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1. Introduction

The study of partitions with a fixed number k of parts satisfying some coprimality 
condition [5] has revealed to be very fruitful for analyzing the normal covering number 
γ(Sn) of the symmetric group Sn [6], that is, the smallest number of conjugacy classes 
of proper subgroups needed to cover Sn. If σ ∈ Sn and k is the number of orbits of 〈σ〉
on {1, . . . , n} then the unordered list p(σ) = [x1, . . . , xk] of the sizes xi of those orbits 
is a partition of n into k parts called the type of σ. Now, by a basic result of group 
theory, two permutations are conjugate if and only if they have the same type. Thus, 
the conjugates of some subgroups H1, . . . , Hs cover Sn if and only if for every partition p
of n there exists Hi containing at least a permutation of type p. We emphasize that the 
problem of determining the normal covering number of a finite group arises from Galois 
theory and is linked to the investigation of integer polynomials having a root modulo p, 
for every prime number p (see [3, Section 1], [7] and [16]).

Fortunately, in order to efficiently bound γ(Sn), it is not necessary to deal with parti-
tions into k parts for every possible k ≤ n and the focus is on k = 2, 3, 4 (see [4, Sections 
5-6] and [8, Remark 1.2(c) and Sections 6-7]). Recently, using knowledge about parti-
tions into three parts Bubboloni, Praeger and Spiga [8, Theorem 1.1] have shown that, 
for n ≥ 20 even, γ(Sn) ≥ n

2

(
1 −

√
1 − 4/π2

)
−

√
17
2 n3/4. Similar results about Sn for 

n odd are not known and the research could greatly benefit from knowing more about 
partitions into four parts, especially those satisfying suitable coprimality conditions. A 
point of force in this direction is the fact that the primitive subgroups of Sn containing a 
permutation splitting into four cycles have been recently determined [12]. To start with, 
one should find an exact formula for the number p′4(n) of coprime partitions of n into 
four parts. This initial and somewhat narrow motivation inspired the present paper.

Looking to the case k = 4, we immediately realized that many considerations could 
be indeed carried on for every k ≥ 2, shedding light on the number p′k(n) of coprime 
partitions of n into k parts. The idea relies on one hand, on representing those expressions 
as linear combinations of classic number theoretic functions and, on the other hand, on 
having a method which leads to an effective computation of pk(n) and p′k(n). This has 
appeared in the past in a number of papers concerning pk(n) but we did not see it 
for p′k(n). In fact a formula for p′k(n) seems to be of recent interest in the scientific 
community (see [13, Question 2]).

Let Ji denote the Jordan totient function of degree i ≥ 0. In [2], it is proved that 
p′3(n) = J2(n)

12 holds for n ≥ 4. It is also clear that p′2(n) = J1(n)
2 holds for n ≥ 3. So, 

one can ask if similar results could hold for every k. We show that those two situations 
are pure miracles, because p′k(n) is in fact a C-linear combination of the Jordan totient 
functions for n sufficiently large just in those two cases (Theorem 1). The feeling is that 
the class of the Jordan totient functions is too restrictive and some generalizations of 
them are needed. We consider then three generalizations which are finely linked together: 
the Jordan root totient functions, the Jordan modulo totient functions and the Jordan-
Dirichlet totient functions (Section 1). The first two generalizations seem not to be 
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present in the literature. The third ones appeared in [9] in order to investigate the values 
of the cyclotomic polynomial at the roots of unity and admit easy and manageable 
formulas. We show that p′k is a C-linear combination of the Jordan root totient functions 
(Theorem 1). Relying on the partial fraction decomposition of the generating function 
of pk(n) and classical results about linearly recurrent sequences, we explicitly find the 
coefficients of such C-linear combination and show how to deduce the expression of the 
Jordan root totient functions involved. To that last purpose the idea is to split a Jordan 
root totient function in a C-linear combination of Jordan modulo totient functions, 
which in turn can be determined by suitable Jordan-Dirichlet totient functions, choosing 
some particular Dirichlet characters. Our concrete approach is proposed in detail for 
k ∈ {2, 3, 4}.

We close noticing that the use of generalizations of Jordan totient functions is present 
in the very recent research. For instance in [14], Moree et al. introduce the Jordan 
totient quotients of weight w in order to study the average of the normalized derivative 
of cyclotomic polynomials.

2. Basic facts

2.1. Notation

We denote by N the set of positive integers and by N0 the set of non-negative integers. 
Let n ∈ N. We denote by Ω(n) the number of prime factors of n counted with multiplicity 
and by ω(n) the number of distinct prime factors of n, where Ω(1) = ω(1) = 0. Moreover 
we define δ(n) = lcm{m ∈ N : m ≤ n}. As usual, φ denotes the Euler’s totient function 
and μ the Möbius function. For k ∈ N0, set [k] = {n ∈ N : n ≤ k} and [k]0 = {n ∈ N0 :
n ≤ k}. In particular, [0] = ∅ while [0]0 = {0}.

Let f : N0 → C. Then f is called an integer periodic function if

M(f) := {m′ ∈ N : ∀n, k ∈ N0, f(n + km′) = f(n)} 	= ∅.

The number m := minM(f) is the period of f and M(f) = {km : k ∈ N}.
The function f is called a quasi–polynomial of degree d ∈ N0 if, for every j ∈ [d]0, 

there exists an integer periodic function fj with period mj ∈ N and fd not identically 
zero such that

f(n) =
d∑

j=0
fj(n)nj for all n ∈ N0.

The minimum positive integer in 
⋂d

j=0 M(fj) equals lcm{mj : j ∈ [d]0} and is called the 
quasi–period of f . Note that the quasi-polynomials form a vector space over C which 
includes the integer periodic functions as well as the polynomials.
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Given a sequence (an)n≥k of complex numbers for some k ∈ N0, its generating function 
is the formal power series

∑
n≥k

anz
n.

With one exception (Proposition 2), in all instances we are treating in this paper, an has 
polynomial growth. That is, |an| = O(ns) holds for all n ≥ k with some s ∈ N. In the 
exceptional case an has exponential growth; that is |an| = exp(O(n)). Thus, the power 
series above has the radius of convergence at least 1 in all cases except the exceptional 
case for which the radius of convergence is positive. So, we think of it as an analytic 
function in some open disk.

For n ∈ N we denote the group of n-roots of unity Un = {z ∈ C : zn = 1}. It 
is well known that Un is cyclic with φ(n) generators called primitive n-roots of unity. 
Among the primitive n-roots of unity e

2πi
n is called the principal n-root of unity. Every 

ω ∈ U :=
⋃

n∈N Un is called a root of unity. If P (X) ∈ C[X], we denote its degree by 
deg(P ).

2.2. The Jordan totient functions and their generalizations

Throughout this section, let k be a non-negative integer. We first recall the basic 
properties of the Jordan totient function Jk : N → N0 of degree k. For every n ∈ N, by 
definition, we have

Jk(n) :=
∑
d|n

dkμ(n/d). (1)

Note that Jk is a Dirichlet convolution of multiplicative functions, and thus it is a 
multiplicative function. Moreover,

J0(n) =
∑
d|n

μ(n/d) =
{

1 if n = 1
0 if n > 1, (2)

is the neutral element with respect to the Dirichlet ∗-product of arithmetic functions.
The values of Jk(n) for k ≥ 1 can be easily computed in terms of the prime divisors 

of n by the formula

Jk(n) = nk
∏
p|n

(
1 − 1

pk

)
,

which makes clear that

J1(n) =
∑

dμ(n/d) = φ(n).

d|n
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For the scope of our paper it is fundamental to consider some variations of the Jordan 
totient functions.

