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Abstract—The fundamental task of classification given a limited
number of training data samples is considered for physical
systems with known parametric statistical models. The standalone
learning-based and statistical model-based classifiers face major
challenges towards the fulfillment of the classification task using
a small training set. Specifically, classifiers that solely rely on
the physics-based statistical models usually suffer from their
inability to properly tune the underlying unobservable parameters,
which leads to a mismatched representation of the system’s
behaviors. Learning-based classifiers, on the other hand, typically
rely on a large number of training data from the underlying
physical process, which might not be feasible in most practical
scenarios. In this paper, a hybrid classification method—termed
HYPHYLEARN—is proposed that exploits both the physics-based
statistical models and the learning-based classifiers. The proposed
solution is based on the conjecture that HYPHYLEARN would
alleviate the challenges associated with the individual approaches
of learning-based and statistical model-based classifiers by fusing
their respective strengths. The proposed hybrid approach first
estimates the unobservable model parameters using the available
(suboptimal) statistical estimation procedures, and subsequently
use the physics-based statistical models to generate synthetic
data. Then, the training data samples are incorporated with the
synthetic data in a learning-based classifier that is based on
domain-adversarial training of neural networks. Specifically, in
order to address the mismatch problem, the classifier learns a
mapping from the training data and the synthetic data to a
common feature space. Simultaneously, the classifier is trained to
find discriminative features within this space in order to fulfill
the classification task. Two case studies from communications
systems (physical layer security and multi-user detection) are
presented in order to highlight the usefulness of HYPHYLEARN.
Numerical results demonstrate that the proposed approach leads
to major classification improvements in comparison to the existing
standalone or hybrid classification methods.

I. INTRODUCTION

We revisit the problem of classification with limited number
of training data samples in this paper. The fundamental task
of classification comes up in various fields and is traditionally
tackled within two frameworks: 1) statistical setting, and 2)
fully data-driven setting. In the first case, the main assumption is
that data generation adheres to a known probabilistic model of
the underlying physical process. Subsequently, the classification
problem is usually dealt with within a hypothesis testing (HT)
framework aimed at testing between two (or more) hypotheses.
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Here, optimality in both the Bayesian sense and the Neyman—
Pearson sense relies on computation of the likelihood-ratio
terms, which requires clairvoyant knowledge of the probabilistic
models under different hypotheses [3]. However, accurate
modeling of the physical processes in increasingly complex
engineered systems is either not tractable or it relies on
a large number of unobservable parameters, estimation of
which from limited number of data samples could be a major
hurdle [4], [5]. As a result, a mismatch between the physics-
based statistical models and the real physical processes is
inevitable. This precludes exact computation of the likelihood-
ratio values, which deteriorates the classification performance
[6]. The fully data-driven (i.e., learning based) setting, on
the other hand, relies on a large number of data samples for
finding an optimal mapping from the data samples to the
corresponding labels. But availability of such data in many
real-world problems, e.g., channel-based spoofing detection
[7] and signal identification [8], is generally limited, which
might lead to learning of a suboptimal map. Moreover, one
should always expect mislabeled data in many applications,
since the employed labeling procedures might not be error free.
Consequently, classification performance of data-driven models
can be seriously limited for many real-world applications.
The overarching objective of this paper is to develop an
algorithmic framework for classification from limited number
of training data samples in applications in which neither model-
based nor learning-based approaches alone result in very good
classification performance. To this end, note that learning-based
approaches traditionally tend to disregard the physics-based
models developed to describe the physical phenomena through
tractable mathematical analysis. For instance, in the context
of wireless communications, numerous theoretical models for
channels and resource management have been developed over
the years [4], [7], [9]. Despite being approximations in many
cases, these models provide important prior information about
the corresponding physical systems that might be utilized
to facilitate the subsequent classification tasks. At the same
time, physics-based models consist of numerous unobservable
parameters, the tuning of which is a major hurdle for complex
systems [5]. For example, physical channel models in the multi-
input multi-output (MIMO) and 5G communications scenarios
rely on a large number of multidimensional parameters that are
defined over a mixed set of discrete and continuous spaces [10],
[11]. In such cases, the maximum likelihood estimation (MLE)
of the parameters could incur a formidable computational cost
[11]-[13]. Our goal in this context is to develop a classification
framework that can deal with these practical considerations
through a hybrid approach that consolidates physics-based and
fully data-driven classification approaches. The expectation is



that the hybrid approach would fuse the strengths of the two
approaches towards achieving an overall superior classification
performance.

Our proposed hybrid approach first employs the (neces-
sarily) suboptimal parameter estimation methods to estimate
the unobservable parameters. Then, it utilizes them in the
physics-based models to generate synthetic data, which enables
us to leverage learning-based classification approaches. The
mismatch between the physics-based models and the underlying
physical process is addressed in a learning setting. Specifically,
a neural network is trained to map the training and synthetic
data to a common discriminative feature space, which is
often referred to as domain-invariant space in the domain
adaptation literature [14], [15]. Meanwhile, a neural network-
based classifier is trained on the mapped synthetic data to
extract class-specific discriminative features from them. The
resulting classifier in this way is expected to perform well on
both synthetic and training data distributions.

A. Relation to prior works

In the realm of statistical model-based classifiers, the
difficulties associated with estimating the parameters of the
physics-based models are recognized in various works [6],
[16]. This is mainly attributed to the inherent difficulties
associated with determining probability distributions from
only a limited number of data samples. Along these lines,
classification under the assumption of mismatched models is
considered in several works [6], [16]-[18]. Specifically, [16],
[18] derive bounds on the probability of classification error
in the presence of mismatch via the f-divergence between
the true and mismatched distributions. In contrast to these
bounds that are general in the sense that no assumption is made
regarding the underlying distributions, [6] considers data that
are contained in a linear subspace. This enables the authors
to derive an upper bound on the classification error of the
mismatched model that predicts the presence/absence of an
error floor. The analyses in these works, however, do not lead
to a classification algorithm for the mismatched setting as they
merely analyze the mismatch problem itself.

The mismatch problem for the learning-based classifiers
corresponds to the cases where the distribution of the available
training data is different from that of the test data. Such
mismatches are primarily studied in the transfer learning (TL)
and the data-shift literature [15]. In particular, covariate shift
[19], which is also studied under the name of transductive TL
[20], refers to the case where the underlying data distributions
for the test and training data are different. Concept shift [21],
also known as inductive TL [20], on the other hand, deals with
situations in which the posterior distribution of the labels given
the data is not the same for the training and the test data. A wide
range of algorithms have been proposed in order to alleviate the
performance loss due to such shifts. For example, importance-
weighting technique [22], [23] is proposed for the covariate shift
scenario to remove the bias from the training data. Furthermore,
algorithms based on subspace mapping [24] and learning
domain-invariant representations [14] have also been proposed
in the literature to address the mismatch problem. The authors

in [24] propose a transfer component analysis method aimed
at finding a transformation under which the maximum mean
discrepancy between the true and mismatched distributions is
small. The work in [14] aims at finding a representation that
is invariant for the training and test distributions in order to
mitigate the effect of discrepancies in the subsequent learning
tasks. For the specific task of classification, the authors in
[25] introduce the domain-adversarial neural network (DANN)
framework, which extracts domain-invariant representations via
(deep) neural networks that are discriminative for the training
data in order to devise a classifier on the test data.

Deep transfer learning (DTL) is another prime subject related
to our work that studies the transfer learning concept in the
context of deep neural networks (DNNs). DTL considers
a DNN that has been pre-trained on the training data as
transferable knowledge useful for the test data. This knowledge
can be transferred based on different strategies. The pre-trained
DNNs can either be used directly for the test data, or serve as
an intermediate feature extracting step that could facilitate the
subsequent learning process for the test data. In another DTL
strategy called fine-tuning, the pre-trained DNN or, certain
parts of it, is refined using the available test data to further
improve the effectiveness of transfer knowledge. We refer the
reader to [26], [27] for a survey on DTL methods.

Model-based deep learning is another related line of work
that aims at designing systems whose operation combines
physics-based models (domain knowledge) and data. To this
end, two main strategies are typically exploited in such works,
known as model-aided networks and DNN-aided inference. The
former results in specialized DNN architectures by identifying
structures in a model-based algorithm; e.g., an iterative structure
for the case of deep unfolding [28]. The latter primarily
utilizes model-based methods for inference, but replaces explicit
domain-specific computations with dedicated DNNs in order
to facilitate operation in complex environments; e.g., using
generative models for compressed sensing applications [29].
We refer the readers to [30] and references therein for the state-
of-the-art strategies in model-based deep learning methods.

There also have been previous attempts to incorporate
physics-inferred information in the fully data-driven setting. In
the field of wireless communications, for instance, the authors
in [4] employ DTL to solve a specific resource management
problem. Similarly, the task of signal classification is tackled
via DTL under different practical assumptions, such as real
propagation effects [31], hardware impairments [32] and weak
received signal strength [33]. These works utilize abundant
data from an approximate model along with limited data
from the real-world model in the DTL fine-tuning approach.
More closely to the idea of physics-guided machine learning
(ML), a recurrent neural network (RNN) is modified in [34]
to incorporate information from the physics-based model as
an internal state of the RNN. Furthermore, parameters of the
physics-based models are combined with sensor readings and
used as input to a DNN to develop a hybrid prognostics model
in [5].

We note that the aforementioned works in domain adaptation
literature do not employ any available physics-based statistical
models and, consequently, rely on large number of training data



samples for dealing with the mismatch problem. In addition,
model-based deep learning strategies might not be applicable
to the statistical classification problem in general due to the
lack of algorithmic structure such as an iterative structure.
Equally importantly, DTL fine-tuning and physics-guided
learning approaches do not consider the difficulties associated
with estimating the physics-based parameters, which would
indeed lead to inaccurate physics-based statistical models. The
resulting discrepancy between the model and the underlying
physical process necessitates a learning-based classifier that
is capable of leveraging the data in a way to alleviate this
mismatch problem.

B. Our contributions
The main contributions of this work are as follows.

o« We focus on the task of classification for a physical
process assuming that a limited number of training data
samples, with possibly mislabeled instances, is available.
We consider the case where the physical process (or
its approximation) can be described by physics-based
parametric statistical models. As these models tend to be
complex in general, estimation of the unknown model
parameters using the maximum likelihood estimation
(MLE) procedure could be computationally prohibitive.'
We instead propose HYPHYLEARN—a novel hybrid
classification method—as a solution, which exploits
both physics-based statistical models and learning-based
classifiers. This approach makes use of (necessarily
suboptimal) parameter estimation algorithms/heuristics to
obtain (approximate) parameter estimates. Next, plugging
in these estimates in the physics-based statistical models
enables us to generate synthetic data. HYPHYLEARN
then relies on neural networks (NNs), which are powerful
tools for finding a discriminative feature space, towards
obtaining a learning-based classifier. Specifically, the
learning process involves training a NN to map the training
and synthetic data to a common space under which they
are not distinguishable. In the mean time, a learning-
based classifier is trained on the synthetic data mapped to
the new space to find discriminative class-level features.
Indeed, learning the common feature space addresses
the distribution mismatch problem between the training
data samples and the generated synthetic data due to the
errors in parameter estimation. It is then expected that
the classifier trained on the mapped synthetic data will
perform well on both data distributions. We repurpose
theories from the domain adaptation literature based on
learning invariant representations for our specific problem
to justify the proposed hybrid approach. A schematic
of HYPHYLEARN for a binary classification example is
illustrated in Fig. 1.

o We also consider two prototypical problems from the
wireless communications literature to investigate the
performance of our proposed approach and show its

As discussed later in Section II, even using the MLE does not always
provide any optimality guarantees in general for the classification problem in
a HT setting [35].

superiority in comparison to the stand-alone statistical
model-based classifiers as well as the fine-tuning approach
as the best existing hybrid approach applicable to these
problems. We first consider the problem of channel
spoofing in the wireless communications setting, where
an adversary (Eve) spoofs a legitimate transmitter (Alice)
and sends a message to a legitimate receiver (Bob) [7],
[36], [37]. The spoofing detection at Bob involves making
a decision on whether an incoming message corresponds
to Alice or Eve. This can be cast as a binary classification
problem at Bob. Second, we revisit the problem of multi-
user detection (MUD) in the uplink of a cellular network,
where different users are asynchronously sharing a channel
with a base station [13]. For a K-user system, MUD
is basically a 2%-ary classification problem in which
the goal is to infer K binary information bits from
a given observation. By obtaining likelihood ratio test
(LRT) for each problem, we show that statistical model-
based classifiers rely heavily on the wireless channel
parameters in the above problems. However, estimation
performance of these parameters suffers from both the
paucity of training data and complexity of the physics-
based statistical models. In fact, these models are complex
in the sense that MLEs of the corresponding parameters
require an exhaustive search over the space of the
parameters, which is not feasible for many communication
scenarios including MIMO transmissions in a 5G setting
[10]. For both problems, numerical results show that
HYPHYLEARN provides major improvements in terms
of the classification accuracy in comparison to the best
existing approaches.

