
1

FAST-PCA: A Fast and Exact Algorithm for
Distributed Principal Component Analysis

Arpita Gang and Waheed U. Bajwa

Abstract—Principal Component Analysis (PCA) is a funda-
mental data preprocessing tool in the world of machine learning.
While PCA is often thought of as a dimensionality reduction
method, the purpose of PCA is actually two-fold: dimension
reduction and uncorrelated feature learning. Furthermore, the
enormity of the dimensions and sample size in the modern day
datasets have rendered the centralized PCA solutions unusable.
In that vein, this paper reconsiders the problem of PCA when
data samples are distributed across nodes in an arbitrarily con-
nected network. While a few solutions for distributed PCA exist,
those either overlook the uncorrelated feature learning aspect
of the PCA, tend to have high communication overhead that
makes them inefficient and/or lack ‘exact’ or ‘global’ convergence
guarantees. To overcome these aforementioned issues, this paper
proposes a distributed PCA algorithm termed FAST-PCA (Fast
and exAct diSTributed PCA). The proposed algorithm is efficient
in terms of communication and is proven to converge linearly
and exactly to the principal components, leading to dimension
reduction as well as uncorrelated features. The claims are further
supported by experimental results.

Index Terms—Dimension reduction, distributed learning, exact
convergence, Krasulina’s method, principal component analysis

I. INTRODUCTION

Massive and high-dimensional datasets are becoming an
increasingly essential part of the modern world ranging from
healthcare to finance, from social media to the Internet-
of-Things (IoT) [3], from chemometrics [4] to image and
video processing [5], etc. In a related trend, machine learning
algorithms are finding their applications in every possible
domain because of their data-driven nature and the ability to
generalize to new unseen data. But these algorithms need a
considerable amount of data preprocessing for their effective
and efficient use. One of the major steps in this preprocessing
is dimension reduction and feature learning for compression
and extraction of useful features from raw data that can be used
in downstream machine learning algorithms for classification,
clustering, etc. Principal Component Analysis (PCA) [6] is
a workhorse tool for such dimension reduction and feature
extraction purposes. In a nutshell, PCA transforms a large set

Some of the results reported in this paper were presented in their prelim-
inary form at the 2019 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), Brighton, United Kingdom, May 2019 [1],
and in their final form at the 2022 European Signal Processing Conference
(EUSIPCO), Belgrade, Serbia, Aug. 2022 [2]. AG completed this work as
part of her PhD dissertation in the Department of Electrical and Computer
Engineering at Rutgers University–New Brunswick. She is now a staff ML
scientist at Visa Research (arpita.gang@rutgers.edu). WUB is with
the Department of Electrical and Computer Engineering, Rutgers University–
New Brunswick, NJ 08854 (waheed.bajwa@rutgers.edu).

This work was supported in part by the National Science Foundation under
Awards CCF-1907658, OAC-1940074, and CNS-2148104, and by the Army
Research Office under Awards W911NF-17-1-0546 and W911NF-21-1-0301.

of correlated features to a smaller set of uncorrelated features
that contain maximum information of the raw data.

The increasing volume of available data along with concerns
like privacy, communication cost, etc., as well as emerging ap-
plications such as smart cities, autonomous vehicles, etc., have
also led to a significant interest in the last couple of decades
in the development of distributed algorithms for PCA on non-
collocated data [7]. Data tends to be distributed for a multitude
of reasons; it can be inherently distributed like in IoT, sensor
networks, etc., or it can be distributed due to storage and/or
computational limitations. The ultimate goal of any distributed
algorithm is to solve a common problem using data shared
among the distributed entities through communication with
each other so that all entities collectively reach a solution that
is nearly as good as the solution of the centralized algorithms,
for which data is available at a single location. Motivated by
these reasons, we develop and analyze an effective solution for
distributed PCA that is efficient in terms of communication,
that does not require exchange of raw data, and that can be
proved to converge exactly for any arbitrary network topology
and at a linear rate to a solution that is the same as the one
returned by centralized PCA.

