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Abstract

By work of W. Thurston, knots and links in the 3-sphere are known to either be torus
links, or to contain an essential sphere or torus in their complement, or to be hyperbolic, in
which case a unique hyperbolic volume can be calculated for their complement. We employ a
construction of Turaev to associate a family of hyperbolic 3-manifolds of finite volume to any
classical or virtual link, even if non-hyperbolic. These are in turn used to define the Turaev
volume of a link, which is the minimal volume among all the hyperbolic 3-manifolds associated
via this Turaev construction. In the case of a classical link, we can also define the classical
Turaev volume, which is the minimal volume among all the hyperbolic 3-manifolds associated
via this Turaev construction for the classical projections only. We then investigate these new
invariants.

1. INTRODUCTION

The theory of links in S (which here will be called classical links) is equivalent to the theory of
classical links in S? x I, since removing the interiors of two balls from S3 does not impact the
theory. A natural extension is to the theory of links in S x I where S is a compact, orientable
surface of higher genus. It turns out that this extension occurs naturally through the theory of
virtual knots and links, which originated from Gauss codes.

A Gauss code is a sequence of symbols that encodes a knot projection up to planar isotopy. It
is obtained by starting at some point on an oriented knot diagram and travelling along the knot,
writing down a sequence of integers, two copies of each corresponding to the crossings, letters O
and U corresponding to whether we are passing over or under the crossing and + signs representing
the writhe of the crossing. In the case of an oriented link, we generate a finite collection of such
sequences, one for each component. (N.B.: when we talk of Gauss codes, we always mean oriented
or signed Gauss codes). While every classical knot diagram (up to planar isotopy) corresponds to a
unique Gauss code (up to relabeling and cyclic permutation), the converse is not true-there are
Gauss codes that do not correspond to any classical diagram. Generating knots from the “missing”
Gauss codes was one of the primary motivations for virtual knot theory. The theory of the set of
all Gauss codes modulo the corresponding equivalence relation induced by the Reidemeister moves
is equivalent to that of virtual diagrams modulo classical and virtual Reidemeister moves.

In [14] and [7], it was shown that in fact both of these theories are equivalent to the theory of
links in thickened oriented surfaces S x I modulo ambient isotopy, stabilization, and destabilization,
where by stabilization and destabilization we mean the addition and removal of empty handles.
Further, when we project the link L in S x I to S x {1/2} we obtain a surface-link pair (S, D)
where D is a link diagram on S. In [17], it was shown that the minimal genus realization of a link
is uniquely determined up to isotopy.

Thus, we have the following equivalence:



Theorem 1.1. The following sets are in natural bijection.
(i) Virtual link diagrams in the plane modulo classical and virtual Reidemeister moves.

(ii) Links in thickened surfaces modulo ambient isotopy, homeomorphisms, stabilizations, and
destabilizations.

(iii) Surface-link pairs (S, L) modulo isotopy, classical Reidemeister moves on the surface, handle
attachments, and handle removals.

(iv) (Virtual) Gauss codes modulo rewrites corresponding to Reidemeister moves.

Note that the set of classical links is naturally included in the set of virtual links, which is to
say that classical link diagrams which cannot be related by a sequence of classical Reidemeister
moves cannot be related by a sequence of generalized Reidemeister moves. We refer the reader to
[16] for a thorough exposition of virtual knots.

In 1978 (c.f.[22]), Thurston showed that a nontrivial classical knot is either a torus knot, a
satellite knot, or a hyperbolic knot. Similarly, a classical non-splittable link that does not contain
an essential torus or annulus is hyperbolic. In [2], hyperbolic invariants are extended to the virtual
category by utilizing the equivalence of virtual links to links in thickened surfaces.

Definition 1.1. Let S be a closed orientable surface. A link L in S x I is tg-hyperbolic if:

(i) When S is a sphere, and the two spherical boundaries are capped off with balls, the complement
of L is hyperbolic.

(ii) When S is a torus, and the two torus boundaries are removed, the link complement is
hyperbolic.

(iii) When S is neither a sphere nor torus, there exists a hyperbolic structure on the complement
of L in S x I such that the two boundaries are totally geodesic.

If the link in S X I is tg-hyperbolic, we can associate a unique hyperbolic volume to it. We can
also consider other hyperbolic invariants of the pair (S x I, L). Thus, we can define hyperbolic
invariants of the original virtual link accordingly. See [2] for more on this, including a table of
volumes of virtual knots of four or fewer classical crossings.

But in both the classical and virtual categories, there exist knots and links such that their
associated surface-link pair is not tg-hyperbolic and thus, to which these hyperbolic invariants do
not apply. In this paper, using the theory of Turaev surfaces, we extend hyperbolic invariants to
every classical and virtual knot and link.

