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Abstract: A realistic approach for gathering high-resolution observations of the rainfall rate, R, in the
vertical plane is to use data from vertically pointing Doppler radars. After accounting for the vertical
air velocity and attenuation, it is possible to determine the fine, spatially resolved drop size spectra
and to calculate R for further statistical analyses. The first such results in a vertical plane are reported
here. Specifically, we present results using MRR-Pro Doppler radar observations at resolutions of ten
meters in height over the lowest 1.28 km, as well as ten seconds in time, over four sets of observations
using two different radars at different locations. Both the correlation functions and power spectra
are useful for translating observations and numerical model outputs of R from one scale down to
other scales that may be more appropriate for particular applications, such as flood warnings and soil
erosion, for example. However, it was found in all cases that, while locally applicable radial power
spectra could be calculated, because of statistical heterogeneity most of the power spectra lost all
generality, and proper correlation functions could not be computed in general except for one 17-min
interval. Nevertheless, these results are still useful since they can be combined to develop catalogs of
power spectra over different meteorological conditions and in different climatological settings and
locations. Furthermore, even with the limitations of these data, this approach is being used to gain a
deeper understanding of rainfall to be reported in a forthcoming paper.

Keywords: raindrop size distributions (DSDs) from Doppler radar; computing radial power spectra
using radar Doppler spectra; vertically pointing Doppler rain observations

1. Introduction

The correlation functions and power fits of spectral powers have been used extensively
to relate measurements of rainfall rates at different temporal and spatial scales (e.g., [1-5]
and many others). However, such studies have concentrated exclusively on horizontal
dimensions and time because of the difficulty of measuring rainfall rate in the vertical
dimension, especially at high resolutions, over any significant depth. This study is a first
step toward addressing this deficiency.

This is achieved by using vertical observations of rain using a Micro-Rain Radar
(MRR), which is a continuous-wave Doppler radar operating at a wavelength of 1.24 cm,
as described in detail in [6]. It has selectable vertical resolutions, integration times, and
sampling intervals. In this study, we use a vertical resolution of 10 m over a depth of
1.28 km with 10 s integration and 64-point Doppler spectra over an unambiguous Doppler
velocity range of approximately 12 m s~!.

These measurements are affected by both attenuation by the rain and vertical air
velocity, which can distort the raindrop size spectra and the estimated drop concentrations
used to calculate rainfall rates and other parameters. Both effects can be taken into account
and corrected, as described in detail in [7]. The lengthy discussions therein will not be
repeated here except to say that the approach uses velocity-shifted Doppler spectra until
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the observed and theoretical powers agree. Furthermore, we emphasize that this is not a
work about what has been done in the past using MRRs particularly in snow, for example,
or how to use these radars, but rather the focus here is on an interesting first atmospheric
application in rain that will be expanded upon further in a future study already under
preparation and that will be described in greater detail at the end of this work. As such,
this work should only be considered as the presentation of some analysis techniques and
the results as preliminary, with no broad generality at this point.

However, there is no guarantee that the tools of proper correlation functions and
power laws will always exist. In particular, the correlation function exists only when they
(mean values and variance) are independent of the origin of their calculation in space
or time over the spatial-temporal domain of interest. Similarly, power spectra, whether
power fits or otherwise, exist but only have generality when the data are widespread,
statistically homogeneous, and statistically stationary (WSS), as emphasized for the rainfall
rate in [8]. According to the Wiener—Khintchine theorem, only when the data are WSS can
one compute the auto-correlation function and proper power laws [1,2]

Specifically, then, the first order of business is to see whether or not the temporal—
vertical MRR observations of rainfall rates are statistically homogeneous. There are two
components to this determination. First, at all times and in all directions, there has to
be only one global mean value. Second, the variance must be the same at all times and
in all directions as well. In order to address the first requirement, a method of inverting
individual observations is used to look at the distributions of the mean values ([8-11]).
When there is a unitary peak in the resulting distribution, this condition is satisfied. It
should be noted, however, that while an entire dataset may not satisfy these conditions,
they may be locally satisfied. Whether or not these local regions are useful remains to
be seen.

