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1 Introduction

Erd8s’ distinct distance problem, introduced in |[Erdds| (1946)), is one of the most famous problems in
discrete geometry. If g(n) is the minimal number of distinct distances among n points in the plane,
ErdGs conjectured that the \/n x /n lattice, yielding g(n) = O(n/+/logn), is the optimal configuration.
The problem was almost completely resolved by |Guth and Katz| (2015), who proved a lower bound of
g(n) = Q(n/logn).

Many variants of this problem and related ones have since arisen. The question of distinct distances in
three and higher dimensions is studied by |Solymosi and Vu!(2008), and previously by|Aronov et al.|(2003))
and [Clarkson et al.| (1990). Another variant relevant to our paper regards chains of distances. [Passant
(2021)) considers the question of the minimum number of distinct k-tuples of distances. Specifically, for a
configuration of points P, he defines

Ak(P) = {(lp1 — p2l; Ip2 — p3l, - - -, [Pk — Prt1]) - pi € P},

and he finds a lower bound on |A(P)| for any configuration P.

Our work concerns a far less-studied question proposed by |[Erdds and Purdy| (1996) concerning the
number of distinct angles among n not all colinear points in the plane. They conjectured that the regular
polygon is the optimal construction, with n — 2 distinct angles, and obtain a lower bound of (n — 2)/2
under the additional restriction that no three points are colinear. [Fleischmann et al.|(2023a)) consider many
variants of the question, finding many of them to be easily solved up to constant factors. One interesting
variant they introduced—the one most relevant to this paper—requires the points to be in general position,
which they define to mean no subset of three points are colinear and no subset of four points are cocircular.
(The problem of distinct distances has also been studied under the restriction of general position; see
Dumitrescul (2008]).)

We adapt the following notation from [Fleischmann et al.| (2023a)):

Definition 1.1 Denote by Aéfg(n) the minimum number of distinct angles formed by a set of n points in

general position in RY.

Fleischmann et al.|(2023a)) showed that Agr)l is lower bounded by 2(n) (a bound also known to Erdds),
and they also obtained an upper bound of Agg = O(n'°827). This upper bound is improved to Aéﬁ,{ =
O(n2) by [Fleischmann et al.| (2023b). We discuss these results in detail in Section

In this paper, we consider the question of distinct angles in general position in R? and obtain lower and

upper bounds on Aé‘;’,),. Here, we still say that a configuration of points is in general position if it contains

no three points on a line and no four points on a circle; this turns out to be a natural definition even in
three dimensions, though it is less restrictive than the classical definition of general position, which would
prevent four points on a plane or five points on a sphere. See Section for further discussion on the
general position restriction.

Our main results come from considering pinned variants of the question, where we fix (pin) certain
points and consider only angles that contain those points, often specifying whether they are endpoints or
center points. An analogous question has been studied for distances, asking what is the minimum number
of distances determined with any one point in the configuration. The conjectured answer in the case of the
plane is the same as for the unpinned question. [Erdds| (1946) obtained the first lower bound of Q(+/n);
the current best lower bound was obtained by Katz and Tardos| (2004) (see Corollary 6 there). When
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the points are required to form a convex polygon, Erd6s conjectured that there is a point that determines
|n/2] distinct distances; the best lower bound for this problem is given by Nivasch et al.|(2013).

We also consider a question analogous to that considered by|Passant (202 1)) for distances. We find lower
and upper bounds for the minimum number of distinct k-tuples of angles for configurations of points in
general position. A similar question on angle chains, studying how many times a particular k-tuple of
angles could occur, is considered by [Palsson et al.| (2021).

1.1 Main Results

We first consider all possible angles formed by two pinned points. For this variant, we get the following
result:

Theorem 1.2 In a configuration of n points in general position in three dimensions, fix two points A
and B. The number of distinct angles with A and B as two of the three points forming the angle is at
least \/(n — 2)/3. Furthermore, this lower bound is tight up to a constant: it is possible to have only
2y/(n —2)/3 — 1 such angles.

That is, the minimum number of distinct angles formed with two pinned points is ©(/n).
We then proceed to investigate the situation when only the center point is fixed. We reduce this problem
to the question of distinct distances on a sphere, which gives us the following:

Theorem 1.3 Consider a configuration of n points in general position in three dimensions, and pin a
point A. The minimum number of angles formed with A as the center point is O(n) and Q) (n/logn).

The last pinned point variant we consider is that arising from pinning an endpoint A. No nontrivial
upper bound is known for this variant, but we prove the following nontrivial lower bound:

Theorem 1.4 Consider a configuration of n points in general position in three dimensions, and pin a
point A. The minimum number of angles formed with A as an endpoint is Q(\/n).

Theorems|[T.2] [T.3] and[T.4]are proved in Section 2}
For the question of distinct angles with no points pinned, we conjecture the following:

Conjecture 1.5 Both AZ)(n) and AL (n) are ©(n?).

In Section we consider two new non-planar point configurations in general position in R? that have
O(n?) distinct angles. Thus Conjecture essentially states that these constructions are optimal up to
constant factors. Both of the constructions exhibit self-similarity, a property that we define precisely in
Section |3] We conjecture that a configuration of n points with the smallest possible number of angles
must possess this property.

