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Abstract
The Erdős distinct distance problem is a ubiquitous problem in discrete geometry. Less
well known is Erdős’s distinct angle problem, the problem of finding the minimum
number of distinct angles between n non-collinear points in the plane. The standard
problem is already well understood. However, it admits many of the same variants as
the distinct distance problem, many of which are unstudied. We provide upper and
lower bounds on a broad class of distinct angle problems. We show that the number of
distinct angles formed by n points in general position is O(nlog2 7) providing the first
non-trivial bound for this quantity.We introduce a new class of asymptotically optimal
point configurations with no four cocircular points. Then, we analyze the sensitivity
of asymptotically optimal point sets to perturbation, yielding a much broader class of
asymptotically optimal configurations. In higher dimensions we show that a variant
of Lenz’s construction admits fewer distinct angles than the optimal configurations in
two dimensions. We also show that the minimum size of a maximal subset of n points
in general position admitting only unique angles is �(n1/5) and O(n(log2 7)/3). We
also provide bounds on the partite variants of the standard distinct angle problem.
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1 Introduction

1.1 Background

In 1946, Erdős published a paper titledOn sets of distances of n point, introducing the
problem of finding asymptotic bounds on the minimum number of distinct distances
among sets of n points in the plane [7]. This simply stated problem proved to be
surprisingly challenging and is now known as the Erdős distance problem. Indeed, the
original question was only finally resolved by Guth and Katz in 2015 [15].

Over time, many variations of the problem were introduced: restricting the point
sets, studying subsets with no repeated distances, and many other quantities. We study
variations of a related problem, introduced by Erdős and Purdy [14]. What is A(n), the
minimum number of distinct angles formed by n not-all-collinear points in the plane?
Unlike in the distance setting, an extra restriction of non-collinearity is required to
prevent the degenerate case of at most two angles. When this problem was proposed,
the regular n-gon was conjectured to be optimal (yielding n − 2 angles), and a lower
bound of (n − 2)/2 angles was proven for point sets without three collinear points.
Since then, the problem and all other analogues of distinct distance problems with
angles have gone untouched. We study this problem of distinct angles in many of
the settings originally considered for distinct distances, providing exact or asymptotic
bounds, depending on the problem. We summarize our results below.

1.2 Summary of Results andMethods

Note that throughout, unlike Erdős, we do not count angles of 0 or π to avoid some
degenerate behaviors. This is consistent with the current literature on related repeated
angle questions (see, for example [21]).

1.2.1 Erdős Angle Problems

We begin with the most natural extension of the Erdős distance problems to angles:
what is the least number of distinct angles determined by n not-all-collinear points in
the plane? Given that the known low angle constructions contain obvious structures,
such asmanypoints on a line or on a circle, it is natural to also consider the problemover
restricted point sets. Our main results in this section are summarized in the following.

• We provide a construction of a polygon projected onto a line, yielding a point
configuration with no four points on a circle admitting n − 2 distinct angles, the
same as the conjectured optimal regular n-gon.

• Wealso provide a point configuration in general position admitting less than cnlog27

for some constant c, the first nontrivial bound for this problem. The hypercube
configuration relies on enumerating classes of triangles equivalent up to edge
translation and then projecting onto a generic plane. While [11, 13] also use a
projection onto a generic plane for the distance problem analogue, the properties
of orthogonal projections are much more convenient for distances. Attempting to
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directly apply their results fails dramatically due to additional complexity added
by angles.

In addition, for completeness, we provide a known upper bound on A(n) of n−2 from
the regular n-gon, conjectured by Erdős and Purdy to be the optimal configuration,
and a lower bound of n/6 by partial progress towards the Weak Dirac Conjecture of
Erdős and Dirac. We also consider similar problems on restricted point sets, as in
the distance setting. Under a restriction forbidding three points on a line, we provide
bounds on the restricted quantity Ano3l(n) (these were known by Erdős).

1.2.2 The Robustness of Efficient Point Configurations

Having identified efficient point configurations in the polygon and the projected poly-
gon, we ask how resilient they are to perturbation. Erdős investigated a similar question
for distances in [10]. We prove combinatorially the surprising result that the regular
n-gon with k points perturbed defines O(nk)1 angles, so long as all points remain on
the circle, and we prove an analogous result for the projected polygon. Consequently,
if any constant number of points in a regular polygon are moved to random positions
on the circle, the construction still defines O(n) angles (an optimal number asymp-
totically), even though moving even one point off the circle experimentally gives a
super-linear number of distinct angles. In that vein, we provide conjectures about the
number of angles in several perturbed optimal configurations in which points may no
longer lie exactly on a circle or line.

1.2.3 The Pinned Angle Problem

We subsequently examine the angle equivalent of another prominent Erdős distance
problem. What is the smallest k such that every n point configuration has some point
determining k distinct distances? This problem remains open in the distance setting
for convex configurations of points, and is conjectured to be �n/2� by Erdős in [7]. An
upper bound of �n/2� is obtained by considering the regular n-gon, and the current
best lower bound of (13/36 + 1/22701)n + O(1) is obtained by Nivasch et al. [20].

Denoting the analogous angular quantity allowing any configuration of points as
Â(n) (with the pinned point as the apex of the angles), we bound it between n/6 and
n − 2 using results about A(n). This in turn also provides an upper bound on Â�(n),
the sum of the number of distinct angles determined by each point.

1.2.4 Partite Sets

Given a partite set, the question of distances determined between the two sets has been
studied by Elekes [6] in the unrestricted setting, but remains unsolved in general. We
ask the analogous question in the angular setting: how many angles are defined by a
k-partite set, where each point is in a distinct set?We provide low angle configurations
in the unrestricted case, establish linear lower and upper bounds on partite sets without
three collinear points, and completely solve the problem in a particular case.

1 We write f = O(g) if there exists constant C such that f (n) ≤ Cg(n) for sufficient large n. Conversely,
we write f = �(g) if g = O( f ). Lastly, we write f = �(g) if f = O(g) and f = �(g).
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Table 1 Summary of results

Variant Lower bound Upper bound

A(n) n/6 n − 2

Ano3l (n) (n − 2)/2 n − 2

Ano4c(n) n/6 n − 2

Agen(n) �(n) O(nlog27)

Â(n) n/6 n − 2

Â�(n) n/6 + n − 1 3n − 6

Rgen(n) �(n1/5) O(n(log27)/3)

Ad (n) 2 2�2n/d� − 2

1.2.5 Maximal Subsets of Points with Distinct Angles

One prominent variation of the Erdős distance problem asks: what is minimum maxi-
mal subset of n points such that no distance is repeated? None of the numerous variants
in the distance setting have been fully resolved, although a number of upper and lower
bounds have been proven by a variety of authors. For a complete picture of these
problems in the distance setting see [1, 2, 12, 14, 18].