Distributed setups can be largely classified into two types:
i) those having a central entity/server that coordinates with
the other nodes in a master-slave architecture, and ii) those
lacking any central entity, in which the nodes are connected
in an arbitrary network. In the first type of setup, the central
entity aggregates information from all the nodes and yields
the final result. Since the second type of architecture does
not rely on any central entity, it is a more general setup and
it lacks a single point of failure. The detailed review in [8]
discusses these setups along with various algorithms developed
for both in more detail. Although the terms distributed and
decentralized are used interchangeably for both setups in the
literature, we consider the latter scenario for the distributed
PCA and call it distributed in this paper.

The goal of dimension reduction can be accomplished by
learning a low-dimensional subspace spanned by the dominant
eigenvectors of the covariance matrix of the distribution to
which the data samples belong. Mathematically speaking, for
a data point y ∈ Rd sampled from a distribution with zero
mean and covariance Σ ∈ Rd×d, dimension reduction can be
achieved by projecting y onto a matrix X ∈ Rd×K ,K ≪ d,
such that X spans a subspace spanned by the leading K
eigenvectors of Σ under the constraint XTX = I, that is X
lies on a Stiefel manifold. When y is compressed as ỹ = XTy
with such an X, its reconstruction XXTy has minimum error
in the Frobenius norm sense. However, this approach can

2

only be called principal subspace analysis as it does not
ensure that the resultant K features in ỹ are uncorrelated.
It has been argued in the literature (see, e.g., [9]) that one
of the factors that makes a compressed representation of a
data sample “good” is having uncorrelated features in the
learned representation. Different explanatory features of the
data tend to change independently of each other in the input
distribution in the real-world settings. This implies that if the
learned representations have uncorrelated features, changes or
noise in one will not affect the others. Correlated features bring
redundant information and in turn lead to unnecessary increase
in dimension of learned representations. This ultimately can
have consequences in downstream machine learning models.
For example, random forests can be good at detecting in-
teractions between different features, but highly correlated
features can mask these interactions. Hence, learning uncorre-
lated feature representation has gained significant attraction
in feature learning lately. This uncorrelatedness constraint
requires E

[
ỹỹT

]
= E

[
XTyyTX

]
to be a diagonal matrix,

which is fulfilled only when X contains the eigenvectors of Σ,
not just any orthogonal basis of the subspace spanned by the
said eigenvectors. The true purpose of PCA is thus fulfilled
by a specific element of the Stiefel manifold that corresponds
to the eigenvectors of Σ.

An autoencoder is another popular neural-network based
tool for data compression. The good generalization capability
of neural network-based systems along with their ease of
parallelization in the case of massive data make them very
attractive and efficient solutions for PCA. A study in [10]
showed that the optimum weights of an autoencoder for
efficient data compression and decorrelation of features, when
the loss function is the reconstruction error, are given by the
space spanned by the eigenvectors of the input covariance
matrix. It was also noted in [11], [12] that neural networks
trained using the Hebbian learning rule [13] extract principal
components of the input correlation matrix in the streaming
data case. In the same setting of streaming data, an earlier
work by Krasulina [14] proposed a similar learning method
that converges to the dominant eigenvector of the expectation
of input sample covariance matrix. Even though the methods
proposed by Krasulina [14] and Oja [11] have many similar-
ities as pointed out in [11], [15], Oja’s [11] rule has been
studied more extensively than Krasulina’s [14] method. The
original Krasulina’s method is a simple iterative method for
the estimation of the top eigenvector in the streaming case and
its matrix version called Matrix Krasulina was proposed much
later in [16] that extends the original method to estimate the
subspace spanned by the top K eigenvectors. Since we aim
to find the top K eigenvectors, in this paper we propose a
learning method based on the original Krasulina’s method that
can be shown to converge to the first K eigenvectors (principal
components) of the sample covariance matrix, not just the
principal subspace, in distributed batch settings. Due to the
parallelization potential and an iterative update-based rule, our
proposed method is applicable to autoencoder training as well.