We define, for a root of unity ω, the ω-Jordan totient function of degree k denoted 
Jk,ω : N → C which associates to n ∈ N the complex number

J(k,ω)(n) :=
∑
d|n

ωddkμ(n/d). (3)

We call those functions the Jordan root totient functions.1 Note that they are general-
izations of the Jordan totient functions because J(k,1) = Jk. However, those functions 
are not multiplicative when ω 	= 1.

We define next, for every m ∈ N and j ∈ [m −1]0, the Jordan modulo totient functions
of degree k denoted Jj,m

k : N → C which associates to n ∈ N the integer

Jj,m
k (n) :=

∑
d|n

d≡j (mod m)

dkμ(n/d).

Note that those functions cannot be interpreted as convolutions of multiplicative 
functions because the sum is not extended to all the divisors of n. In particular, they are 
not multiplicative in general. Since J0,1

k = Jk the Jordan modulo totient functions are 
generalizations of the Jordan totient functions as well.

It is immediately observed that the Jordan root totient functions are C-linear combi-
nations of the Jordan modulo totient functions. More precisely, consider J(k,ω) for some 
ω ∈ U and some k ∈ N0. Let m be the minimum positive integer such that ω ∈ Um. 
Then, for every n ≥ 1, we have

J(k,ω)(n) =
m−1∑
j=0

ωj
∑
d|n

d≡j (mod m)

dkμ(n/d) =
m−1∑
j=0

ωjJj,m
k (n). (4)

Thus, J(k,ω) =
∑m−1

j=0 ωjJj,m
k .

We finally recall a definition from [9]. For a Dirichlet character χ, the function Jk(χ; ·) :
N → C is defined by associating to every n ∈ N the complex number

Jk(χ;n) :=
∑
d|n

χ(d)dkμ(n/d).

We call those functions the Jordan-Dirichlet totient functions. Since χ is totally mul-
tiplicative, the function Jk(χ; ·) is a Dirichlet convolution of multiplicative functions, 
and thus it is a multiplicative function. Note that if 1 is the unique Dirichlet character 

1 The definition (3) can be given for a generic ω ∈ C, but that has no interest for the scope of the present 
paper.
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modulo 1 (called the trivial character), that is the function 1(x) = 1 for every x ∈ Z, 
we have that Jk(1; ·) = Jk. Thus, the functions Jk(χ; ·) are generalizations of the Jordan 
totient function Jk. The values Jk(χ; n) can be explicitly computed when χ is assigned 
(see, for example, [9, Lemma 6]). Moreover, the Jordan-Dirichlet totient functions are 
C-linear combinations of the Jordan modulo totient functions.

Lemma 1. Let k be a non-negative integer and χ be a Dirichlet character modulo m for 
m a positive integer. Write n ∈ N as n =

∏
pcp‖n

cp≥1, p prime

pcp . Then

(i)

Jk(χ;n) = nk
∏
p|n

p prime

χ(p)cp−1
(
χ(p) − 1

pk

)
.

(ii) If (n, m) = 1, then

Jk(χ;n) = nkχ(n)
∏
p|n

p prime

(
1 − 1

χ(p)pk

)
. (5)

(iii)
Jk(χ; ·) =

m∑
j=0

χ(j)Jj,m
k . (6)

Proof. (i) Using that χ is totally multiplicative, we have

Jk(χ; pcp) =
∑
d|pcp

χ(d)dkμ(pcp/d) = −χ(pcp−1)pk(cp−1) + χ(pcp)pkcp

= −χ(p)cp−1pk(cp−1) + χ(p)cppkcp = χ(p)cp−1pkcp
(
χ(p) − 1

pk

)
.

Hence, by the multiplicativity of Jk(χ; ·), we obtain

Jk(χ;n) =
∏
p|n

p prime

Jk(χ; pcp) =
∏
p|n

p prime

χ(p)cp−1pkcp
(
χ(p) − 1

pk

)

= nk
∏
p|n

p prime

χ(p)cp−1
(
χ(p) − 1

pk

)
.

(ii) Since (n, m) = 1 we have that, for every prime p dividing n, χ(p) 	= 0 holds. Thus, 
the result follows immediately by (i) using again that χ is totally multiplicative.
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(iii) Since the Dirichlet characters modulo m are periodic of period m, we have

Jk(χ;n) =
∑
d|n

χ(d)dkμ(n/d) =
m∑
j=1

∑
d|n

d≡j (mod m)

χ(j)dkμ(n/d)

=
m∑
j=1

χ(j)Jj,m
k (n). �

We now briefly discuss how it is possible to express the Jordan modulo totient func-
tions by the Jordan-Dirichlet totient functions.

Recall that there are exactly φ(m) Dirichlet characters modulo m so that, once m
is fixed, the equalities in (6) give φ(m) independent linear equations in the m variables 
Jj,m
k for j ∈ [m − 1]0 with vanishing coefficient for the j such that gcd(j, m) > 1. From 

those equations one can easily find the expression for Jj,m
k , with gcd(j, m) = 1, in terms 

of the Jk(χ; ·). In fact, by the orthogonality relations for characters, we have

Jj,m
k = 1

φ(m)
∑
χ

χ(j)Jk(χ; ·) for (j,m) = 1. (7)

The computation of Jj,m
k when s := gcd(j, m) > 1 reduces to that of J j/s,m/s

k which, 
since j/s and m/s are coprime, is carried out through formula (7). More precisely we 
have

Jj,m
k (n) =

{
0 if s � n

skJ
j/s,m/s
k (n/s) if s | n.

Indeed, let j′ = j/s and m′ = m/s. If d is a positive integer such that d | n and d ≡ j

(mod m), then we have

d = sj′ + ksm′ = s(j′ + km′) | n (8)

for some k ∈ N0. In particular, if at least one such d exists then s | n. Hence, if s � n
then we have Jj,m

k (n) = 0. Assume now that s | n and let n′ = n/s. By (8), it follows 
immediately that

{d ∈ N : d | n, d ≡ j (mod m)} = {sd′ ∈ N : d′ | n′, d′ ≡ j′ (mod m′)}.