We ask the analogous question for angles. We upper bound this configuration in
general, showing R(n) ≤ A(n)1/3. Then, we employ a probabilistic method similar
to that in [2] to show a lower bound of �(n1/5).

1.2.6 Higher Dimensions: Lenz’s Construction

Lenz’s construction consists of multiple unit circles in row orthogonal two-
dimensional subspaces. We show that, just as it has been for repeated angle problems
in higher dimensions and the unit distance problem, Lenz’s construction also provides
a good upper bound of 2�2n/d� − 2 on Ad(n), the least number of distinct angles
defined by n points in d dimensions (see [1, p. 499]). This construction demonstrates
that, for a fixed number of points, increasing the dimension decreases the upper bound
on the number of distinct angles dramatically. This behavior aligns with the behavior
in the distance setting with the integer lattice. We also provide a higher dimensional
upper bound for the maximal subset question.

We provide a tabular summary of our results in this section for convenience. Each
parameter is described informally above, but we formally define each one in its respec-
tive section.

We note several other miscellaneous bounds over the course of the paper, but do
not include them here because either we only provide an upper or lower bound or
they do not fit nicely into the structure of the table. These include: variants of angle
sum bounds in Sect. 4, partite set bounds in Sect. 5, and maximal subset bounds in
non-general position in Sect. 6, to name a few.
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2 Erdős Angle Problems

2.1 Unrestricted Point Sets

We begin by considering the most broad, non-trivial version of the distinct angles
problem. This is the version of the problem originally posed by Erdős [14].

Definition 2.1 For a point set P ⊂ R
2, let A(P) denote the number of distinct angles

in (0, π) determined by points in P . Then, let

A(n) := min
|P |=n

A(P),

where P is not all collinear.

We begin by showing A(n) = �(n) with explicit upper and lower bounds. First, we
give an upper bound using the regular polygon:

Lemma 2.2 A(n) ≤ n − 2.

Proof Consider the point configuration given by the vertices of an n-sided regular
polygon. Upon inscribing the polygon in a circle, notice that, for any vertex cho-
sen as apex, the distinct angles with that apex are subtended by arcs of length π/n,
2π/n, . . . , (n − 2)π/n. The magnitudes of the distinct angles in the polygon are then
half of each of those arclengths. �	
Remark 2.3 When n is odd, wemay alternatively use an (n−1)-gonwith an extra point
in the center. Adding the center point to an even regular polygon does not increase the
number of nonzero angles defined, and so, if n = 2m + 1, we achieve a slightly better
bound: A(2m + 1) ≤ 2m − 2.

We now leverage progress on the Weak Dirac Conjecture to provide a lower bound on
A(n). In 1961, based on a stronger conjecture of Dirac’s, Erdős conjectured in [9] the
following.

Conjecture 2.4 (Weak Dirac Conjecture) Every set P of n non-collinear points in the
plane contains a point incident to at least �n/2� lines of L(P), where L(P) is the set
of lines formed by points.

While the Weak Dirac Conjecture is open, significant progress has been made. Let
�(n) be the largest proven lower bound for the Weak Dirac Conjecture, i.e., every set
P of n points not on a line in the plane contains a point incident to at least �(n) lines
of L(P). Then, we have the following.

Theorem 2.5 For n > 3, A(n) ≥ (�(n) − 1)/2 ≥ n/6.

Proof Fix a set P of n non-collinear points in the plane. Let p ∈ P be incident to at
least �(n) lines of L(P). Fix another point q ∈ P . Note that for any fixed nonzero
angle θ < π , there are exactly two possible lines that r must lie on if ∠qpr = θ .
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Since p is incident to �(n) − 1 lines without q, p is the apex of at least (�(n) − 1)/2
distinct angles. Therefore

A(n) ≥ �(n) − 1

2
.

We have �(n) ≥ �n/3� + 1 from [16]. As such, we have A(n) ≥ n/6, as desired. �	
Notably, this argument is known (see [1, Conj. 10 in 6.2]), but we include it for
completeness.

2.2 No Three Collinear Points

Given that any collinear point set defines at most two angles, it is intuitively clear
why restricting the number of collinear points might result in interesting behavior. We
briefly consider such point sets in this section.

Definition 2.6 Let Ano3l(n) = min|P |=n A(P), where P contains no collinear triples.

Note that the regular n-gon contains no collinear triples, and so as with A(n), we
have an upper bound of Ano3l(n) ≤ n − 2. The usual stipulation on this bound holds.
See Remark 2.3. Our restrictions on the point sets allow for a stronger lower bound
than in the unrestricted case. This bound was known by Erdős but is included for
completeness.

Lemma 2.7 For n > 3, Ano3l(n) ≥ (n − 2)/2.

Proof Fix a point p ∈ P . As no three points are on a line, p determines n − 1 distinct
lines with each of the other points. The result follows by fixing another point q and
repeating the argument for Theorem 2.5. �	
We can easily generalize this restriction to no k points on a line. However, the lower
bound given by repeating this argument with k ≥ 4 points on a line is always weaker
than that in Theorem 2.5. Moreover, in those cases the regular polygon remains an
upper bound.

2.3 Restricting Cocircularity

Since the regular polygon construction requires many points on a circle, it is natural
to wonder how the bounds change when we require that no four points lie on a circle.
This setting is not specifically studied in the context of distances but merits special
attention for angles given the seeming optimality of the regular n-gon. We provide the
following definition.

Definition 2.8 Let Ano4c(n) = min|P |=n A(P), where P contains no co-circular
quadruples.

We then have the following lemma.
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Fig. 1 Projecting regular polygons onto a line

Lemma 2.9 For n > 3, Ano4c(n) ≤ n − 2.

Proof Consider the vertices of a regular n-gon. Fix a vertex p. Then, if n is even, there
is a vertex q directly opposite p. In that case, let � be the line perpendicular to pq ,
containing p. If n is odd, there are instead two vertices of maximal distance from p. In
that case, let � instead be the line containing those two vertices. Then, for each vertex
r other than p in the regular n-gon, project r onto � at the intersection of pr and �.
This is the stereographic projection of the points onto � via p. Let the n − 1 projected
points on � and p define the projected polygon configuration, P . Note that P contains
no four cocircular points (Fig. 1).

We can now count the number of angles in this configuration. Let α = π/n, the
angle subtended by an arc between consecutive points in a regular n-gon. Note that
the angles formed in the case of p being the apex of the angle are exactly the n − 2
angles of a regular n-gon, iα = iπ/n for 1 ≤ i ≤ n − 2.