In Section 4| we explore the question of distinct chains of angles in both R? and R3. We denote Lgcd) (n)
to be the minimum number of distinct k-tuples of angles with an associated chain of £ + 2 points forming
those angles. Here the minimum is taken across all configurations of n points in general position in d
dimensions. For d = 2, we prove the following two results.

Theorem 1.6 L,(f)(n) = Q(Agfy),(n) -n*=1). In particular, since Agr)z(n) = Q(n), we have L,(f) (n) =

Theorem 1.7 L\* (n) = O(n*+1).
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The gap between our upper bound and lower bound for Lff) (n) is precisely the gap between the upper

bound and lower bound for Agﬂ (n). This is due to the nature of the proof by induction on both upper and

lower bounds.
In three dimensions, the question of distinct angle chains becomes much more difficult. We establish
the following weaker lower bound:

Theorem 1.8 In three dimensions,

n(k+2)/3 )

Q| Gogmorors ) ik =1mod3;
(k+1)/3 )

L (n) = 49 Togmy=78 ) ik =2mod3;
nk/3+1/2 .

Q(#s)  ifk=0mod3.

This result relies heavily on Theorem [I.3]and Theorem [I.4]to decompose an angle chain into indepen-
dent angles, sometimes with a pinned endpoint. In particular, improvements to Theorem [I.4] or on the
lower bound on Aéﬁ,’l would immediately yield improvements to Theorem

Theorems[1.6] and [I.8]are proved in Section 4]

Next, in Section [5] we discuss what happens when we loosen the restrictions of general position. Fi-
nally, in Section[6] we discuss possible directions for future research.

1.2 Previous Work: Distinct Angles in Two Dimensions

Fleischmann et al|(2023a)) introduce the problem of distinct angles in general position in R? and discuss a
lower bound of Agg (n) = Q(n). Fleischmann et al.|(2023b)) achieve an upper bound of Agr)l(n) = 0(n?).
These results form the basis for much of our work in three dimensions, so we discuss them in detail here.

The first part of the following result was known by Erd8s and is addressed by |[Fleischmann et al.
(2023a); see Lemma 2.7 there. We give a proof here for completeness and also discuss the case of two
pinned endpoints.

Lemma 1.9 The number of angles formed by a set of n. points in general position in R? with either a fixed
endpoint and middle point or with two fixed endpoints is at least (n — 2) /2.

Proof: First consider a fixed endpoint A and middle point B, and let the other endpoint C' vary. A given
angle of this kind may occur at most twice, for there are two lines passing through the point B that form
that angle with the line AB (or one line in the case of the right angle). No more than one point besides B
can be on each of these lines since there are no three points on a line. Thus at least (n — 2)/2 angles are
formed.

Now instead fix two endpoints A and B and arbitrarily choose a middle point C'. Since the three points
are not collinear, they lie on a unique circle. The inscribed angle theorem gives us that the angle ZAC'B
is exactly one half of the arc of this circle between A and B that does not pass through C'.

Consider the collection of such arcs formed by varying C' though the n — 2 points besides A and B in
the set. Since we can have no four points on a circle, the circles formed are all distinct. Each arc measure
may only occur at most twice: once on either side of the two points. Thus the number of angles formed is
at least (n — 2)/2.

See Figure [I] for accompanying images. O
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Fig. 1: When points are in general position, a given angle can only occur twice with two specified fixed
points.

Remark 1.10 Lemma ails in three dimensions. See Section[2.]]

|Fleischmann et a1.| 2023b) obtain an upper bound of Agﬂ (n) = O(n?) by distributing points along the
logarithmic spiral r = €”. They use the point set given in polar coordinates by P = {p; = (e?1,85) 7 €
{1,2,...,n}}, where 3 is a small constant. Fleischmann et al. (2023b) prove that an angle /p;, p;,p;s,
is equivalent to an angle of the form Zp;, 1 .pj,+cPjs+c for any constant c. One can choose ¢ = 1 —
min(j1, Jo, j3), showing that any angle on the logarithmic spiral can be formed using the point p;. Then,
there are (”;1) choices for the other two points, yielding 3(";1) = O(n?) total distinct angles. See

Figure 2]

I H
J 3.5
151.352°
F
25 E
2
D
1.5
C
: 151.352°
B
0.5 A

-45 -4 35 -3 -25 -2 -15 -1 —0.56\ 0.5 1 1.5 2

05
Fig. 2: The logarithmic spiral construction of [Fleischmann et al.{(2023b).
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2 Pinned Variants
2.1 Cones and Spindle Tori

We now discuss why Lemma|[I.9]fails in three dimensions. Consider pinning, or fixing, the middle point
and one endpoint of an angle and asking the following question: For the n — 2 choices of the second
endpoint, how many of the angles formed must be distinct? In two dimensions, Lemma [I.9]told us that
the answer is at least (n — 2)/2. In three dimensions, however, all of the angles can be the same. To see
why this is true, label the pinned endpoint A and the pinned middle point B. Fix an angle o and form a
ray with endpoint B that has angle « with ray BA. Then, rotate the new ray around line BA. This forms
a single-cone with vertex B and axis BA. All points C on the cone have the property that mZCBA = a,
so by distributing the remaining n — 2 points on this cone (being careful not to place any three points on
a line or any four points on a circle), all the angles will be the same. (Note that if « = 7/2, the object
created is not a cone but rather a plane. Furthermore, if o > 7/2, the single-cone opens away from A,
but still has line BA as its axis. Neither of these observations make any difference in how this is used to
prove our results.)