Then

Jj,m
k (n) =

∑
d′|n′

′ ′ ′

(sd′)kμ(n′/d′) = skJj′,m′

k (n′).
d ≡j (mod m )
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2.3. Compositions and partitions

Let k ∈ N. A k-composition of n ∈ N is an ordered k-tuple x = (x1, . . . , xk) where, 
for every j ∈ [k], xj ∈ N and 

∑k
j=1 xj = n. Let ck(n) be the number of k-compositions 

of n. Then ck(n) = 0 for all n < k and it is well known that, for every n ≥ k, we have

ck(n) =
(
n− 1
k − 1

)
= (n− 1) · · · (n− k + 1)

(k − 1)! . (9)

Consider now the corresponding polynomial

Ck(X) := (X − 1) · · · (X − k + 1)
(k − 1)! =

k−1∑
i=0

akiX
i ∈ Q[X],

and note that ck(n) = Ck(n) holds, not only for n ≥ k but for all n ≥ 1 because any 
positive integer less than k is a root of Ck(X). Thus,

ck(n) =
k−1∑
i=0

ak,in
i for all n ≥ 1. (10)

We call Ck(X) the k-composition polynomial. Recalling ([10, Definition 8.1]) that the 
Stirling numbers of the first kind s(k, i) are given for 1 ≤ i ≤ k by

X(X − 1) · · · (X − k + 1) =
k∑

i=1
s(k, i)Xi,

it immediately follows that for every i ∈ [k − 1]0 we have

aki = s(k, i + 1)
(k − 1)! . (11)

In particular, ak,k−1 = 1
(k−1)! so that

ck(n) = 1
(k − 1)!n

k−1 + O(nk−2),

with the implied constant in the Landau symbol depending on k.
The generating function of ck(n) is well known ([11, Example I.6]) and given by

∑
n≥1

ck(n)zn = zk

(1 − z)k .

The above equality can be obviously rewritten in terms of the k-composition polynomial 
as
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∑
n≥1

Ck(n)zn = zk

(1 − z)k . (12)

Since in the above sums the first k − 1 terms are zero we deduce that

1
(1 − z)k =

∑
n≥0

(
n + k − 1
k − 1

)
zn =

∑
n≥0

Ck(n + k)zn. (13)

A k-partition of n ∈ N is an unordered k-tuple x = [x1, . . . , xk] where, for every 
j ∈ [k], xj ∈ N and n =

∑k
j=1 xj . Both for compositions and for partitions x, the 

numbers x1, . . . , xk are called the terms of x. Let pk(n) be the number of k-partitions of 
n. Again we have pk(n) = 0 for all n < k. The formulas for pk(n) for k = 2, 3 are known 
(see, for example, [1, page 81]). The generating function of pk(n) is also well-known and 
given by ([11, page 45])

∑
n≥1

pk(n)zn = zk

(1 − z)(1 − z2) · · · (1 − zk) . (14)

Partitions and compositions are strictly linked and in many occasions one deduces 
formulas from the ones starting from those for the other one. But dealing with parti-
tions is considerably harder than dealing with compositions and formulas become more 
complicate.

A k-composition (a k-partition) of n is called coprime provided that gcd(x1, . . . , xk) =
1 or, equivalently, if gcd(x1, . . . , xk, n) = 1. We denote with c′k(n) and with p′k(n) the 
number of coprime k-compositions and k-partitions of n respectively. It is easy to check 
that ck(n) =

∑
d|n c

′
k(n/d), as well as pk(n) =

∑
d|n p

′
k(n/d). Hence, by Möbius inversion, 

we also have

c′k(n) =
∑
d|n

μ(n/d) ck(d), (15)

and

p′k(n) =
∑
d|n

μ(n/d) pk(d). (16)

3. Coprime k-compositions and asymptotics

Since it is well known that

Jk(n) = |{(x1, . . . , xk) ∈ Nk : ∀i ∈ [k], 1 ≤ xi ≤ n, gcd(x1, . . . , xk, n) = 1}|,

the role of the Jordan totient functions in describing the number of coprime compositions 
or partitions is reasonably expected. For instance, in [2, Theorem 1.1, Theorem 2.2] it is 
shown that
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p′2(n) = J1(n)
2 for all n ≥ 3, (17)

and

p′3(n) = J2(n)
12 for all n ≥ 4. (18)

In the following proposition we describe the easy case of compositions and determine 
the asymptotic behavior of both coprime compositions and partitions. We stress that 
part (i) and (ii) are not a novelty. For instance they appear in [21, page 2]. We reprove 
briefly them, for completeness.

Proposition 1. Let k ∈ N and aki as in (11), for i ∈ [k − 1]0. Then the following facts 
hold:

(i) For every n ≥ 1, we have c′k(n) =
∑k−1

i=0 aki Ji(n). In particular, c′k(n) is a Q-linear 
combination of the Jordan totient functions.

(ii) For k ≥ 2, we have

c′k(n) = 1
(k − 1)!Jk−1(n) + O(nk−2).

(iii) For k ≥ 2, we have

pk(n) = 1
k!(k − 1)!n

k−1 + O(nk−2) (19)

and

p′k(n) = 1
k!(k − 1)!Jk−1(n) + O(nk−2).

In all the above formulas all the implied constants in the Landau symbols depend on k.

Proof. (i) By (10), for every n ≥ 1, we have ck(n) =
∑k−1

i=0 akin
i. Hence, recalling the 

definition (1) and using (15), we get

c′k(n) =
∑
d|n

μ(n/d) ck(d) =
∑
d|n

μ(n/d)
k−1∑
i=0

akid
i =

k−1∑
i=0

akiJi(n).

(ii) It follows immediately by (i) and by (11), since ak,k−1 = 1
(k − 1)! .

For (iii), estimate (19) is formula (4.3) in [17]. Without the estimate of the error term 
it is attributed to the 1926 paper of Schur [18]. With the error term, it is attributed to 
Nathanson [15]. The estimate of p′k(n) for k = 2, 3 comes immediately from (17) and 
(18). For k ≥ 4 it follows instead from (19) and (16) since in this case
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p′k(n) =
∑
d|n

μ(d)pk(n/d) = 1
k!(k − 1)!

∑
d|n

μ(d)(n/d)k−1 + O

⎛
⎝∑

d|n

(n
d

)k−2
⎞
⎠

= 1
k!(k − 1)!Jk−1(n) + O

⎛
⎝nk−2

∑
d≥1

1
dk−2

⎞
⎠

= 1
k!(k − 1)!Jk−1(n) + O(nk−2). �

The above proposition gives, among other things, an easy formula for calculating c′k(n)
in terms of the prime divisors of n. For instance, by (9), we have

c2(n) = n− 1, c3(n) = n2 − 3n + 2
2 and c4(n) = n3 − 6n2 + 11n− 6

6 .

Thus from Proposition 1(i), we get for every n ≥ 2,

c′2(n) = J1(n),

c′3(n) = 1
2J2(n) − 3

2J1(n) = 1
2n

2
∏
p|n

(
1 − 1

p2

)
− 3

2n
∏
p|n

(
1 − 1

p

)
,

and

c′4(n) = 1
6J3(n) − J2(n) + 11

6 J1(n)

= 1
6n

3
∏
p|n

(
1 − 1

p3

)
− n2

∏
p|n

(
1 − 1

p2

)
+ 11

6 n
∏
p|n

(
1 − 1

p

)
.

One can wonder if similar easy formulas could hold for partitions too, just adapting the 
coefficients of the Jordan totient functions. Formulas (17) and (18) seem encouraging in 
this direction. However, in [2] it is observed that the situation becomes very complicated 
for k ≥ 4 and no information is given for the general approach. Our paper aims to explain 
in which sense and why complications do arise.

