m),
d|n

and this is i* if n =m =1, 0 if m > 1 and p | m for some prime number p =1 (mod 4)
and % (—1)2m)w(m) — jk(_1)2(n)ow(m) gtherwise.

If a > 2, then by (46), the sum over the divisors d of n which are odd is zero since
#(2%) = 0. Thus, the given sum is concentrated on the even divisors and we have

Ty ) =Y i*CVu(n/2d) = Y (~=1)"u((n/2)/d)

2d|n d|n/2
= S (1) (n/2)/d)
dln/2

for k = 1,3. Moreover, by (i) and the fact that n/2 > 2, this last sum is zero unless
n/2 = 2 in which case it is 2.

Let finally a = 1, so that n = 2m. For n = 2, the given sum can be computed to be
—1 —i*. Now assume m > 1. In this case, by (46), we have

S i uln/d) = ~i*(fi + 1))
d odd
and, by (47), this is zero unless all prime factors of m are congruent to 3 modulo 4 in

which case it is —iF(—1)2(m)29(m) = jk(_1)R%(n)2w(m) A for the even divisors, these are

of the form 2d for some d | m, and we get

Z u(n/d) = sz(m) (2m/2d) = z:(—l)d,u(m/cl)7

d|n d|m dlm
d even
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and, by (¢), this last sum is 0 since m > 3.
(iv) We have

Jowh(n) =Y w®pu(n/d)

d|n
=t Y /e S ufd)+ Y uln/d)
n n din
d=1 ?rlnod 3) d=2 ?r‘nod 3) 3||d
= wkSi(n) + w85 (n) + So(n), (48)

where, for shortness, we have set S;(n) := J33(n), for j € {0,1,2}. Thus, we need to
compute S;(n), for j € {0,1,2}.

The easiest one is Sy. If 3 ¥ n, we obviously have that So(n) = 0. If 3 | n, that is b > 1,
we instead have, by (2):

So(n) = > p(n/d) = > u((n/3)/d) = {(1) g Zig
§|‘d d|n/3

So, Sp(n) is always 0 except if n = 3 when it is 1. As for S7, Sa, we write

Sin) = > un/d)=p3) D plmi/d) = p(3")Si(m),
d=1 l(irll?od 3) dEld(‘r:’lLéd 3)

and similarly Sa(n) = 11(3%)Sa(m1). By (42), we have

1 if my = 1;
Si(my) = 0 if Ip=1 (mod3), p|mu;
(—1)Rma)gw(m)—1 otherwise.

Since

S1(my) + S2(mq) = Z p(my/d)

d|lmy
is 1 for m; = 1 and 0 for my > 1, we get that
Sa(my) = 0 if Ip=1 (mod3), p|my;
—(—1)R(m1)gw(mi)—1 otherwise.

Thus, by (48), get that
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L if n=1;
—wk +1 if n=3;
Jiowry(n) = 0 if 3p=1(mod3), p|my; O
0 if b>2;
(wh — w2k)(—1)2(n) gw(mi)—1 otherwise.

7. Partitions and coprime partitions into k parts for k € {2, 3,4}
7.1. The case of 2 parts

By (14), we have

2

z
po(n)z" = —————~.
7%:1 (1—-2)(1-22)
Partial fraction expansion gives
22 _ 22 3 " 1 n 1
(1—2)(1—-22) (1—2)21+2) 4(1-2) 2(1—2)2 4(1+2)

Hence, using formula (13), we get

Zpg(n)z” = —T?, Z 2"+ % Z(n +1)2" 4+ i Z(—l)"z"

n>1 n>0 n>0 n>0

_ ; (2n4— L (—i)"> o

and thus

(49)

This is, of course, a reedition of the obvious pa(n) = |5 |, which puts in evidence the
nature of pa(n) as a sum of a polynomial and of a periodic function of period 2. By (16),

we then get for every n > 1

phin) = 5 3 duln/d) — 53" un/d) + 3 S (-1 u(n/d)

d|n d|n d|n

= Si(n) — o) + 01 (n). (50)

By Lemma 3(i),
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1 ~1/4 if n=1;
—J(O’,l)(’l’b) = 1/2 lf n = 2,
4 0 if n>2.

Note that if n > 3, then both Jy(n) and J(o, _1y(n) vanish in (50) so that py(n) = #,
which gives (17).