Definition 1.2. Given a connected classical or virtual link diagram D in the plane, define the
Turaev surface-link pair, (S(D), L1 (D)), to be the surface-link pair constructed as follows. Begin
by embedding each crossing in a small disk in the plane. Then glue bands connecting adjacent
classical crossings, ignoring any virtual crossings in between (that is, allowing one of the two bands
involved to pass over or under the other, it does not matter which), and adding a half-twist in the
band if both endpoints are overcrossings or both are undercrossings, twisted in the direction shown
in Figure 1. Then cap off each boundary component with a disk. Given a virtual link diagram D
and a surface link pair (S, D’) such that (S’,D’) = (Sr(D), Lt (D)), we say that (S’, D’) is the
Turaev realization of D.
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Figure 1: Bands at a virtual crossing, along
an alternating strand and along non-alternating
strands.

In the classical case, Turaev surfaces were introduced by Turaev in [23]. See also [9] and [19] where
they appear independently as atoms.

In the case of a classical knot, a second, equivalent construction of the Turaev surface-link pair,
is as a cobordism between the A state and the B state of a knot, where the boundary components
are then capped off with disks. The A state of a knot is a collection of circles obtained by resolving
each crossing with the A smoothing in Figure 2. The B state is defined similarly. See [23]. This
construction of the Turaev surface-link pair is a special case of a state surface, in which the
cobordism is between two opposite resolutions of the knot with some mix of A and B smoothings.

K=

crossing A smoothing B smoothing
Figure 2: Smoothings of a crossing.

The Turaev surface comes to us naturally with a link projection on it. The ribbon graph is
precisely a normal neighborhood of this link projection in the Turaev surface.

For classical knots, the Turaev surface is always orientable. The cobordism construction comes
to us with a natural height function h, which is Morse, such that its only critical set h=1(0) is the
knot projection, such that h=1(—1) is the all A-state smoothing, and such that h=1(1) is the all
B-state smoothing. This demonstrates that the boundary components can be capped off to yield a
closed surface embedded in 3-space.

However, in the virtual category, it is possible to obtain nonorientable Turaev surfaces. In this
case, we consider D’ to be the link in the oriented twisted I-bundle over the nonorientable Turaev
surface of D. See the discussion of atoms in [19] for another perspective on this.

From here on, when we discuss a thickened surface M, we mean S X [ when S is orientable and
the twisted I-bundle over S when S is nonorientable. Knots and links in oriented twisted I-bundles
over non-orientable surfaces have previously been considered in the case of the projective plane in
[8] and more generally in [5].

Definition 1.3. The Turaev genus gr(L) of a classical or virtual link L is the minimal genus of
a Turaev surface for L over all the projections of L. In the case of an orientable surface, we use
the usual genus. In the case of a nonorientable surface, we use one half the number of projective
planes, the connected sum of which make up the Turaev surface.

Notice that this allows for half-integer genera. But the need for this definition of genus for



nonorientable surfaces comes from the desire to be able to compare genera between orientable and
non-orientable surfaces.

Of critical importance is the fact that the introduction of the half-twists in the ribbon graph
has the effect of guaranteeing that the resulting link is alternating on the surface. By construction,
every connected link diagram has an alternating Turaev realization. Furthermore, since boundary
components are capped off with disks, every link diagram is realized as a fully alternating link in
its Turaev surface, in the sense defined in [1].

Definition 1.4. A link projection L on a closed surface S is fully alternating if it is alternating
where the interior of every complementary region is an open disk. A link with a fully alternating
projection is said to be a fully alternating link.

In the literature, a projection with disks as the complementary regions is sometimes called a
cellular embedding. Note that the projection must be connected to satisfy the criteria for being
fully alternating.

Definition 1.5. A link L embedded in a thickened surface M is prime if there is no ball B
embedded in M such that 0B intersects L twice and B contains some subset of L other than an
unknotted arc.

Definition 1.6. A link diagram is Turaev prime if it is realized as a prime link in its thickened
Turaev surface.

Although we have already defined what it means for the complement of a link L in S x I to be
tg-hyperbolic when S is orientable, we need to extend this to the case of S nonorientable.

Definition 1.7. Let S be a closed nonorientable surface. A link L in the twisted I-bundle M over
S is tg-hyperbolic if:

(i) When S is a projective plane, and the spherical boundary of M is capped off with a ball, the
complement of L is hyperbolic.

(ii) When S is a Klein bottle, and the torus boundary of M is removed, the link complement is
hyperbolic.

(iii) When S is neither a projective plane nor a Klein bottle, there exists a hyperbolic structure
on the complement of L in M such that the boundary of M is totally geodesic.