C. Notation and organization

Throughout the paper, vectors are denoted with lowercase
bold letters, while uppercase bold letters are reserved for
matrices. Furthermore, equality by definition is expressed

through the symbol 2. Non-bold letters are used to denote
scalar values and calligraphic letters denote sets. Furthermore,
the cardinality of a set S is denoted by |S|. The spaces of
real and complex vectors of length d are denoted by R? and
C4, respectively. The mth element of a vector u and the trace
of a matrix U are shown by u[m] and Tr(U), respectively.
Also, real and imaginary parts of a complex number a are
denoted by R{a} and S{a}, respectively. The probability
density function and expectation of a random variable w are
denoted by p(w) and E,(w), respectively, while PP[-] is used to
denote the probability of an event. The Gaussian and circularly-
symmetric complex Gaussian distributions are denoted by A
and CN, respectively, while the uniform distribution supported
between two real numbers a and b is denoted by unif(a, b). We
denote the kth standard basis vector of length N in RN by ey,
and use ||u]| to refer to the Euclidean norm of the vector u. We
refer to identity matrix of size /N and the indicator function

1
by Iy and 1 4(x) 2 O’i;j
H

and conjugate transpose of u are denoted by u’ and u’,
respectively. Furthermore, e,,(y) refers to a one-hot encoded

, respectively. Transpose
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Fig. 1: A schematic of our proposed hybrid classification approach (HYPHYLEARN) illustrated for a binary classification setting, which
exploits both physics-based statistical models and learning-based classifiers.

version of a non-negative integer y, which equals to an all-zero
vector of length n except for the yth element which is set
to 1. Also, o and ® denote the Schur componentwise and
the Khatri-Rao product, respectively, while ® is reserved for
the Kronecker product. Finally, given two vectors a and b
of length M, Toeplitz matrix of size M x M is defined as

all] b2 b[M]
toep(a, b) 2 | a2 b[M —1] )
alM] alM — 1] all]

The rest of the paper is organized as follows. The problem
is formally posed in Section II. Our proposed solution is
described in Section III, which discusses various pieces of
HYPHYLEARN approach. We introduce the first case study
involving the spoofing detection problem in Section IV. The
second case study, which concerns the multi-user detection
problem, is presented in Section V. We present numerical
results concerning the application of our proposed approach
in the above two case studies in Section VI, and contrast it
with the existing methods. Finally, the paper is concluded in
Section VII.

II. PROBLEM FORMULATION

Consider a physical process consisting of C' distinct be-
haviors where the physics-based parametric statistical model
for the ith behavior is available in the form of a parametric
probability density function (PDF) denoted by the conditional
prior p;(x;6;) on observations x that belong to an observation
space X. Assuming the true underlying parameter for the ¢th
behavior is 6, the data for this behavior is generated by
drawing independent and identically distributed (i.i.d.) samples
from p;(x; ;). Assuming further that the ith behavior is chosen
with a prior probability 7;, our goal is to devise a decision rule
to determine a given sample x = [1,...,2,]7 is generated
under which behavior. Clearly, this can be cast as a C-ary
classification problem via H; : x ~ p;(x;0F), i =0,...,C—1.
We consider the case where this decision is made by a classifier
he(-) parameterized by ¢ € RY, hy(x) : X — {0,...,C—1},
which partitions X into C disjoint sets, {X;}, and decides in
favor of H; if x € X;. Defining 0*2[93, ..., 0%_,], we denote
the probability of error associated with hg(x) by Pg«[eq],
which can be computed as

c—1

Po-[eg] = Zﬁi/xpi(x; O )L (h, (02 (X)dx, (1)
i=0

where ey indicates the event that hg(x) makes an erroneous
decision. The optimal classifier hg-(x) that minimizes the
error probability is given by the Bayes decision rule, i.e.,
he(x) = argmax;_o o1 mipi(x;0F) [3]. For the specific
case of C' = 2, this rule takes the famous form of the likelihood

y=

:0* .. . .
g;g;eig E 70, where y = i implies making a
%

ratio test,

y=
decision in favor of the ith behavior.

We focus in this paper on the case where although the
parametric model p;(x;0;) is known for the ith behavior,
one does not have access to the corresponding underlying
true parameter 8. Instead, only a small number of training
data generated in an ii.d. manner from p;(x;0;),Vi, are
available. Specifically, we denote the available dataset by
D, = {Xr,n}r]y;v where N, is the total number of data
samples. Also, the corresponding ground-truth label for the
nth sample is denoted by vy, , which is only given for N, ;
number of data samples where N, ; < N,. Furthermore, we
consider the case where the model p;(x;0;) under the ith
behavior is a non-trivial function of the underlying parameter
for which conventional estimation procedures such as maximum
likelihood estimation (MLE) are either not available or are
computationally prohibitive to implement. The implication of
this aspect of the problem formulation is that the performance
of any suboptimal parameter estimation method is bound to be
limited. As a result, statistical model-based classifiers, which
plug-in these estimates in p;(x; 8;), would have a deteriorated
performance as well.

Unlike these classifiers that rely heavily on the knowledge of
the parametric statistical models and the estimated parameters,
a purely data-driven approach can result in a classifier that
disregards the available parametric models. However, as the
data generation processes are governed by non-trivial models,
a large number of data is needed in this case to extract
related patterns from each behavior that would lead to a highly
discriminative feature space. By noting that the performance of
the fully data-driven and the statistical model-based classifiers
is particularly curbed when they are used in a stand-alone
fashion, we conjecture that fusing the strengths of the two can
lead to a superior classification algorithm in our setting, as
described in the next section.

Before delving into the proposed solution for the described
problem setting, we discuss further two existing approaches
towards obtaining a statistical model-based classifier for the
benefit of the reader. Recall that within the framework of



statistical model-based classification, one would first estimate
the unknown model parameters as 6;’s, i = 1,.. .,AC, and
plug them in the available models to obtain p;(x;6;). The
resulting plug-in models are then used in practice in lieu of
the true models within the optimal Bayes decision rule. The
parameters, ¢, of the resulting plug-in classifier consist solely
of the parameters of physics-based statistical models, i.e., ¢ =
0 = [0o,...,0c_1].> Based on this fact, we denote the plug-
in classifier by hg(x) in the remainder of this section. The
unknown model parameters can be estimated using numerous
approaches. In the following, we discuss two of the most
popular ways to estimate them as well as the shortcomings of
these approaches that warrant a new approach to classification.
Empirical error minimizer: Given a set of training
data with their corresponding labels, {X, ,,¥,n}2",, the
most natural approach for parameter estimation corresponds
to the setting in which the resulting plug-in classifier,
hg(x), minimizes the empirical error probability defined
by PN eo] = N%Zﬁglﬂ {ho(xrn)#yrn}- SpPecifically, for
the case of C' = 2 consider the family of the classifiers
he(x) = 0, 7pe, (X) > (1 —m)pe, (x),
1, otherwise,
parameter values 6y and 6; are chosen from a space ©. The
parameter estimates that minimize the empirical error are
obtained as 6 = [By, 8;] € argming PN*[eg]. The following
lemma, which is a direct result of Corollary 16.1 in [38],
presents an upper bound on the performance of the Bayes
decision rule in terms of that of the plug-in classifier that is
obtained using empirical error minimization.

for which the

Lemma 1. If 65, 0] € O, then the error probability of the
Bayes decision rule, with the probability at least 1 — 6, is
bounded by

- 2 &b
N,
Po-[eg-] < P7r[eg] + 84/ A log = 2)

where b denotes the Vapnik—Chervonenkis (VC) dimension [38]
of the family of classifiers, hg(x), defined above.

The above lemma guarantees a O(y/log N,./N,.) rate of
convergence to the Bayes error for h4(x) when 6 is chosen
to minimize the empirical error. However, obtaining such )
is computationally expensive in general as the empirical error
probability might be a non-trivial function of the parameters.

Maximum likelihood estimator: In practice, the unknown
model parameters are commonly replaced with their corre-
sponding MLEs under each beahvior; the resulting plug-in
classifier gives rise to the well-known generalized likelihood
ratio test (GLRT) for the binary case (C' = 2) [3]. Specifically,
assuming the training data and their corresponding labels are
available in the form of {X; ., yr n}n , for the ith hypothems
the MLE of 0; is obtained by HMLE = argmaxg L£(D;|6;),
where £ denotes the likelihood function. For the blnary case
where — ﬂ)po?ﬁlér)zﬁpl(x .y is continuous in (6o, 61, ), as
the parameters’ estimates converge to the true values, the error
of the plug-in classifier also converges to that of the Bayes

2For notational simplicity and without loss of generality, we have not
included the priors as part of the unknown parameters in the current discussion.

decision rule. However, not only no optimality condition can
be stated in general for the plug-in classifier relying on MLEs
[35], obtaining such estimates might also be computationally
prohibitive for system with complex likelihood functions.

III. PROPOSED SOLUTION: HYPHYLEARN

The main deciding factor in superiority of a solution for
the problem setup introduced in Section II is the extent to
which it exploits the available information, i.e., training data
and the parametric statistical models. In particular, the plug-
in classifiers tend not to exploit this information in the most
optimal fashion as performance of the parameter estimation
procedures can be curbed due to the complexity of the
underlying models and lack of the corresponding ground-truth
labels. We instead propose a novel hybrid classification method
to make use of the available information in learning-based
classifiers, which are powerful tools for finding discriminative
feature spaces. Specifically, our proposed solution relies on the
parametric models to generate synthetic data and incorporate
them with the training data in a classifier that makes use of
adversarial training between NNs. Next, we describe the various
steps of the proposed solution that is termed HYPHYLEARN
in detail.

Step 1—Imperfect labeling: As the available data are not
assumed completely labeled in our problem setup, the first step
in our solution deals with assigning labels to the unlabeled data
samples in D,.. This involves a clustering step that partitions
the dataset D, into C' distinct groups. Then, the groups are
labeled using the available V,.; labels. For example, a label can
be assigned to a group based on the number of labeled training
data it includes from each behavior; If the majority of such
samples corresponds to the ¢th behavior, the group is labeled as
1. Subsequently, we refer to a group assigned with the label
by D, ; for i = 0,...,C — 1. Denoting this imperfect labeling
process by g(x) : X — {0,...,C — 1}, a non-trivial labeling
error over D,. is associated with g(x) that can be computed via
er = NLT Zf:[;l L{g(x,.n)#yrn}- In the remainder of this paper,
we refer to the number of samples in the cluster labeled as i by
N,;. The function g(x) may be obtained based on any one of
the simple clustering algorithms from the ML literature, such
as the Gaussian mixture model [39], or it may be a decision
rule obtained based on the statistical analysis of the parametric
models. For instance, for the problem of channel spoofing
detection, a hypothesis test is proposed in [7] that assigns
labels to unlabeled samples based on their similarity, measured
in terms of the Euclidean distance, to a reference data sample.