What if instead we pin the two endpoints of the angle and ask how many of the n — 2 choices of center
point must result in distinct angles? Once again, in two dimensions Lemma [T.9] tells us that the answer
is at least (n — 2)/2, but in three dimensions, all of the angles can be the same. Label A and B as the
endpoints and fix an angle . Choose a point C' such that mZAC B = «. Consider the circle determined
by the three points A, B, and C. Note that if one moves C' along arc AC B, this does not change the
measure of angle AC'B since the angle is determined only by the measure of arc AB.

Now, rotate the circle formed by points A, B, and C' about the line AB. Rotating a circle about a line
always forms a torus, but since the line in question passes through the circle (that is, intersects the circle
twice), we specifically obtain a spindle torus. We do not actually want the entire spindle torus; in fact we
only want to rotate arc AC'B about the line segment AB, giving us either the outer part of the spindle
torus (if a < 7/2) or the inner part (if & > 7/2). If & = /2, then segment AB is actually a diameter of
the circle in question, and the rotation just gives us a sphere. In any of these three cases, for any point C'
on the object that we form (which we henceforth just call “spindle torus” even though we only have half
of the full torus), we have mZACB = a.

See Figure [3|for accompanying images.

2.2 Pinning Two Points

Recall that in Lemma for two dimensions, we fixed two points either as the two endpoints, or one
point as an endpoint and one point as the middle point. We showed that in either of these two cases, the
number of angles formed is 2(n), but we discussed that in three dimensions, in either of these two cases
it is possible to get only O(1) distinct angles. Here, however, we prove Theorem showing that if we
fix two points A and B and consider all the angles involving those two points—that is, counting all three
cases of whether A is the middle point, B is the middle point, or both are endpoints—then the minimum
number of distinct angles is ©(/n). For convenience, we repeat the precise statement of Theorem 1.2

Theorem 1.2 In a configuration of n points in general position in three dimensions, fix two points A
and B. The number of distinct angles with A and B as two of the three points forming the angle is at
least \/(n — 2)/3. Furthermore, this lower bound is tight up to a constant: it is possible to have only
2y/(n —2)/3 — 1 such angles.
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(a) Place many points on a cone to avoid new an- (b) Place many points on a spindle torus to avoid new angles with
gles with A as an endpoint and B as the center A and B as the endpoints.
point.

Fig. 3: Cone and Spindle Torus.

Proof: Consider a third point C. There is a unique single-cone that contains the point C, has A as the
vertex, and has line AB as its axis. All angles formed by a point on this cone as an endpoint, A as
the middle point, and B as the other endpoint are equivalent. Consider also the unique single-cone that
contains C, has B as the vertex rather than A, and once again has line AB as its axis. All angles formed
by a point on this cone as an endpoint, B as the middle point, and A as the other endpoint are equivalent.

For each point besides A and B, form the two cones described above. Each point besides A and B
lies on the intersection of one of the cones with vertex A and one of the cones with vertex B that are
constructed in this manner. Notice, however, that since the two cones have the same axis, this intersection
is a circle. There cannot be four points on a circle, so for each pair of cones, there can only be three points
on this intersection.

This means that if x distinct cones with vertex A are formed and y distinct cones with vertex B are
formed, there can only be 3 - = - y + 2 total points; this is because there are x - y pairs of cones, and the
+2 are the points A and B. Said another way, (n — 2)/3 < x - y.

We now count the total number of distinct angles formed with points A and B, in terms of = and y.
From taking a point on each cone, we automatically get « distinct angles of the form ZC' AB, and we get
y distinct angles of the form ZC' B A. These might overlap, but we have at least max(z, y) distinct angles.

To minimize this quantity while also satisfying zy > (n — 2)/3, we let x = y = +/(n — 2)/3. Thus
the number of distinct angles is at least \/(n — 2)/3, as desired.

Following this proof, not much new needs to be done to show tightness. However, we do also need to
consider the angles of the form ZACB.

Assume that (n — 2)/3 is an odd perfect square. Fix points A and B; then, fix y/(n —2)/3 cones
with A as the vertex and line AB as the axis and another /(n — 2)/3 cones, each congruent to a cone
in the first set, with B as the vertex and line AB as the axis. Choose the cones to have angles between,
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say, b /18 and 77/18 degrees inclusive with their axis, distributed in an arithmetic progression. (Note:
since /(n — 2)/3 is odd, 7/3 is included.) For each choice of one cone with vertex A and one cone
with vertex B, their intersection forms a circle; place three points on each of these circles. There are
V/(n—2)/3-1/(n—2)/3 = (n—2)/3 choices of two cones, so in this manner we have placed all n — 2
points that are not A or B. Furthermore, the points are in general position if we choose locations on each
circle wisely to avoid three points on a line or four on a circle. The number of distinct angles of the form
ZCABor ZABC'is y/(n — 2)/3 (since the angles are the same for the two sets of cones). The number of
distinct angles of the form ZAC B is precisely 24/(n — 2)/3—1, and these angles include the \/(n — 2)/3
counted previously. This is because the angles ZACB are the arithmetic progression from 47/18 to
8m/18 with the same common difference as the angles in the original arithmetic progression. Since
7/3 was in the original arithmetic progression, 57/18 and 77 /18 are in the new arithmetic progression,
ensuring that all the previous /(n — 2)/3 angles are included in the new arithmetic progression. Thus in
this construction, the number of angles formed with points A and B is exactly 2/(n —2)/3 — 1. a