7.2. The case of 3 parts

By (14) and partial fraction expansion we have

n 23 53
7;]73(”)2 1= -1 -2 (1-2B31+2)(1+z+22)
.t .t 1 1
TRz AP TP 847
+ ! + 1
91 -wz) 91 —wz)’
where w = 71+T“/§ is the principal 3-root of 1. Using repeatedly formula (13), after

elementary simplifications we get

n n? 7 (=" w"+w™\ ,
Zpg(n)z —Z(E—i— 3 + 9 >z

n>1 n>0

Thus, for every n > 1, we have

p3(n) = 75 — = — + : (51)

The above equality puts in evidence the nature of p3(n) as a sum of a polynomial and of
a periodic function of period 6 and gives (26) for kK = 3. By (16) we then get, for every
n>1,

7 1 1 1
Jo(n) — 3 §J(O,w)(n) + —Jo,m)(n). (52)

1
py(n) = =Jo 5

1372(n) — Jo,-1)(n) +
Thus, we see the way in which p5(n) is a C-linear combination of Jordan root totient
functions. By Lemma 3(i), we have

1 1/8 if n=1;

< Jop(m) =4 -1/4 i n=2;
0 if n>3.
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Moreover, by Lemma 3(iv), we have

~1/9 if n=1;

1 1 0 it n=2
glow M +5J0a (M) =13 173 it p=3
0 if n>4.

In particular, for n > 4, all the terms in (52) except the first one vanish and we get

ph(n) = le(zn), which confirms (18).

7.8. The case of 4 parts

By (14) and partial fraction expansion we have

4
" 2
2 P = )
T (1 =241+ 2)2(1+ 22)(1 + 2 + 22)
13 R S
C288(1—2)2  24(1 —2)3  24(1 —2)*  32(1 4 2)2
1 1 1 w w
+ — + T~ — - — |,
16(1 —dz)  16(1+iz) 9(w—w) (1 —wz 1- wz>
where w = _1%“/5 Now, by formula (13), we have
= YD ) L= Y
= —1)™(n z — = n z
(1+2)? (=2 ’
n>0 n>0
1 n+2\ 1 n+3\ ,
_ 3:Z< )Z’ _ 422( )Z
(1-2) o5 2 (1—-2) = 3
Hence, we get
o L(rE3y_L(me2y 18 () ()
P =94\ 3 24\ 2 288" 32
N "+ (_,L)n B wnJrl _wn+1
16 i9v/3
Simplifying we obtain the expression of p4(n), for n > 1:
n> w2 n 13 (=1)"(n+1)
mETEY R s s s (53)
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The above equality is (26) for k = 4 and exhibits ps(n) as the sum of its polynomial part
of degree 3

and the further term

(=D"(n+1)
32

which is neither of polynomial type nor periodic. Of course S(n) := T'(n) + U(n) is a
quasi—polynomial of degree 1 and quasi—period 12 and

pa(n) = Pi(n) + 5(n),

as expected by Example 1(7ii).
The expression of p(n), for every n > 1, follows as usual by (16) and (53):

Jg(ﬂ) JQ(TL) Jl(n) 13J0(TL) 1
_ A _ 1 4
144 8 32 a3 T 3270 (54)

1 1
J0,0)(n) + —J0,3)(n)

16 16
iv3—3
54

/

pa(n) =

1
+ EJ(O,A)(TL)

ivV3+3
54

J0,w)(n) + Jo.z)(n).

It shows pjj(n) as a C-linear combination of the Jordan root totient functions.
From the computations made in Section 6, writing n = 3°m; with ged(my,3) = 1, we

see that
-2 if n=1;
3—2J(1,_1)(n) + 3_2‘](07—1)(”) = 3—2 —¢(n) if n=1 (mod 2), n > 1,
3p(n) if 2||n, n > 2;
p(n) if 4| n,
0 if n=1;
1 1 1 ) -2 if n=2;
1_6J(O,i)(n) + 1—6J(o,z‘3)(’”) 16 4 if n=4
0 otherwise,

and
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1 n=1

. s -2 n=3;
iv/3+3 iv3—3 1 Ip=1 (mod 3)

_veTe Sy S == 0
54 J(O,w) (n) + 54 J(va) (n) 9 p | mi;
0 b>2
(—1)R(n)guimi)—1 otherwise.
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