Step 2—Parameter estimation: Based on the labels as-
signed in Step 1 to the unlabeled data samples, we estimate the
parameters of the physics-based statistical models under each
behavior. To this end, we utilize D, ; to estimate the parameter
vector @ corresponding to the ¢th behavior. Furthermore,
the priors are estimated as 7; = N, ;/N,. We note that the
procedure for estimating 8; depends on the available parametric
models corresponding to the ith behavior, i.e., p;(x;6;). We
recall from our problem setup that the MLE, which is usually
utilized for parameter estimation purposes, might not be
employed here due to the formidable complexity of optimizing



pi(x; 0;) over 0. Instead, a (necessarily) suboptimal estimator,
T(-), built upon either heuristics or optimization techniques
like alternate maximization (see Sections IV-C and V-B) could
be utilized to estimate the parameters as 8; = T'(D,.;) for
all the behaviors. The parameter estimation performance is
therefore limited here due to both the suboptimality of 7'(-)
and presence of the mislabeled samples in D, ;, Vi.

Step 3—Forming a synthetic dataset: The paucity of
available data in our problem formulation seems to preclude
utilization of a learning-based classifier as part of the solution.
However, we note that the available physics-based statistical
models, in the form of parametric PDFs, enable us to generate
synthetic data to augment the available data, and make it
possible to exploit the discriminative power of learning-
based classifiers. Having access to the estimated parameter
0, obtained in Step 2, we plug it in the available physics-based
statistical model to obtain a PDF p;(x; 6;) for the ith behavior.
In order to generate a synthetic dataset, we first sample w from
a categorical distribution parameterized by 7 = [T, ..., To—1]
over the sample space of {0,...,C' — 1}. Then, we sample
a data point x,; according to X,; ~ Py (x;60,) with the
associated label ys; = w. Repeating this process Ny number
of times, we obtain a synthetic dataset D, = {Xs,i,ys,z‘}flﬁ
in which the data samples are generated in a statistically
independent fashion.

Step 4—Incorporating synthetic and training data in
a learning-based classifier: The synthetic data generated
in Step 3, besides retaining essential information about the
underlying physics-based statistical models, enables us to
utilize the discriminative power of learning-based classifiers.
However, the errors introduced during the labeling and the
parameter estimation steps that precede the synthetic data
generation process incur a mismatch between the distributions
corresponding to the training and synthetic datasets. This
mismatch is bound to deteriorate the performance of a classifier
trained on the synthetic data alone, when utilized in a real-world
setting. Then the question is how a learning-based classifier
can be trained to alleviate this problem. For example, in the
fine-tuning approach [4], a NN-based classifier will be trained
on the synthetic data first, and then, training data are used
to refine the weights of the corresponding NN. However, we
conjecture that such learning strategies that utilize the training
and synthetic data in the separate stages of training are not the
best solution here; rather, synthetic and training data should
jointly be incorporated in a learning-based classifier. To this
end, inspired by the works in the domain-adaptation literature
and specifically feature space mapping [14], we propose to map
the synthetic and training data through a data-driven function
My : X — Z, which is parameterized by a real vector 1), into
a common feature space Z. Consequently, a classifier hg, (z),
parameterized by ¢, which is trained on the synthetic data
within the space Z is expected to perform well on both training
and synthetic data. To this end, we choose M,y and hg, to
be NNs, which are powerful tools for finding discriminative
features from a given dataset. We discuss this step in detail in
the following subsection.

HYPHYLEARN: We now present our final solution as an
algorithmic framework composed of the aforementioned four

steps. In a nutshell, HYPHYLEARN generates synthetic data
based on the physics-based parametric statistical models and
utilizes them along with the available data in a learning-based
classifier powered from the adversarial training of the NNs
(see the following subsection). In order to train the NNs based
on their specific loss functions, described in the following
subsection, we utilize the stochastic gradient descent method
[39] along with mini-batches consisting of random samples
from the training and synthetic datasets in an iterative manner.
The details of the whole process is presented in Algorithm 1.

Algorithm 1: HYPHYLEARN
t Input: Parametric models p;(x;0;) (i =0,...,C — 1);
Training dataset D, = {X,,, })7; learning rates jir,, firy,
453 Number of training steps N¢-; Mini-batch size
Ny, < N,; Number of synthetic data samples N to be
generated
2 Output: The mapping My (-) and the classifier hg, (-),
parameterized by the real vectors v and ¢1, respectively
// Step 1 - Imperfect labeling
3 {Dyo,...,Drc—1} < Applying g(x) to unlabeled samples
// Step 2 - Parameter estimation
4 51 (*Ti(Dr,i), %z < % fOI'i:O,...,Cfl
// Step 3 - Forming a synthetic dataset
5 pi(x;0;) «Plug 6; in p;(x;6;) fori =0,...,C —1
6 for n =11t N, do
// Choosing a behavior

7 r ~ unif(0, 1), w = argmin, Zi.:ol T >
// Synthetic data generation

8 Xs,n’\’pw(x; ow)s Ys,n = W

9 Add {Xs,n,Ys,n} to Ds

10 end

// Step 4 - Training the learning-based

classifier

11 for ny =1 to Ny do

12 D,.p < Np random samples from D,., Dy <+ Ny

random samples from Dy
// Forward propagation via
13 Lo < Ls(1, 1|Dsp)
14 L.+ EC(¢7C‘DT,b7D87b)
// Backward propagation
15 Computing gradients: Gs ¢, < Vg, Ls, Gs,p < Vo Ls
16 Computing gradients: Gc ¢ <= Ve¢Le, Geyp ¢ Vo Le
// Update network parameters via (15)
17 Y =P — pry (gs,’di - gcﬂl’)’ b1 P1 — M7‘2gsy¢1’
C — C — Mrs gc,g

(12), (14)

18 end

A. Incorporating synthetic and training data in a learning-
based classifier for HYPHYLEARN

To elaborate further on Step 4, we first denote the dis-
tributions corresponding to the real and synthetic data as
P+ (x) = 31! mipi(x; 07) and pg(x) = i Fipi(x; 63),
respectively. We refer to pg-(x) and pg(x) as the true and
estimated distributions, respectively. For each distribution,
applying the mapping M. (-) to the input space X would
induce a distribution over the feature space Z. Specifically, we
denote the mapping of the true distribution pg+(x) to Z by
Dap,6+ (2), where z = My, (x), X ~ pg«(x). Assuming that X



and Z are topological spaces, for any 4 C Z the probability
of A in space Z is

P,A] 2 P [M Z i /

where the pre-image M, (.A) belongs to the Borel o-algebra
over X. Subsequently, the probability of error corresponding
to a classifier hg, (z), parameterized by a real vector ¢;, with
respect to the mapping of the true distribution to the Z space
is computed via

(x;07)dx, (3)

c-1
Poy.0+ (e, ] Zm/ py,0: (2)Lin, (z)2i}(2)dz,  (4)

=0
where the dependence of P on 7;’s is suppressed for notational
simplicity. Similarly, mapping of the estimated distribution
to the space Z is characterized by a distribution denoted by
D ¢’§(z). Furthermore, the probability of error for a classifier
he, (z) with respect to p,, 5(2z) can be computed similar to
(4), which we refer to as I, gleg].

Our main goal is to learn a map M, (-) and a classifier
he,(z) in a way that the probability of error of hge, (z) with
respect to the mapping of the true distribution to Z, i.e.,
Py 6+ [€g, ], is small. To this end, we repurpose theories from
the domain-adaptation literature in the following to obtain
an upper bound on Py, g+ [e4,], which leads to explicit loss
functions for the joint learning of M,, and he,(z) using
both the training and synthetic datasets. Specifically, it is
desired for the mapping My (-) from X to Z to transform
the true and estimated distributions in a way that py ¢-(2)
and p w’g(z), which are defined in the feature space Z, are
similar. Mathematically, this similarity should be measured
in terms of a distance metric. However, as there are only a
limited number of samples available from py ¢-(z), we need
to be able to approximate this distance from a finite number of
samples. We expand further on this idea by primarily focusing
on binary classification in this section, although the results are
extendable to the classification task in general. We begin with
the following distance definitions.

Definition 1. For a family of binary-valued functions He =
{h¢ : Z — {0,1}}, in which every member hy € Ha is
parameterized by a real vector ¢ € ®, and the set Ay =
{z|hg(z) = 1,2 € Z}, the Ag-distance between py, o+ (z) and
Py 5\2) is defined as

dag (Pw.6+(2), Dy, 5(2) =2 sup
hy€EHa

| oo @ -p, p()da
Ag

®))

Similarly’ for B¢17¢2 = {Z|h’¢'1(z) 7é h’¢2(z)7z € Z}’ the

Bo-distance refers to 3

A5, (py.o- (2),py 5(2)) =

2 sup
hd)l ,h¢2 EHap

[ ee@

¢1.92

- pqpﬁ(z))dz .

(6)

The Ag-distance is also referred to via other names like
A-distance and H-distance in [25], [40]. By looking at the

3Similar to the total variation distance, it can be readily verified that d Ap
and dp,, are also distance metrics.

following extreme choices of He, these distances are clearly
a function of richness of the class H4. For a very restrictive
choice of only constant functions, i.e., Ho = {h¢|he(z) =

0,Vz} U{he|he(z) = 1,Vz}, da, is always zero as the only
p0551ble choice for Ay is either the empty set or Z. On the
other hand, for He = {hglhe(z) = 0 or he(z) = 1,Vz},
which represents all the binary functions, d 4, is identical to
definition of the total variation distance [41] as the sup in
(5) will effectively be over the o-algebra of subsets of the
Z space. This dependence of d 4, on the underlying family
of functions makes it possible to obtain an expression for
the Ag-distance based on the finite set of samples from each

distribution. Specifically, consider two sets Zy o= = {Z,; 7,
and Z, 5= = {2z}, sampled from the distributions p ¢- (2)
and p,, 9( z) in an i.i.d. fashion, respectively. In this case, for

a famlly He that satisfies the condition that if hy € He then
1—hy € Ha, the Agp-distance can be approximated from
Zy 9+ and Z g using [40]

dag (Z¢,9*73¢,5) =

1 & 1 &
2 (1 — (E ; Lingarn=0y T 3 ; :H'{hd)(zs,i):l})) :
)

As the bound on Py g+ [e4,] should be obtained based on
a finite number of training and synthetic samples, it is then
of interest to see how far d 4, is from d4,. To answer this
question, one needs to rely on a measure of complexity for
a given class of functions such as the VC dimension [38]
and Rademacher complexity [42]. As we have chosen the
mapping function My, (x) and the classifier hg, (z) to be NN,
we present the results based on the Rademacher complexity
defined as follows, which can be computed for certain classes
of neural networks in a closed-form fashion [42].

Definition 2. Let 2, = {z;}}Y, be a set of i.id. samples
drawn from a distribution p(z) that is supported on Z. For
Ha, a family of real-valued functions over Z, the empirical
Rademacher complexity of He, given a dataset Z,, is defined
as

where the expectation is over all the o;’s, each taking a binary
value with equal probability.