2.3 Pinned Center Point

We now move to pinning a single point. Here we consider a pinned center point and prove Theorem [I.3]
on the minimum number of distinct angles which have a given point A as center point.

Note first that in two dimensions, the answer is ©(n). Lemma 1.9 gives us the Q(n) lower bound. To
get the upper bound, imagine that the pinned point is the origin. We can place the remaining points in
the plane such that their polar angles form an arithmetic progression, thereby having only O(n) distinct
angles with the pinned center point. We may vary the distances of these points from the origin so that they
remain in general position.

In three dimensions, Lemma@] does not hold, but we can transform the problem into one of distinct
distances:

Lemma 2.1 Consider a configuration of n points in general position in three dimensions, and pin a point
A. Then the number of distinct angles with A as a center point is equal to the number of distinct distances
of the projections of the other points onto a sphere centered at A.

Proof: To count the number of angles of the form ZBAC, where A is pinned and B and C' are any other
distinct points from the set, note first that the distance from A to B or C is irrelavent when determining
the angle. Thus we can transform any point configuration in general position to one in which every point
besides A lies on a unit sphere centered at A by replacing each point P with a point P’ that lies at the
intersection of the ray from A through P and the unit sphere. The general position prohibition against
any three points on a line guarantees that for any distinct points P and @, P’ and @’ are distinct. In our
transformed construction, each angle /B’ AC" corresponds to a great-circle distance along the surface of
the sphere, meaning the minimum achievable number of distinct angles is exactly equal to the minimum
number of distinct distances on a sphere. O

The best known upper bound for distinct distances on a sphere is O(n), which is obtained by evenly
distributing the points along any circle on the sphere. We cannot have n points lie on a circle, but recall
that we may vary the distances of the points from A to create a legal configuration with O(n) distinct
angles with A as the center point.
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The best known lower bound for this problem, similar to the result for distinct distances in the plane by
Guth and Katz|(2015), is a constant times n/ log n (Tao| (2011)). This finishes the proof of Theorem|1.3]

A long-standing conjecture (discussed for example by [Erdos et al.| (1989) and |losevich and Rudnev
(2004)) is that in fact there must be Q(n) distinct distances for a configuration of n points on the sphere.
Still, the gap between the lower and upper bounds on this problem is rather small.

Theorem [I.3|immediately allows us to write the following.
Corollary 2.2 Ag’,z = Q(n/logn).
‘We could not find a better lower bound on Aé‘zr)l, despite the fact that pinning the center point of our
angles is a large restriction on the angles we are considering.

2.4 Pinned Endpoint

The pinned endpoint case is quite different; there is no clear equivalence to a distinct distance problem.
Here, we consider angles of the form ZABC for a special point A, where B and C can be chosen freely
from the n — 1 remaining points.

In two dimensions, Lemma again gives us a lower bound of €2(n) on the minimum number of
distinct angles with a fixed endpoint. With regard to an upper bound on this minimum number, in any
configuration, there are O(n?) angles formed with A as a pinned endpoint since there are only (”gl)
choices for the other two points. No nontrivial upper bound is known.

In three dimensions, we have the lower bound stated in Theorem@ which we repeat here for conve-
nience:

Theorem 1.4 Consider a configuration of n points in general position in three dimensions, and pin a
point A. The minimum number of angles formed with A as an endpoint is Q(y/n).

Proof: The proof is very similar to that of Theorem Fix a point B (in addition to the pinned point A).
In our proof of Theorem we focused on angles that have center point A and angles that have center
point B, which leads us to consider the intersection of two cones. Instead, we now focus on angles that
have endpoint A and center point B and angles that have A and B as the two endpoints. As discussed in
Section @ this leads us to consider a cone and a spindle torus, both with axis AB, the intersection of
which is again a circle (see Figure [d).

The rest of the proof continues in the same manner as the proof of Theorem|1.2} there can only be three
points on any intersection of a particular cone with a particular spindle torus. So, if z is the number of
distinct cones formed and y is the number of distinct spindle tori formed, we have n < 3xy + 2. The
number of distinct angles with A as one of the endpoints is at least max(x, y), which (under the constraint
that xy > (n — 2)/3) is minimized when z =y = /(n — 2)/3. O

While Theorem provides a new and nontrivial lower bound, it seems intuitive that a much higher
lower bound would hold; indeed, in the proof of the theorem, we did not consider any angles that were not
formed with the fixed point B. In the absence of any known construction in three dimensions with fewer
than the trivial order n? distinct angles with a pinned endpoint, we therefore conjecture the following.

