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ABSTRACT

The fundamental task of classification given a limited number
of training data samples is considered for physical systems
with known parametric statistical models. As a solution, a
hybrid classification method—termed HYPHYLEARN—is pro-
posed that exploits both the physics-based statistical models
and the learning-based classifiers. The proposed solution is
based on the conjecture that HYPHYLEARN would alleviate
the challenges associated with the individual approaches of
learning-based and statistical model-based classifiers by fusing
their respective strengths. The proposed hybrid approach first
estimates the unobservable model parameters using the avail-
able (suboptimal) statistical estimation procedures, and subse-
quently uses the physics-based statistical models to generate
synthetic data. Next, the training data samples are incorpo-
rated with the synthetic data in a learning-based classifier that
is based on domain-adversarial training of neural networks.
Numerical results on multiuser detection, a concrete commu-
nication problem, demonstrate that HYPHYLEARN leads to
major classification improvements compared to the existing
stand-alone and hybrid classification methods.

1. INTRODUCTION

We revisit the problem of classification with limited number
of training data samples in this paper. The fundamental task
of classification comes up in various fields and is traditionally
tackled within two frameworks: 1) statistical setting, and 2)
fully data-driven setting. In the first case, the classification
problem is usually dealt with within a hypothesis testing (HT)
framework based on the assumption that data generation ad-
heres to a known probabilistic model. However, these models
might rely on a large number of unobservable parameters, esti-
mation of which from limited number of data samples could
be a major hurdle. The fully data-driven (i.e., learning based)
setting, on the other hand, relies on a large number of data
samples for finding an optimal mapping from the data samples
to the corresponding labels. But availability of such data in
many application scenarios is generally limited, which might
lead to learning of a suboptimal map.
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The overarching objective of this paper is to develop an
algorithmic framework for classification from limited num-
ber of training data samples in applications in which neither
model-based nor learning-based approaches alone result in
very good classification performance. Our goal in this context
is to develop a classification framework that can deal with the
difficulties associated with stand-alone methods via a hybrid
approach that consolidates physics-based and fully data-driven
classification approaches. There have been previous attempts
to incorporate physics-inferred information in the fully data-
driven setting. In the field of wireless communications, for in-
stance, the authors in [1] employ deep transfer learning (DTL)
to solve a specific resource management problem. Specifi-
cally, they utilize abundant data from an approximate resource
allocation model along with limited data from the unknown
physical model in the DTL fine-tuning approach [2, 3]. Closer
to the idea of physics-guided machine learning, a recurrent
neural network (RNN) is modified in [4] to incorporate infor-
mation from the physics-based model as an internal state of the
RNN. Furthermore, parameters of the physics-based models
are combined with sensor readings and used as inputs to a
DNN to develop a hybrid prognostics model in [5]. However,
such works do not consider the difficulties associated with esti-
mating the model parameters, which would lead to inaccurate
physics-based statistical models. The resulting discrepancy
between the model and the underlying physical process asks
for a learning-based classifier that is capable of leveraging the
data in a way to alleviate this mismatch problem.

The physics-based classification approach, despite the po-
tential difficulty in properly estimating the model parameters,
retains essential prior information about the system’s behavior.
At the same time, a learning-based classifier is a powerful
tool for finding patterns and discriminative representations
from a given dataset. However, the paucity of data poses the
main challenge towards devising a stand-alone classification
approach in both cases. In this vein, we focus on the task of
classification for a physical process assuming that a limited
number of training data samples is available. We consider the
case where the physical process can be described by physics-
based parametric statistical models. As these models tend
to be complex in general, estimation of the unknown model
parameters using the maximum likelihood estimation (MLE)
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Fig. 1: A schematic of our proposed hybrid classification approach (HYPHYLEARN) illustrated for a binary classification setting, which
exploits both physics-based statistical models and learning-based classifiers.

procedure could be computationally prohibitive.