Note that, since p′(2) 	= J1(2)
2 as well as p′3(3) 	= J2(3)

12 the limitations on n in (17) and 
in (18) cannot be eliminated but, in principle, one cannot exclude that the small cases 
for n could be included in a more rich formula involving as terms other Jordan totient 
functions.

Inspired by (17) and (18), we then consider four problems:

Problem 1. Determine the k ≥ 2 such that p′k(n) is a C-linear combination of the Jordan 
root totient functions in the entire domain n ≥ 1.

Problem 2. Determine the k ≥ 2 such that p′k(n) is a C-linear combination of the Jordan 
modulo totient functions in the entire domain n ≥ 1.
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Problem 3. Determine the k ≥ 2 such that p′k(n) is a C-linear combination of the Jordan 
totient functions in the entire domain n ≥ 1.

Problem 4. Determine the k ≥ 2 such that p′k(n) is a C-linear combination of the Jordan 
totient functions in a domain n ≥ Nk for some suitable Nk ∈ N depending on k.

4. Sequences with rational generating functions

The next classical result is called the Binet formula for linear recurrences. See, for 
example, Theorem C.1 in [19]. The same contents appear also, with some minor further 
details, in [20, Sections 4.1–4.4].

Proposition 2. Let P (X) =
∏s

j=1(1 − αjX)bj ∈ C[X] be a polynomial with P (0) = 1, 
and distinct nonzero roots α−1

1 , . . . , α−1
s ∈ C∗, s ≥ 1, of multiplicities b1, . . . , bs, respec-

tively. Given Q(X) ∈ C[X] of degree smaller than deg(P ) write the Taylor expansion of 
Q(z)/P (z) as

Q(z)
P (z) =

∑
n≥0

anz
n for |z| < max

1≤j≤s
{|αj |}. (20)

Then, for every j ∈ [s], there exists uniquely determined Pj(X) ∈ C[X] of degree at most 
bj − 1 such that

an =
s∑

j=1
Pj(n)αn

j for all n ≥ 0. (21)

If gcd(P (X), Q(X)) = 1, then Pj(X) has degree exactly bj − 1 for j ∈ [s]. Conversely, if 
Pj(X) ∈ C[X] are polynomials of degree at most bj − 1 and an is given by formula (21)
then formula (20) holds with some polynomial Q(X) ∈ C[X] of degree less than deg(P ).

The data Pj(X) for j ∈ [s] can be computed in the following way. We focus on the 
case gcd(P (X), Q(X)) = 1 which is important for our scope. Then bj is the order of the 

pole α−1
j in the rational function 

Q(z)
P (z) . Of course we have b :=

∑s
j=1 bj = deg(P ) and 

if cb ∈ C∗ is the leading coefficient of P , using that P (0) = 1, we see that

P (z) = cb

s∏
j=1

(z − α−1
j )bj = cb(−1)b∏s

j=1 α
bj
j

s∏
j=1

(1 − αjz)bj =
s∏

j=1
(1 − αjz)bj .

Hence, by partial fractions decomposition we get

Q(z)
P (z) =

s∑ bj∑ sji

(z − α−1
j )i

=
s∑ bj∑ (−αj)isji

(1 − αjz)i
, (22)
j=1 i=1 j=1 i=1
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where

sji = 1
(bj − i)! lim

z→α−1
j

Dbj−i
z

(
(z − α−1

j )bjQ(z)
P (z)

)
,

and D�
z denotes the derivation of order 
 ∈ N0 with respect to the variable z. Observe 

that, for every j ∈ [s], we have sjbj 	= 0 because otherwise the order of the pole α−1
j in 

Q(z)
P (z) would be less than bj . Putting

rji := (−αj)isji, (23)

from (22) and (13) we then obtain

Q(z)
P (z) =

s∑
j=1

bj∑
i=1

∑
n≥0

rjiCi(n + i)αn
j z

n =
∑
n≥0

s∑
j=1

⎛
⎝ bj∑

i=1
rjiCi(n + i)

⎞
⎠αn

j z
n

=
∑
n≥0

s∑
j=1

Pj(n)αn
j z

n, where Pj(n) :=
bj∑
i=1

rjiCi(n + i)

has degree exactly bj − 1 since rjbj 	= 0. By identifying coefficients we get

an =
s∑

j=1
Pj(n)αn

j for all n ≥ 0.

An explicit expression for the coefficients of the polynomials Pj can be obtained as 
follows. Fix j ∈ [s]. We have

Pj(n) =
bj∑
i=1

rjiCi(n + i) =
bj∑
i=1

rji

i−1∑
�=0

ai�(n + i)�

=
bj∑
i=1

rji

i−1∑
�=0

�∑
t=0

ai�

(



t

)
nti�−t =

bj∑
i=1

i−1∑
t=0

i−1∑
�=t

rjiai�

(



t

)
nti�−t

=
bj−1∑
t=0

⎛
⎝ bj∑

i=t+1

i−1∑
�=t

rjiai�

(



t

)
i�−t

⎞
⎠nt.

Thus,

Pj(n) =
bj−1∑

ujtn
t, where ujt =

bj∑ i−1∑
rjiai�

(



t

)
i�−t. (24)
t=0 i=t+1 �=t
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Now recall that the ai� are explicitly given by (11) in terms of the Stirling numbers and 
the rji are explicitly given by (23).

Example 1.

(i) Let A(X) ∈ C[X] be of degree at most t. The sequence of general term an := A(n)
for n ≥ 0 satisfies (21) with s = 1, α1 = 1 and b1 = t + 1. Thus,

∑
n≥0

anz
n = Q(z)

(1 − z)t+1 for |z| < 1

holds with some Q(X) ∈ C[X] of degree at most t.
(ii) For ω ∈ Um, the function Tω : N0 → C defined, for every n ∈ N0, by Tω(n) = ωn

are m integer periodic functions of period m which form a basis for the C-vector 
space of periodic functions of period m. If T is an integer periodic function of period 
m ∈ N , then there exists Q(X) ∈ C[X] with degree less than m such that

∑
n≥0

T (n)zn = Q(z)
1 − zm

for |z| < 1. (25)

Indeed, in order to show that there exists a unique choice of cω ∈ C, for ω ∈ Um, 
such that T =

∑
ω cωTω, it is sufficient to note that the linear system in the variables 

(cω)ω∈Um

T (k) =
∑

ω∈Um

cωω
k for k = 0, 1, . . . ,m− 1

has coefficient matrix given by the invertible Vandermonde matrix with columns 
(1, ω, . . . , ωm−1)T for ω ∈ Um. Thus, the sequence of general term an = T (n)
satisfies (21) with s = m, b1 = · · · = bm = 1 and {α1, . . . , αm} = Um. Hence, there 
exists Q(X) ∈ C[X] with the required properties such that (25) holds.