Next, we count angles of the form ∠pqr where q and r lie on line �. Suppose
first that n is even. Then there will be a point r0 at the center of �. Note that if ∠pqr
is acute, then ∠pqr = ∠pqr0. The other two angles in �pqr0 are iα and π/2 (for
1 ≤ i ≤ (n − 2)/2), so

∠pqr = π

2
− iπ

n
=

(
n

2
− i

)
α,

for 1 ≤ i ≤ (n − 2)/2. Since n is even, these are integer multiples of α. Moreover,
since 1 ≤ n/2− i ≤ n− 2, angles of this form are already accounted for in the angles
with apex p. Additionally, note that, except for the angle with apex at r0, which has
value π/2, accounted for by angles with apex p, all the other angles ∠pqr possible
are the supplements of acute angles of the form ∠pqr , apart from the angle of value
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π/n. Thus, we achieve angles of

π − (n/2 − i) π

n
= π

2
+ π i

n
,

where 1 ≤ i ≤ (n−4)/2. All these angles are also accounted for in the case of angles
with p as the apex, so, when n is even, we have n − 2 distinct angles.

The case of n odd follows nearly identically, although of course there is no center-
point on the line. A calculation like in the even case shows that each angle measure
achieved with apex on the line is also achieved by an angle with vertex at p off the
line, and hence we again have n − 2 distinct angles. �	
Remark 2.10 The projected polygon construction and the regular polygon both give
n − 2 angles for n points. The former contains collinear points but no four points on
a circle, while the latter contains the opposite. Additionally, there are infinitely many
such “one point off the line” configurations yielding ≤ cn angles, for some c. Fix
α < π/(n − 1). Fix some p and some line �. Space the remaining n − 1 points on �

such that ∠rps = α for consecutive r and s on �. This configuration forms at most 3n
angles in general. We revisit this in Sect. 3.

Note that Theorem 2.5 provides a lower bound of n/6 distinct angles here as well.

2.4 General Position: No Three Points on a Line Nor Four on a Circle

Now that we have illustrated constructions determining O(n) angles that forbid either
three points on a line or four points points on a circle, we consider configurations
that forbid both. Erdős and others have investigated this problem extensively in the
distance setting. While the best known lower bound in the distance setting is trivially
�(n), the best known upper bound is n2O(

√
log n) from [11]. In this section we provide

a nontrivial upper bound on this quantity in the angle setting.

Definition 2.11 Let

Agen(n) := min
|P |=n

A(P),

where P is in general position.

We use a construction inspired by the projective construction in [13, Thm. 1] to provide
an upper bound.We take higher dimensional hypercubes and project their points down
to a generic plane. Unlike with distances, we have very little control over the triangles
in the projection. As such, we proceed by very careful combinatorics.

Let Qd be the d-dimensional hypercube with vertices of the form p =
(x1, x2, . . . , xd) and xi = 0 or 1 for each i . For any 2-dimensional plane 	 in Rd , let
T be the orthogonal projection of the points in Qd onto 	. It is possible to choose 	

satisfying the following conditions.

1. T (p1) = T (p2) if and only if p1 = p2, and
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2. P := T (Qd) ⊂ 	 is in general position.

In addition, since orthogonal projections are self-adjoint and idempotent, we have

p1 − p2 = p3 − p4 �⇒ d(T (p1), T (p2)) = d(T (p3), T (p4)). (2.1)

Unfortunately, T does not preserve the distance between points in Qd . That is,

d(p1, p2) = d(p3, p4) ��⇒ d(T (p1), T (p2)) = d(T (p3), T (p4)).

This means two congruent triangles in Qd need not be congruent after projection.
However, by (2.1) and SSS-congruence, two congruent triangles with equal difference
vector edges remain congruent after projection. This inspires the following definition.

Definition 2.12 Given a triangle 
 with vertices in Qd , define the equivalence class
[
]Qd as the set of all triangles congruent to 
 whose vertices lie in Qd and edges
correspond to (individually) translated copies of the edges of 
.

It suffices to characterize the equivalence classes of translated congruent triangles in
Qd to bound the number of angles in P . We do so in the following lemma.

Lemma 2.13 The number of equivalence classes of triangles in Qd is

7d − 3d+1 + 2

12
.

Proof Webegin by counting the number of unordered triples of distinct binary k-tuples
such that no coordinate of the triple is fixed for all three. By “fixed" we mean equal
among all three k-tuples. Let ak denote the number of such triples.

At each coordinate in the triple of k-tuples, the possible values for each of the triples
are 0 or 1. Since no coordinate of the triples is fixed, each coordinate must either have
exactly one 1 or one 0 among the three k-tuples. There are then (3 · 2)k ways to choose
whether there will be one 1 or one 0 and the choice of tuple for that singleton for
each of the k coordinates. This imposes an ordering which we divide out at the end.
Now, note that although it is impossible to repeat a k-tuple thrice since no coordinate
is fixed, we overcount instances with a repeated k-tuple. A k-tuple can be chosen to
repeat twice in 2k ways and the choice of repeated k-tuple forces the choice of the
third k-tuple. Such triples can be ordered in 3 ways. After subtracting off such pairs,
the remaining triples are all distinct and thus can be ordered in 3! ways. We have

ak = 6k − 3 · 2k
6

.

Now we use ak to count tk , the number of triangles in Qd with exactly k unfixed
coordinates. As there are

(d
k

)
ways to choose the unfixed coordinates, ak ways to
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(0,1)

(0,0) (1,0)

(1,1)

Fig. 2 Translation equivalent triangles from flipped coordinates

choose the values in those unfixed coordinates, and 2d−k ways to choose the values
of the fixed coordinates, we get

tk = 6k − 3 · 2k
6

(
d

k

)
2d−k =

(
d

k

)
6k2d−k − 3 · 2d

6
.

Finally, we prove that all triangles in the same equivalence class have the same set
of fixed coordinates. We also prove that the size of the equivalence class of triangles
with a given number of fixed coordinates is constant.

First observe that, given a triangle in Qd , we may get an equivalent triangle by
flipping any combination of its fixed coordinates (from 0 to 1 or vice versa), thereby
translating each vertex of the triangle by the same amount. Moreover, if a coordinate
is not fixed, then any translation to a equivalent triangle cannot be nonzero in that
coordinate as it would then lead to some point having a coordinate that is both nonzero
and not one. The only other way to achieve an equivalent triangle is to translate the
edges individually (keeping the difference vectors corresponding to them identical,
but altering their relative orientations). See Fig. 2. This can happen in at most one way.