We propose HYPHYLEARN—a novel hybrid classification
method—as a solution, which exploits both physics-based sta-
tistical models and learning-based classifiers. This approach
makes use of (necessarily suboptimal) parameter estimation
algorithms to obtain (approximate) parameter estimates. Next,
plugging in these estimates in the physics-based statistical
models enables us to generate synthetic data. HYPHYLEARN
then relies on neural networks (NNs), which are powerful tools
for finding a discriminative feature space, towards obtaining a
learning-based classifier. Specifically, the learning process in-
volves training a NN to map the training and synthetic data to a
common space under which they are indistinguishable. In the
meantime, a learning-based classifier is trained on the mapping
of the synthetic data in the new space aiming to find discrimi-
native features. Indeed, learning such common feature space
addresses the distribution mismatch problem between the train-
ing data samples and the generated synthetic data due to the
errors in parameter estimation. It is then expected that the clas-
sifier trained on the mapped synthetic data will perform better
on both data distributions. The overall learning process to alle-
viate the mismatch problem results in the domain-adversarial
training [6] of the NNs. A schematic of HYPHYLEARN for a
binary classification example is illustrated in Fig. 1.

The rest of the paper is organized as follows. The prob-
lem is formally posed in Section 2. Our proposed solution
is described in Section 3, which discusses various pieces of
the HYPHYLEARN approach. We introduce the case study,
which concerns the multiuser detection problem (MUD), in
Section 4, and present numerical results regarding the applica-
tion of HYPHYLEARN and other existing methods for MUD
in Section 5. Finally, the paper is concluded in Section 6.

2. PROBLEM FORMULATION

Consider a physical process consisting of C' distinct behaviors
where the physics-based parametric statistical model for the
ith behavior is available in the form of a parametric probabil-
ity density function (PDF) denoted by the conditional prior
p;i(x; 6;) on observations x that belong to an observation space
X. Assuming the true underlying parameter for the ith behav-
ior is @7, the data for this behavior is generated by drawing

independent and identically distributed (i.i.d.) samples from
p;i(x;0F). Assuming further that the ith behavior is chosen
with a prior probability 7;, our goal is to devise a decision rule
to determine a given sample x = [x1,...,2,]7 is generated
under which behavior. Clearly, this can be cast as a C-ary clas-
sification problem via H; : x ~ p;(x;0}), i=0,...,C — 1.
We consider the case where this decision is made by a classifier
he () parameterized by ¢ € RY, hy(x) : X — {0,...,C —
1}, which partitions X into C disjoint sets, {X; }, and decides
in favor of H; if x € A&;. We note that the optimal classi-
fier in this setting is given by the Bayes decision rule, i.e.,
hg«(x) = argmax;_q  o_q mipi(x;0;) [7] which relies on
the true values of the parameters, i.e., 8;’s.

We focus on the case where although the parametric model
p;(x; 0;) is known for the ith behavior, one does not have
access to the corresponding underlying true parameter 8. In-
stead, only a small number of training data generated in an
i.i.d. manner from p;(x; 0}), Vi, are available. Specifically,
we denote the available dataset by D, = {x,.,,}.",, where
N, is the total number of data samples. Also, the correspond-
ing ground-truth label for the nth sample is denoted by ¥, ,,
which is only given for NV,.; number of data samples where
N,; < N,. Furthermore, we consider the case where the
model p;(x; 8;) under the ith behavior is a non-trivial function
of the underlying parameter for which conventional estimation
procedures such as maximum likelihood estimation (MLE) are
computationally prohibitive to implement. The implication of
this aspect of the problem formulation is that the performance
of any suboptimal parameter estimation method is bound to
be limited. As a result, statistical model-based methods which
plug-in these estimates in p;(x; 0;), i.e., plug-in classifiers,
would have a deteriorated performance as well.

Unlike the classifiers that rely heavily on the knowledge of
the parametric statistical models and the estimated parameters,
a purely data-driven approach can result in a classifier that
disregards the available parametric models. However, as the
data generation processes are governed by non-trivial models,
a large number of data is needed in this case to extract related
patterns from each behavior that can lead to a highly discrimi-
native feature space. By noting that the performances of the
fully data-driven and the statistical model-based classifiers
are particularly curbed when they are used in a stand-alone
fashion, we conjecture that fusing the strengths of the two can



lead to a superior classification algorithm in our setting, as
described in the next section.