(iii) Let k ≥ 2. Then pk(n) is representable as a quasi-polynomial by

pk(n) = P1(n) + S(n),

where P1(X) ∈ Q[X] has degree k − 1 and S(n) is a quasi–polynomial of degree 
�k/2
 − 1 and quasi–period δ(k). P1 is called the polynomial part of pk.
By (14), we have

∑
n≥1

pk(n)zn = zk

(1 − z)(1 − z2) · · · (1 − zk) ,

so that Proposition 2 applies with
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P (z) = (1 − z)(1 − z2) · · · (1 − zk) and Q(z) = zk,

which are coprime. The roots of P are the elements of V =
⋃k

m=1 Um and, since V
is closed under inversion, we have that V coincides with the set of the inverses of 
the roots of P . Let s = |V |. Note that V is expressible as the disjoint union V =
�k

m=1{ω ∈ Um : ω is primitive}. Thus, since k ≥ 2, we have s =
∑k

m=1 φ(m) ≥ 2. 
We order its elements ω1, . . . , ωs considering the primitive m-roots of unity starting 
from m = 1 and finishing with m = k. Hence ω1 = 1, ω2 = −1. Let bj ≥ 1 be the 
multiplicity of ωj for j ∈ [s]. Clearly if ωj is a primitive m-root of unity for some 
m ∈ [k], we have that bj = �k/m
. In particular, b1 = k, b2 = �k/2
. Then we have

pk(n) =
s∑

j=1
Pj(n)ωn

j for all n ≥ 1 (26)

by the explicitly computable Pj(X) ∈ C[X] of degree bj − 1, j ∈ [s], given in (24). 
Thus pk is a quasi–polynomial and the expression (26) can be split into

pk(n) = P1(n) +
s∑

j=2
Pj(n)ωn

j for all n ≥ 1.

Define then S(n) :=
∑s

j=2 Pj(n)ωn
j . By Proposition 2 and the above remarks we 

know that its degree is �k/2
 − 1 because ω2 has multiplicity �k/2
 and the mul-
tiplicities of the remaining roots ωj for j ≥ 3 are at most �k/2
. The statement 
about the period is also clear.

(iv) If k ≥ 2, there exists no P (X) ∈ C[X] such that

pk(n) = P (n) for all n ≥ 1. (27)

Furthermore, if k ≥ 4, there exists no P (X) ∈ C[X] and no integer periodic function 
T such that

pk(n) = P (n) + T (n) for all n ≥ 1. (28)

Indeed, by (i) and (iii), the generating function of the sequence appearing in the right–
hand side of (28) is of the form

Q(z)
(1 − z)t+1 + R(z)

1 − zm
, (29)

whereas the generating function of the sequence appearing in the left–hand side is

zk

2 k
. (30)
(1 − z)(1 − z ) · · · (1 − z )
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For k ≥ 4, the rational function appearing at (30) has z = −1 as a pole of multiplicity 
�k/2
 ≥ 2, which is not the case for the rational function indicated at (29), so equality 
(28) is impossible. The fact that (27) is also impossible for k = 2, 3 is also immediate.

5. Coprime partitions and Jordan functions

We are now ready to solve Problems 1–4.

Theorem 1. Let k ≥ 2. Then the following facts hold:

(i) p′k is a C-linear combination of the Jordan root totient functions in the entire do-
main n ≥ 1.

(ii) p′k is a C-linear combination of the Jordan modulo totient functions in the entire 
domain n ≥ 1.

(iii) p′k(n) is not a C-linear combination of the Jordan totient functions in the entire 
domain n ≥ 1.

(iv) If p′k(n) is a C-linear combination of the Jordan totient functions in a domain 
n ≥ Nk for some suitable Nk ∈ N depending on k, then p′k(n) is a rational multiple 
of Jk−1(n) and k ∈ {2, 3}. Further, the minimal value of Nk is k + 1 for both 
k ∈ {2, 3}.

In both cases (i) and (ii) above the coefficients of the linear combinations are easily 
computable.

Proof. In Example 1(iii) we have seen that

pk(n) =
s∑

j=1
Pj(n)ωn

j for all n ≥ 1 (31)

for suitable explicitly computable Pj(X) ∈ C[X] of degree bj − 1, j ∈ [s] and 
{ω1, . . . , ωs} =

⋃k
m=1 Um.

(i) By (16), (31) and (24), we have

p′k(n) =
∑
d|n

s∑
j=1

Pj(d)ωd
jμ(n/d) =

∑
d|n

s∑
j=1

bj−1∑
t=0

ujtd
tωd

jμ(n/d)

=
s∑

j=1

bj−1∑
t=0

ujt

∑
d|n

ωd
j d

tμ(n/d) =
s∑

j=1

bj−1∑
t=0

ujtJ(t,ωj)(n). (32)

which expresses explicitly p′k as a C-linear combination of Jordan root totient functions.
(ii) It follows immediately by (i) and (4).
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(iii) Assume the contrary. Then there exist s ∈ N and ci ∈ C for all i = 0, . . . , s, such 
that

p′k(n) =
s∑

i=0
ciJi(n) for all n ≥ 1.

Writing the above relation for all d | n and using (16), we then get for every n ≥ 1,

pk(n) =
∑
d|n

p′k(d) =
∑
d|n

s∑
i=0

ciJi(d) =
s∑

i=0
ci
∑
d|n

Ji(d) =
s∑

i=0
cin

i = P (n),

where P (X) =
∑s

i=0 ciX
i ∈ C[X], against Example 1(iv).

(iv) Let Nk ∈ N be minimum such that, for n ≥ Nk, p′k(n) is a C-linear combination 
of the Jordan totient functions. For shortness we set N := Nk. Surely p′k(n) cannot be, 
for sufficiently large n, a multiple of J0(n). Thus, there exist s ∈ N and ci ∈ C for i ∈ [s]0
with cs 	= 0, such that

p′k(n) =
s∑

i=0
ciJi(n) for all n ≥ N. (33)

As a consequence of (iii) above we have that N ≥ 2. Thus if n ≥ N , we also have 
n ≥ 2 and so J0(n) = 0. Hence, whatever c0 is in (33), we can surely guarantee the same 
equality adopting c0 = 0. Let then

p′k(n) =
s∑

i=1
ciJi(n) for all n ≥ N, (34)

and P (X) =
∑s

i=1 ciX
i ∈ C[X] be the corresponding polynomial. Note that deg(P ) = s.

Define the function fk
N : N0 → C given for every n ∈ N by

fk
N (n) =

∑
d|n
d<N

(
p′k(d) −

s∑
i=1

ciJi(d)
)

(35)

and by fk
N (0) = fk

N (m), where m := δ(N − 1).
We claim that

pk(n) = P (n) + fk
N (n) for all n ≥ 1. (36)

Indeed, by (16) and (34), for every n ≥ 1, we have
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pk(n) =
∑
d|n

p′k(d) =
∑
d|n
d<N

p′k(d) +
∑
d|n
d≥N

p′k(d)

=
∑
d|n
d<N

p′k(d) +
∑
d|n
d≥N

s∑
i=1

ciJi(d)

=
∑
d|n
d<N

(
p′k(d) −

s∑
i=1

ciJi(d)
)

+
∑
d|n

s∑
i=1

ciJi(d)

= fk
N (n) +

s∑
i=1

cin
i = fk

N (n) + P (n).

We next claim that

fk
N is an integer periodic function. (37)

In order to prove that it is enough to show that m ∈ M(fk
N ). Let 
, n ∈ N. Since every 

d < N divides m, we have

fk
N (n + 
m) =

∑
d|n+�m
d<N

(
p′k(d) −

s∑
i=1

ciJi(d)
)

=
∑
d|n
d<N

(
p′k(d) −

s∑
i=1

ciJi(d)
)

= fk
N (n).

