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The Erdős distinct distance problem is a ubiquitous problem in discrete geometry. 
Somewhat less well known is the Erdős distinct angle problem, the problem of finding the 
minimum number of distinct angles between n non-collinear points in the plane. Recent 
work has introduced bounds on a wide array of variants of this problem, inspired by 
analogous questions in the distance setting.
In this short note, we improve the best known upper bound for the minimum number 
of distinct angles formed by n points in general position from O (nlog2(7)) to O (n2). We 
consider a point-set to be in general position if no three points lie on a common line and 
no four lie on a common circle. Before this work, similar bounds relied on projections onto 
a generic plane from higher dimensional space. In this paper, we introduce a construction 
employing the geometric properties of a logarithmic spiral, sidestepping the need for a 
projection.
We also apply this configuration to reduce the upper bound on the largest integer such that 
any set of n points in general position has a subset of that size with all distinct angles. This 
bound is decreased from O (nlog2(7)/3) to O (n1/2).

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Erdős introduced the distinct distance problem in his 1946 paper “On sets of distances of n points,” in which he investi-
gated the minimum number of distinct distances formed by n points in the plane. He conjectured a solution of �(n/

√
log n), 

the number of distances formed by points in the 
√

n × √
n integer lattice [2]. This problem, while simple to state, proved 

challenging. In 2015, Guth and Katz finally proved a nearly matching lower bound of �(n/ log n) on the minimal number of 
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distinct distances [7]. Since 1946, numerous variants of the problem have been considered, including the minimum number 
of distinct distances on restricted point sets.

There is an analogous, far less studied problem for angles introduced by Erdős and Purdy [5]. What is A(n), the minimum 
number of distinct angles formed by n non-collinear points on the plane? Corredi, Erdős, and Hajnal conjectured that regular 
n-gons are optimal configurations [5].

Recent work introduced new bounds on a variety of variants of the distinct angle problem [6]. In particular, Agen(n), 
the minimum number of distinct angles formed by n points in general position (with no three points on a line and no 
four on a circle) was shown to be �(n) and O (nlog2(7)). In this paper, we first show that the constructions in [6] can be 
extended to provide a bound of O (n22O (

√
log n)). We discuss this proof in Section 2. Then, by a new construction which 

avoids projections altogether and chooses a configuration of points on a logarithmic spiral, we have the following.

Theorem 1.1. We have Agen(n) = O (n2).

Theorem 1.1 is proved in Section 3.
In Section 4 we consider a related variant of this distinct angle problem also considered in [6]. We call a point-set 

a distinct-angle point-set if it contains no repeated angles. We define Rgen(n) to be the largest integer m such that any 
planar point-set of n points contains a distinct-angle subset of size m. In other words, this is the minimum—taken over all 
general position point-sets S of size n—of the maximum size of a distinct-angle subset of S . In [6] Rgen(n) is shown to be 
O (nlog2(7)/3) and �(n1/5). As an application of the logarithmic spiral configuration we show the following.

Theorem 1.2. We have Rgen(n) = O (
√

n).

2. Discussion of methods

In [6], the bound Agen(n) = O (nlog2(7)) is proved by projecting the vertices of a d-dimensional hypercube onto a generic 
plane. The argument relies closely on an observation from a paper of Erdős, Hickerson, and Pach [3]. Given an orthogonal 
projection T and points p1, p2, p3, and p4,

p1 − p2 = p3 − p4 =⇒ d(T (p1), T (p2)) = d(T (p3), T (p4)). (2.1)

This follows from orthogonal projections being idempotent and self-adjoint. In [6], this observation is extended. Two (con-
gruent) triangles with edges composed of the same difference vectors are mapped to congruent triangles under orthogonal 
projections. Hence, it suffices to count the number of classes of translation equivalent triangles to asymptotically bound the 
number of distinct angles in the configuration.

It turns out that a similar argument can be used to show that Agen(n) = O (n22O (
√

log n)). It is easy to orthogonally project 
a high-dimensional point set onto the plane such that no four projected points lie on a circle. However, since we choose 
the projection to be injective, points on a line are projected onto a line. Hence, the original high-dimensional configuration 
must not have three points on a line.