�	
Moreover, flipping each coordinate of each of the three points yields a congruent

triangle composed of the same difference vectors (by flipping, we mean changing
from 0 to 1 and vice versa). This follows from the observation that, if a coordinate in
a difference vector is 0, the subtracted coordinates must be equal and remain equal
under swapping each coordinate. If a coordinate is 1 or −1, it will swap sign but still
be the same vector. Thus, we have that the size of the equivalence class of each triangle
with k unfixed coordinates in a Qd is exactly 2d−k+1. Moreover, all triangles in the
equivalence class have exactly k unfixed coordinates. Putting this all together, we have
that the number of equivalence classes of triangles in Qd is

d∑
k=1

(
d

k

)
6k · 2d−k − 3 · 2d

6 · 2d−k+1 = 7d − 3d+1 + 2

12
.

The above follows from standard binomial formula identities. �	
Since triangles in the same equivalence class are congruent under the projection

from Qd to a specially chosen generic plane, Lemma 2.13 provides an upper bound
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of O(7d) distinct angles on point configurations in general position with 2d points.
To establish this result for n not a power of two, pick the least d such that n < 2d

and apply the upper bound to a subset of n vertices in Qd . This proves the following
theorem.

Theorem 2.14 Agen(n) = O(nlog2 7).

3 The Robustness of Efficient Point Configurations

Beforewe consider several variants of this problem,we discuss a very natural question:
how far can point sets stray fromour best constructions (regular polygons and projected
polygons) while still being “near-optimal?” In the distance setting, a point set is called
near-optimal if it admits O(n/

√
log n) angles, like the

√
n×√

n integer lattice. Erdős
asked if such sets have lattice-like structure, containing �(n1/2) points on a line. The
question has gone unsolved even after replacing 1/2 by any ε > 0. For some partial
results related to this problem, see [22–24], in which the authors bound the number of
points on various algebraic curves in near-optimal point sets. Formally, we have the
following definition.

Definition 3.1 Let P1, P2, . . . ⊂ R
2 be a sequence of point configurations, |Pn| = n.

Then Pn is near-optimal if A(Pn) = O(n).

For example, the sequence of point configurations of regular n-gons is near-optimal.
Perhaps surprisingly, these configurations are reasonably robust to point perturbation.
We begin by studying points on a circle in a way reminiscent of a regular n-gon.

Proposition 3.2 For a fixed k ≥ 0, let Sk
n be the collection of n points on a circle with

n − k points forming a regular (n − k)-gon and the remaining k placed arbitrarily.
Then

max
P∈Sk

n

A(P) = �(nk).

Proof Fix a configuration P ∈ Skn . Since points in P lie on a circle, all its angles
are incident angles. Thus the number of distinct angles is bounded by the number of
distinct arc lengths. We divide the set of arcs into three cases. Suppose an arc is the
minor one formed between p, q ∈ P . We then have the following cases.

1. Both p, q are on the polygon. There are at most 2(n − k)k distinct arc lengths of
this form.

2. Neither of p, q are on the polygon. Then, they are among the k arbitrarily placed
points. There are at most 2

(k
2

) = k2 − k distinct arc lengths of this form.
3. We have p is on the polygon and q is not. There are at most 2(n−k)k = 2nk−2k2

distinct arc lengths of this form.

Then, in total, P determines at most 2nk − k2 + n − 2k − 2 angles. Since k ≤ n, this
quantity is O(nk).
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We show that this bound is tight. Choose the k points to be placed at multiples of
2π between 2π(n − k − 1)/(n − k) and 2π such that all arcs formed with the added
point are iteratively not admitted among the points in the configuration. Then there
are n − k − 2 arcs between the point at 2π(n − k − 1)/(n − k) and the other non-zero
polygonal points, moving clockwise about the circle. Notably, they can be extended
by 1 to k arcs. By the choice of these arcs, for any length rational arc chosen, all the
extensions by 1 to k arcs are distinct. Thus, at least (n − k − 2)k = �(nk) distinct
angles are formed (as the ends of the arc can be used as the end points of an angle
with 0 as the apex). �	
From this, it follows that such configurations are near-optimal for any k constant in n.

We now discuss a related, more challenging problem. Let T k
n be the collection of

n point configurations having n − k points on a circle and no circle containing more.
Denote by T (n) the maximum quantity k ≤ n/2 satisfying

min
P∈T k

n

A(P) = �(n).

What can be said about the value of T (n)? We restrict k to n − k = �(n) in order
to avoid cases that reduce to configurations with a negligible number of points on a
circle.

Consider a new point at the center of a regular n-gon.When n is even, the new point
generates no new angles (see Remark 2.3). When n is odd, it generates exactly �n/2�
additional angles. To see this, say n = 2m + 1. One new angle of 4mπ/(2m + 1)
is from the angle whose apex is at the new point and the ends at the original n-gon.
Another n more angles of iπ/n − π/(2n) for 1 ≤ i ≤ n are from those with the new
point as an end point; they are equivalent to the original arcs on the n-gon with half
of the 2π/n arc cut out.

Thus, T (n) ≥ 1. We conjecture this bound to be tight and this point in the center is
the only way to achieve it.

Conjecture 3.3 T (n) = 1.

The aforementioned optimal point configuration, the projected polygon, has n − 1
points be on a line. To what extent can we perturb this configuration while remaining
near-optimal?

Proposition 3.4 For a fixed k ≥ 0, let Lk
n be the collection of planar n-point configu-

rations with n − k (including the off-line point) in the projected polygon construction
from Lemma 2.9 and the remaining k placed on the line arbitrarily. Then

max
P∈Lk

n

A(P) = �(nk).

Proof We may divide the possible angles into four cases. Observe an angle ∠pqr in
the following cases.

• Say q is the point off the line, and p, r are both projected points. Then the num-
ber of such angles is bounded by the number of angles in the projected polygon
construction n − k − 2.
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• Say q is the point off the line, and neither of p, r are projected points. Then the
number of angles in this case is bounded by

(k
2

) = (k2 − k)/2.
• Say q is the point off the line, p is a projected point, and r is not (without loss of
generality). Then the number of such angles is this bounded by (n − k − 1)k.

• Say q is on the line. Then all nontrivial ∠pqr have one leg along the line and
the other at the point off the line. Thus, for each q on the line, there are at most
two possible angles, and they are supplementary amongst themselves. Then the
number of these angles is bounded by 2(n − 1).

Then in total we O(nk) distinct angles formed. Now we show this bound is tight.
Choose the k points to be placed following the rightmost point on the line such that
the angles they form with the point off the line as the center are all unique (we can do
this iteratively by the infinitude of the real line). Then, by construction, there are at
least

k∑
i=1

(n − k + i − 1) = k(n − k) +
(
k

2

)
= �(nk)

distinct angles in the configuration, counting only angles with apex the point off the
line. �	
From this, it follows that such configurations are near-optimal for any k constant in n.

Now, we consider the quantity analogous to T (n). Let Mk
n be the collection of all

n point configurations having n − k points on a line and no lines containing more.
Denote by M(n) the maximum k satisfying

min
P∈Mk

n

A(P) = �(n).