Conjecture 2.3 For any configuration of n points in general position in two or three dimensions, the
number of distinct angles formed with a pinned point A as one of the endpoints is ©(n?).

Conjecture [2.3|clearly implies, and is a much stronger conjecture than, Conjecture [I.5]
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Fig. 4: The intersection of a cone and spindle torus that share the same axis is a circle.

3 Constructions

[Fleischmann et al.| (2023b)) use geometric properties of the logarithmic spiral to construct a set of points
in R? with O(n?) distinct angles. This construction avoids the use of projections from hypercubes or
hyperspheres which previously yielded the minimum number of distinct angles in general position in the
plane. In the following constructions, we reuse geometric properties of the logarithmic spiral in R?. Note
that as general position permits all points lying on a plane, the logarithmic spiral embedded into R? is
also a construction that has O(n?) distinct angles in three dimensions. We provide two new constructions,
namely the cylindrical helix and the conchospiral, that use properties similar to those of the logarthmic
spiral but that do not lie on any plane.

Proposition 3.1 (Cylindrical Helix) Let P = {(cos(27j/n),sin(2wj/n),j/n) : 7 € {1,2,...,n}}.
Then P is in general position and has O(n?) angles.

Proof: Notice that any line passes through a cylinder at most twice, so no three points in P lie on a
line. Upon some inspection, no four points lie on a plane (and thus no four points lie on a circle). This
is because a plane has the form ax + by + cz = d, or, rearranging, za + yb — d = —cz. Plugging in
x = cos(2mj/n),y = sin(27j/n), z = j/n for four different values of j, we see that we are trying to
solve a system of four linear equations with only three variables. Then it suffices to notice that no two
values of j yield linearly dependent equations. Therefore, P is in general position.

Next, we show that P yields O(n?) angles. The proof is similar to the proof by [Fleischmann et al.|
that the logarithmic spiral has O(n?) angles. We have that (cos(t), sin(t), t) is the parameteriza-
tion of the cylindrical helix, C. We consider the mappings F,, : C — C given by

F,(cos(t),sin(t),t) = (cos(t + a),sin(t + a),t + «) (1)

If we put this parameterization in cylindrical coordinates, we see that 6 is mapped to § + «, and z is
mapped to z + «. Therefore, F, is a rotation by « and a translation upwards, which maps triangles to
similar triangles. Hence, F,, preserves angles.
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Letp; = (cos(2mj/n),sin(2mwj/n), j/n) and consider the triple t = (p;, , pj,, Pjs)- Let m = min{ji, ja, j3}.
Then, we have that f; = Fz% (1—m) Maps ¢ to a triple with the same angles, with one of the points as
(cos(2m/n),sin(27/n),1/n). Hence, all angles in P can be formed with (cos(27/n),sin(27/n),1/n)
as one of the points.

Therefore, we have that each distinct angle in P can be formed by using (cos(27/n), sin(27/n), 1/n)

as one of the points. So, as there are (";1) ways to choose the other two points, and 3 angles can be

-1
formed with a triple, then the number of distinct angles in P is at most 3 (n 9 ) . O

Remark 3.2 Due to the vertical symmetry of the cylindrical helix, the angles formed by t = (p;,,Djy: Djs)
are the same as the angles formed by t' = (Dn41—j,, Pnt1—ja» Pnt1—js)- Let m' = max{j1, jo,j3} and
let g : C — C be such that g(t) = t'. Then, the map f{ = sz(lfm/) o g takes t to a triple with
(cos(2m/n),sin(27/n), 1/n) as one of the points. Thus, when f; # f{, there are two such triples formed
with (cos(2m/n),sin(27/n),1/n) as one of the points that yield the same angles. Thus the number of

3/n—-1
distinct angles formed by P is asymptotically 5 (n 9 ), a factor of 1/2 better than the logarithmic

spiral.

Next, we introduce another construction that produces O(n?) distinct angles where points are placed
on a conchospiral.

Proposition 3.3 (Conchospiral) Let P = {(e%7 cos(B5), %7 sin(B7),e%7) : j € {1,2,...,n}}, where
B is a sufficiently small constant. Then P is in general position and has O(n?) angles.

Proof: The projection of the conchospiral onto the (x,y) plane (or analagously the (r,8) plane) is the
logarithmic spiral. Therefore, as in |Fleischmann et al.|(2023b)), by choosing /3 sufficiently small, no three
points of P lie on a line, and no four points of P lie on a circle.