Lemma 2 ( [42]). Consider a family of functions He =
{h¢ : Z — {0,1}} and a distribution p(z) over Z. For a set
Zy = {2z}, of N i.i.d. samples from p(z) and any 0 < § < 1,
the following holds Vh¢, € He with probability at least 1 — 0:

L ST we)

©))

Now, the difference between d 4, and d A, can be bounded
in terms of the complexity of the underlying family of functions
and the number of available samples as stated in the following
lemma.

]Ezwp (z) h¢' + 2Rz, (He) +

Lemma 3. Let Zy g+ = {2,;}1\", and Zy6 = {25}, be
sets of i.i.d. samples corresponding to the distributions py, g+ ()



and Py 9( z) on the space Z, respectively. Then, for any 0 <

I<1 and a family of functions He = {he : Z — {0,1}},
we have

dag (Py,0%(2), 0y 5(2)) < dag(Zy0%, 2, 5) + 2Rz, o (He)

+2Rz, ;(Hs) + 3\/(log 2/5) /2N, + 3+/(log 2/6) /2N,
(10)

with probability at least 1 — 6.
Proof. See Appendix A. O

The above lemma enables us to bound the Ag distance
between two distributions in terms of the collected samples
from each. Equipped with this result, we are able to bound the
probability of error Py, g+ [eg,] via the following theorem.

Theorem 1. Assume that the training and synthetic datasets
are mapped into the feature space Z through the mapping
function My (x), with the resulting samples denoted by

Zyp o = {zm}f\;"l and Z¢.§
Py 0+ [e¢,], Yhe, € Ha is bounded by

Py,0%[ee,] < Py, 5les]

s, (Ha) + g«/(log 2/5)/2N, + g\/aogz/a)/zz\g). (11)
Proof. See Appendix B. O

The above theorem bounds the probability of error with
respect to po o+ (z) associated with a classifier hg, (z) in terms
of the quantities that do not depend on the the unknown true
parameters 8*. As our primary goal is to make Py, g+[eg, ]
as small as possible, the mapping function M, (x) and the
classifier hg, (z) should be chosen in a way to minimize the
above upper bound. We note that the complexity related terms
in the above bound are fixed for a chosen family of the functions
and the bound is primarily controlled by the first two terms. In
other words, My, (x) and he, (z) should be chosen such that the
probability of classification error with respect to the mapping

of the estimated distribution in the Z space, i.e., P, 5leq, ],

and the approximated .As-distance between the synthetic and
training datasets are minimized simultaneously. To achieve
this goal, we restrict ourselves to My (x) and he,(z) that
correspond to NNs that are trained to minimize a loss function

in accordance with the first two terms of the above bound.

One can efficiently solve the resulting optimization problem
via the stochastic gradient descent method as described in the
following.

Joint learning of the feature map and the classifier: In
terms of specifics, we assume My, (x) and he, (z) belong to
the class of feed-forward (deep) NNs whose parameters, i.e., 1)

and ¢, correspond to the weights and biases of each network.

The input and output layers of the NNs corresponding to My,
have n, and n, number of neurons, respectively, which denote
the dimensions of the spaces A and Z, respectively. We note
that n, is chosen according to the length of the observation
vector as part of the problem formulation, while n, can be

picked as a hyper-parameter to facilitate the training process.

Subsequently, the input layer of hg, has n, neurons while
its output layer contains C neurons whose activation function

= {Zs,i}ﬁ\,:sly respectively. Then,
for any 0 < § < 1 and a family of functions He : Z — {0, 1},

1~
+ §qu, (2,07, 24 5) + Rz, o (Ha)+

is chosen to be the softmax function o (z) for which the ith

o=l . )
element is given by W' In this way, the ith component

z

of the Vector yap ¢, x = h¢1 (My(x)) denotes the probability
that the classifier assigns to the input x that it belongs to the
ith class for ¢ = 0,...,C — 1. Consequently, the averaged
cross-entropy loss, minimizing of which leads to minimizing
the classification error associated with hg,, over the synthetic
dataset Dy equals

Ls(, d1]Ds) n] 108 Yo,y x.., (1], (12)

L3S

I‘Sn 14i=1

where 1 ,, = ec(y&n) denotes the one-hot encoded version of
the label y, ,, corresponding to the nth sample. Regrading the
computation of d A, between the two sets Zy, g« and Z .6 it
is suggested by the authors in [25], [40] that the classification
accuracy corresponding to a classifier trained to distinguish
between the samples from the two sets can be used as a
surrogate for the inf part in (7) that can be readily computed
during the learning process. To train such classifier, we consider
a NN d¢ with n, input neurons and 2 output neurons with
softmax activation function, which is trained to distinguish
between Zy ¢+ and Z, 5 labeled as 0 and 1, respectively.

Consequently, by defining a two-dimensional vector dq ¢ x =
de (My(x)), the d4, term can be approximated by the cross-
entropy loss associated with d¢ as follows:

La(¥,¢|Ds, Dy) = 2(1 —2Lc(4,¢|Ds, Dr)),

Le(3,¢|Ds, D;) ZIOgdd;cxM [1]+

N

1
- > logdycx. . [2). (14)

n=1

(13)

Now, using Theorem 1 the training goal for the constituent
NNs is set to simultaneously minimize the classification error
corresponding to the synthetic data and the distance between
the real and synthetic data, both measured in the mapped space
Z. Specifically, the NNs M, and hg, should be trained to
minimize the sum of the losses in (12) and (13), while the
classifier d¢ is trained to minimize (14). As My, is trained to
maximize L.(v,¢) despite d¢’s goal to minimize L.(1p, (),
the learning process involves adversarial training between these
two NNs. Based on the approach taken in [25] for adversarial
training in the context of domain adaptation, we train the above
three NN for finding the saddle points 1, (;51 and C such that

d’a(bl = alfglinﬁt(qba(ﬁladpsapr)v (15)
(= argmin ~L(1, d1,¢|Ds., D,),

Et(d"7 ¢17 C|D87 Dr) = Es("l"? ¢1‘Ds) + Ed(¢7 C|D5a Dr)a
(17)

(16)

which can be achieved by utilizing the stochastic gradient
descent algorithm for each minimization task. To this end, the
minimization is performed over the NN’s parameters, 1, ¢
and ¢, that are real vectors whose dimensions are determined
by the architecture of each network.



B. An illustrative example: The case of two-dimensional
Gaussian data

Next, we show how the learning-based classifier in Sec-
tion ITI-A performs on simple training and synthetic datasets in
an illustrative manner. To this end, we consider a toy example
where the true and estimated distributions are a mixture of
two bivariate Gaussian distributions with full-rank covariance
matrix each. In particular, we focus on the problem of binary
classification where the distribution for the ith class is denoted
by pi(x;07) = N(p;, X) fori = 0,1, p; € R?¥1, B € R2%2,
and equal priors. In order to investigate the effect of mismatch
between only mean parameters, the corresponding estimated
distributions are assumed to have the same covariance but
different means, i.e., p;(x;0;) = N (;, %) for i = 0,1 and
equal priors. For two multivariate Gaussian distributions, the
authors in [41] have proposed a bound for the corresponding
total variation as part of the following theorem.

Theorem 2 ( [41]). Consider two d-dimensional Gaussian
distributions N (p1,%1) and N (2, X92) where py # po
and ¥, and X4 are positive definite. Let v = p1 — po and
IT be a d x (d — 1) matrix whose columns form a basis
for the subspace orthogonal to v. Denote the eigenvalues of
(T I TSI 14 by p1,. .., pa_1. Then, the total
variation between the two distribution can be bounded as

L < TV(N(IJJ’ 21)7'/\[(”2722))
200 — min(1, V)

def v (21 -32)v| viv d—1 9
where V = max{ VISV ATey Dim1 P (-

We note that a bound on total variation would also bound the
Ag distance following the discussion after Definition 1. Using
the above result, we can boAund the total variation distance
between p;(x; 0;) and p;(x; ;) as follows, which will provide
useful insights in the remainder of this section about the
learning process described in Section III-A.

9
<5 (18)

Corollary 1. For two Gaussian distributions N (po, X) and
N (o, X) with the same positive definite covariance matrix 3,
the corresponding total variation is bounded from the above

(po—B0)T (ro—fio)

"V (i—B0) T (po—fio) /

Regarding the specific architecture for the NNs utilized
in Section III-A, let us now choose the mapping func-
tion My to be My(x) = Wy, oWy, 1x parameterized by
P = {Wy1 € RO Wy, € R} In particular,
we have set the dimension of the space Z to n, = 2
in order to be able to readily visualize it within the 2D
coordinate system. For each hg, and d¢, we choose a two-
layer NN with softmax activation function. Specifically, for
he, we have he, (My(x)) = softmax(Vg, 2(Ve,,1 My (x) +
bg, 1) + bg,2) where ¢1 = {Vg, 1 € R by 1 €
R? Vg, o € R0 b, 5, € R?}. Similarly, d¢ is chosen
to be d¢ (My(x)) = softmax (Ug, 2(Ugp, 1 My(x) +bg, 1)+
b¢172) for C = {U¢171 S R20X2,b¢1,1 S R207U¢1’2 S
R?¥20 by, o € R?}. Training of these NNs involves finding
the saddle points of (15) based on the available training and
synthetic datasets which would lead to the learning-based

by % min (1

classifier hg,. We note that the above simple choice of the
mapping function maps p;(x;60;), ¢ = 0, 1 to Gaussian
distributions in the Z space which allows us to utilize Corollary
1 for analyzing the total variation distance between these
mappings in the following.

We now resort to numerical results for further illustration of
this example. To this end, we set po = [2.9,4.4], u1 = [5,6.4],

~ ~ 0.15 0.11
fo = [2,3], = [4,5] and 3 = 151

generate n,, = 40 samples from the true distribution, while
ns = 2000 samples are generated from the estimated distribu-
tion. The Figs. 2a and 2b depict the samples from the true and
estimated distributions and their mapping through the function
My, into the Z space, respectively. Furthermore, the positions
of the means corresponding to the samples from the real and
estimated distributions in both space X and Z are illustrated in
Fig. 2c. An important observation in relation to the Corollary
1 can be made by noting that the total variation between

N (i, X) and N (f1;, X) is bounded by the term HvH\/ezTieT”

where v = pu; — p; and e, = v/||v||. Assuming \; and
Ao are eigenvalues of 3 with corresponding eigenvectors u;
and uy such that A\; > Ao, it is straightforward to show that
the maximal value of el e, = \;(ule,) + \y(ule,) is
2w {0 be

. Also, we

achieved when e, L us. Therefore, for ||v]| —
el'Se,

minimized e, ought to be in the same direction of u; while
||v|| become minimum. Notably, Figs. 2b and 2¢ highlight the
fact that finding the saddle points in (15) in part corresponds
to mapping the datasets to a feature space Z that satisfy both
these two criteria.