What can be said about the value of M(n)? It is immediate that M(n) ≥ 1 by the
projected polygon. In addition, from Remark 2.10, there are many other near-optimal
configurations in Mk

n . Consider a new point that is the original point off the line
reflected over the line. It generates O(n) additional angles. Thus, M(n) ≥ 2. We
conjecture this bound to be tight and the only pair of points to achieve this are those
symmetric about the line.

Conjecture 3.5 M(n) = 2.

4 The Pinned Angle Problem

We now pivot to a variant originally considered in the context of distinct distance
problems. Among n points in the plane, in the worst case, what is the maximum
number of distinct angles with apex at some “pinned” point? For example, see [17,
Cor. 6] for the original problem for distances.
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Definition 4.1 For a point set P and a point p in it, let Ap(P) denote the number of
distinct angles in (0, π) formed in P with p as the apex. Then, let

Â(n) := min
|P |=n

max
p∈P

Ap(P),

where P is a not-all-collinear planar point set.

Theorem 4.2 We have Â(n) = �(n).

Proof Regular polygons give an upper bound of n − 2. Let �(n) be the current best
lower bound on the Weak Dirac Conjecture (see Conjecture 2.4). Using the same
logic as Theorem 2.5, this gives a lower bound of (�(n) − 1)/2. This is at least n/6,
completing the proof. �	

This use of theWeakDirac Conjecture is known (see [1, Conj. 10, Sect. 6.2]). A related
classical question for distinct distances is determining the average number of distinct
distances admitted by a pinned point. We present its analogy for angles here.

Definition 4.3 Let

Â�(n) := min
|P |=n

∑
p∈P

Ap(P),

where P is a not-all-collinear planar point set.

Theorem 4.4 We have Â�(n) ≤ 3n − 6.

Proof The projected polygon construction from Lemma 2.9 has one point off the line
as the apex of n−2 distinct angles. All the points on the line, apart from the endpoints,
are the apex of exactly two non-degenerate angles. These contribute another 2n − 4
to the sum. Hence, Â�(n) ≤ 3n − 6. �	

We also have the following for Â′
�(n), this quantity forbidding three collinear points.

Theorem 4.5 We have Â′
�(n) = �(n2).

Proof Since no three points are on a line, we can repeatedly remove points and apply
the bound from Theorem 2.5. This gives

n∑
i=c

i

6
= �(n2).

To get the upper bound, use the fact that every point of a regular n-gon is the apex of
exactly n − 2 distinct angles. �	
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5 Partite Sets

Another well-known variant of the distinct distances problem is that of distances
between points in partite sets. See [6], for example. We introduce a similar problem
for angles. We make heavy use of the best lower bound of the Weak Dirac Conjecture
on n points, �(n), in this section. As a reminder, from [16], we have �(n) ≥ �n/3�.
Definition 5.1 Given bipartite P,Q ⊂ R

2, denote by A(P,Q) the number of distinct
angles in (0, π)whose apex lies in a different set than its two end points. WhereP∪Q
is not all collinear, let

A(m, n) := min
|P |=m
|Q|=n

A(P,Q).

For simplicity, assume m ≤ n. We begin by providing upper bounds on both unre-
stricted and restricted point sets.

Lemma 5.2 We have A(m, n) ≤ m.

Proof We utilize the projected polygon construction from Lemma 2.9. Assign the
point off the line, q, to be inQ and them leftmost points on the line in P . Notably, the
points inP are all within the left half of the line. Now, the angles of the form∠p1qp2,
the angles with apex q, form the angles iπ/(n + m) for 1 ≤ i ≤ m − 1. Let r be the
rightmost point on the line. From Lemma 2.9, we have two cases for the the angles of
the form ∠qpir . If n + m is even, they form the angles

π

2
− jπ

n + m

for (n−m)/2 ≤ j ≤ (n+m−2)/2 (or, for n = m, we have all such angles for j ≥ 1
and an angle of π/2 for pi the orthogonal projection of q onto the line). In the case
n + m odd, the angles ∠qpir are

π

2
−

(
jπ

n + m
− π

2(n + m)

)

for (n − m + 1)/2 ≤ j ≤ (n + m − 1)/2. Namely, these angles are computed
by completing the angles of the right triangle containing q, pi , and the orthogonal
projection of q. Substituting the ranges of the angles for both, we find that the only
angles in the configuration are lπ/(n + m) for 1 ≤ l ≤ m, implying the result. �	
Note that this result implies that no unrestricted lower bound in terms of n + m can
exist.

Next, we provide an upper bound on the case of no three collinear points in P orQ
(the union may have three collinear points).

Lemma 5.3 We have Ano3l(m, n) ≤ n − 2.
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Proof LetP form a subset of vertices of a regular n-gon of sizem andQ the vertices of
a regular n-gon, both inscribed in the same circle. The bipartite angles formed in this
configuration are all incident angles subtended by arcs of the size subtending angles
in a regular n-gon. Thus, the distinct angles formed in this configuration are a subset
of the angles of a regular n-gon, implying the result from Lemma 2.2. �	
Now,we provide a lower bound in the restricted case of no three collinear points within
sets P or Q.

Lemma 5.4 We have Ano3l(m, n) ≥ �(n − 1)/2�.
Proof Fix a point p ∈ P to be an apex and a q ∈ Q to be a non-apex point. By
the argument in Lemma 2.7, since no three points are collinear, at most two of each
of the remaining n − 1 points in Q can form the same angle with pq with apex p.
However, one other point in the Q can be collinear to p and q, not contributing any
angle, yielding

�(n − 2)/2� = �(n − 1)/2�. �	

Corollary 5.5 We have Ano3l(m, n) ≥ �((m + n)/2 − 1)/2�.
This allows us to completely solve this problem in the case of m = 1.

Lemma 5.6 We have Ano3l(1, n) = �(n − 1)/2�.
Proof Let Q be the vertices of a regular n-gon. Inscribe these vertices in a circle. Let
the singular point p in the other set be the center of the circle. Then the number of
angles of the form∠q1 pq2 for q1, q2 ∈ Q is n/2−1 for n even and (n−1)/2 for n odd
by counting subtending arclengths. This yields A(1, n) ≥ �(n − 1)/2�. Combining
with Lemma 5.4, we achieve the desired result. �	
We now consider k-partite sets.

Definition 5.7 Let n = ∑k
i=1 ri . Let A(r1, r2, . . . , rk) denote the minimum number

of distinct angles determined by point sets in R
2 of respective sizes r1, . . . , rk with

each of the following stipulations:

• each angle is formed by three points in distinct sets,
• r1 ≥ r2 ≥ . . . ≥ rk and k ≥ 3, and
• not all points are collinear.

We begin with upper bounds on unrestricted and restricted point sets.