3. PROPOSED SOLUTION: HYPHYLEARN

The main deciding factor in superiority of a solution for the
problem setup introduced in Section 2 is the extent to which
it exploits the available information, i.e., training data and
the parametric statistical models (p;(x; 6;)). In particular, the
plug-in classifiers tend not to exploit this information in the
most optimal fashion as performance of practical parameter
estimation procedures might be limited. We propose a novel
hybrid classification method to make use of the available infor-
mation in learning-based classifiers, which are powerful tools
for finding discriminative feature spaces. In the following,
we describe the various steps of the proposed solution that is
termed HYPHYLEARN in detail.

Step 1—Imperfect labeling: As the available data are
not assumed to be completely labeled in our problem setup,
the first step in our solution deals with assigning labels to the
unlabeled data samples in D,.. This involves a clustering step
that partitions the dataset D,. into C' distinct groups. Then, the
groups are labeled using the available [V,.; labels. For exam-
ple, a label can be assigned to a group based on the number
of labeled training data it includes from each behavior. If the
majority of such samples corresponds to the ith behavior, the
group is labeled as ¢. Subsequently, we refer to a group as-
signed with the label i by D,.; fori = 0, ..., C —1. We denote
this imperfect labeling process by g(x) : X — {0,...,C—1}
in the remainder of the paper. We also refer to the number of
samples in the cluster labeled as 7 by N ;.

Step 2—Parameter estimation: Based on the labels as-
signed in Step 1 to the unlabeled data samples, we estimate
the parameters of the physics-based statistical models under
each behavior. To this end, we utilize D, ; to estimate the
parameter vector 8 corresponding to the ith behavior. Fur-
thermore, the priors are estimated as @; = N, ;/N,.. We recall
from our problem setup that the MLE, which is usually uti-
lized for parameter estimation purposes, cannot be employed
here due to the formidable complexity of p;(x; ;). Instead, a
(necessarily) suboptimal method, T'(+), is utilized to estimate
the parameters as @ = T(D,.;) for all the behaviors. The
parameter estimation performance is limited here due to both
the suboptimality of T'(-) and mislabeled samples in D, ;, Vi.

Step 3—Forming a synthetic dataset: The paucity of
available data in our problem formulation seems to preclude
utilization of a learning-based classifier as part of the solution.
However, we note that the available physics-based statistical
models, in the form of parametric PDFs, enable us to gener-
ate synthetic data to augment the available data, and make
it possible to exploit the discriminative power of learning-
based classifiers. Having access to the estimated parameter 51
obtained in Step 2, we plug it in the available physics-based sta-
tistical model to obtain a PDF p; (x; 51) for the ith behavior. In

order to generate a synthetic dataset, we first sample w from a
categorical distribution parameterized by 7 = [7g, ..., Tc—1]
over the sample space of {0, ...,C — 1}. Then, we sample a
data point x, ; according to X5 ; ~ Py (X; éw) with the asso-
ciated label ys ; = w. Repeating this process N5 number of
times, we obtain a synthetic dataset Dy = {x_,, ysyi}fisl in
which x, ;’s are statistically independent.

Step 4—Incorporating synthetic and training data in a
learning-based classifier: The errors introduced during the
labeling and the parameter estimation steps that precede the
synthetic data generation process incur a mismatch between
the distributions corresponding to the training and synthetic
datasets. The question is how a learning-based classifier can
be trained to alleviate this problem. For example, in the fine-
tuning approach [1], a NN-based classifier will be trained
on the synthetic data first, and then training data are used to
refine the weights of the corresponding NN. However, we
conjecture that such learning strategies that utilize the training
and synthetic data in the separate stages of training are not the
best solution here; rather, synthetic and training data should
jointly be incorporated in a learning-based classifier. To this
end, inspired by the domain-adversarial training of the neural
networks [6] in the domain-adaptation literature, we propose
to map the synthetic and training data through a (deep) NN
My, : X — Z, which is parameterized by a real vector 1), into
a common feature space Z. Consequently, a (deep) NN-based
classifier hy, (z), parameterized by ¢1, which is trained on
the synthetic data within the space Z is expected to perform
well on both the training and synthetic data. Similar to [6, 8]
a third NN, d¢ parameterized by (, is also utilized aiming at
classifying between the mapped training and synthetic data
samples.