IV. CASE STUDY I: DETECTION OF CHANNEL-BASED
SPOOFING FOR PHYSICAL LAYER SECURITY

We now present the first case study concerning channel
spoofing detection, which arises in a wireless communication
environment where a legitimate transmitter (Alice) is trans-
mitting signals to a legitimate receiver (Bob) in the presence
of an adversary (Eve). Eve aims at spoofing the Alice-Bob’s
channel by using Alice’s MAC address [7], [9]. Bob’s goal, in
this setting, is to distinguish between the signals coming from
Alice and Eve based on the corresponding channel frequency
responses (CFRs)

A. System model

We envision the communication parties in a 5G propagation
setting relying on MIMO-OFDM wideband communications,
where the number of antennas are set to Ny, and Ny, at the
transmitter (Tx) and the receiver (Rx), respectively. We assume
Bob measures and stores CFR samples corresponding to a
transmitting terminal (either Alice or Eve) at M tones, across
an overall system bandwidth of W. We consider a generalized
time-varying channel model for a transmitting terminal, where
each measured CFR sample is made up of three components: 1)
specular paths (h), 2) time-varying part d,,, and 3) noise n, all
of which are complex vectors of size M x 1. The specular paths
model the dominant portion of the channel, which remains
unchanged within a coherence time. The time-varying part
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Fig. 2: Visualization of the true and estimated distributions and their mappings to the space Z for the case of 2D Gaussian datasets.

models the dense multipath components, which accounts for
the diffuse scattering between two transceivers. Finally, the
noise part models the measurement noise. The measured CFR
at Bob at time t = uT" for a sampling interval 7" and u € N is
denoted by h,,, which is a M x 1 vector such that
h, =h+d,+n. (19)
We first introduce the dominant paths model suitable for
MIMO-OFDM communications under a frequency-dependent
array response [43]. For this scenario, the Ng, X N, channel
matrix associated with the nth subcarrier (n = 1,..., Ny) is
expressed as
H[n] = Ar[n|T[n]A%[n], (20)
where Ny denotes the total number of subcarriers. In this way,
the size of the vector h, equals M = Ny x Npy X Npy.
We further denote the subcarrier width and carrier frequency
with Af and fy, respectively. Here, the antenna steering and
response vectors are, respectively, defined as

Ar[n] = arn(¥10), .-, ar,(Yr,x—1)] and

AR[n] = [aRx,7L(¢R,0)7 s aaR,n(¢Rx,K—1)]7

2y
(22)

where K is the total number of dominant paths. Also, 11
and g denote the azimuth angles corresponding to the
transmit and receive sides for the kth path. The structure of the
frequency-dependent antenna steering and response vectors
ap (Y1 xk—1) and ag,(¢Yr x—1) depends on the specific
array structure. For the case of a uniform linear array (ULA),
which we consider in this work, we have

1
NTI

ar (Prg) = ——[e T TE VTR TV (23)

where Y = i—fdsin(@Tm,k), An = ¢(NT + f.)/n denotes
the signal bandwidth at the nth subcarrier, c is the speed of

light, and d refers to the distance between two antenna elements.

Similarly, apyn(¢¥rsk) can be defined for the receiver’s
antennas. The path gain matrix is obtained by

F[TL] =V NRZNTJC

diag{poe—jQﬂ'n‘ro/(NTS)7 o 7pK_1e—j27rn‘rK_1/(NTs) ,
(24)

where py and 7j, denote the complex channel gain and delay
associated with the kth path, while T is the sampling interval.
Then, h is defined as concatenation of the vectorized version
of Hn| for all the subcarriers n = 1,..., Ny, ie.,
h = [vec{H[1]}7,...,vec{H[N]}7]", (25)
where vec{-} denotes the column-wise vectorization operator.
We denote the parameters associated with the specular paths
contribution, H, which remain constant during a coherence
time 7, corresponding to the coherence bandwidth B, via a
4K x 1 vector 8, defined as
esp = W’T,%{’RJ,P]T, (26)
where ¥ = [Yr0,...,%1 K1}, YR = [YR0, -
T=1[m0,...,7k-1] and p = [po,. .., pr—1].

For modeling the variable part of the channel we first assume
that the wide-sense stationary uncorrelated scattering (WSSUS)
assumption holds, and then use a multipath tapped delay
line, h(t,7) = lL:_Ol A;(£)6(T — IAT), to model the impulse
response at time ¢ between any pair of transmit and receive
antennas. Here, A;(¢) and A7 = 1/W denote the (complex)
amplitude of the [th virtual path* and the delay between two
consecutive paths, respectively. Sampling the impulse response
at time ¢ = uT, followed by taking the Fourier transform with

VR K-1]s

4We note that the diffuse spectrum contribution arises from superposition
of infinite number of diffuse paths. We use the term virtual path to account
for superposition of large number of diffuse paths with similar physical layer
characteristics.



respect to 7 would result in a vector q,, whose nth element is
denoted by

qu(n] = f{h(UT77)}|f:fo—W/2+nAf =
L—1
3 Ao 2o mW/HRADIW 1y —

=0

., Ny, (27)
where A,,; denotes the /th channel gain at time u7’, respectively.
Following the exponential decay model, which holds for the
power delay profile of q,, based on various experimental obser-
vations [7], we model A, ; to be a zero-mean Gaussian random
variable with variance Var(4,, ;) = a?(1—e~2™%)e=278! Here,
a? and (3 denotes the average power of A, ; over all taps and
the normalized coherence bandwidth, i.e, B./W, respectively.
The distribution of q,, is given in the following lemma.

Lemma 4. The vector q, has a multivariate Gaussian
distribution CN(0,Rq) with a Toeplitz covarinace matrix
Rq = toep(vq,vll) assuming

A 1 1
Vg = 5(070)7’%(0’7)a-~-7"£(0a1_7>7 (28)
q [ q q Nf q Nf }
here n(Oqn) 2 ST g,
[@?, B3, L].
Proof. See Appendix C. O

Next, the contribution of measurement noise n is modelled
with a zero-mean complex multivariate Gaussian random
variable as n ~ CA(0,0%I) where o2 denotes the variance
of the noise. We then follow the Kronecker model to obtain
the covariance matrix of the CFR (19), which holds when
the diffuse spectrum contribution in the angular domains is
independent from that in the frequency domain [11], [44].
Under the Kronecker model, the covariance matrix of the CFR
can be decomposed as R = Iy, ® In; ® Rqn where
) and vgn = vg + [02,0,...,0]
Therefore, the distribution of the CFR in (19) within the
above model can be given as h, ~ CA/(h,R). We denote
the parameters associated with the covariance matrix by
0., = [a,p,L,o], which corresponds to the variable part
of the CFR and noise. As mentioned earlier, the mean h solely
depends on the specular paths parameters 6.

— H
Ryn = toep(vgn,V

B. Channel spoofing detection problem

Channel-based spoofing detection [7], [9] is generally studied
in the “snapshot” scenario where Bob receives a new message
claiming to be sent by Alice, and one needs to check whether
the claim is true. To this end, we assume that Bob is able to
measure and store a noisy version of the CFR corresponding
to a transmitting terminal (Alice or Eve). Based on the CFRs
associated with the incoming messages, and given a reference
message hf from Alice at time ¢t = uT,> the goal in this
scenario is to determine whether a message at time ¢t = (u+1)T
belongs to Alice or Eve. In this setup, we use the terms message
and CFR interchangeably. One can pose the spoofing detection

SIn the remainder of this section, we use A or E in the superscript of a
vector or a scalar to indicate that it corresponds to Alice or Eve, respectively.

problem as a binary classification problem for which two
hypotheses can be stated

Ho :hyyr =hi ),
Hi:h, =h% .

(29)
(30)

Under the null hypothesis, H, the message at time ¢ = (u +
1)T belongs to Alice, while under the alternative hypothesis,
‘H1, a spoofing attack has occurred, i.e., the message belongs
to Eve.

From a statistical perspective, likelihood ratio test (LRT) is
the main approach for deciding between the two hypotheses,
which relies on knowledge of the unknown channel parameters.
The likelihood ratio test at time ¢ = (u + 1)7T for the snapshot
scenario is given by

p(hys1 —hi[Ho) & ¢
p(hutr —hiHy) 5

L(hy41/hy) = (31)

for a predefined threshold (, where the conditional probability
distribution of h, 1 — hf [7] serves as the likelihood function
under each behavior. In the following, we obtain closed-form
expressions for these likelihood functions assuming q;,; and
qf 1 are the statistical dependence on q2. Specifically, we
consider a case where the dependence of qfﬂ on q2 is
characterized through channel gains of the corresponding virtual
paths in terms of an order-1 auto-regressive (AR-1) model [7],
ie.,

Af+1,z = GAAZ‘,I + \/(1 - (aA)Q)VaI(AfH,l)wuH,l (32)

where a* denotes the similarity parameter between A“ 1, and
A;j‘_’l, and wy 41, ~ CN(0,1) is independent of A, ;. Similarly,
gains of the /th virtual path corresponding to g 1 and q?
are related to each other according to an AR-1 model with

similarity parameter a”.

The likelihood functions associated with the above LRT
depend on the unknown channel parameters that needs to be
estimated from finite number of training CFRs. These training
data are collected by Bob during finite number of snapshots
within a coherence time. In order to label a training data h, 1
at time ¢ = (u+ 1)T in the snapshot setting, we use a heuristic
(and error prone) method given by

Az 2
[hyt1 —hy "= 7.
Ho

(33)

which does not rely on the unknown channel parameters. As
noted in [9], the threshold n can be chosen such that the
resulting false alarm probability is below a predefined target
value, e.g., 0.1. This method can be viewed as an imperfect
labeling mechanism that decides in favor of H if the Euclidean
distance between an incoming CFR and the reference CFR is
smaller than a predefined threshold 7.



Lemma 5. Under the null hypothesis, p(qu1 — q2|Ho) =
CN(O, Rq,HD) for

R, 1, = toep(vyy,, Vﬁo), (34)
A 1
Vi, = [2(1—a™)k(64,0),2(1 — a*)k(65, NT)7 e
Nf—1
a A f
12(1 — a®)k (62, v )}, (35)
where 93 2 [a?, B4, LA] and the & function is defined in
Lemma 4.

Proof. This can be proved in a similar fashion to Lemma 4.
See Appendix D of the long version of the current paper [1]
for details. O

Lemma 6. Under the alternative hypothesis, p(Qui1 —
qul) = CN(O7 Ranl) for

Rq, = toep(vy, . vi,), (36)
1
vi, 2[5 (a”,02,62,0), ' (a”, 62,67, Ff)’ o
Ny—1
K (a®, 02,08, ! ],

aar TN,
(37)
K (a®, 9&4, 05, m) 2 /@(95, m) — ZaEli(@g‘,m) + H(Gé,m),
(38)

where 0;14 2 [ad, B4, LA, 0 2 [« BE LF), and the x
function is defined in Lemma 4.

Proof. See Appendix E of the long version of the paper [1]. [

The above two lemmas enable us to obtain the likelihood
functions for (31), both of which are given by a Gaussian
distribution. Regarding the null hypothesis Hg, using the
Kronecker model for the covariance matrix [11], we obtain
the covariance matrix of h,y; — h? as Ry, = Iy, ®

In,, @R w, +2(04)?1y, where Ry 34, is given in Lemma 5.

Furthermore, the contribution of the specular paths to the CFRs
remains the same (HA) between two consecutive times within
a coherence time. Therefore, under H the likelihood function
is CN'(0, Ry, ). Similarly, for the alternate hypothesis 1, the
likelihood function can be obtained as CA'(h" — n’, Ry, ),
where R’H1 = INR;» X INT:L- ® Rq,')"h + (O'A)2IM + (O’E)2IM
and Ry 7, is given in Lemma 6.