Lemma 5.8 We have A(r1, r2, . . . , rk) ≤ 2(n − r1 − 1).

Proof Let S = n − r1. We follow a similar proof to Lemma 5.2. Let the n points be in
an n point projected regular polygon configuration. Let the point off the line, p, be in
the r1 set. Let the leftmost rk points be in the rk set, the next leftmost in the rk−1 set,
and so on, with the remaining rightmost points on the line in the r1 set. Note that all
angles must include p. The angles iπ/n for 1 ≤ i ≤ S−1 are exactly those formed by
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angles with p as the apex. We assume without loss of generality that S is at most n/2
as, from Lemma 2.9, there are n − 2 total angles in the configuration. From the proof
of Lemma 5.2, the angles with apex p and the acute angles with apex some point in
an ri set for i > 1 overlap completely, yielding S − 1 angles (note that the rightmost
apex has no endpoint for an angle opening to the right, thus the minus one). Moreover,
since we may assume S ≤ n/2, all of S − 1 supplemental angles are obtuse. Thus,
they do not overlap at all, yielding the desired bound of 2S − 2 angles. �	
As before, we are unable to provide a lower bound only in terms of n, as, from the
above, there are configurations with large r1 which exhibit very few distinct angles.

We next provide an upper bound on A(r1, r2, . . . , rk) in the restricted case of no
three points on a line in each set (and, in this case, globally).

Lemma 5.9 We have Ano3l(r1, r2, . . . , rk) ≤ n − max(2, rk + 1).

Proof Place the n points as the vertices of a regular n-gon. Assign the first r1 to the first
partite set, the next r2 to the second, and so on, continuing clockwise about the circle
circumscribing the polygon. Then, since all points are on a circle, the angles in the
configuration each correspond exactly to the arc subtending them.But, by construction,
the arcs subtending angles may contain at most n−max(3, rk +2) points. As such, the
distinct angles in this configuration are exactly iπ/n for 1 ≤ i ≤ n −max(2, rk + 1).
This implies the desired bound. �	
When we forbid three points on a line globally, we have a stronger bound than Lemma
5.4 for rk−1 and rk small.

Lemma 5.10 Ano3l(r1, r2, . . . , rk) ≥ �(n − rk−1 − rk)/2�.
Proof Fix a point in the rk-set and a point in rk−1-set. Now, since there are no three
collinear points, the points in the other sets make each angle with these points at most
twice. Thus, Ano3l(r1, r2, . . . , rk) ≥ �(n − rk−1 − rk)/2�. �	

6 Maximal Subsets of Points with Distinct Angles

6.1 Definitions and Upper Bounds

Another variant of the Erdős distinct distance problem is the following: given n points
in a plane, how many points must we remove so that the remaining points determine
no repeated distances? This problem has been studied extensively in the context of
distances, with varying restrictions on the points set [2, 12, 15, 18]. We study an
analogous problem for angles, proving the first nontrivial lower and upper bounds.

Definition 6.1 For a point set P , let R(P) be the maximum size of Q ⊆ P such that
Q determines no repeated angle. Then, let

R(n) := min
|P |=n

R(P),

where the minimum is taken over non-collinear point sets P of n points.
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In general, configurations with a low number of angles provide a reasonable upper
bound for R(n).

Lemma 6.2 Let P ⊆ R
2 be a planar point configuration of n points with no three

collinear points. Then

R(P) ≤ (2A(P))1/3.

Proof Fix P ⊆ R
2, a planar point configuration of n points with no three collinear

points. Then, the subsets of the point configuration determine at most A(P) distinct
angles. Moreover, as there are no three collinear points inP , any subset S ofP admits
3
(|S|
3

)
not necessarily distinct angles. Thus, if a subset S has no repeated angles, it

must be that

3

(|S|
3

)
≤ A(P).

This implies |S| ≤ (2A(P))1/3. �	

Using Lemma 2.2 and Theorem 2.14 we get the following bounds.

Corollary 6.3 We have

R(n), Rno3l(n) = O(n1/3), Rno4c(n), Rgen(n) = O
(
n(log27)/3

)
.

Remark 6.4 Notably, Lemma 6.2 does not provide an especially strong bound for
Rno4c(n), since it does not apply to the construction from Lemma 2.9.

6.2 A Probabilistic Lower Bound onMaximal Distinct Angle Subsets in General
Position

Now we provide a lower bound on Rgen(n). The proof is in many ways reminiscent
of Charalambides’s proof of this for distances (see [2, Proposition 2.1]). To proceed,
we define and bound several quantities.

Definition 6.5 For a point set P , let

Q3(P) := {(p, q, r) ∈ P3 : p, q, r distinct, ∠pqr = ∠qrp},
Q4(P) := {(p, q, r , s) ∈ P4 : p, q, r , s distinct, ∠pqr = ∠pqs,

∠pqr = ∠rsp,∠pqr = ∠qrs, or ∠pqs = ∠qrs} ,

Q5(P) := {(p, q, r , s, t) ∈ P5 : p, q, r , s, t distinct, ∠pqr = ∠sqt,

∠pqr = ∠qst,∠pqr = ∠rst} ,

Q6(P) := {(p, q, r , s, t, u) : p, q, r , s, t, u distinct, ∠pqr = ∠stu}.
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Fig. 4 Five point repeated angle configurations

Remark 6.6 Q3(P) is the collection of pairs of equal angles overlapping at all three
points. It is also the collection of isosceles triangles, over counting up to a factor of 3.
Q4(P) is the collection of pairs of equal angles overlapping at two points. The first
case is when the angles share an apex and one endpoint. The second case is when
they share both endpoints. The third case is when their apex vertices are endpoints for
the other angle (and since that gives two points overlapping, the other two endpoints
do not overlap). The fourth and final case is when the endpoints of one angle are the
apex and an endpoint of the other. See Fig. 3. Q5(P) is the collection of pairs of
equal angles overlapping at one point. The first case is when the angles share an apex.
The second case is when the apex of one angle is an endpoint of the other. The third
case is when an endpoint of one angle is also an endpoint of the other. See Fig. 4.
Q6(P) is the collection of pairs of equal angles without overlaps. These cases are all
encompassing as, for each number of repeated points, it involves some matching of
angle endpoints/apexes to angle endpoints/apexes. These cases are an exhaustive list
of such matchings.

For that which follows, we assume the point configuration is in general position in
the plane. That is, no three points in the configuration are on a line, and no four are on
a circle. The argument fails without restricting to sets with no four points on a circle,
as remarked afterward.
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Definition 6.7 For each 3 ≤ i ≤ 6, let

qi (n) := max
|P |=n

|Qi (P)|,

where P is a planar point set in general position.

Lemma 6.8 We have q3(n) = O(n7/3).