The variance requirement is addressed using the results of Anderson and Kostinski
([12,13] through the analysis of the difference in the number of sequential maxima and
minima forward and backward directions in a string of data denoted by the variable
& = Ttoreward — Tbackward Where T is the total count of record highs and record lows in each
direction. For a sample size greater than ten, « is normally distributed with a null mean and
a standard deviation o« dependent on the sample size (Figure 1in [14]). Asymmetries in the
variance appear as a non-zero mean « of a magnitude that can then be statistically evaluated
with respect to 0. Examples of these applications of MRR data are provided in the next
section with the analysis results for four different sets of data provided subsequently.

While some argue that these two requirements are ‘too restrictive’ for real rain, these,
unfortunately, are the mathematical requirements for WSS. Furthermore, because the data
analyzed here are along two orthogonal dimensions, one must apply both criteria in both
directions to evaluate the appropriateness of WSS over the area.

2. Examples of the Data Processing for Determining Statistical Homogeneity for
Time-Height Rainfall Rate Data

2.1. Convective, Variable Rain

Figure 1 is a plot of the time-height MRR vertical air velocity, attenuation-corrected
rainfall rates using observations that were collected by an MRR radar as part of a Na-
tional Science Foundation project and operated by the College of Charleston, located near
Charleston, South Carolina. It is located on property owned by the College of Charleston
Foundation that is used for a variety of ecological, educational, and research purposes
(e.g., see [15]). The methodology for the correction of the data for vertical air velocity and
attenuation was as explained in [7]. As one would expect for this time of year in South
Carolina, the rain was associated with convection, having a wide range of rainfall rates.
The most noticeable feature overall was the vertical structure of the rain that, of course,
was not surprising in convective rain.
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Figure 2. Data series constructed fiom:: () sadiing theseaqyeatindobssevadionsobhrighhind gerad
initita sisigldereetwoftdakldiiness pitththeecconputte nresm cunve (red)) and fluctuations (green) and
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The more symmetric region of fluctuations is identified by the second grey line. In
each of these sections, the numbers of contributing mean value components (N») were de-
termined by the number of peaks in the posterior frequency distribution of the mean R
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where H is the Heaviside unit step function requiring RDa to exceed 1.5. We referred that
term to the alpha factor, and the second term was the number of mean values (Bayesian)
factor. In purely statistically homogeneous data, o =0 and Ni = 1 so that IXH = 0. In realfy!

these are very restrictive conditions rarely seen in real data, so we used IXH < 0.5 as a
sufficient indication of statistical homogeneity.
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Figure 3. Plots of the IXH averaged over the temporal and height vector series for each of the grey
areas in Figure 2 placed at the mid-points of each region. Only at the right-most part of the figure is
there any sign of statistical homogeneity.

To see where in space and time these conditions were met, we first interpolated the
IXH values in the space series and in the time series separately. These were then unstacked
to return them to their original time-height locations, and, finally, these were then averaged
together to estimate a combined field. We then imposed two requirements for statistical
homogeneity on the resulting field of data. The first was that IXH < 0.5, and the second
was that, in locations satisfying this first requirement, the absolute value of the difference
between the two fields for each direction separately was <0.3. This latter requirement was
designed to satisfy the directional independence of statistical homogeneity.

The results are illustrated in Figure 4, where the contours of shading indicating where
statistical homogeneity was possible (brighter areas) and where it was not (darker areas)
are overlaid on the rainfall rates. The first obvious feature is that, with the exception of a
tiny narrow region at the top-left, these data were all statistically heterogeneous.
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Figure 4. A replot of Figure 1 with an overlay of the height and time 2D IXH. Lighter areas denote
Figurgkerd tieplotcofifigtrallnvitbgenensrdapjeéithe theight aaduiramehtd Yidehdghten akeaedenatile the
wherg thee dpcsfetistient b asensibisuRIgStieithedr TR fsay lisansn Fod i srach b BRereatiotd HRere is
the dagler areqs denelesiders §&%stféam§§ﬁqgggssw§%ﬂ%ﬁwgto%zietﬂ%}w&fcgfeabsfsr&fgmaw.

there is only one narrow region of statistically homogeneous data in the top-left, indicafed by the

arrow. - To see whether these results also applied to other data, we next considered three more
sets of data (all from 3 June 2019) measured using a NASA MRR-Pro radar located at the
Waiep whesher these e i 3RRlist toedd sréaatﬁveaﬁ{?%bmﬁaﬁ@rm{ﬁsd, as

more.sefs Hdata ‘pﬂ from 3 June2019) measured using a NASA MRR-Pro radar located

at the Watop's dpland Jilight Fardityoldie irainfaterales tistes Aeerst¥dPae Wats WnietaE, and

minedt@s giRladnerhip {fikfall rates and the analysis results for the early period are shown
ihesg aleservplionssy ertheokesrtrdissesetadsadiedias parly omidd oRiwith

laterpigeas. Jhs fiainfath Fates-ass Jherarlysitdrst fndRr whe e by Retiomh st shgvetaiistical
homogeneity in a manner quite similar to the previous case.