In [1], two relevant results were proved, both extensions of Menasco’s results for links in the
3-sphere ([20]). Lemma 14 of [1], with a straightforward extension that we provide at the beginning
of Section 3 states:

Theorem 1.2. Let S be a closed surface. Then a prime fully alternating link L in a thickened
surface M over S is tg-hyperbolic, except when:

(i) S is a sphere and L is a 2-braid.
(ii) S is the projective plane and L is the analog of a 2-braid.

(iii) S is the projective plane and there exists a simple closed curve that intersects the projection
transversely once.

We say a link projection is reduced if there are no monogonal disk faces in its complement. Note
that if a link projection is not reduced, we can perform Type I Reidemeister moves to obtain a
projection that is reduced.



Theorem 1.3. A fully alternating link L in a thickened surface M is prime if and only if there is
no disk E on the projection surface such that OF intersects a reduced fully alternating projection
of L transversely at two points and such that there exist crossings in FE.

We call a reduced fully alternating link projection that has no such disks an obviously prime
projection. Hence, the import of the theorem is that a fully alternating link in a thickened surface
is prime if and only if a reduced fully alternating projection of it is obviously prime.

In Section 3, we provide necessary and sufficient conditions for a link diagram be realized as a
prime, fully alternating link in its Turaev surface. We use this to show that every link, classical or
virtual, has some diagram that generates a prime fully alternating link in M, which is therefore
tg-hyperbolic and thus, has a unique hyperbolic volume associated to it. In fact, there are infinitely
many such diagrams for the link.

Definition 1.8. Let D be a Turaev prime diagram of a link L. The Turaev volume of D, denoted
volp(D), is the hyperbolic volume of the Turaev realization of D.

Definition 1.9. For a link L that may be classical or virtual, the Turaev volume of L, denoted
volr(L) is the minimum over all Turaev prime diagrams D of L of volr(D). For a classical link
L, the classical Turaev volume, denoted volor (L), is taken to be the minimum over all classical
diagrams of L. Since the set of hyperbolic volumes is well-ordered (see [22]), there is always a
minimum.

It is unknown at this time whether a hyperbolic alternating classical link has hyperbolic volume
equal to its classical Turaev volume, but it is known in certain cases (see Examples 5 and 6 of
Section 4), and we conjecture this to be the case. Moreover, in this case, we expect the classical
Turaev volume equals the Turaev volume. In general, it is unclear if Turaev volume equals classical
Turaev volume for nontrivial classical links, although we conjecture they are distinct for the trivial
knot. See Example 8 of Section 4.

Since every link has infinitely many Turaev volumes associated to it, we can also define an
invariant called the Turaev spectrum.

Definition 1.10. For a link L that may be classical or virtual, the Turaev spectrum of L is the
ordered sequence of all Turaev volumes of diagrams of L. For a classical link L, the classical Turaev
spectrum is the ordered sequence of all Turaev volumes corresponding to classical projections of L.

Although we will not pursue it here, one could also consider the Turaev spectrum for each fixed
genus.

In this paper, we show that these invariants are well-defined. Section 2 provides a discussion of
the determination of orientability or nonorientability of Turaev surfaces. In Section 3, we prove
that every knot and link, virtual or classical, has a diagram such that its Turaev realization is
hyperbolic and that every classical knot or link has a classical diagram such its Turaev realization is
hyperbolic, thereby making Turaev volume well-defined for all knots and links and classical Turaev
volume well-defined for classical knots and links. In Section 4, we provide explicit examples of
classical Turaev volumes and some conjectures about both Turaev and classical Turaev volumes.
At this time, no explicit Turaev volumes are known.

Throughout we use v, ~ 3.6638... to represent the volume of an ideal regular hyperbolic
octahedron.

2. ORIENTABILITY OF TURAEV SURFACES

While all classical links have orientable Turaev surfaces corresponding to any classical projection,
every link has projections that generate nonorientable Turaev surfaces. In this section, we present



necessary and sufficient conditions for orientability of the Turaev surface. We begin with some
definitions related to Gauss codes.

Definition 2.1. A generalized Gauss code is a Gauss code where it is no longer required that each
pair of entries corresponding to a given crossing must have one O and one U associated to them. A
generalized Gauss code is orientable if the pair of appearances of an entry does have one O and one
U. Otherwise call the generalized Gauss code nonorientable.

Example 1.
10720710120~

is a valid generalized Gauss code, though it is not a valid Gauss code since both occurrences of the
crossing 1 are over crossings.

Definition 2.2. Given a Gauss code, define the Turaev code associated to that code to be the
generalized Gauss code obtained by changing the O and U labels to make the code alternating.