Pach and Sharir show the number of isosceles triangles in the plane is O(n7/3) [21].
We count such triangles twice in Q3(n) if the triple forms an isosceles triangle and
thrice if it forms an equilateral triangle. This makes no difference asymptotically.

Lemma 6.9 We have q4(n) = O(n3).

Proof Let P be n points in general position. We show that there are at most cn3

quadruples in each case of Q4(P), for some constant c, implying the desired bound.
In each of the cases below, we use the same naming convention as in Definition 6.5.
Our case numbering also correspond to those in Fig. 3. Fix p, q, and r , which may be
done in less than n3 ways.

Case 1: We count the number of ways to choose s such that ∠pqs = α = ∠pqr .
Since α is determined by p, q, and r , then s must be on a ray from q forming
angle α with qp. There are at most two such rays, with one being −→qr . Since
the points are in general position, s cannot be on −→qr . On the other ray, there
are at most one such point s. So, there are at most n3 quadruples in this case.

Case 2: Let C be the circle determined by the three points and C ′ be its reflection
across the segment ←→pr . Let � be the perpendicular bisector of segment ←→pr .
We show that any point s forming ∠psr = α has to lie on the outer perimeter
of the figureC ∪C ′. First, assume point s lies in the same half space as q with
respect to the line ←→pr and the same half space as r with respect to �. Let s′
be the point projected onto C projected from s along ←→ps . By comparing the
triangles �psr and �ps′r , we have that ∠ps′r = ∠psr iff ∠prs = ∠prs′.
Therefore, it must be that s = s′. The previous argument can be performed
when s is on the other side of �, by projecting along ←→rs instead. However, in
either of these cases, s ∈ C , which violates the restriction of no four points
on a circle. That is, the second diagram in Case 2 of Fig. 3 is impossible given
our restrictions. This argument can be repeated when s is on the other side
of ←→pr , but instead on circle C ′. Since there are already two points on this
circle, there is most one choice for s in this case. Hence, there are at most n3

quadruples in this case.
Case 3: We choose s such that ∠qrs = α. Since α is determined by p, q, and r , s

must be on a ray from r forming angle α with qr . There are at most two such
rays. Each such ray contains at most two point, yielding at most two options
for s. So, there are at most 2n3 quadruples in this case.

Case 4: This case is extremely similar to Cases 1 and 3.We choose s such that∠sqr =
α = ∠pqr . As before, there are at most two lines which intersect qr at q at
an angle of α. Each line contains at most one additional point in P , yielding
an upper bound of 2n3 quadruplets in this case.
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Since each four cases can occur in at most cn3 ways, for c = 2, then q4(n) = O(n3),
as desired. �	
Remark 6.10 If four points on a circle is allowed, then we instead get q4(n) = �(n4),
crippling the proof. This can be achieved with a regular n-gon. Fix two of its vertices
as the overlapping endpoints. They partition the vertices of the polygon into major
and minor arcs, with the major one having least (n − 2)/2 vertices. Then, any choice
of two vertices from the major arc will yield a configuration as in Case 2. Thus there
are �(n4) such configurations in this case. As such, forbidding four points on a circle
is necessary.

Lemma 6.11 We have q5(n) = O(n4).

Proof LetP be n points in general position. As in Lemma 6.9, we show that each case
of Q5(P) occurs at most cn4 times, for constant c, implying the desired bound.

Case 1: Fix p, q, r , and s, done in less than n4 ways. As in Lemma 6.9, there are at
most two choices for t , yielding at most 2n4 options for this case.

Case 2: This follows exactly as Case 1, yielding a bound of at most 2n4 options for
this case.

Case 3: This follows exactly as Cases 1 and 2, yielding a bound of at most 2n4 options
for this case.

The above casework implies the result. �	
Lemma 6.12 We have q6(n) = O(n5).

Proof Fix n points in general configuration and from it points p, q, r , s, and t , in less
than n5 ways. There are then exactly two ways to choose u so that ∠pqr = ∠stu.
Then u must lie on one of two lines containing t . Since there are no three collinear
points, there are at most two choices of u. The result follows. �	
Theorem 6.13 We have Rgen(n) = �(n1/5).

Proof Let P ⊂ R
2 be a point set of size n and let Q ⊂ P be a set in which each

element ofQ is chosen independently and uniformly from P with probability p. The
probability p will be specified below.

Each occurrence of some configuration from
⋃6

i=3 Qi in Q generates a repeated
angle. Let Q′ ⊂ Q be the points remaining after one point from each configura-
tion is removed. Indeed, Q′ is free of repeated angles and |Q′| ≤ Rgen(P). Taking
expectations we obtain

E[|Q′|] ≥ E[|Q|] −
6∑

i=3

E[|Qi |] = pn −
6∑

i=3

piqi (n).

Using Lemmas 6.8–6.12, there exist some constant c > 1 such that for all n > N for
some N , we get

E[|Q′|] ≥ np − c(p3n7/3 − p4n3 − p5n4 − p6n5).
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Setting p = c−1n−4/5, for n > N we have

E[|Q′|] ≥ c−1n1/5 − c−2n−1/15 − c−3n−1/5 − c−4 − c−5n1/5 = �(n1/5).

By the first moment method, there exists a subset of size �(n1/5) without repeated
angles. �	

7 Higher Dimensions: Lenz’s Construction

In general, the minimum number of distinct angles among n points in R
d should

decrease as lower dimensional spaces can be embedded in higher dimensional ones.
In this section, we provide a construction that demonstrates that this is indeed the case.

Definition 7.1 Let Ad(n) be the minimum number of distinct angles on three points
determined by n non-collinear points in d-dimensional space.

In dimension d for d ≥ 4, Lenz gives a construction for a low upper bound on Ad(2n),
as described in [8].

Construct a unit regular n-gon centered at the origin in the x1x2-plane and another
unit regular n-gon centered at the origin in the x3x4-plane. This is Lenz’s construc-
tion. Now, we upper bound the number of distinct angles in this configuration. From
Lemma 2.2, there are n−2 distinct angles between points in the same n-gon. There are
then two other cases to consider. We may assume without loss of generality the points
lie in four dimensions, as the extra dimensions make no difference in the computation.
Let the three points be

1. x = (cos θ, sin θ, 0, 0),
2. y = (cosψ, sinψ, 0, 0),
3. z = (0, 0, sin φ, cosφ),

where θ, ψ, φ ∈ {2π i/n : 0 ≤ i ≤ n − 1} and θ �= ψ .

Case 1: The endpoints are in the same polygon In this case, z is the apex of the angle.
By trigonometric identities, we have 〈x − z, y − z〉 = 1+ cos(θ − ψ), and
‖x − z‖ = ‖y − z‖ = √

2. We compute α = ∠xzy using

α = arccos
〈x − z, y − z〉

‖x − z‖ · ‖y − z‖ = arccos
1 + cos(θ − ψ)

2
.