However, even during the middle period of much lighter precipitation, only a few
small regions of statistical homogeneity were found at times in the lower few hundred
meters, as plotted in Figure 6.

During the later time period, there was a region of light rainfall followed by a period
of more intense rain, as shown in Figure 7a. In this later period, there were a few larger
regions of statistically homogeneous data, but still, by and large, the rainfall rates remained
statistically heterogeneous.
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Figure 5. Because of the profound convective nature of this part of the storm with widely
varying rainfall rates over short times, there were no locations of any statistical horh8kk

neity in a manner quite similar to the previous case.
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tihat thiistimetHegecarsanaaerinn s Oétatas st hamegrisitvppaparedytbebegssisf afctharvabidipylisy

Rf Ry oot asight anddime.

Thewevelt exenttat;ifig e foid de theso doviveutiske lightéal isyebipidatiomustliseademv
sichedé degibastafistatidtichletarogegeneit T wera dansithat domredaitioth éulestien evy thnmedired
Imeegbntsclad phiteedsinlfigafadas these data were representative of typical convective rain,
it also seemed plausible that this will be true for most convective rain. What happens in

steadier, more stratiform rain remains to be determined.
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vection velocity of 1 m s This yielded horizontal dimensions (i.e., 900-1490 m) for the
NASA MRR data and up to 2280 m for the College of Charleston MRR 49 observations,
with all having a vertical distance of 1280 m. In each case, the rainfall rate data were then
Fourier-processed to yield the two-dimensional power spectra that could then be trans-
formed into the one-dimensional spectra in height and in the horizontal direction (tihe)!8

for each period. These are illustrated in Figure 8.
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All of these power spectra can be fit using power functions to a reasonable degree of
correlation. Many of the exponents were quite similar, regardless of being in the vertical or
in the horizontal (temporal) directions. While the vertical axis covered several orders of
magnitude, with the exception of the horizontal power spectrum of the MRR 49 data, the
wavenumbers were shy of the two orders of magnitude required for designating them to be
a ‘power-law’ according to the findings of [18]. On the other hand, the general similarity of
the various fits suggested that it might be useful to combine the data in the two dimensions.

This was performed next by computing the one-dimensional radial spectra, regardless
of time or altitude, as illustrated in Figure 9. This was accomplished first by converting the
temporal axis into a spatial dimension assuming a mean advection speed of 1 m s~!. The
2D power spectrum in this new horizontal-vertical coordinate system was first computed
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to what has normally been used. In addition, no other studies have been able to look at
the vertical plane in this detail, complicating any comparisons to previous observations.
Consequently, we took these observed slopes at face value within the restrictions presented.

However, exact magnitude also depends upon the assumed average advection velocity,
as illustrated in Figure 10. When the advection velocity increased to 5 m s, the negative
slope increased significantly in magnitude.
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because o extenuatmg CIr mstances we ave yet to gather such data.

2.2. Lighter, Steadier Rain

Figure 11 is a plot of the rainfall rate in a winter rainstorm at Wallop’s Island, Virginia.
Obviously, the rainfall rates during this period were less intense rain than in the previous
sets of analyzed data above. For these observations, the peak frequency of occurrence was
2.7 mm h~!, and the mean rate was 4.7 mm h~! with a few embedded regions of more
intense rain. Over the entire period, calculations showed that IXH = 1.0, so the data as a
whole were statistically heterogeneous. However, within these data, there was a period of
lighter, apparently steadier rain (i.e., a nearly constant mean R).
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period of lighter, apparently steadier rain (i.e., a nearly constant mean R).

NASA Wallop's Island MRRpro04, RW mm h’

with Steady Rain Index
18 January 2020 21:41:40—22:56:20 UTC

1200

1000

400

200

500 1000 1500 2000 2500 3000 3500 4000 4500

Seconds

Fige 11.. The aiir-walloaitty-aoreattetraantsilrateeldririgg avinieterainievenénthdhedrbddindhie thé-
cilatRdcrteadydipinin dedernsndetdaghsrdinerdeaeietqeptactotisterdsuiaiain.