Example 2. The Turaev code associated to the Gauss code
107207 301U 402U~ 3014U -

is the alternating code
1072030110407 20 304U .

Note that the Turaev code of a given Gauss code is orientable if and only if the number of
entries between the two occurences of each crossing number in the code is even. A Gauss code
satisfying this property is called alternatable in [13] and [24].

For instance, the code in Example 2 is nonorientable since the sequence 1UT40~2U~ occurs
between the two instances of crossing number 3. Also, note that there is an ambiguity in whether
the Turaev code of a given Gauss code begins with an over crossing or an under crossing. There
is no canonical choice for this. Nevertheless, this ambiguity is essentially the ambiguity in the
orientation of the associated Turaev surface. Since the associated link living in a thickened surface
is independent of a choice of orientation, though, this is not an issue for our purposes.

Theorem 2.1. For a virtual knot diagram D, the following are equivalent.
(i) The Turaev code corresponding to D is nonorientable.

(ii) The Gauss code G for D has some crossing ¢ such that the two entries for ¢ are separated by
an odd number of Gauss code entries (not counting the 4 entries themselves).

(iii) The diagram D has an associated Turaev surface which is nonorientable.

A similar result applies for links of two or more components but then, either there exists a
component such that both copies of a crossing number appear in the Gauss code of the component
and separate off an odd number of entries, or there exists a component such that its Gauss code
has odd length.

Proof. As mentioned previously, the equivalence between (i) and (ii) is immediate. Then (i) implies
(iii) since a nonorientable Turaev code has a crossing that does not have a U on one appearance in
the code and an O on the other. Hence the path along the knot between the two appearances must
pass through an odd number of half-twists in order that the resultant knot on the Turaev surface
be alternating. The path then has neighborhood on the surface that is a Mébius band.

To prove that (iii) implies (ii) is more involved. Treating the Gauss code as cyclical, we prove
the contrapositive. Suppose that all pairs of entries corresponding to a crossing separate an even



number of entries in the Gauss code but that the surface S is nonorientable. Note that since the
total number of entries in the Gauss code G is even, if a pair separates an even number of entries
to one side, it must separate an even number to the other side as well. Since S is nonorientable,
there must be a closed path through the graph of the ribbon-surface that is nonorientable. We
take a minimal such path . In other words, v passes through each edge and vertex at most once
and it passes through an odd number of half-twists in the ribbon surface. In particular, at each
vertex of the graph, v must either turn to the right or left or go straight through the vertex. Let
ai,as, ..., a, be the crossing labels on the vertices where v turns. Note they are all distinct.

We count how many crossings v passes straight through between the vertices corresponding to
a; and a;y1 and call that b;. Then the fact the neighborhood of the path v is nonorientable means
that >b; must be odd.

Let C; denote that union of the edges of the graph between a; and a;11 on the path. Note that
C; corresponds to a segment of contiguous entries of the Gauss code bounded by entries a; and
a;+1. Call that sequence C!. So segments C7,...,C] appear disjointly in the Gauss code of -, each
of length b; + 2. Let z1,x9,...,z, correspond to the lengths of the segments in the Gauss code
that make up the complement of C],...,C’ in the Gauss code.

Since there are an even number of entries in G, note that the sum Xb; + Xx; is even. So Xb;
has same parity as Xx;. Since Xb; is odd, so is Xx;.

As mentioned previously, the pair of entries labelled a; separate G into two segments of even
length. For each a;, choose one of them, denoted R;.

Let b; and x; be the lengths corresponding to two segments of the Gauss code that are adjacent
to one another, separated by ar. Then each R; will either include both of them or neither of them,
except for Ry, which must include exactly one of them. Writing the sum X R; in terms of the a;s
and x;s, and the number of entries that appear between them, b; will appear a number of times
that has distinct parity from the number of times that x; appears. Continuing around the Gauss
code, using the fact that b;’s alternate with x;’s as we travel around, this implies that in X R;, the
number of times each a; appears will have the same parity as the number of times each a; appears
and distinct parity from the number of times each z; appears.

Since Y.a; is odd, it must be the case each a; has odd parity. So each z; has even parity, implying
that Yz; is even, a contradiction to the fact Yz; is odd.

|

3. TURAEV VOLUME INVARIANT FOR CLASSICAL AND VIRTUAL
LINKS

The purpose of this section is to define invariants of classical and virtual links derived from the
tg-hyperbolic metrics associated to the projections of links.