Hence, trivially we also have fk
N (0 + 
m) = fk

N (m) = fk
N (0).

By (36) and (37) we then have that pk is the sum of a polynomial and of an integer 
periodic function. By Example 1(iv) this rules out k ≥ 4, so that k ∈ {2, 3}.

Now, by (19) and by (36), we get

fk
N (n) + P (n) = 1

k!(k − 1)!n
k−1 + O(nk−2).

By (37), f
k
N (n)
nk−1 tends to 0 as n goes to infinity. Thus, P (n)

nk−1 tends to 
1

k!(k − 1)! as n

goes to infinity, which implies s = deg(P ) = k− 1 and ck−1 = 1
k!(k−1)! . In particular, we 

have P (X) =
∑k−1

i=1 ciX
i.

If k = 2, this gives P (X) = X
2 and (34) becomes

p′2(n) = J1(n) for all n ≥ N, (38)
2
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which surely does not hold for N = 2, because p′2(2) = 1 	= 1/2. We know from (17) that

p′2(n) = J1(n)
2 for all n ≥ 3. (39)

Hence, the minimum N such that there exists an expression of p′2(n) as a C-linear 
combination of the Jordan totient functions for n ≥ N is N = 3 and no other such 
expression with N = 3 is possible besides (39).

If k = 3, we then get P (X) = c1X + X2

12 and (34) becomes

p′3(n) = c1J1(n) + J2(n)
12 for all n ≥ N. (40)

Assume that N = 3. Then, by (40), p′3(3) = 1 implies c1 = 1/6 while p′3(4) = 1 implies 
c1 = 0, a contradiction. It follows that N ≥ 4. By (18), we know that

p′3(n) = J2(n)
12 for all n ≥ 4. (41)

Thus, the minimum N such that there exists an expression of p′3(n) as a C-linear com-
bination of the Jordan totient functions for n ≥ N is N = 4. We finally observe that no 
other such expression with N = 4 is possible besides (41). Indeed, as previously observed, 
the computation of p′3(4) by (40) implies c1 = 0. �
6. Computation of some generalized Jordan totient functions

In the last two sections of the paper we illustrate how to explicitly find the polynomials 
Pj of (26) relying on the generating function of pk(n). This allows us to represent p′k as a 
C-linear combination of Jordan root functions. Next we explain how to explicitly compute 
the Jordan modulo totient functions in which those Jordan root totient functions split, 
making use of the Jordan-Dirichlet totient functions. We limit ourselves to treat k ∈
{2, 3, 4}. Anyway the general method should be clear.

In this section, we gather together all the computations which we will need later. 
They illustrate very well how to connect the diverse generalizations of the Jordan totient 
functions in order to obtain one from the other. For this reason they are of interest in 
themselves. In the next section, we examine separately p′2, p

′
3 and p′4.

Lemma 2. Let n ∈ N and write n = 3bm1 with gcd(3, m1) = 1. Then

J1,3
0 (n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if n = 1;
−1 if n = 3;
0 if ∃ p ≡ 1 (mod 3), p | m1;
0 if b ≥ 2;

Ω(n) ω(m1)−1

(42)
(−1) 2 otherwise.
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Proof. For shortness, write f(n) instead of J1,3
0 (n). Then

f(n) =
∑
d|n

d≡1 (mod 3)

μ(n/d).

If d ≡ 1 (mod 3) and d | n, then d | m1. Thus, 3b | n/d over all such divisors d and 
n/d = 3b(m1/d) with 3b and m1/d coprime. Thus, by the multiplicativity of the μ
function, we get

f(n) =
∑
d|n

d≡1 (mod 3)

μ(n/d) =
∑
d|m1

d≡1 (mod 3)

μ(3b)μ(m1/d) = μ(3b)f(m1). (43)

Hence, if b ≥ 2 we have f(n) = 0. Let then b ∈ {0, 1}. By (43), it suffices to study f(m1). 
Let χ be the unique non principal Dirichlet character modulo 3. Then χ(k) = 1 if k ≡ 1
(mod 3), χ(k) = −1 if k ≡ 2 (mod 3) and χ(k) = 0 if gcd(k, 3) > 1. It is easily seen that

f(m1) = 1
2
∑
d|m1

(χ(d) + 1)μ(m1/d) = 1
2
∑
d|m1

χ(d)μ(m1/d) + 1
2
∑
d|m1

μ(m1/d).

Since m1 is coprime to 3, by (5), we get for m1 > 1

f(m1) = 1
2
∑
d|m1

χ(d)μ(m1/d) = 1
2χ(m1)

∏
p|m1

(
1 − 1

χ(p)

)

= 1
2χ(m1)

∏
p|m1

p≡1 (mod 3)

(1 − 1)
∏
p|m1

p≡2 (mod 3)

(1 + 1)

=
{

0 if p | m1 for some p ≡ 1 (mod 3);
(−1)Ω(m1)2ω(m1)−1 if p ≡ 2 (mod 3) for all p | m1.

Thus, by (43), taking into consideration that f(1) = 1, the formula (42) for f(n) imme-
diately follows. �
Lemma 3. Let n ∈ N.

(i) Then

J(0,−1)(n) =
{−1 if n = 1;

2 if n = 2;
0 if n > 2.

(ii) Write n = 2am with m odd. Then

J(1,−1)(n) =
{−φ(n) if a = 0;

3φ(n) if a = 1;

φ(n) if a ≥ 2.
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(iii) Write n = 2am with m odd. Then

J(0,ik)(n) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ik if n = 1;
−1 − ik if n = 2;

0 if ∃ p ≡ 1 (mod 4), p | m;
2 if n = 4;
0 if a ≥ 3 or a = 2 and m > 1;

ik(−1)Ω(n)2ω(m) otherwise,

for k = 1, 3.
(iv) Write n = 3bm1 with gcd(m1, 3) = 1, and denote by ω the principal 3-root of 1. 

Then

J(0,ωk)(n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ωk if n = 1;
−ωk + 1 if n = 3;

0 if ∃ p ≡ 1 (mod 3), p | m1;
0 if b ≥ 2;

(ωk − ω2k)(−1)Ω(n)2ω(m1)−1 otherwise,

for k = 1, 2.

Proof. (i) Write n = 2am with m odd. For n = 1 and n = 2 one makes a direct 
computation. For n ≥ 3, note that

∑
d|n

d odd

μ(n/d) =
∑
d|m

μ(2a(m/d)) = μ(2a)
∑
d|m

μ(m/d). (44)

If m = 1, then a ≥ 2 and thus μ(2a) = 0 so that, by (44), we get 
∑
d|n

d odd

μ(n/d) = 0. If 

m > 1, then m ≥ 3 so that 
∑
d|m

μ(m/d) = 0 and, by (44), we again get 
∑

d|n
d odd

μ(n/d) = 0. 

It follows that

0 =
∑
d|n

μ(n/d) =
∑
d|n

d even

μ(n/d) +
∑
d|n

d odd

μ(n/d) =
∑
d|n

d even

μ(n/d).