In [6] this is avoided by drawing the points from a hypercube. However, in the paper of Erdős, Füredi, Pach, and Ruzsa 
showing the best known bound for the distance problem in general position, the points are instead drawn from a lattice 
[4]. The potential obstruction of three points on a line is avoided by taking a subset of the lattice points intersecting with 
a hypersphere. We outline a similar argument below to get an improved bound to illustrate how this projection technique 
may be extended. We take inspiration from a paper of Behrend [1].

Proposition 2.1. We have Agen(n) = O (n2222
√

log2 n).

Proof. Consider a grid Gr,d = {0, . . . , r}d .
The triples of points (a, b, c) and (a′, b′, c′) are equivalent if the second triple can be obtained from the first triple by 

translation. Note that this is equivalent to requiring a − b = a′ − b′ , a − c = a′ − c′ , and b − c = b′ − c′ . Let pi denote the ith 
coordinate of a point p. If we have any triple (a, b, c), then for i = 1, . . . , d we can replace the triple of integers (ai, bi, ci)

by (ai −mi, bi −mi, ci −mi) where mi = min(ai, bi, ci). If we do this for all i, we get an equivalent triple (a′, b′, c′) satisfying 
min(a′

i, b
′
i, c

′
i) = 0 for all i. The number of triples (a′

i, b
′
i, c

′
i) with a′

i, b
′
i, c

′
i ∈ {0, . . . , r} and min(a′

i, b
′
i, c

′
i) = 0 is (r + 1)3 − r3. 

We call such a triple reduced. Thus, the number of reduced triples (a′, b′, c′) is Nr,d = ((r + 1)3 − r3)d . Hence, the number of 
angles formed by points from Gr,d is at most Nr,d/2, since our triples are ordered.

For r > 1 the points in Gr,d are not in general position: there are many lines containing three or more points. For a ∈ Gr,d

we define f (a) = ∑d
i=1 a2

i . We have 0 ≤ f (a) ≤ dr2. For l = 0, . . . , dr2 we define Gr,d,l = {a ∈ Gr,d : f (a) = l}. We can take 
l so that |Gr,d,l| ≥ (r + 1)d(dr2 + 1)−1, this quantity being the mean of the number of points at each radius 0, . . . , dr2. No 
three points from Gr,d,l are on a line, as they lie on a common sphere. Taking a subset of the points of Gr,d,l , there is a set 
of M := (r + 1)d(dr2 + 1)−1 points with no three on a line.
2
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Now, let r = 2d and assume for simplicity that M = ⌊
2d(d−2)/d

⌋
. For large enough n, there exists d such that 

2(d−1)(d−3)/(d − 1) < n ≤ M . Then, from the above, there exists some l such that a subset of Gr,d,l has n points. This subset 
has no three points on a line, so the configuration can be projected onto a planar configuration in general position. So, it 
suffices to bound the number of translation equivalent triples by Nr,d to yield a bound on Agen(n).

Now, note that, for d ≥ 17, d2 ≥ 16d + 4 log2 d. Then,

dn ≥ 2(d−1)(d−3) =⇒
log2 n ≥ (d − 1)(d − 3) − log2 d =⇒

4 log2 n ≥ 3d2 + d2 − 16d + 12 − 4 log2 d ≥ d2 =⇒
2
√

log2 n ≥ d.

Now, we have

Nr,d = (3r2 + 3r + 1)d ≤ (4r2)d = 22(d+1)d < n2211d ≤ n2222
√

log2 n,

yielding the desired result. �
3. An improved bound on Agen(n)

In the previous section, the extra factor of 2O (
√

log n) arises from taking a subset of the lattice without three points on a 
line. We can remove such a factor by avoiding projections altogether. In this section, we describe a configuration of points 
on a logarithmic spiral yielding Agen(n) = O (n2).

Let the logarithmic spiral S be given by the polar equation r = eθ for θ ∈ (−∞, ∞). Note that there is a set of mappings 
S → S given by

Fα(r, θ) = (eαr, θ + α).