Specifically, we assume the input and output layers of the
NNs corresponding to My, have n, and n, number of neurons,
respectively, which denote the dimensions of the spaces X
and Z, respectively. Subsequently, the input layer of hy, has
n, neurons while its output layer contains C' neurons whose
activation function is chosen to be the softmax function o (z)

. . . . z[i]
for which the ith element is given by ﬁ Note that

1€*
z[i] denotes the ith element of the vector z. Consequently,
the classification error associated with hg, over the synthetic

dataset D; equals the averaged cross-entropy loss, i.e.,

1 ns C
/Js(’lﬂ, ¢1|Ds) = TT Z Z ls,n[n] IOg Yo,1,%x5,n [nL ey

n=1 i=1

where 1, ,, = ec(ys.,) denotes the one-hot encoded version !
of the label y; ,, corresponding to the nth sample. Regarding
d¢, we consider a NN with n, input neurons and 2 output
neurons with softmax activation function. This classifier is

I'The vector e, (y), one-hot encoded version of a non-negative integer y,
equals to an all-zero vector of length n except for its yth element which is set
to 1.



Algorithm 1: HYPHYLEARN
1 Input: Parametric models p;(x;0;) (i =0,...,C — 1);

Training dataset D,. = {X,., } " ; learning rates fi,, , fir,
4r5 ;> Mini-batch size N, < IN,.; Number of synthetic data
samples Ny
Output: The mapping My, (+) and the classifier hg, (+),
parameterized by the real vectors 1 and ¢+, respectively
// Step 1 - Imperfect labeling
3 {Dyo,...,Drc—1} < Applying g(x) to unlabeled
samples
// Step 2 - Parameter estimation

0, « T;(Dr;). 7 + Drilforj=0,...,C ~1
// Step 3 - Forming a synthetlc dataset

~

IS

5 pi(x; é\l) «Plug 52 in p;(x;0;) fori =0,...,C—1
6 forn =1to N, do
7 7~ unif(0, 1), w = argmin, Y00 7 > r
8 Xs,n~Pw(X; é\w), Ysyn = W
9 Add {Xs,n,Ys,n} t0 Ds
10 end
// Step 4 - Learning-based classifier
11 repeat
12 D, b + N random samples from D,., Ds p < Ny
random samples from D
// Forward propagation via (1), (3)
13 L+ Ls(¢,1|Dsyp)
14 Le + Lo(¥,¢|Drb, Dsyp)
// Backward propagation
15 gs,¢1 — V¢1Ls, gs;,p “— Vst
16 gc’c < VCLC, gc’d, < Vch
17 | Yt —pr (Gop — Gep), D1 4 D1 — 112 Gs 1
C — C - Mrggc,g

—
o

until convergence;

trained to distinguish between the training and synthetic data
in the Z space labeled as 0 and 1, respectively. Consequently,

by defining a two-dimensional vector dy ¢ x = de (My(x)),

the d, A, term can be approximated by the cross-entropy loss
associated with d¢ as follows:

Ed(¢a C'Dsa D )

¢ C|D57D

= 2(1 —2L.(¥,¢|Ds, Dy)),  (2)

Zlogd¢ ¢oonn 1]+

=51 . [2].
. ; ogdy ¢ x. 2. (3)

For the joint learning of the desired feature map and the
classifier, the NNs My, and hg, should be trained to minimize
the sum of the losses in (1) and (2), while the classifier d¢
is trained to minimize (3). In particular, the saddle points 12)\,
$1 and E can be found via the stochastic gradient descent
algorithm, which leads, to the adversarial training of the above
three NNs [6]. As an algorithmic framework, HYPHYLEARN
is described in Algorithm 1.

4. CASE STUDY: MULTIUSER DETECTION

An important problem in multipoint-to-point digital commu-
nication networks (e.g., radio networks) is the optimum cen-
tralized demodulation of the information sent simultaneously
by several users through a Gaussian multiple-access channel
(MACQ). Even though the users may not employ a protocol to
coordinate their transmission epochs, effective sharing of the
channel is possible because each user modulates a different
signature signal waveform. In this section, we consider the
uplink of a cellular communication system where K users are
asynchronously sharing a channel to communicate with a base
station (BS). The problem of multiuser detection (MUD) in
this setting amounts to inferring the information bit associated
with each user from the received signals from the MAC.