Hence,

J(0,−1)(n) =
∑
d|n

(−1)dμ(n/d) = −
∑
d|n

d odd

μ(n/d) +
∑
d|n

d even

μ(n/d) = 0.

(ii) We start again with the odd d’s getting
∑
d|n

dμ(n/d) =
∑
d|m

dμ(2a(m/d)) = μ(2a)
∑
d|m

dμ(m/d) = μ(2a)φ(m). (45)
d odd
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The above calculation proves (ii) if a = 0. If a ≥ 2, the right–hand side above is zero. 
Hence, we have

φ(n) =
∑
d|n

dμ(n/d) =
∑
d|n

d even

dμ(n/d) +
∑
d|n

d odd

dμ(n/d) =
∑
d|n

d even

dμ(n/d),

so that we also have

J(1,−1)(n) =
∑
d|n

(−1)ddμ(n/d) =
∑
d|n

d even

dμ(n/d) −
∑
d|n

d odd

dμ(n/d) = φ(n).

Finally, if a = 1, we have n = 2m and then every even divisor of 2m is of the form 2d
for d | m. Thus,

J(1,−1)(n) =
∑
d|2m
d even

dμ(2m/d) −
∑
d|2m
d odd

dμ(2m/d)

=
∑
d|m

(2d)μ(2m/2d) +
∑
d|m

dμ(m/d)

= 2
∑
d|m

dμ(m/d) + φ(m) = 3φ(m) = 3φ(n).

(iii) The function fk(n) = ik(n−1) defined for odd n and extended to all positive 
integers by putting fk(n) = 0 for even n, is totally multiplicative. Indeed, if m, n are both 
odd, we then have fk(mn) = ik(mn−1) and fk(m)fk(n) = ik(m−1)ik(n−1) = ik(m+n−2)

and then the equality

fk(mn) = fk(m)fk(n)

is equivalent to

ik(mn−1) = ik(m+n−2),

which is equivalent to

1 = ik(mn−m−n+1) = ik(m−1)(n−1),

which holds since both m − 1 and n − 1 are even. If instead at least one of m and n is 
even, then mn is even, so that fk(mn) = 0 = fk(m)fk(n).

So,
∑
d|n

ikdμ(n/d) = ikμ(2a)
∑
d|m

ik(d−1)μ(m/d) = ikμ(2a)(fk ∗ μ)(m), (46)
d odd
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and fk ∗ μ is multiplicative. If m = pλ, with p an odd prime and λ ≥ 1, then

(fk ∗ μ)(pλ) =
∑
d|pλ

ik(d−1)μ(pλ/d) = −ik(pλ−1−1) + ik(pλ−1)

=

⎧⎨
⎩

0 if p ≡ 1 (mod 4);
1 + (−1)k+1 if p ≡ 3 (mod 4), 2 | λ;

(−1)(1 + (−1)k+1) if p ≡ 3 (mod 4), 2 �λ.

So, if k = 1, 3, we get that (fk ∗ μ)(pλ) equals 0 when p ≡ 1 (mod 4) and equals 
2(−1)λ if p ≡ 3 (mod 4). We thus get that for m > 1,

(fk ∗ μ)(m) =
{

0 if p ≡ 1 (mod 4) for some p | m;
(−1)Ω(m)2ω(m) if p ≡ 3 (mod 4) for all p | m.

(47)

If a = 0, then n = m is odd and thus, by (46), we get

J(0,ik)(n) =
∑
d|n

ikdμ(n/d) = ik(fk ∗ μ)(m),

and this is ik if n = m = 1, 0 if m > 1 and p | m for some prime number p ≡ 1 (mod 4)
and ik(−1)Ω(m)2ω(m) = ik(−1)Ω(n)2ω(m), otherwise.

If a ≥ 2, then by (46), the sum over the divisors d of n which are odd is zero since 
μ(2a) = 0. Thus, the given sum is concentrated on the even divisors and we have

J(0,ik)(n) =
∑
2d|n

ik(2d)μ(n/2d) =
∑
d|n/2

(−1)kdμ((n/2)/d)

=
∑
d|n/2

(−1)dμ((n/2)/d)

for k = 1, 3. Moreover, by (i) and the fact that n/2 ≥ 2, this last sum is zero unless 
n/2 = 2 in which case it is 2.

Let finally a = 1, so that n = 2m. For n = 2, the given sum can be computed to be 
−1 − ik. Now assume m > 1. In this case, by (46), we have

∑
d|n

d odd

ikdμ(n/d) = −ik(fk ∗ μ)(m)

and, by (47), this is zero unless all prime factors of m are congruent to 3 modulo 4 in 
which case it is −ik(−1)Ω(m)2ω(m) = ik(−1)Ω(n)2ω(m). As for the even divisors, these are 
of the form 2d for some d | m, and we get

∑
d|n

ikdμ(n/d) =
∑
d|m

ik(2d)μ(2m/2d) =
∑
d|m

(−1)dμ(m/d),
d even
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and, by (i), this last sum is 0 since m ≥ 3.
(iv) We have

J(0,ωk)(n) =
∑
d|n

ωdkμ(n/d)

= ωk
∑
d|n

d≡1 (mod 3)

μ(n/d) + ω2k
∑
d|n

d≡2 (mod 3)

μ(n/d) +
∑
d|n
3|d

μ(n/d)

= ωkS1(n) + ω2kS2(n) + S0(n), (48)

where, for shortness, we have set Sj(n) := Jj,3
0 (n), for j ∈ {0, 1, 2}. Thus, we need to 

compute Sj(n), for j ∈ {0, 1, 2}.
The easiest one is S0. If 3 � n, we obviously have that S0(n) = 0. If 3 | n, that is b ≥ 1, 

we instead have, by (2):

S0(n) =
∑
d|n
3|d

μ(n/d) =
∑
d|n/3

μ((n/3)/d) =
{

1 if n = 3;
0 if n > 3.

So, S0(n) is always 0 except if n = 3 when it is 1. As for S1, S2, we write

S1(n) =
∑
d|n

d≡1 (mod 3)

μ(n/d) = μ(3b)
∑
d|m1

d≡1 (mod 3)

μ(m1/d) = μ(3b)S1(m1),

and similarly S2(n) = μ(3b)S2(m1). By (42), we have

S1(m1) =

⎧⎨
⎩

1 if m1 = 1;
0 if ∃ p ≡ 1 (mod 3), p | m1;

(−1)Ω(m1)2ω(m1)−1 otherwise.

Since

S1(m1) + S2(m1) =
∑
d|m1

μ(m1/d)

is 1 for m1 = 1 and 0 for m1 > 1, we get that

S2(m1) =

⎧⎨
⎩

0 if m1 = 1;
0 if ∃ p ≡ 1 (mod 3), p | m1;

−(−1)Ω(m1)2ω(m1)−1 otherwise.

Thus, by (48), get that
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J(0,ωk)(n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ωk if n = 1;
−ωk + 1 if n = 3;

0 if ∃ p ≡ 1 (mod 3), p | m1;
0 if b ≥ 2;

(ωk − ω2k)(−1)Ω(n)2ω(m1)−1 otherwise.

�

7. Partitions and coprime partitions into k parts for k ∈ {2, 3, 4}

7.1. The case of 2 parts

By (14), we have

∑
n≥1

p2(n)zn = z2

(1 − z)(1 − z2) .