Scaling by eα is a dilation, which maps triangles to similar triangles. Rotating by α also maps triangles to similar triangles. 
Hence, mapping via Fα preserves angles.

We now prove Theorem 1.1 that Agen(n) = O (n2).

Proof. Let S be given by the polar equation r = eθ for θ ∈ (−∞, ∞). Then, consider the collection of points P = {(e jβ, jβ) :
j ∈ [n]} on S . First, note that, for sufficiently small β , P lies within a small arc S ′ of S . As this arc S ′ forms part of the 
boundary of its own convex hull C , any line � intersecting C has at most two intersections with S ′ . Consequently no three 
p ∈ P lie on a common line. Likewise, since the curvature of S is strictly monotone, β can be chosen small enough such 
that no four points of P are on a common circle.

Now we show that the number of distinct angles formed by the points in P , A(P), is at most 3
(n−1

2

)
. Given a triple of 

distinct points t = ((e j1β, j1β), (e j2β, j2β), (e j3β, j3β)) ∈ P3, let m = min{ j1, j2, j3}. Then, the map ft := F(1−m)β maps this 
triple to another forming the same angles, now with one of the points as (eβ , β).

Hence, each of the distinct angles formed by points in P is formed by a triple with one point (eβ, β). Observe that there 
are 

(n−1
2

)
ways to choose the other two points in the triple, and each triple can yield at most three distinct angles. Then the 

number of distinct angles A(P) formed by the points in P is at most 3
(n−1

2

)
, yielding Agen(n) = O (n2), as desired. �

4. An improved bound on Rgen(n)

The fact that this configuration introduces no three points on a line and no four on a circle yields an improved upper 
bound for Rgen(n). (Recall that Rgen(n) is defined to be the largest integer m such that any planar point-set of n points 
contains a distinct-angle subset of size m.) The current best known upper bound on this quantity is O (nlog2(7)/3) from [6].

Letting xi, yi ∈ [n] for 1 ≤ i ≤ 3, we say that two triples (x1, x2, x3), (y1, y2, y3) are equivalent if x1 − y1 = x2 − y2 =
x3 − y3. We then have the following lemma.

Lemma 4.1. Let R ⊆ [n] such that |R| = m. If 
(m

2

) ≥ 2n − 1, then R contains a pair of distinct but equivalent triples.

Proof. The number of pairs (x, y) ∈ R2 such that x > y is 
(m

2

)
, and the maximum number of possible differences is n − 1

(ranging from 1 to n − 1). Then the condition 
(m

2

) ≥ 2n − 1 ensures by the pigeonhole principle that there are three pairs 
with the same difference and hence a pair of equivalent triples. �

We now prove Theorem 1.2.
3
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Proof. Let P be the logarithmic spiral point configuration as in Theorem 1.1. Let P ′ ⊆ P with 
∣∣P ′∣∣ = m, again assuming (m

2

) ≥ 2n − 1. Define Q ⊆ [n] such that P ′ = {(e jβ, jβ) : j ∈ Q }. By Lemma 4.1, Q contains a pair of equivalent triples 
s = (x1, x2, x3) and t = (y1, y2, y3). Therefore the triples of points in P ′ corresponding to s and t define repeated angles. 
This is because the triple of points corresponding to s are mapped to those corresponding to t by F((y1−x1)β) .

Now, note that m ≥ 2n1/2 + 1/2 implies 
(m

2

) ≥ 2n − 1. Then Rgen(n) = O (
√

n), as desired. �
5. Future work

While this paper substantially improves the state of the art upper bound for Agen to O (n2), we still only have Agen(n) =
�(n). Lessening or even eliminating this gap would be interesting for future research. Additionally, this paper significantly 
improves the upper bound of Rgen(n) to O (

√
n) from O (nlog2(7)/3) in [6]. Nonetheless, reducing the gap with the current 

lower bound of �(n1/5) (also from [6]) is an open problem.
The logarithmic spiral configuration may also have applications in other angle problems, such as repeated angle problems 

and angle chain problems appearing in the literature. For example, see Palsson, Senger, and Wolf’s work on angle chains in 
[8].
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