Weknow θ−ψ = 2πk/n for nonzero−n+1 ≤ k ≤ n−1. Since cosine is an
even and periodic with 2π , the image of cos(θ −ψ) are exactly cos(2πk/n)

for 1 ≤ k ≤ �(n−1)/2�. Because arccosine is injective on [−1, 1], it yields
exactly �(n − 1)/2� values of α.

Case 2: The endpoints are in different polygons In this case, we may assume x is
the apex of the angle. By trigonometric identities, we have 〈y − x, z − x〉 =
1−cos(θ−ψ), and‖y−x‖ = √

2
√
1 − cos(θ − ψ).Wecomputeα = ∠yxz
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using

α = arccos
〈y − x, z − x〉

‖y − x‖ · ‖z − x‖ = arccos

√
1 − cos(θ − ψ)

2
.

Now, since in both cases arccosine is injective on the domain, these α are
duplicate angles if and only if

1 + cos(θ − ψ) = √
1 − cos(θ − ψ)

⇐⇒ cos(θ − ψ)(cos(θ − ψ) + 3) = 0

⇐⇒ cos(θ − ψ) = 0.

Since we are only considering θ − ψ = 2πk/n for 1 ≤ k ≤ �(n − 1)/2�,
this occurs only for k = n/4. Hence, we overcount between these two cases
exactly once if and only if 4 | n.

As a result of these computations, we have the following lemma.

Lemma 7.2 The number of distinct angles in Lenz’s construction with 2n points is at
most 2n − 4 if 4 | n and at most 2n − 3 otherwise.

We can extend Lenz’s construction to get even better bounds on the minimum number
of distinct angles in higher dimensions. In dimension d ≥ 6, we may now have three
unit regular n-gons in disjoint pairs of coordinates. Crucially, adding the third n-gon
adds at most one angle, formed by points on three different polygons. As the distance
between points is

√
2, three points always yield an equilateral triangle and an angle

of π/3.
If the dimension allows, youmay then add evenmore n-gons in disjoint coordinates.

After the third, the additional ones do not add any additional distinct angles. Since
subsets of the vertices of n-gons have a subset of the angles, you can make point sets
of any size using Lenz-like constructions.

Theorem 7.3 Fix d ≥ 2. For n > d + 1, we have that

2 ≤ Ad(n) ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n − 2, d = 2, 3, (6.1)

2

⌈
n

2

⌉
− 3, d = 4, 5, (6.2)

2

⌈
n

�d/2�
⌉

− 2, d ≥ 6. (6.3)

For 3 ≤ n ≤ d + 1, we have

Ad(n) = 1. (6.4)

Proof The lower bound of 2 for (6.1), (6.2), 6.3 follows from the fact that the d-
dimensional simplex has exactly d +1 vertices and it is the largest point configuration
in d-dimensional space with all points equidistant. As such, in each of these cases,
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there are at least two distances between the points and thus more than one distinct
angle.

Now note that �n/�d/2�� ≥ 3 if n > d + 1. (6.2) and 6.3 then follow from Lemma
7.2 and the above discussion of generalized Lenz’s constructions. In fact, in special
cases for d ≥ 6 we get a slightly lower bound. For n/�d/2� a multiple of 3 or 4, we
may reduce the bound by 1 (and 2 if a multiple of 12).

For (6.2) we also may reduce the bound by 1 if �n/2� is a multiple of 4. For (6.1),
for d = 2 or 3, this follows from Lemma 2.7 by using a regular n-gon. For (6.4), note
that for n = d + 1, we can arrange the points to form the vertices of a d-dimensional
regular simplex, yielding all points equidistant from one another. Thismeans all angles
are π/3 as they are the angle of an equilateral triangle. We can take any subset of the
vertices of such a simplex to get the same result. �	
Crucially, this construction implies that no uniform lower bound greater than 4 for a
fixed n and varying d can exist. From this, we can also give an upper bound on the
higher dimensional version of the quantity R(n) from Definition 6.1.

Definition 7.4 Let Rd(P) be the maximum size of any Q ⊆ P ⊆ R
d such that Q

defines no angle twice. Over the set of all n non-collinear points, define

Rd(n) = min
|P |=n

Rd(P).

We again make use of a variation of Lenz’s construction to provide an upper bound.

Proposition 7.5 We have

Rd(n) ≤
(
2

⌈
n

�d/2�
⌉

− 4

)1/3
.

Proof We use the variation of Lenz’s construction from Lemma 7.2. Distribute the
points as evenly as possible amongst the largest possible regular polygons in disjoint
pairs of dimensions as normal. Note that there cannot be points on three different
circles as they form an equilateral triangle. Also note that there cannot be two points
on one circle and one on another as that forms an isosceles triangle. As such, we may
apply Lemma 6.2 to the largest polygon to achieve our desired bound. �	
Remark 7.6 For n ≤ (d+1

2

)
, there is a two distance set of that many points (see [19,

Lemma 3.1]). Thus, in such sets all but two points must be removed, yielding Rd(n)

= 2 for n ≤ (d+1
2

)
.

8 FutureWork

Future research may take distinct angles problems in a number of new directions:

• We have shown that n/6 ≤ A(n) ≤ n − 2. Further, we have identified two non-
collinear point configurations which define exactly n−2 angles, the regular n-gon
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and its projection onto the line.Whether these are in fact the optimal configurations
is open (though they are conjectured to be so), and even if they are, there may be
others which also define n − 2 angles. Note that we have observed that, excluding
angles of 0 and π , one may add a point to the center of an even sided regular
polygon without adding any angles. See Remark 2.3. This does not contradict
Erdős’s initial conjecture in [14], as he included 0 angles.

• Prove Conjecture 3.3 and 3.5 regarding optimal point configurations.
• One may similarly improve our bounds on Ano3�(n), Ano4c, and Agen. In general
position, an optimal construction has yet to be conjectured.

• The question of distinct angles in higher dimensional space has yet to be explored
deeply, and one may generalize any of our bounded quantities to the general
setting. Further researchmay also investigate higher analogues of angles like three-
dimensional solid angles.

• We bounded Rgen(n), the size of the largest distinct-angle subset of an n point
configuration. Alternatively, by viewing the point configuration as a complete
graph on n vertices, we may define Rgen(n) as the number of vertices in the largest
complete distinct-angle sub-graph. Instead of removing vertices, one might ask
about removing edges until all angles left are distinct.
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11. Erdős, P., Füredi, Z., Pach, J., Ruzsa, I.Z.: The grid revisited. DiscreteMath. 111(1–3), 189–196 (1993)
12. Erdős, P., Guy, R.K.: Distinct distances between lattice points. Elem. Math. 25, 121–123 (1970)
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