Before doing so, we need to extend the proof given of Theorem 1.2 in [1] appropriately to
the case of S a sphere, projective plane or Klein bottle. We note that the case of a Klein bottle,
although not explicitly included in Lemma 14 of [1], follows immediately by the same argument
given there, which is to lift the link to a fully alternating link in 7" x I, with T' a torus, which has
been proved to be hyperbolic, and use the fact that the covering translation can be realized by an
isometry by the Mostow-Prasad Rigidity Theorem. In the case that S is a sphere, we must exclude
an alternating 2-braid knot. But then any other connected prime alternating diagram is hyperbolic
by seminal work of Menasco ([20]).

In the case that S is a projective plane, and M is a twisted I-bundle over S, we can take a
double cover M’ of M that is S? x I, and such that L lifts to a prime fully alternating link L’ in
M. But we do need to exclude the possibility that L’ is a 2-braid or that L’ is not prime even
though L was. In Figure 3, we see the only reduced alternating link projections in the projective



plane that lift to a 2-braid diagram in the sphere. In the case that L’ is not prime, then work of
[20] implies that there is a disk F in the projection plane with boundary intersecting the projection
at two points, with crossings to both sides of F in S?. Then, since L is prime, there must have
been a simple closed curve in the projective plane that crossed the projection once that lifts to OE.
Excluding those possibilities, it is true that every prime fully alternating link in a thickened surface
M is tg-hyperbolic.

Figure 3: Fully alternating inks in P? that must be excluded for tg-hyperbolicity.

We also need several more definitions.

Definition 3.1. Given a (generalized) Gauss code G treated as a cycle, a subcode of G is a proper
consecutive sequence in the cycle such that if a given number appears in the subcode, its second
copy in the Gauss code also appears in the subcode. If G’ is a subcode of G, we denote this as
G’ C G. Note that such subcodes come in pairs, the union of which is the entire code.

Example 3. Dropping the letters and signs, 1234535421 has subcodes 345354 and 2112.

Definition 3.2. Given a diagram of a knot, a virtualization is the replacement of a crossing by
two virtual crossings and the classical crossing as in Figure 4.(Virtualization is sometimes defined
with the central crossing switched but we will mean it as depicted here.)

Virtualizations of a given knot have much in common with the original. For instance, in [15],
it was proved that two knots related through a sequence of such virtualizations have the same
Kauffman/Jones polynomial.

Figure 4: The virtualization of a crossing.

We are now prepared to state the main result of this paper.

Theorem 3.1. Any link L (which may be classical or virtual) has some diagram D such that the
corresponding Turaev surface-link pair is tg-hyperbolic. If L is classical, then the diagram D can be
taken to be classical. Thus, every classical and virtual link has a Turaev volume and every classical
link has a classical Turaev volume.



Proof. By our extension of Theorem 1.2 of [1], it is enough to prove that every link has a diagram
D such that the corresponding Turaev surface-link pair is prime, connected and fully alternating
and is neither a 2-braid in a sphere nor a 2-braid in a projective plane.

First, note that if the diagram we begin with is disconnected and/or not reduced, we can obtain
a diagram for the same link that is connected and reduced by performing a finite set of Reidemeister
I and IT moves. So we assume from now on that the diagrams are reduced and connected. Then
the fact the Turaev surface link pair is fully alternating comes from the construction.

If the diagram is a classical 2-braid diagram, we can perform a Type II Reidemeister move to
obtain a new diagram that is not such. If our diagram is a 2-braid with one virtual crossing, which
would yield a projective plane Turaev surface and a 2-braid within it as in Figure 3, we can perform
a Type II Reidemeister move to to obtain a new diagram that is not such. Note that Theorem 4.2
of [19] states that a given Turaev surface-link pair can correspond to more than one virtual link,
but the corresponding diagrams are related through detour moves and virtualizations. Thus, the
only diagrams that yield a Turaev surface-link pair as in Figure 3 are a 2-braid with one virtual
crossing or a virtualization of it. So in the case of a diagram that is a virtualization of a 2-braid
with one virtual crossing, we also apply a Type II Reidemeister move to obtain a new diagram
which no longer generates this Turaev surface-link pair. The final case to consider is the trivial
knot. If we change one crossing in the standard projection of the trefoil knot, we obtain a nontrivial
projection of the trivial knot, which works.

Now, we have satisfied all of the necessary conditions except primeness. By Theorem 1.3, this
is equivalent to finding a reduced connected diagram such that there is no disk E on the Turaev
surface such that OF intersects the link twice and contains crossings in its interior. In other words,
it is obviously prime.

Suppose that D is a reduced connected diagram for a link L such that the Turaev surface-link
pair (ST(D), LT(D)) is not obviously prime. Up to surface isotopy, there is a finite collection of
disjoint disks on the surface that make the projection in the Turaev surface not obviously prime.
Let E' be one such disk on the Turaev surface.