Next, let S be the conchospiral, which has parameterization (et cost,elsint, et). As in [Fleischmann
et al.| (2023D), let F,, : S — S be the set of mappings

F,(e'cost,e’sint,e’) = (e"T* cos(t + a), e *sin(t + a), ') (2)

By putting this in cylindrical coordinates, we see that F, is a rotation by « and a dilation by e®. Hence,
F,, maps triangles to similar triangles and thus preserves angles.
Letp; = (€% cos(Bj), €? sin(B4), €#7) and consider the triple t = (pj,, pj,, pj, )- Letm = min{ji, ja, js }.
Then, we have that f; := Fpg_,,) maps t to a triple with the same angles, with one of the points as
(e? cos(B), €? sin(B), e”). Hence, all angles in P can be formed with (e cos(3), e” sin(3), ¢”) as one
of the points.
Therefore, we have that each distinct angle in 7P can be formed by using (e” cos(8), e’ sin(3), €?) as

one of the points. So, as there are ("51) ways to choose the other two points, and 3 angles can be formed

-1
with a triple, then the number of distinct angles in P is at most 3 (n 9 ) . g
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3.1 Self-Similarity

We define self-similarity in the following way:

Definition 3.4 A point configuration P exhibits self-similarity if there exists a point A € P such that any
angle formed from three points in the configuration can also be formed with A as one of the points. That
is, for any B,C, D € P, there exist E, F' € P such that /BCD = /AEF or /BCD = /EAF. The
point A is called the point of self-similarity.

Both the configurations discussed in this section, as well as the logarithmic spiral construction from
Fleischmann et al.|(2023b), have self-similarity; the projections from the hypercube or hypersphere (dis-

cussed by |[Fleischmann et al.| (2023a) and Fleischmann et al.[(2023b)), respectively) do not. In fact, any

-1
point configuration that exhibits self-similarity has at most 3 (n 9 = O(n?) distinct angles since all

the angles can be formed by choosing two points besides A and choosing one of the three angles in the
triangle formed by those two points and A.

Self-similarity seems to be an efficient way to minimize the number of angles; both the logarithmic
spiral as well as the two three-dimensional constructions presented in this section employ this tool. This
suggests the following conjecture:

Conjecture 3.5 For n sufficiently large, the configuration of n points in general position with the smallest
possible number of distinct angles exhibits self-similarity.

If Conjecture [3.5]is true, to prove Conjecture [I.3]it suffices to show that any self-similar configuration
can’t have any additional ways to reuse enough angles to lower the order of the number of distinct angles.

4 Distinct Angle Chains

Having examined bounds on the number of individual distinct angles that appear in various settings and
constructions, we now turn our attention to chains of angles. We adapt the following definitions from
Palsson et al.|(2021)).

Definition 4.1 Given a k-tuple of angles (a1, . .., o), a k-chain of that type is a (k + 2)-tuple of points
(X1, ..., Tyo) such that Lax;x; 412,42 = «; foralli = 1,... k. We call two k-chains distinct if they
have different types. We let Léd) (n) denote the minimum number of distinct k-chains in a configuration of
n points in general position in R%. That is,

Ly (n) = min {(£z122w3, Z29T324, - - o LTRT R4 1Tk 42) + @i € P,

where the minimum is over configurations P of n points in general position in R%.
Note that L(ld) (n) = Aégg (n) by definition.
4.1 Distinct Angle Chains in R?

In two dimensions, we have the lower bound stated in Theorem .6}

Theorem 1.6 Lgf)(n) = Q(Ag,),(n) -n*=1). In particular, since Ag,)l(n) = Q(n), we have L,(f) (n) =
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Proof: The proof follows by induction on k. For the base case of £ = 1, this is just the definition of
Agg(n) Assume the result holds for k£ — 1, and consider k-chains. Fix the first £ — 1 angles in the chain;

by the induction hypothesis there are Q(Agg(n) -n*=2) ways of doing so. Once we fix these angles, there
is at least one chain of points (1,2 ..., Tk, k1) With those angles. Fix such a chain.

Now, note that there are Q2(n) choices of angle formed with x, £ 1, and the final point of the k-chain,
Z+2. This follows directly from Lemma

Thus in total there are Q( A (n) -n*~2-n) = Q(AL) (n)-n*~1) distinct tuples of angles (a1, . . . , o)
with associated chains, and the induction is complete. a

Next, we prove the upper bound on L,(f) (n) stated in Theorem

Theorem 1.7 L\* (n) = O(nk*1).

Proof: Consider the point set on the logarithmic spiral discussed by |[Fleischmann et al.| (2023a); that is,
in polar coordinates, P = {(e’#,jB) : j € [n]}. We label these points p; such that p; = (e, j3).
Define d,,(p;,p;) = j — 4. Then, recall the special property of the logarithmic spiral that rotating points
a constant angle along the spiral does not change the angle between the points. Thus, the angle tuple
(a1,...,ay) corresponding to a chain (z1,22,...,%k42) = (P, Pjos - - -5 Pjsyo) is repated with chains
(Pjr+c>Pjates - - > Pjusote) fOr any integer constant c. In other words, the tuple of angles is determined
by the (k 4 1)-tuple of values (¢1,...,¢x41) such that ; = d,(pj,.,.pj,). Each ¢; can at most range
from —(n — 1) to n — 1. Thus we have that the number of distinct angle k-chains in this configuration is
at most
{0y, lyyr) s —(n—1) < £; <n—1} = (2n — )M = O(nFth).

d

Notice that the lower and upper bounds given in Theorems [I.6]and [I.7] are only a factor of n apart for
any value of k. Further, if Conjecture holds, the lower and upper bounds agree up to constant factors.