At the BS, a discrete model for the baseband equivalent of
the received signal from the K'th user can be obtained by rely-
ing on the notion of effective chip pulse, denoted by gy (¢, 7x)
for the kth user experiencing a timing offset of 7. By defini-
tion, we have gy (¢, 7) = Axhrc(t — 7)* e (t) where Ay, de-
notes the complex amplitude of the kth user, hrc (t) represents
a raised cosine chip waveform time-limited to [0,87'c), and
ck(t) is the impulse response modeling the channel effects be-
tween the BS and the kth user. We assume the channel impulse
response (CIR), ¢ (t), takes the form of a time-invariant multi-
path channel with L paths, i.e., ¢ (t) = Zf;ol ak10(t —11),
which is parameterized by the complex path gains oy, ; and
the corresponding path delays 7']; l The kth user employs a

pseudo-noise (PN) code {8 (n)} ! for spreading its data bit
bi(p) on the pth symbol 1nterval where N is the processing
gain. In fact, NV defines the ratio between the chip interval 7
and bit interval duration, i.e., T, = T, /N. By sampling the re-
ceived signal at arate M /T, one obtains gj, € CMN+8M—1x1
as g — [gk(TC/M, Tk),gk(2Tc/M, Tk), ces ,gk(Tb + (8M—

DT./M, )] T Using gy, one can obtain a compact model for
the received samples as a M N-dimensional vector, y(p), in
the pth symbol interval Z,, = [pTy, (p + 1)T3] such that [9]

K-1

p) =Y Ar(p)gr +n(p) =A(p)g+n(p), @
k=0
for A(p) = [Ao(p),...,Ax—1(p)] and Ay(p) = bi(p —

2)Crp—2(p) + be(p — 1)Cpp-1(p) + bir(p)Crp(p). &8 =
gl,..., gk |7, where Cy ,_i(p)isa MN x (MN+8M —

1) dimensional matrix as a function of 3}/ , that is obtained
in details in (9)-(11) of [9]. After whltenmg, the elements of
the noise vector can be deemed as independent and identically
distributed (i.i.d.) Gaussian random variables with zero-mean
and variance Ny /2.

It follows from this discussion that the multiuser de-
tection problem can be cast as 2X-ary classification prob-
lem where the goal is to find the vector of information
bits b = [bo(p),...,bkx—1(p)] given an observation vector
y(p). Assuming all the vectors b € {0,1}% are a priori



equiprobable, the minimum distance rule gives the maximum
a posteriori decision [10]. Mathematically, the multiuser
detection is equivalent to solving the minimization problem
argminge o 135 y(p) — ZkK:_Ol A (p)gy in which the term
A (p) depends on the choice of b € {0,1}%. However, the
complexity of such detector is exponential in the number of
users [10] and in practice sub-optimal methods like minimum
mean square error (MMSE) detector [10] are utilized. We
consider a case where the BS has access to Ny number of
training data from the kth user in the form of D = {y;, b;} 7,
where y; has the form of (4) and b; denotes the corresponding
information bits vector. We further assume that BS does not
have access to the perfect knowledge of the true spreading

codes from all the users similar to the case of blind MUD [11].

The performance of the MUD algorithms discussed above
relies heavily on the estimation of the channel parameters. The
joint ML estimate of these parameters is known to require an
exhaustive search over the continuous K -dimensional space
[0, T3,)% [9, 12], which is computationally prohibitive. As a
workaround, alternative sub-optimal estimation methods of

low-complexity are proposed to be used for practical systems.

Notably, given the knowledge of the spreading codes and
information bits, the authors in [9] propose to directly estimate
the overall CIR g by invoking the LS estimation procedure
g = argmin, Y04 " |lyi — A(i)x||2. Afterwards, relying
on g an ad-hoc algorithm is devised in [9] to estimate the
channel parameters, which include delays 7, ; = 7/, + 7%,
amplitudes ay; = Ag|ag,| and phases ¢y ; = arg(a7k7l) for
k=0,...,K—1and! =0,...,L — 1. In the next section
we present numerical results to demonstrate the effectiveness
of HYPHYLEARN for solving the MUD problem.