Let G denote the Gauss code associated to D and G denote the Gauss code associated to
(ST(D), LT(D)). The existence of E’ implies that G has a corresponding nontrivial proper subcode
obtained as we traverse that portion of Ly (D) inside E’. Since the Turaev construction preserves
subcodes, G must also have a corresponding subcode. That subcode is classical in the sense that it
represents a portion of Ly (D) that is a single arc in L together possibly with entire components,
that clearly exists in a disk on S7(D). It therefore corresponds to a portion of L that exists in a
disk FE in the plane such that it consists of a single arc and possibly a set of entire components.
Although there can be other arcs of L intersecting the disk, they can only have virtual crossings
with the first portion.

Because (Sr(D),Lr(D)) is a connected reduced fully alternating diagram, there must be
crossings of Lr(D) inside and outside OE’. This means there are classical crossings of D inside
and outside OF. Leaving F along one of the two strands w of D that cross OF, continue along
the strand until the first crossing is reached. Let g be the cross-strand. Similarly, following w
inside F until it hits the first classical crossing, let r be the cross-strand here. Now do a Type II
Reidemeister move of a small piece of g across a small piece of r as in Figure 5. Note that this
destroys the twice-crossed circle that was the boundary of E. In the case that D was a classical
diagram, the resulting diagram D’ is also classical. In the case that D is virtual, note that the
Reidemeister Type II move may have to pass over arcs that have virtual crossings with w. In this
case, make the resultant crossings virtual.

The end result is that we have reduced the number of subcodes in G. By induction, we obtain
a diagram D" of L such that its Turaev surface-link pair is fully alternating, reduced, connected
and prime. If the original diagram was classical, the new diagram is classical as well. Hence, the
surface-link pair is tg-hyperbolic.



Figure 5: Doing a Type II Reidemeister move to obtain an obviously prime
fully alternating Turaev surface-link pair.

We can thus define Turaev volume as in Definition 1.9. There are several questions one would
like to ask.

Question 3.1. For a nontrivial classical link L, does the Turaev volume equal the classical Turaev
volume?

Question 3.2. Is the hyperbolic volume of a hyperbolic alternating classical link equal to the
Turaev volume for that link?

This last question seems highly likely, since such a link has a realization with Turaev genus 0
with Turaev volume equal to the hyperbolic volume of the link. For a non-alternating hyperbolic
classical link, it seems highly unlikely, since the least volume of a Turaev realization will be for a
surface of higher genus than corresponds to its hyperbolic volume in the 3-sphere.

Lemma 3.2. For any classical or virtual link L, there are infinitely many distinct hyperbolic links
in thickened surfaces arising as the Turaev surface of some diagram of L.

Proof. Given a diagram for a link, we can compose with the diagram for the trivial knot obtained
by changing one crossing in the standard diagram of the trefoil. Each such composition increases
the genus of the corresponding Turaev surface. |

Corollary 3.2.1. There are infinitely many distinct Turaev volumes associated to the projections
of a fixed link L.

Proof. As the genus of the corresponding Turaev surfaces increases, so must the corresponding
volumes, as follows. By Miyamoto ([21], paragraph after the proof of Theorem 5.2), we know that
the hyperbolic volume of the complement of a link in a thickened orientable surface of genus g > 1
is at least (29 — 2)voet- In the case of a link in a twisted I-bundle over a nonorientable surface
of genus g > 1, the boundary is a single totally geodesic orientable surface of twice the Euler
characteristic, again yielding a volume of at least (2g — 2)voet- |

We can thus define Turaev spectrum as in Definition 1.10.
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Theorem 3.3. Let L be a link, classical or virtual. Then L has a non-discrete, well-ordered Turaev
spectrum.

Proof. Since the set of volumes of hyperbolic 3-manifolds are well-ordered, any subset has a least
element. So we need only prove the collection is not discrete.

Let D be a diagram of L that lifts to a hyperbolic link in its Turaev surface. Pick any arc «
on any strand of D. We construct the virtual diagram D,, for L as follows. Apply n RI moves
to a.. Then, as indicated in Figure 6, apply an RII move to « (this ensures that the application
of the n RI moves cannot be undone when we lift to the Turaev surface). Note that D,, admits
n + 2 more crossings than D, has one more closed curve in its B-state, and has n — 1 more closed
curves in its A-state (corresponding to the n new crossings added) as in Figure 7. This means that
97(Dy) = gr(Dy—1). The surface-link pairs corresponding to Dy, Da, ... have identical diagrams
except for the lengthening sequence of bigons. All of the links in the thickened surface can be
obtained by Dehn filling an additional trivial component in the thickened surface that wraps around
the sequence of bigons. By work of Thurston (see [22]), the sequence of volumes of the sequence
must approach the volume of the link with the additional trivial component from below.