4.2 Distinct Angle Chains in R?

Now, let E be a set of n points in R? with no three points on a line and no four points in a circle. In this
setting, we were unable to find a construction with fewer than ¢ - n**+! distinct angle k-chains as obtained
in 2 dimensions (see Theorem [I.7). Any lower bound on the number of distinct angle chains is more
tricky to obtain than in the two-dimensional case because the argument used in the proof of Theorem [I.6]
no longer applies. We instead have the following:

Theorem 1.8 In three dimensions,

(2 /3 .
O Gemorors ) ik =1mod3;
P (EH1)/3 ]
Lgf)(n): f (log n) (=273 if k = 2 mod 3;
0(#E5n) ik =0mod3.

Proof: This follows again from induction on k. There are three base cases. When k& = 1, this follows
from our lower bound of Q2(n/logn) on Ag’g.
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The k = 2 case is more tricky. We aim to show an ©(n) lower bound in this setting. We are looking at
the minimum number of distinct pairs (a1, o) such that there is (21, 72, ¥3, 74) € E* with Zz1 2073 =
(6] and 4332373.134 = Q9.

Fix the middle two points x5 and x3. It remains to choose points x; and x4, where we will consider
angles Zx1xox3 as o and Lxoxsxy as .

For each point except 22 and x3 in the configuration, form two cones: one with vertex x5 and one with
vertex x3, both with axis which is the line xox3 and both which pass through the point. We see that the
number of tuples (a1, a2) is equal to the number of intersections of cones with vertex x5 and cones with
vertex x3. This is because the cone with vertex xo determines «q, and the cone with vertex x3 determines
Q9.

Two cones that share an axis intersect at a circle, and we can only have three points per circle. Thus the
number of relevant intersections of cones is at least ”T’Q Hence, the minimum number of distinct pairs
(a1, a2) such that there is (xq, 71, T2, x3) € E* with Zzoz1292 = a1 and Zx12923 = ap is Q(n).

For k = 3, first note that there are at least Aé‘;)] = Q(n/logn) choices for the first angle. Once we
fix the first angle, there is at least one triple of points (x1, 2, x3) that form this angle. Then, consider
the third angle in the chain, Zzzxs25. There must be Q(1/n) choices for this angle, a result that fol-
lows immediately from our discussion on the pinned endpoint variant (see Theorem[I.4). Thus there are
Q(n3/2/logn) choices of angle chains of length 3.

Now we proceed to the induction step. Suppose the result holds for all values of k¥ up to but not
including a certain value k(. Consider a chain of length kg, and fix all of the first ky — 3 angles. (By
the induction hypothesis, the number of ways of doing this is at least the quantity given by the statement
of the theorem, substituting k¥ = ko — 3.) There exists at least one (kg — 1)-tuple (21, ..., T, —1) With
these fixed angles. Now, points xy,, Tx,+1, and T, +2 can be chosen among any of the remaining points;
they are not confined in any way from the first kg — 3 angles. Thus there are at least Aéﬁ’,{ = Q(n/logn)
choices for the last angle.

This completes the induction. Indeed, we have shown that every time 3 is added to &, the number of
distinct angle chains is multiplied by n/ log n, and the statement of the theorem follows. a
Remark 4.2 Notice that based on this proof, improvements to the lower bounds on AE,?Z or on the number
of distinct angles with a pinned endpoint would immediately lead to improvements on this result.

5 Loosening the General Position Restriction

We now turn to a variant of the two-dimensional distinct angle problem that eases the restriction on the
maximum number of points on a circle or line. Permitting all n points to lie on a circle or line leads to easy
optimal (up to constant factors) constructions, so we do not want to completely discard the constraints on
the points; we instead allow O(y/n) points to be colinear or cocircular.

With this restriction, we can position the n points on /1 rays pointing out from the origin with polar
angle 02—\/% | c € {0,1,2,...4/n — 1}. If we space the points linearly along each ray, so that the polar

distances on a given ray are simply integers from 1 to /7, we get n3/2 distinct angles with the origin
as an endpoint. This is because without loss of generality, we can choose the center point to lie on the
ray with polar angle 0, so we have y/n choices for the center point and then n for the other endpoint.
We can drastically improve on this by spacing the points exponentially along the rays instead of linearly.
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Our configuration, described in polar coordinates, is now the pinned origin plus all points of the form
(r,0) = (2 cZr) where a € {0,1,2,...3/n — 1} and ¢ € {0,1,2,...y/n — 1}. (See Figure All
coordinates are in polar form throughout this discussion.)

Without loss of generality again, we can pick our center point to lie on the horizontal ray. Let us call
this point B, meaning we have B = (2¥,0). Now let A = (1,0), C = (25,0%), and D = (2“"'7027%).
Note now that ZOAC = ZOBD, where O is the pinned origin. This follows from the fact that triangles
AOAC and AOBD are similar, since they share a common angle and the ratios of the incident sides,
namely OD/OB and OC/OA, are both equal to 2¢. This means, then, that ZOBD depends only on £
and ¢, not on k. We have /n choices for £ and /n choices for ¢, giving us a total of O(n) distinct angles.
This is far better than we are able to do with a pinned endpoint under the requirements of general position,
where we conjecture only ©(n?) distinct angles are achievable.

15 -
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Fig. 5: A configuration of n points in 2 dimensions with O(y/n) points on any line or circle. Only O(n)
distinct angles are formed with the origin as one of the endpoints.