Tiw s wihedthen @ mott tihe naiin in e negion fiem T340-2390 s was truly steady, we
used the aipproadh of Jrmeson and Kostinski [21] to define a steady rain index (SRIndx)
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There are two ways to calculate these latter quantities. One is to look at the data for
height at each time, and the other is to look across all times at a particular height. It is the
former method that made sense here. The SRIndx is plotted as the solid red line in Figure 11.
When the rain was steady, the number of drops was Poisson [21], and the SRIndx =1
because, for Poisson rain, 02 = n. This is indicated by the dashed line in Figure 11.

There was only one 17.5 min period when the rain could be considered to be very
steady (between 1340 to 2390 s) when the solid rain line is very near to the dashed line.

In that location, the statistical homogeneity index was found to be 0.10 as well, so these



height at each time, and the other is to look across all times at a particular height. It is the
former method that made sense here. The SRIndx is plotted as the solid red line in Figure
11. When the rain was steady, the number of drops was Poisson [21], and the SRIndx =1
because, for Poisson rain, ¢ = 7i. This is indicated by the dashed line in Figure 11.
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Aj= ;L( A) exp(ipy) (4)

where S is the fit to the power spectrum. This series was then Fourier-transformed and
complex-conjugated to obtain a data series consistent with the input spectral power fits.
These curves (Figure 13a) can be interpreted as observations by instruments over a
5 km area at one moment or by one instrument at one fixed location in time, where time is
distance/V 445, and V 44, is the mean advection speed of the rain. Because of the similarity
of the expressions for the spectral power fits in Figure 12, the structures in Figure 13 were
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Figure 13. (a) Timeseries of synthesized data over 83 min using the two power spectra in Figure 12
showing real differences between the two; (b) histograms for each synthesized rainfall highlighting
the differences in (8)-
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herelt also suggests how radar observations of rainfall rate might vary with altitude
depending on the radar beam dimensions and geometry of the observations, as illustrated
in Figure 15 for Marshall-Palmer rain [25] using the relation Z = 200 R1”. The limit of the
x-axis implied a variation in the radar reflectivity factor of 8 dBZ (a factor of 6) aside from
the usual statistical signal fluctuations.
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3. Co cluding Remarks
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data were all found to be statistically heterogeneous with only very localized pockets of
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statistically homogeneous rainfall. Consequently, in general, it was not possible to construct
meaningful correlation functions or to use the Wiener-Khintchine theorem to transform
such relations into radial power spectra. Instead, it was necessary to directly compute 2D
power spectra using a Fourier transform after first assuming a fixed advection velocity of
1 ms~! so that the temporal axis could be transformed into a spatial axis These, in turn,
were used to compute 1D radial power spectra applicable to each case only.

Nevertheless, in all cases, these radial power spectra could be well fit to the wave
numbers by power relations with negative exponents ranging from 2.47 to 2.76 for both the
NASA Wallop’s Island MRR observations and those using the College of Charleston MRR
radar over a year later at the different location that was near Charleston, South Carolina.
The precise values, however, were shown to depend upon the assumed advection velocity
so that, with greater advection speeds, the wavelengths were stretched, leading to larger
exponents as discussed in the text. Consequently, the only way to obtain estimates of the
true spectral exponents was to collect measurements using spatially separated radars—a
process being undertaken within a current grant.

However, in spite of the limitations of the current data, useful conclusions are still
possible. For example, based upon these observations and analyses, it appeared likely that
convective rainfall data is predominantly statistically heterogeneous, so it will not be likely
to ever have a ‘universal’ scaling relation for such rain. Consequently, the alternative is
to collect such relations in different locations for different types of precipitation for use
as references to better scale either radar rainfall estimates over larger beam dimensions
above the surface or large-scale outputs from numerical forecast models for applications at
smaller scales, such as those for rain run-off warnings or soil erosion research, for example.
That is, as discussed above and illustrated in Figures 13-15, one can always synthesize
Monte Carlo data using relations such as those in Figure 12 and then filter (for example,
by averaging) the final rainfall series to match the scales of interest, as discussed in [3].
Additional general findings are also in process. In particular, this research is being extended
to explore the behavior of radial power spectral fits in response to rainfall rates and to total
spectral powers with some interesting findings appearing in a forthcoming paper currently
under preparation.
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