§ 7
gl
(T ™

Figure 6: Construction of D5 on some arc o

Figure 7: Adding twists preserves the amount of B state circles (blue) and
increases the amount of A state circles (red) by one.
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Remark. Note that the Turaev spectrum does not contain the volume to which the volumes in
this sequence limit, as the diagram with the trivial component upon which we are doing surgeries
does not correspond to the link in question.

Example 4. Figure 8 shows the first two in a sequence of unknot diagrams with Turaev volumes
that limit toward the volume 14.9004553215, which corresponds to the volume of the link depicted
in Figure 9. Table 2 shows the volumes of the first 10 diagrams in this sequence.

)

Figure 8: Unknot diagrams with one and two twists

Twists volr(D)

1 9.503403931
12.07764776
13.2804231421
13.8804968156
14.206363788
14.399452630
14.522417584
14.6052962032
14.663716611
14.7064051972

O CO| | O U | W N

—
o

Table 1: Converging unknot volumes

Figure 9: The sequence of diagrams of trivial knots have Turaev volumes
limiting to the volume of this link.

Theorem 3.4. The mapping taking classical knots to classical Turaev volume is finite-to-one.

Proof. As mentioned previously, [21] implies the volume of a knot in a thickened surface of genus g
is at least (29 — 2)v,et. Hence, for a given volume there are only finitely many genera of surfaces S
such that the complement of a knot in M can have that volume. Once we have specified the surface,
work of Thurston [22] implies that there are at most a finite number of knot complements in the
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surface with a given volume. We show that there are at most a finite number of fully alternating
knots that could correspond to a given complement.

Fully alternating knots in thickened closed orientable surfaces are examples of weakly generalized
alternating knots, which are described and investigated in [12]. In particular, the authors prove
that if the twist number of such a knot is at least 9, or the genus of the surface is at least 5, then
there is only the trivial surgery that can yield a non-hyperbolic manifold. Thus, for these cases, no
other surgery yields a thickened surface and the complement is uniquely associated with a fully
alternating knot.

If the genus is 0, the Gordon-Luecke Theorem [11] implies the same. If the genus is 1, 2, 3 or 4,
then we need only consider fully alternating knots with twist number 8 or less. Represent such
a diagram by replacing each twist sequence with a vertex. So the projection is replaced with a
4-regular graph of eight or fewer vertices. Since the number of vertices and edges are fixed, there is
a finite set of faces, which together make up the surface. Since there are only a finite number of
ways these faces can be glued together to construct the surface, there are only a finite number of
embeddings of such graphs on the surfaces, up to homeomorphism of the surfaces. At each vertex
in such a graph, there are two choices of how to insert the bigon sequence corresponding to the
twist, which we will call a vertical orientation and a horizontal orientation. Since the entire diagram
must be alternating, there are only two possibilities to set the entire set of crossings, once the
orientation and length of each twist region is specified. But there are still infinitely many choices
for the lengths of the twist regions.

Suppose an infinite number of these possible projections on a given genus surface have the same
complement.Then there is an infinite sequence all coming from the same 4-regular graph, and such
that at each vertex the orientations of the twist sequence match. Having the same complement
implies they have the same volume.

Let (21,9, ...,x,) be the number of crossings in each twist sequence, where n < 8. Then the
infinite sequence of projections must all have at least one entry x; that goes to infinity. For the
entries that do not go to infinity, they have a shared upper bound. So there must be a subsequence
such that each of these entries are fixed, while the remaining entries go to infinity. However, then
the volumes of the corresponding knot complements must approach from below the volume of
the link complement obtained by augmenting each of the growing twist sequences with a trivial
component around the sequence, since they are obtained by Dehn filling the new trivial component.
Thus, they cannot all be the same volume, a contradiction.

Each such knot with a given complement, which has a fully alternating projection on the surface,
has a finite number of reduced alternating projections up to homeomorphism of the surface. This
follows from the fact that any such projection must have the same number of crossings by Theorem

1.1 of [3]. Each such projection can only come from a finite number of virtual link diagrams,
including a given link diagram, together with detour moves and virtualizations of it by Theorem
4.2 of [19]. When restricting to classical knot diagrams, there is only one such that can correspond

to a given fully alternating knot projection on the Turaev surface.
|

4. SOME TURAEV VOLUMES

We can determine the classical Turaev volume for several types of knots and links.

Example 5. Any classical hyperbolic alternating knot K with volume less than v,.; has classical
Turaev volume equal to its hyperbolic volume vol(K). For instance, this holds for the twist knots
41; 527 617 727’ ..