6 Future Work

We discuss some possible directions for future research in this area.

6.1 Connection to Incidence Problems in Algebraic Geometry

One important target for future research is to decrease the gaps between the lower and upper bounds for

both Agl)] (currently Q(n/logn) and O(n?)) and for the minimum number of distinct angles formed with
a pinned endpoint (currently Q(y/n) and O(n?)). We describe an approach here that could in theory lead
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to results in these directions, though we have so far not been able to get improved bounds using these
techniques.

Definition 6.1 For a point configuration P with |P| = n, the energy is given by

E(P)=|{(A,B,C,D,E,F) € P®: ZABC = /DEF}|. 3)
For any angle «, let N, (P) denote the number of ordered triples in P forming angle «:
No = |{(A,B,C) € P> : ZABC = a}|. 4)

Note that the number of sextuples (A, B,C, D, E, F) satisfying ZABC = /DEF = «is N2. So,
denoting A to be the set of distinct angles formed by triples of points in PP, we may write

E(P)=Y_ NZ.. (5)
acA
We also have
ZN = P> =nd. (6)
acA

We apply the Cauchy-Schwarz inequality:

<§AN°‘>2 : (;N§> (O;lz) ’ ™

nS

E(P)
If we could show that E(P) = O(n*) for any point configuration P in general position in three dimen-
sions, then we would obtain the result that A5y = ©(n?). Even showing that E(P) = O(n®) would
already improve our lower bound on Ag’%.

We can turn this into an incidence problem as follows. Let each point P be expressed as a vector with
its three cartesian coordinates (P, Py, P3). We have that

_ ) (A-B)-(C-B)
AABC'—arccos< A—B[C —B] .

Thus since arccos is bijective on its domain, ZABC' = ZDFEF if and only if
(A-B)-(C-B) (D-E)-(F-FE)

[A=B[[C-B] ~ [D-E[[F-E["
or, squaring both sides and rearranging,
(A= B)-(C - B)?*|D—EP|F —EP - (D—E)-(F - E)*|A- BPIC~ B =0. (9

We squared both sides so that the above expression is a polynomial (of degree 8) in the 18 variables
Ay, As, As, ..., Fy, Fy, F3, defining a “nice” higher-dimensional surface.

We can now for example fix points B and E and ask how many quadruples of points (4,C, D, F)
satisfy Equation @ This allows us to think of the problem as having n? hypersurfaces (one for each
(B, E) pair) and n* quadruples of points, and the energy is the number of pairs of hypersurfaces and
quadruples such that the quadruple of points is on the hypersurface.

which tells us that

|Al > ®)




Distinct Angles and Angle Chains in Three Dimensions 17

6.2 Generalizing the General Position Requirement

We saw in Sectionthat if we loosen the restrictions of general position to allow O(/n) points on a line
or circle, then we can find a configuration in two dimensions that has O(n) distinct angles with a pinned
endpoint. More research can be done in this vein: specifically, if no point is pinned, what constructions
minimize the number of distinct angles in this setting? Furthermore, what lower bounds do we have on
the number of distinct angles with these constraints? We can also generalize this idea by allowing O(n?)
points on any line or circle. How do all of these bounds change in three dimensions?

We can also go the other direction and further restrict the general position requirement. In two dimen-
sions, the definition of general position is to have no three points on a line and no four points on a circle.
In three dimensions, the classical definition of general position requires no four points on a plane and no
five points on a sphere. These do not turn out to be natural conditions, so we instead chose to keep this
definition as is. Indeed, the constructions shown in SectionE] show that this stricter requirement does not
prevent us from having configurations in R? with O(n?) distinct angles; further, the stricter requirement

does not immediately lead to any improvement on the lower bound on Ag,)l

We could, however, meaningfully change the question by requiring that there are only a constant num-
ber of points on any surface of dimension at most 2. This would prohibit placing many points on a cone
or spindle torus, therefore immediately producing a lower bound of Q(n) distinct angles (in the same
spirit as Lemma [I.9). On the other hand, this also prohibits all the explicit constructions that we consid-
ered: the logarithmic spiral, the cylindrical helix, and the conchospiral. The best construction of which
we are aware that satisfies these stricter conditions is the projection of points from a hypersphere; see
Fleischmann et al.| (2023b) for a discussion of the construction in two dimensions, where the number of

distinct angles is O (n2222V log, ") (Projecting onto three dimensions has a similar outcome.) Seeing

what other constructions arise and what nontrivial lower bounds on the number of distinct angles can be
obtained in this setting is an interesting problem for future research.

6.3 Distinct Angles on Surfaces

A number of recent papers (see for example |Sharir and Solomon| (2016)) and Mathialagan and Shefter
(2023)) study the question of the minimum number of distinct distances on varieties of degree 2 in R>.
One interesting question would be to find bounds on the number of distinct angles among points on these
general surfaces. However, care must be taken with the definition of “angle” on these surfaces.

In the same vein, one can ask what is the minimum number distinct angles among points in the Poincare
disk or Poincare ball. Distinct distances in hyperbolic surfaces have previously been studied by Meng
(2022).
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