Partial fraction expansion gives

z2

(1 − z)(1 − z2) = z2

(1 − z)2(1 + z) = −3
4(1 − z) + 1

2(1 − z)2 + 1
4(1 + z) .

Hence, using formula (13), we get

∑
n≥1

p2(n)zn = −3
4

∑
n≥0

zn + 1
2
∑
n≥0

(n + 1)zn + 1
4
∑
n≥0

(−1)nzn

=
∑
n≥0

(
2n− 1

4 + (−1)n

4

)
zn

and thus

p2(n) = 2n− 1
4 + (−1)n

4 . (49)

This is, of course, a reedition of the obvious p2(n) = �n
2 
, which puts in evidence the 

nature of p2(n) as a sum of a polynomial and of a periodic function of period 2. By (16), 
we then get for every n ≥ 1

p′2(n) = 1
2
∑
d|n

dμ(n/d) − 1
4
∑
d|n

μ(n/d) + 1
4
∑
d|n

(−1)dμ(n/d)

= 1
2J1(n) − 1

4J0(n) + 1
4J(0,−1)(n). (50)

By Lemma 3(i),



D. Bubboloni, F. Luca / Journal of Number Theory 235 (2022) 328–357 353
1
4J(0,−1)(n) =

{−1/4 if n = 1;
1/2 if n = 2;
0 if n > 2.

Note that if n ≥ 3, then both J0(n) and J(0,−1)(n) vanish in (50) so that p′2(n) = J1(n)
2 , 

which gives (17).

7.2. The case of 3 parts

By (14) and partial fraction expansion we have

∑
n≥1

p3(n)zn = z3

(1 − z)(1 − z2)(1 − z3) = z3

(1 − z)3(1 + z)(1 + z + z2)

= − 1
72(1 − z) − 1

4(1 − z)2 + 1
6(1 − z)3 − 1

8(1 + z)

+ 1
9(1 − ωz) + 1

9(1 − ωz) ,

where ω = −1+i
√

3
2 is the principal 3-root of 1. Using repeatedly formula (13), after 

elementary simplifications we get

∑
n≥1

p3(n)zn =
∑
n≥0

(
n2

12 − 7
72 − (−1)n

8 + ωn + ωn

9

)
zn.

Thus, for every n ≥ 1, we have

p3(n) = n2

12 − 7
72 − (−1)n

8 + ωn + ωn

9 . (51)

The above equality puts in evidence the nature of p3(n) as a sum of a polynomial and of 
a periodic function of period 6 and gives (26) for k = 3. By (16) we then get, for every 
n ≥ 1,

p′3(n) = 1
12J2(n) − 7

72J0(n) − 1
8J(0,−1)(n) + 1

9J(0,ω)(n) + 1
9J(0,ω)(n). (52)

Thus, we see the way in which p′3(n) is a C-linear combination of Jordan root totient 
functions. By Lemma 3(i), we have

−1
8 J(0,−1)(n) =

{ 1/8 if n = 1;
−1/4 if n = 2;
0 if n ≥ 3.
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Moreover, by Lemma 3(iv), we have

1
9J(0,ω)(n) + 1

9J(0,ω)(n) =

⎧⎪⎨
⎪⎩
−1/9 if n = 1;

0 if n = 2;
1/3 if n = 3;
0 if n ≥ 4.

In particular, for n ≥ 4, all the terms in (52) except the first one vanish and we get 
p′3(n) = J2(n)

12 , which confirms (18).

7.3. The case of 4 parts

By (14) and partial fraction expansion we have

∑
n≥1

p4(n)zn = z4

(1 − z)(1 − z2)(1 − z3)(1 − z4)

= z4

(1 − z)4(1 + z)2(1 + z2)(1 + z + z2)

= −13
288(1 − z)2 − 1

24(1 − z)3 + 1
24(1 − z)4 + 1

32(1 + z)2

+ 1
16(1 − iz) + 1

16(1 + iz) − 1
9(ω − ω)

(
ω

1 − ωz
− ω

1 − ωz

)
,

where ω = −1+i
√

3
2 . Now, by formula (13), we have

1
(1 + z)2 =

∑
n≥0

(−1)n(n + 1)zn, 1
(1 − z)2 =

∑
n≥0

(n + 1)zn,

1
(1 − z)3 =

∑
n≥0

(
n + 2

2

)
zn,

1
(1 − z)4 =

∑
n≥0

(
n + 3

3

)
zn.

Hence, we get

p4(n) = 1
24

(
n + 3

3

)
− 1

24

(
n + 2

2

)
− 13

288(n + 1) + (−1)n(n + 1)
32

+ in + (−i)n

16 − ωn+1 − ωn+1

i9
√

3
.

Simplifying we obtain the expression of p4(n), for n ≥ 1:

p4(n) = n3

144 + n2

48 − n

32 − 13
288 + (−1)n(n + 1)

32 (53)

+ in + (−i)n − ωn+1 − ωn+1
√ .
16 i9 3



D. Bubboloni, F. Luca / Journal of Number Theory 235 (2022) 328–357 355
The above equality is (26) for k = 4 and exhibits p4(n) as the sum of its polynomial part 
of degree 3

P1(n) = n3

144 + n2

48 − n

32 − 13
288 ,

the periodic function of period 12

T (n) := in + (−i)n

16 − ωn+1 − ωn+1

i9
√

3

and the further term

U(n) := (−1)n(n + 1)
32

which is neither of polynomial type nor periodic. Of course S(n) := T (n) + U(n) is a 
quasi–polynomial of degree 1 and quasi–period 12 and

p4(n) = P1(n) + S(n),

as expected by Example 1(iii).
The expression of p′4(n), for every n ≥ 1, follows as usual by (16) and (53):

p′4(n) = J3(n)
144 + J2(n)

48 − J1(n)
32 − 13J0(n)

288 + 1
32J(1,−1)(n) (54)

+ 1
32J(0,−1)(n) + 1

16J(0,i)(n) + 1
16J(0,i3)(n)

− i
√

3 + 3
54 J(0,ω)(n) + i

√
3 − 3
54 J(0,ω)(n).

It shows p′4(n) as a C-linear combination of the Jordan root totient functions.
From the computations made in Section 6, writing n = 3bm1 with gcd(m1, 3) = 1, we 

see that

1
32J(1,−1)(n) + 1

32J(0,−1)(n) = 1
32

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−2 if n = 1;
5 if n = 2;

−φ(n) if n ≡ 1 (mod 2), n > 1;
3φ(n) if 2‖n, n > 2;
φ(n) if 4 | n,

1
16J(0,i)(n) + 1

16J(0,i3)(n) = 1
16

⎧⎪⎨
⎪⎩

0 if n = 1;
−2 if n = 2;
4 if n = 4;
0 otherwise,

and
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− i
√

3 + 3
54 J(0,ω)(n) + i

√
3 − 3
54 J(0,ω)(n) = 1

9

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 n = 1;
−2 n = 3;
0 ∃ p ≡ 1 (mod 3)

p | m1;
0 b ≥ 2;

(−1)Ω(n)2ω(m1)−1 otherwise.
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