A classical knot K has orientable Turaev surface for any classical diagram. By [21], the volume
of the complement of a link in a thickened orientable genus g > 2 surface is at least (29 — 2)voct
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and since g > 2, this is at least 2v,;. For any genus one Turaev surface St(D), the volume of
S7(D) x I'\ L7(D) is the volume of S\ (H U L7(D)) where H is a Hopf link. Since H U Lr(D)
is a 3-component link, the volume is at least v,e;. This is true because in [1], Agol proved that
the smallest orientable 2-cusped hyperbolic manifold has volume v,e;. If a 3-cusped manifold had
volume less than this, high surgery on one cusp would also have volume less than v,.;, contradicting
Agol’s result. Thus to obtain a volume less than v, the Turaev surface must be a sphere. A
reduced classical non-alternating diagram of K yields a higher genus Turaev surface. So the only
possible classical diagram that yields a spherical Turaev surface is an alternating diagram, all of
which yield K as the knot on the spherical Turaev surface with volume vol(K).

Note that although there is a 12-crossing knot (12n0242) that has the same volume as the 59
knot, which is 2.828. .., it is not alternating, and therefore we do not expect its Turaev volume to
be 2.828. .., since it will not have a minimal genus Turaev surface of genus 0.

Example 6. For classical alternating two component links with classical hyperbolic volumes less
than 2v,., the classical Turaev volume equals the hyperbolic volume. For instance, this includes
the links 5%, 63, 63,72, 77,73,72,73, and 83.

To see this, let L be a classical alternating two-component link with vol(S?\L) < 2v,.. For
classical diagrams with Turaev genus at least 2, the volume of S (D) x I\ Ly(D) is again at least
2voct by [ ]

Furthermore, in [25], it was proved that the smallest volume of a 4-cusped orientable hyperbolic
3-manifold is 2v,.;. If some classical diagram of L lifts to L’ on an orientable genus one Turaev
surface T, the volume of T\ L' equals the volume of S® \ (L’ U H) where H is an appropriately
linked Hopf link, and since this will have four cusps, its volume is at least 2v,q.

Then, L can only have classical Turaev volume less than 2v,.; in its genus 0 Turaev surfaces.
To have a corresponding genus 0 Turaev surface, the diagram must be alternating, and the Turaev
surface-link pair, after capping off the two spherical boundaries is in fact L in S3.

Note however, that if we want to calculate the Turaev volume, we must consider virtual diagrams
of L as well. Although we can eliminate any nonorientable Turaev surfaces of genus at least 2
because the volume will be too large, we cannot eliminate the projective plane, the Klein bottle
or the nonorientabe surface of genus 3/2 and prove that there is not a smaller volume Turaev
surface-link pair.

Example 7. We conjecture that the trivial knot has classical Turaev volume equal to 9.5034 ...,
corresponding to a projection that is the standard projection of the trefoil knot with one crossing
switched. However, this cannot be its Turaev volume, as we can take the projection obtained from
the trivial projection by doing a virtual Type I Reidemeister move followed by a classical Type 1T
Reidemeister move, as in Figure 10. The resulting projection does yield a Turaev surface-link pair
that is a hyperbolic knot in a Klein bottle with volume 2v,.; = 7.3277247535.... We conjecture
that this is its Turaev volume.

Note that the standard figure-eight knot projection with any two crossings that do not share
a bigon made virtual shares this same Turaev-surface link pair, as it can be obtained from this
projection of the trivial knot by virtualization and detour moves. So we conjecture that it also has
Turaev volume 2v,.;.

The trivial link of two components has a projection obtained by doing a single classical Type 11
Reidemeister move of one component over the other. The resulting Turaev surface-link pair is a
torus with a link projection of two crossings upon it. It is hyperbolic, and also has a volume of
200t = 7.3277247534 . .., less than the conjectured classical Turaev volume of the trivial knot but
equal to the conjectured Turaev volume of the trivial knot.

The virtual figure-eight knot (obtained by making one crossing of the classical figure-eight
knot projection virtual) is a knot of Turaev genus 1/2 with Turaev volume 2.66674478345 ... for
this projection. We conjecture this is its Turaev volume. This is the lowest Turaev volume for a

14



N\
G

- ij_"\\:

Figure 10: Finding the Turaev surface-link pair for this virtual projection of
the trivial knot.

non-classical virtual knot yet discovered. (The standard projection of the virtual trefoil yields a
non-hyperbolic Turaev surface-link pair.)

Example 8. In Table 3, we see four classical projections of the trefoil knot, which itself is
not hyperbolic. The least volume occurs for the first projection, and we conjecture that the
corresponding volume is the classical Turaev volume for the trefoil.

We suspect this is also the Turaev volume, since for simple examples of projections of the trefoil
that include virtual crossings, the volume is much larger.
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