C. Parameter estimation

In order to employ the likelihood ratio test in (31) or generate
synthetic data for utilizing the HYPHYLEARN algorithm, Bob
requires knowledge of the parameters 8y, 6,,,, corresponding to
the Alice-Bob and Eve—Bob channels as well as the similarity
parameters. These parameters need to be estimated based on
the training data collected from finite number of snapshots.
We denote the training CFRs associated with Alice and Eve
by Da = {xA}¥4 and Dy = {x} V=, respectively. Recall
from Lemma 4 that entries of these datasets follow Gaussian
distribution of the from CA (hg_,,Re,,) where the subscripts
in the mean and covariance are used to signify the dependence

on a set of parameter. Based on the available likelihood function,
we describe how the parameters 85, 6, associated with the
Alice-Bob and Eve-Bob channels can be estimated from D4
and Dg, respectively, in Section IV-C1. We further consider
training datasets corresponding to the difference between an
incoming CFR and the reference CFR from the observed
snapshots. We denote the datasets consisting of the difference
of the CFRs by Daa = {x*}N4 and Dpa = {xF4}NE for
Alice and Eve, respectively. The data samples in D44 and
DEg 4 follow the Gaussian distribution of the forms described in
Lemmas 5 and 6, respectively. Subsequently, these likelihood
functions are utilized to estimate the similarity parameters
given the estimates of 6, 8., as described in Section IV-C2.
1) Estimating the parameters O, and 6,,,: Here, we discuss
how the parameters 0;‘;, and @4 can be estimated for the Alice-
Bob channel. The same procedure also holds for estimatin
the parameters associated with the Eve-Bob channels, i.e., 6,

and OF . The ML estimates of these parameters for a sample
CFR h can be obtained via

nA
05p7

62, c argmax L (h|0;‘;, Roa ),

04 oA

sp'Zun
L:(hle-:;?aRG{M) =
~ Mnm—Indet Rgs — (h—hga ) "Ry (h—hoa),
o (39b)

(39a)

which amounts to jointly maximizing the arguments of a
nonlinear objective function. It can be proved that (39b) is not
a convex function of 0;‘;,, and as a result there is no unique
solution set for the optimization problem in (39a). In practice,
solving such a problem is far from trivial, especially since the
objective function is a non-linear function of large number of
parameters where multidimensional exhaustive search is not
feasible. As a workaround, the authors in [11], [44] propose
a suboptimal procedure to break the problem into two sub-
problems and estimate 039 and 4 via alternate maximization.
Each sub-problem involves numerically maximizing the objec-
tive function of the form (39b) with respect to 8, or 65, via
an iterative local optimization technique such as the Gauss—
Newton algorithm. In other words, the maximization processes
are done sequentially over the dataset D 4 and in an alternating
manner between the two sets of parameters till convergence is
achieved. In the following, we elaborate on each sub-problem
for the specific channel model we described earlier.

We first describe how one can obtain an estimate of 0;‘; that

maximizes (39b) for a given estimate of 7} . In the following,
we use the N-exponential basis function defined as

o3 (=252 ) vl o3 (- 252 ) vin)

(40)

=i (252) vin)

for a vector v of length V. The partial derivative of UY; with
respect to v is readily computed as DY, = 8((9{;1’\, = —j=2n5UY,
where 2 = diag([-(N—1)/2,...,(N—1)/2]). Furthermore,
we recall that for arbitrary matrices A € CV*F, B ¢
CMxP  QP*P = diag(q) and a vector q € CP*1, one can

write vec{BQAT} = (A ® B)q. Utilizing this result along




with the exponential basis function we can rewrite the specular
path contribution introduced in (25) for the CFR model as

h= (U} oUr oUY, ), 41)

which greatly simplifies the calculation of the first and second
derivatives of h with respect to GA Specifically, the Jacobian
matrix for the above model is obtamed via J(0,p) = Ty ©
Jyr ©J, ® J- where the Jacobian matrix’s components are
given by

Ty, = [D”’T ulr Ul ulr o ulr } . (42a)
J¢R = [U}ﬁg Dir  ulr  ulr Ux;} ., (42b)
- [U%, U%, D%, UL, U%,], (420)

J,, =[p r’ pt pt 1T 17j]. (42d)

The authors in [44] compute the first-order partial derivative,
do4, (h|R9A ), and the Fisher information matrix (FIM),

( »|Rea ), of the log likelihood function (39b), with respect
to the parameter 82 p for a given observation h, as the following

(44)
(45)

dos (h[Rgs ) = QR{JH(OQ))R;& (h—hea },

F(0:,Ros ) = 20{37(0:,)R,4 J(62,)}.

Based on the above computations, a local optimization tech-
nique is utilized in [44] to obtain an iterative rule for estimating
0;“]*0. For the experiments we present in Section VI, we employ
the Gauss—Newton algorithm as

05 =057+ ¢ F*l(eg‘,ﬂRew)q%i(h|R9m) (46)
for a step length ( that should be chosen such that
L(h]|03 Rea ) > L(h|64;", Rea ). By applying this
procedure to all the training CFRs in Dy, we obtain N4
estimates as {09p ;N4 whose average value is denoted by 0;‘}0
in the following.

After obtaining 9 , the maximization process alternates in
order to estimate 0‘4 To this end, first the contribution of the
specular paths from the CFRs in D4 is removed by subtracting
heA from each training data. Subsequently, these new data
entries are stacked up to form an M x N, matrix H which,
in the following, will be used in order to estimate 8 . We
first note that all the parameters in 7 are continuous values
except for the number of diffuse virtual paths L“ that takes on
integer values. As a result, the objective function in (39b) is not
continuous in L# and the partial derivative of (39b) does not

Ovgn

exist with respect to L“. In order to overcome this challenge,
we further take a sub-optimal approach and estimate L* in a
separate manner from the rest of the parameters in 82, . To this
end, we use an eigenvalue ratio method described in [45] that
estimates the number of harmonics present in a given set of
observations. Following this approach, we first obtain the MLE
of the covariance of H and denote it by Cyg. The eigenvalues
of Cy are further denoted b)/ e, i =1,...,M. Then, we

i

choose L in a way that # >, for a predeﬁned value

of 7 commonly chosen to be in the range [0.85,0.95].
We plug-in the estlmated value of L# in the parameter vector
to obtain 84 = [o4,a”, 34, L4]. Then, the log-likelihood

vn
function for the zero- mean CFRs can be written as

L(H|0},) = —MNalnm — NalndetRga — Tr (H'R,; H).

47

The first-order partial derivative of £(H|02,
each parameter can be computed as [44]

) with respect to

OL(H|0:) ORog,
don . = NaTr (Rod 5 52 HRB{}W (R-Rgy)) ©8)

for i = 1,2, 3. Subsequently, the (4, j)th element of the FIM
corresponding to L(H|0,,,) equals [44]

°L(H|67,)
00;,,1i1067,[1]

vn

4 002,
(49)

} — N, T (R— Oy,

| ORga
02 002 [i] )

_x[

To obtain explicit expressions for (48) and (49), one needs to
R

compute the partial derivative terms 501" Considering the

Toeplitz structure of the covariance model described in Lemma

4, we can write

a:R‘q,n(evn) - 8’/ n 6”(5

9624 [i] _toep(aeA[] aeAH) (50)
8R9A ORg, H(HA )
907 [i] ~ e @ N © Thea G OV

where the partial derivative for each parameter is obtained
in (43a)-(43c) for f(m) = e~27(F=i™) Plugging this in (48)
and (49) leads to computation of first-order partial derivative
and the FIM of the likelihood function. Then, an iterative
approach like the Gauss—Newton algorithm can be employed
for estimating 67}, in a similar fashion to the case of 6, in
(46). Afterwards, the maximization process further alternates

to estimate the parameters 03, ; using Om

o = [20,0,...,0], (43a)
_e—2mp _eL 1 _e—27B L__1
Wan _ o || —2erp O )(1-r4(3)) a )(1-rra-30) (43b)
da ’ 1-f(%7) ) ’
Ovan _ [QMQLG_%M 2me=270 (5 (1) -1)  2LasE () (e - 2mf () (FH () -1) (27—
op ’ f(%f)—l f(%f)—l (f(i)_l)Q ’
Ny
2re 278 (FL(1—L)—1 2Lrfl(1— L) (e 2P 1) 27rf(1——) rE (1—7) 1)(e 2P 1)
( Ny ) Ny . ( ) ] (43¢)

]
Fa-§-1

f(1—%f)—1

(ra-%-1)7



2) Estimating the similarity parameters: We now describe
how a* can be estimated based on the available dataset D44
and the likelihood function in Lemma 5. Similar approach
can be taken for estimating a” based on Dy 4 and Lemma
6. Assuming an M X Ny matrlx H 44 is formed out of the
dataset D4 4, the MLE of a4 given H 44 can be obtained via

~A
a’ € argmax
ad

(NA Indet Ry, — Tt (HZAR,QEHAA)). (52)

We note that the estimates of the parameters 05‘2, and 62
are plugged in Ry, which makes Ry, a function of only
a? in the above maximization problem. Specifically, as a*
appears in the covariance matrix of a Gaussian distribution, a
similar estimation procedure to that of 8, can be employed
here as well. In fact, the expressions for the first-order partial
derivative and the FIM of the likelihood function in this case
are similar to those in (48) and (49), respectively, except for
the fact that there is only one parameter to estimate in this
case. By considering the Toeplitz structure of the covariance
model described in Lemma 5, we can write

A H
P (G Gk) o
aRgTogaA) =1Ing, @In., ® aR#OA(aA), 54
where the partial derivative can be obtained as
O, 72[(01“)2(1 e - (0 ).
da# £(0)
(@h)2(1— e 2)(1 - (N%))
e f(N%»
(a*2(1 = e 21— 2 (1 - N%»] 55
i ) ’

for f(m) = e—27(B=im) Subsequently, using the first-order
partial derivative and the FIM of the likelihood function, the

Gauss—Newton algorithm can be employed to estimate a*.

D. HYPHYLEARN for channel spoofing detection

As an alternative to the likelihood ratio-based approach
of Section IV-B for channel spoofing detection problem, we
propose to utilize HYPHYLEARN algorithm, listed in Algorithm
1. This problem is an instance of the setting introduced in
Section II as the statistical parametric models are available
for each behavior, the high complexity of which makes one
to resort to suboptimal parameter estimation procedure. As
mentioned in Section IV-B the data corresponding to Alice
and Eve are collected in the snapshot setting, and subsequently
(imperfectly) labeled according to (33). Then, using these
collected CFRs, the underlying parameters of each likelihood
function in (31) are estimated. Next, the estimated parameters
are plugged in the available parametric models CN (0, Ry,)
and CN'(h n” - o ,Ry4,), which subsequently are used to
generate synthetic CFRs. Finally, the collected and synthetic
CFRs are incorporated in Step 4 of Algorithm 1 for the joint
learning of the classifier, utilized as a spoofing detector, and
the feature map. In Section VI, we present numerical results to
show the superiority of HYPHYLEARN compared to the other
existing methods through various experiments.

V. CASE STUDY II: MULTI-USER DETECTION

As the second case study, we consider the optimum cen-
tralized demodulation of the information sent simultaneously
by several users through a Gaussian multiple-access channel
which is an important problem in multipoint-to-point digital
communication networks (e.g., radio networks, local-area
networks, and uplink satellite channels). Even though the users
may not employ a protocol to coordinate their transmission
epochs, effective sharing of the channel is possible because
each user modulates a different signature signal waveform. In
this section, we consider the uplink of a cellular communication
system where K users are asynchronously sharing a channel
to communicate with a base station (BS). The problem of
multi-user detection (MUD) in this setting amounts to inferring
the information bit associated with each user from a received
signals in the multiple access channel.