5. NUMERICAL RESULTS

We consider a system with processing gain of N = 32 where
the number of users is set to KX = 3. Golden codes [9] of
length 32 are used by the BS as the pseudo-noise code and the
users’ amplitudes, Ay ’s, are set to 2. In addition, a chip interval

of length T, = 0.001 and a sampling rate of 2 /7. is employed.

A near-far ratio (NFR) of 10 dB is assumed, which means the
users’ amplitudes are randomly unbalanced around 2 with a
variance of +5dB. We further introduce another parameter p
in order to quantify the averaged error in the pseudo-noise
code experienced by the BS while decoding.

As the performance metric, we consider the bit error rate
(BER) at the BS while decoding the users’ information bits,

which is of major interest in digital communication systems.

As a multiuser baseline detection algorithm we employ the
minimum mean square error (MMSE) decoder introduced
in [13], which is shown to outperform other existing detection
algorithms. As mentioned in Section 4, MUD can be also
solved by a classifier aiming at distinguishing between 2%
different classes, each representing a unique decoded sequence
of information bits. In this case, BER is directly related to
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Fig. 2: BER vs SNR for different multiuser detectors.

the classification accuracy of the trained classifier. We present
numerical results for the BER performance associated with
MUD based on various approaches including HYPHYLEARN
in Figs. 2 and 3. We note that as the data samples are labeled
in the training dataset, the first step of HYPHYLEARN is not
necessary for this problem. The channel parameter estimation
procedure for all the methods is done under two different levels
of model mismatch, i.e., p = 0.1 and p = 0.25, where the
number of available training data from each user is set to 40.
Based on these estimates along with the information bits (b)
and imperfect knowledge of spreading codes, one can utilize
(4) to generate synthetic data.

As a general observation, Fig. 2 demonstrates that the per-
formance of the detectors is deteriorated for a higher value of
the PN mismatch parameter p. Note that the perfect MMSE is
referred to the case where the true pseudo-noise sequences are
assumed to be known as part of the implementation of the de-
coder. In particular, huge performance gap between the perfect
MMSE and MMSE decoder indicates the high sensitivity of
this detector to the mismatch. Furthermore, the performance
of the machine learning algorithm based on support vector
machine (SVM) with radial basis function kernel is limited
in this case due to limited number of training data. The DTL
fine-tuning approach [1] can improve the system performance
by training a classifier on the synthetic data and then refining
it via the training data. This classifier is chosen to be a DNN
with 4 hidden layers of 300 neurons each where ReL.U acti-
vation function is used for all the hidden layers. Notably, it
is highlighted in Fig. 2 that HYPHYLEARN outperforms the
existing methods over a wide range of SNRs. In Fig. 3, the
system performance is investigated as a function of number
of available training data, which highlights the superiority of
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HYPHYLEARN in the data-limited regime. For this example,
SNR at the BS is assumed to be equal to 8 dB. For all the
simulations, the number of generated synthetic data is set to
108 for both the HYPHYLEARN and fine tuning approaches.
Similar to DTL fine-tuning approach, we have used NNs with
4 hidden layers of 300 neurons each for M, and hg, here.
Specifically, hg, has 2% output neurons, each corresponding
to a specific information bits vector. Also, a shallow NN with
one hidden layer of 40 neuron is used for d¢ and ReLU activa-
tion function is used for all the hidden layers. During training
Adam optimizer with a learning rate of 0.0001 is utilized as
the stochastic gradient descent algorithm.

6. CONCLUSIONS

We have revisited the classification problem in a data-limited
regime where there is known model for each class while their
true parameters are unknown. We have first used (necessarily)
suboptimal parameter estimation algorithms for this purpose
and generated synthetic data leveraging the knowledge of sta-
tistical models. Then, we have utilized the domain adversarial
framework for learning a classifier using the synthetic and
training data. As a case study, we have considered the problem
of multiuser detection, and showed the superiority of our pro-
posed approach in comparison to the several existing statistical
and machine learning methods through numerical simulations.
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