A. Multi-user detection problem

Consider the uplink of an asynchronous direct-sequence (DS)
Code Division Multiple Access (CDMA) system shared by
K users, employing long spreading codes, bandlimited chip
pulses and operating over a frequency-selective fading channel.
Baseband equivalent of the received signal may be written as

P—-1K-1

) PEAT

p=0 k=0

Skp t—'Tk _pr) *Ck( )+w(t)7 (56)

where * denotes the convolution operation, P is the number of
transmitted packets and S;c,p (t) denotes the kth user signature
waveform. Furthermore, 7T} is the bit-interval duration, Ay
and 74 denote the respective complex amplitude and timing
offset of kth user, and by (p) is the kth user’s information bit
in the pth signaling interval, whereas w(t) is the complex
envelope of the additive noise term, which is assumed to be
a zero-mean, wide-sense stationary complex white Gaussian
process. Moreover, ¢ (t) is the impulse response modeling
the channel effects between the BS and the kth user. We
assume the channel impulse response (CIR), ¢ (t), takes the
form of a time-invariant multipath channel with L paths, i.e.,
ex(t) = Zf;ol a,10(t — 74 ;), which is parameterized by the
complex path gains «ay,,; and the corresponding path delays
7;.;- Note that ¢ (t) is assumed to be time-invariant over
each transmitted frame under the assumption that the channel
coherence time exceeds the packet duration PT;. Regarding
the kth user signature waveform, we have

N-—1
> B hsrre(t—nT.),  (57)

n=0

Spp(t — e — pT) =

where { 61572 712/:—01 is the pseudo-noise (PN) code employed by
user k for spreading its data bit on the pth symbol interval,
N is the processing gain, and T, = T, /N is the chip interval.
Furthermore, hsrrc(t) denotes the square root raised-cosine
waveform as the bandlimited chip pulse which is, following
[46], time-limited to [0,4Tc|.

At the BS, chip-matched filtering and chip-rate sampling is
done in order to convert the received signal to discrete time
domain. To this end, r(t) is convolved with chip-matched filter



hsrrc (4T, —t) followed by sampling at a rate 2/7T, (Nyquist
rate). This results in

y(t) =r(t) * hsrre (4T, — 1)
P-1K-1
=Y b p(t —pTi, i) +0(t),  (58)
p=0 k=0

where hy, ,(t, i) = AgSkp(t—7k)*cx(£) is called the effective
signature waveform for sy, ,,(t) = ij 01 ﬁk”)th(t —nT.),
and hpc(t) represents a raised cosine chip Waveform time-
limited to [0,8Tc). As hy ,(t — pTy, 7x) has a time-domain
support of [pTy, (p+2)T,+7T,] during the pth symbol interval
Z, = [pTy, (p+ 1)T}], the contribution from at most three bits
for each user, i.e., the pth, the (p — 1)th and the (p — 2)th ones,
is relevant assuming that 7, + T,,, < Ty, where T},, stands for
the maximum delay spread among all the K users. Therefore,
sampling the waveform y(t) at rate M /T, the MN-dimensional
vector y(p) collecting the data samples of the interval Z, can
be expressed as

(P) = > [br(p — 2w p—2(p) + bi(p — Dhip—1(p)

+ bi(p)hkp(p)] + n(p), (59)

where hy ,_;(p) and n(p) comprise the M N samples of
higp—i(t — (p — 9)Tp, 7)., ¢ € {0,1,2}, and n(t), respec-
tively, during Z,,. We set M = 2 in the following discus-
sion. A compact representation of y(p) can be obtained
by relying on the notion of effective chip pulse defined
as gx(t,7x) = Aghrc(t — Tk)*ck(t), which is supported
on the interval [0,7}, + 8T.]. Noting that hg,(¢,7%) =
ol B gi(t —nTe, i), and defining gj, € CMN+8M—1x1
as gr = |gr(Te/M,7), gx(2Te/M, %), - ., g (T + (8M —
HT./M, Tk)]T, one can write hy,_;(p) = Cip—i(p)8k.
where Cg,—;(p) is a MN x (MN + 8M — 1) dimensional
matrix that is a function of ﬁ,’j’p, obtained in details in (9)—(11)
of [46]. Then, we have

-3 a0

for Ay(p) = bi(p — 2)Crp—2(p) + be(p — 1)Cpp-1(p) +
bk(p)Crp(p), Alp) = [Ao(p),...,Ax-1(p)], and g =
gl,..., gk |]*. The elements of the noise vector, n(p), are
independent and identically distributed (i.i.d.) as a zero-mean
Gaussian with a variance Ny /2, which lead to a signal to noise
ratio (SNR) of A% /N, for the kth user.

It follows from this discussion that the MUD problem can
be cast as 2/ -ary classification problem where the goal is to
find the vector of information bits b = [bo(p),...,bx—1(p)]
given an observation vector y(p). Assuming all the vectors
b € {0, 1}¥ are a priori equiprobable the minimum distance
rule gives the maximum a posteriori decision [47]. Mathe-
matically, the MUD is equivalent to solving the minimization

. K-1
problem argming,e o135 ¥(p) — d_p—g Ax(p)gk. However,
the complexity of such detector is exponential in the number of
users [47] and in practice sub-optimal methods like minimum
mean square error (MMSE) detector [47] are utilized in practice.
We consider a case where the BS has access to Nx number of
training data from the users in the form of D = {y;, Z}z %

A(p)g +n(p),  (60)

)8k +1n(p) =

where y; has the form of (60) and b; denotes the corresponding
information bits vector. We further assume that BS does not
have access the perfect knowledge of the true spreading codes
from all the users in a similar scenario to blind MUD [48].

B. Parameter estimation

The performance of the above MUD algorithms relies heavily
on the estimation of the channel parameters. It is shown in
[49] the joint MLE of these parameters requires an exhaustive
search over the continuous K-dimensional space [0,7})%,
which imposes an exponentially increasing complexity in K
when the conventional grid search-based scheme is utilized. As
a workaround, alternative sub-optimal estimation methods of
low-complexity are proposed to be used for practical systems.
Notably, the authors in [46] propose a two-step approach
that first estimates the samples of effective chip pulse g
using the Least Squares (LS) criterion, and then extracts
the underlying channel parameters. In particular, given the
knowledge of the spreading codes and information bits for
all the users in the training dataset, the vector g may be
directly estimated by invoking the LS estimation procedure
g = argmin, . ||y — A(i)x||2. Relying on . the authors
in [46] propose an ad-hoc algorithm to estimate the channel
parameters. Specifically, the explicit parameters to be estimated
include delays 74, = T]/CJ + 71, amplitudes ay; = Ag|o,|
and the phases ¢y,; = arg(ay,;) for k =0,...,K — 1 and
l=0,...,L —1. We refer to the readers to Appendix F of
the long version of the current paper [1] for details of this
parameter estimation method.

C. HYPHYLEARN for multi-user detection

As an alternative to classical methods, we can utilize
HYPHYLEARN to solve the problem of MUD as a 2X-ary
classification problem. In particular, since we have access to
precise statistical parametric models for each class and we
lack access to an estimation procedure for the underlying
channel parameters that is both optimal and tractable, the
MUD can be framed within the setting described in Section II.
Indeed, we can use the available training data corresponding
to the users in the suboptimal estimation method described
in Section V-B to obtain the estimates of the channel

parameters for K users T = [T0,0,---,70,L—1s- - -» TK—1,L—1)»
aA = /\[ao’o,...,(Z(LLfl,...,aK,LK,ﬂ and ‘I) =
[60,05---s¢0.L-1,---sPK—1,L—1). Using these estimates

along with the imperfect knowledge of spreading codes for
the training data, we can then employ the parametric model
(60) to generate a synthetic data example associated with the
sequence of utilized information bits b. This synthetic data
sample is subsequently added to a synthetic dataset along with
its corresponding label b. Here, the learning-based classifier
in HYPHYLEARN has 2% output neurons, each corresponding
to a specific information bits vector, which enables it to to
serve as a MUD method for the K-user system.

VI

In this section, we numerically evaluate the performance
of our proposed solution, HYPHYLEARN, described in Al-
gorithm 1 for the two case studies described in Sections IV

NUMERICAL RESULTS



and V. This involves comparing the resulting performance
against that of the existing statistical classifiers and other hybrid
classification methods, and highlighting the superiority of our
proposed solution for the problems under study.

A. Spoofing detection problem

In the Alice-Eve-Bob setting, we begin with a scenario
where the coherence time of the Alice—Bob and the Eve—Bob
channel are very large, and therefore the corresponding channel
parameters are fixed between the training and testing stages.
As mentioned in Section I'V-B, the training data in this problem

are collected by observing finite number of snapshots by Bob.

The training CFRs from each snapshot are subsequently labeled
using the heuristic test (33). The number of received antennas
and transmit antennas at Alice and Bob is set to 2. Also,
following the discussion in [9] we assume Eve also uses the
same number of antennas to impersonate Alice. The number of
subcarriers is set to Ny = 20, which makes the total number of
samples associated with each CFR equal M = 80. We assume
the Alice-Bob parameters are 0% = 20, o = 200, 34 = 0.02
and a® = 0.85, while 0%, = 26, a% = 250, Bz = 0.08 and
a¥ = 0.65 are used for the Eve-Bob channel. Furthermore,
we set Ly = 20 and Lr = 16 as the number of diffuse
spectrum virtual paths, while the number of specular paths are
set to 4 for both channels in accordance with the experimental
measurements reported in [10].

Fig. 3 illustrates the spoofing detection performance of
different methods for the above scenario averaged over 10°
CFRs from each Alice-Bob and Eve-Bob channel at the test
stage, where the x-axis denotes the number of snapshots
observed during the training stage. In particular, we have
evaluated the performance of HYPHYLEARN for this problem,
as described in Section IV-D, and compared it with other
classifiers designed based on the likelihood ratio test with
plug-in estimates or existing ML algorithms. By looking at the
resulting spoofing detection accuracy, it can be seen that the
performance of the ML algorithms based on support vector
machine (SVM) and Gaussian mixture model (GMM) is limited
in this case due to limited (and mislabeled) training data. We
note that the GMM is used as a classifier here by assigning
labels to the clusters using the available labels corresponding to
the reference CFRs. Specifically, we have used the radial basis
function kernel [39] for the SVM and two components for the
GMM for these simulations. Furthermore, one can see that the
LRT method obtained in Section IV-B can improve upon the
performance of these ML algorithms by plugging the estimated
parameters, as in Section IV-C, in the statistical parametric
models. In these experiments, we also use the shrinkage method
[50] which improves the covariance matrix estimation for each
likelihood function. For this method, a performance gain can be
observed for this approach in comparison to the no shrinkage
case, assuming the shrinkage parameter « is clarivoyantly
chosen to maximize the spoofing detection accuracy over the
test dataset. This method is labeled as ‘LRT (best shrinkage)’ in
Fig. 3. However, in practice the parameter « has to be estimated
from the training data, which—as shown in the figure with label
‘LRT (shrinkage)’—could deteriorate the LRT performance as
the available data includes mislabeled samples.
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Fig. 3: Spoofing detection accuracy for different classification al-
gorithms as a number of available training data for the case when
training and test stage belong to the same coherence time.

Furthermore, we evaluate the performance of an existing
hybrid classification approach known as fine tuning [4], [26]
in DTL literature for this problem. In this method, we first
generate 5 x 10° synthetic data samples using the available
likelihood parametric functions with plugged-in estimates. Then,
a neural network with 3 hidden layers of 400 neurons each is
trained to classify the synthetic data for this example. The
training data are used afterwards to refine the weights of
this neural network. Notably, HYPHYLEARN is shown to
outperform the aforementioned existing classification methods
by relying on both available and synthetic data and jointly
using them in a learning-based classifier.

For the sake of comparison, we have also considered
a variation of HYPHYLEARN that relies on a generative
adversarial network (GAN) for generating synthetic data, i.e., it
disregards the available physic-based models. We have observed
that the performance of this approach is impacted in the limited
data regime as GANs rely merely on the available training data
for generating further synthetic data of similar distribution. In
fact, for this example, we have verified that HYPHYLEARN
based on GAN needs to be trained on 20000 data samples in
order to achieve the same level of spoofing detection accuracy
as HYPHYLEARN based on physics-based models with 4000
samples. Regrading the specifics of GAN, we have used a DNN
of two hidden layers with 200 neurons each as the generator,
and a DNN with three hidden layers with 300 neurons each as
the discriminator. In our implementation of HYPHYLEARN, the
number of generated synthetic data samples is set to 4 x 105.
We have also used NNs with 3 hidden layers of 400 neurons
each for My, and hg,, while a NN with one hidden layer
of 40 neurons each is used for d¢. For all hidden layers, the
ReLU activation function is used. Furthermore, Adam optimizer
[39] with a learning rate of 0.0001 is used for training in this
example. We also note that the optimal Bayes decision rule,
which relies on the knowledge of the true parameters, results
in the spoofing detection accuracy of 0.996.

Next, we consider a more realistic scenario where the
channels’ variations cause the training and test stage to not
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Fig. 4: Training and testing stages for the spoofing detection problem.
T&P and TEP denote the coherence time corresponding to the Alice-
Bob and Eve-Bob channels, respectively. The green bar indicates the
time interval within which a snapshot is observed by Bob.

fall in the same coherence time. In this case, Bob uses the
heuristic test (33) for some time as it does not have access
to the channel parameters in this period. Afterwards, it uses
the data collected in the previous coherence times to estimate
the channel parameters for the current one. Fig. 4 depicts
this setting where the training stage consists of n. coherence
times corresponding to the Alice-Bob channel. Furthermore,
in contrast to Alice, Eve’s transmissions are assumed to
be intermittent due to the uncertainty associated with Eve’s
behaviour. During each coherence time corresponding to the
Alice-Bob channel, it is assumed that Bob collects 100 training
data. Then, the estimation technique described in Section IV-C
is utilized to estimate the channel parameters under each
coherence time. Fig. 5 demonstrates the system performance as
a function of number of coherence times in the training stage.
Regarding the physical setup, we have used the same system
parameters as those in Fig. 3, and assumed that the coherence
time of the Alice-Bob channel is 4 times that of the Eve-Bob
channel for illustrative purpose. For DTL fine-tuning approach
and HYPHYLEARN, the number of synthetic data generated
for each behavior in a coherence time is set to 20000. For
these two learning-based approaches, the training specifications
for are chosen to be the same as the ones used in Fig. 3. The
performance comparison again highlights the superiority of
HYPHYLEARN in comparison to the existing statistical and
data-driven methods.

B. Multi-user detection problem

In this section we present results of numerical simulations
to investigate the effectiveness of HYPHYLEARN described in
Section V-C for the MUD problem. We choose the simulation
parameters based on the setting described in [46] and consider
a system with processing gain of N = 32 where the number
of users is either K = 3 or K = 5. Golden codes of length
32 are used by the BS as the pseudo-noise code in (57) and
the users’ amplitudes (Ay’s) are set to 2. In addition, a chip
interval of length 7. = 0.001 and a sampling rate of 2/T is
employed. A near-far ratio (NFR) of 10 dB is assumed, which
means the users’ amplitude are randomly unbalanced around
2 with a variance of £5 dB. The fading channel between the
users and the BS consists of 3 paths, which makes the total
number of unknown parameters in Section V-B to be 9K. We
further consider a setting where the BS might not have access
to the perfect knowledge of the pseudo-noise sequences for
all the users at the time of detection, which would lead to a
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Fig. 5: Spoofing detection accuracy for the case where Bob collects
training data during certain number of coherence times before
employing a classification algorithm.

mismatched situation. To account for this phenomenon, we
introduce a parameter p that in order to quantify the averaged
error in the pseudo-noise sequences at the BS while decoding.

As the performance metric, we consider the bit error rate
(BER) at the BS while decoding the users’ information bits,
which is of major interest in digital communication systems.
As the MUD algorithm we employ the minimum mean square
error (MMSE) decoder introduced in [51], which is shown to
outperform other existing detection methods including matched
filter receiver and box-constrained maximum likelihood detector
[46]. As mentioned in Section V, MUD can be also solved by a
classifier aiming at distinguishing between 2% different classes
each representing a unique decoded sequence of information
bits. In this case, BER is directly related to the classification
accuracy of the trained classifier. For the asynchronous system
discussed in Section V, the interval Zo, = [pTy, (p + 2)T}]
contains most of the energy content of the information symbol
bi, (p). Therefore, it is sufficient for the MUD detector to process
the data in the interval Z,, in order to obtain estimates of the
symbols by (p), Vk=0,..., K — 1.

We present simulation results for the performance of the
MMSE detector in the above setting in Fig. 6, and compare it
with our proposed approach in Section V-C. Specifically, the
parameter estimation procedure for HYPHYLEARN is done
under two different levels of model mismatch, i.e., p = 0.2 and
p = 0.25. Furthermore, the number of training data available
from each user Np is set to 40. As a general observation,
Fig. 6 demonstrates that the performance of all the detectors
is deteriorated as the number of users and the value of p is
increased. The perfect MMSE is referred to the case where
the true pseudo-noise sequences are assumed to be known as
part of the implementation of the decoder. In particular, huge
performance gap between the perfect MMSE and the MMSE
decoder indicates the high sensitivity of the MMSE detector
to the mismatch. On the other hand, it is also highlighted that
our proposed approach can achieve a substantial gain over a
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Fig. 6: BER performance of the MMSE multi-user detector and
HYPHYLEARN as a function of SNR. The results are provided for two
different parameters, i.e., the number of users (X) and the mismatch
parameter (p).

wide range of SNRs by dealing with the mismatch problem.
For HYPHYLEARN, the number of generated synthetic data
is set to 10° for this example. We have also used NNs with
4 hidden layers of 300 neurons each for My, and hg, here.
Also, a shallow NN with one hidden layer of 40 neurons is
used for d¢, while ReLU activation function is used for all the
hidden layers. During training, Adam optimizer with a learning
rate of 0.0001 is utilized as the stochastic gradient descent
algorithm. In Fig. 7, the BER performance of the multi-user
detectors is investigated as a function of number of available
training data. For this example, SNR at the BS is assumed
to be fixed at the BS according to 8 dB. It is demonstrated
that increasing the number of data samples does not lead to
substantial performance improvements in the case of MMSE
method. This is attributed to the aforementioned mismatch
phenomenon in the pseudo-noise sequences which prevents
the MMSE detector from benefiting from the larger amount
of data considerably. Furthermore, it is further shown that
the performance gap between HYPHYLEARN and the perfect

MMSE shrinks as the number of data increases. However, the
degree to which this gap decreases is higher for the case of p =
0.1 in comparison to that of p = 0.25. Indeed, HYPHYLEARN
gets more benefit from the data at lower levels of mismatch
where the parameter estimates enjoy higher levels of accuracy.

VII. CONCLUSION

We have considered the problem of hypothesis testing in
the context of parametric classification where there is a known
model for each behavior but the corresponding parameters are
unknown. Towards designing a classifier in this setting, we have
taken into account several practical considerations, including
the assumptions that available training data are limited and there
could be labeling errors associated with them. Furthermore, the
model under each hypothesis is assumed to be complex such
that the MLEs of its parameters are computationally intractable.
In this vein, we have proposed to use sub-optimal parameter
estimation algorithms and generate synthetic data leveraging
the knowledge of statistical models. Then, we have utilized
the domain adversarial framework for learning a classifier
using these synthetic data and the empirical training data. We
have shown the applicability of our proposed approach in
two tangible communication scenarios, i.e., spoofing detection
and multi-user detection problems, where detailed models are
available for the training data. We have also shown through
numerical results the superiority of our proposed approach
in designing a classifier under the aforementioned practical
limitations with respect to several existing statistical and
machine learning methods.

APPENDIX A
PROOF OF LEMMA 3

We apply Lemma 2 to the distributions py ¢~ (z) and p,, 5(z)
for functions of the form 1y, z)=1y Where hy € He.
The resulting inequality for py ¢-(z), for instance would

be 2RZ¢9* Ha) + 34/ (log2§)/2N, > fA Dap.0+(2)dz —
ZZ 5 L hy (2)= 1) where Ay = {zlh¢(z) = 1,z € Z,hy €
He}. By summing the corresponding sides of the resulting
inequalities, we can write (61a)-(61e) at the bottom of this
page where (61c) and (61d) follows from the inequalities
|Cl+|D[ = |C = D[ = |C| = |D.

2Rz, .. (Ha) + 2Rz ,(Ha) + 3\/(log 20)/2N; + 3\/(log 26) /2N, > (61a)
Ny
sup / Dy, (2z)dz — Ty (z + sup / D Tiny(a. s (61b)
hoeHa | Ja, ; tho(ar)=1} heeHs | Ja, vol Z tho(zs,00=1}
Ny
sup / D0+ (z)dz — 1 2, )=1} — (/ P Liny(ans )l (61¢)
hoeta | Ja, P ;::1 {h¢(zr,i)=1} 4 we Z {h¢(zs,i)=1}
swp | [ ppo @z [ by ade| ~ sup S Lo =D Ly (61d)
hoeta | Ja, 4y ,0 hoeHa Zz; {h¢(zr)=1} Z {h¢(zs,:)=1}
dA<1> (p’tl),e* (Z)7p¢,§(z)) - C/Z\.Acp (Z’d),e* ) Z¢7§)7 (616)
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Fig. 7: BER performance of the MUD as a function of the number
of training data available at each user.

APPENDIX B
PROOF OF THEOREM 1

Starting from adding and subtracting the terms, IP,, lee]
to one side of Py, g+ [eg,| = Puy o+ [e4, ], We get

Py o+[ep,] = Py,0-[es,] + Py gles,] — Py gleg,] < (62a)
P, sles ] + [Py glee:] — Py gles]| < (62b)
P, gles.] + %d&p (py.0+(2), Dy 5(2)) < (62c)
Py ales:] + %JAQ(ZT, Z)+ Rz, (Hs) + Rz, (Ha)  (62d)
+ 2 0g2/5)/2N; + 5/ (log2/0) /2N, (62¢)

where (62c) stems from the definition of dp,. Also, (62¢) is a
result of Lemma 3 and noting that d 4, is an upper bound for
dBy -

APPENDIX C
PROOF OF LEMMA 4

Note that the elements of q,, in (27) are a linear combination
of L Gaussian random variables A, ; ~ CN(O7Var(Au7l))
where E[A, ;, Ay1,] = 0 for Vl; # Iy under the WSSUS
assumption. Therefore, q,, is also Gaussian with the following
mean and variance

L—-1
E[qu[mﬂ — ZE[Awefj?w(fofW/2+mAf>l/W]
1=0

L—1

_ Z E[Auyl]e_jQW(fO_W/2+MAf)l/W =0,
=0
L—-1

Var[qu[mﬂ _ Z Var[Au’le*j%r(fo*W/2+mAf)l/W]
1=0

L—1
= Z Var[Au,1] = ®(1 —e 2Py,
1=0

(63)

(64)

The diagonal elements of R equal to Var[qu[m]]. For the (m,n)th
element (m # n), on the other hand, we can write

Covlau[m], qu[n]] = E[qu[m]qu[n]"] (652)
L—-1
= Z E[ Ay Ay, e 72 Go=W/2mANI=(fo=W/2nANU/W
1=0
(65b)
L-1 ]
= Var[Ay, A, |2 TmAIUT (65¢)
=0
L—-1
_ Z 0_2(1 _ 6727rﬁ)6727r6Lej27‘r(nfm)Afl/W (65d)
=0
(n—m)j
201 _ o=278)(] — ¢ LTI )
_alzerM)(=e ) (65¢)

(n—m)j
) _(n—m)j
e (B Ny )

(1- )

As Cov|qy[m], q,[n]] only depends on the difference n — m,
and it equals to complex conjugate of Cov[q,[n], q,[m]], the
proof is completed.
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