A. Relation to Prior Work

The problem of dimension reduction goes back as early
as 1901 when Pearson [17] aimed at fitting a line to a set
of data points. Later, Hotelling [6] proposed a PCA method
for decorrelating and compressing a set of data points by
finding their principal components. Since then, many iterative
methods like power method, orthogonal iterations [18], and
Lanczos method [19] have been proposed to estimate eigen-
vectors or low-dimensional subspaces of symmetric matrices,
a class under which covariance matrices fall. A stochastic
approximation algorithm was proposed by Krasulina in [14]
for the estimation of the dominant eigenvector in the streaming
data case. From the point of view of training neural networks
for data compression, an algorithm very similar to Krasulina’s
method was later proposed by Oja [11], which was then
extended for multiple eigenvector estimation by Sanger [12].
Both Oja’s and Sanger’s method were based on the Hebbian
learning rule [13] and it was shown that the weights of an
autoencoder trained using this rule converge to the eigen-
vectors of the input correlation matrix. The works in [20],
[21] proved that in deterministic batch settings Oja’s rule and
the generalized Hebbian rule proposed by Sanger converge
to the eigenvectors of a covariance matrix at a linear rate.
Krasulina’s method was also generalized for the estimation of
a subspace of dimension greater than one in [16], although it
only guarantees convergence to the principal subspace, instead
of principal components, at a linear rate under the low-rank
matrix assumption.

Modern data have various aspects that require looking at the
PCA problem from different lenses. For example, the presence
of outliers or corrupted data led to the development of robust
PCA solutions [22]–[24] or the case of sparse PCA [25],
[26] when principal components are assumed to be sparse.
The problem of PCA in the distributed/decentralized setting is
relatively recent. In the decentralized setting, in the presence of
a central server, the client nodes do some computations using
their local data and the server node aggregates the information
from all nodes before passing it back. The works in [27], [28]
proposed to perform a local Singular Value Decomposition
(SVD) at each node using their partial data, which is then
aggregated at the central node. The work proposed in [29]
used decentralized PCA to detect anomalies in wireless sensor
networks. Aggregation at a central server raises privacy issues,
which is tackled in [30] that introduces a differentially private
distributed PCA algorithm. Several other works have been
proposed for decentralized PCA; e.g., in the case of streaming
data [31], in the case of large-scale process monitoring [32],
in the case of federated learning [33], etc.

The distributed setting, where nodes are connected in an
arbitrary manner, is the main focus of this paper. In any
distributed network, data can be distributed by either features
or samples and the solutions for these two data distribution
types are significantly different. A detailed review of various
distributed PCA algorithms for both kinds of data distribution
is done in [34]. For the case of feature-wise distribution as
in [35]–[37], each node in the network estimates one or a sub-
set of features of the entire subspace. In this paper we focus on

3

the case of sample-wise data distribution, where each node es-
timates the entire basis and consensus in the network is a nec-
essary condition. The sample-wise data distribution was con-
sidered in [38]–[40], where a power method-based approach
was proposed for estimation of the dominant eigenvector (K =
1). This method requires an explicit consensus loop [41] in ev-
ery iteration of the power method and the final error is a func-
tion of the number of consensus iterations. The power method-
based distributed PCA solutions can be used for multiple
(K > 1) eigenvector estimation in a sequential manner, where
lower-order eigenvectors are estimated using the residue of the
covariance matrix left after its projection on the higher-order
eigenvectors. Since estimation of any lower-order eigenvector
requires that the higher-order eigenvectors are fully estimated,
this sequential approach results in a rather slow algorithm. To
overcome the issues of the sequential approach, an orthogonal
iteration-based solution for the case of K > 1 was proposed
in [42]. Although this method estimates the K-dimensional
subspace simultaneously, its convergence guarantees are in
terms of subspace angles and thus it proves convergence to
the principal subspace. Moreover, all these aforementioned
methods require an explicit consensus loop, making these
algorithms inefficient in terms of communication overhead.

PCA is a non-convex problem since the uncorrelated con-
straint requires the solution to be a specific element on the
Stiefel manifold. Recently, some algorithms in the field of
distributed optimization were proposed to deal with non-
convex problems. While some of those deal with unconstrained
problems [43], some are developed for non-convex objectives
with convex constraints [44], [45], while some methods guar-
antee convergence only to a stationary point [46]. For these
reasons, none of the existing distributed algorithms for non-
convex problems are directly applicable for the PCA objective.
A recent work based on perturbation theory for linear operators
based on the Picard iteration was proposed for distributed
optimization in [47]. The extension of this work in [48]
demonstrated the application of the distributed Picard iteration
(DPI) method to distributed PCA, but it could only prove local
convergence, i.e., if the estimate is already “close enough” to
the optimal solution, then it converges to the optimal point at
a linear rate. Furthermore, the DPI method suffers from two
more limitations in terms of its theoretical analysis, namely, it
requires the covariance matrix to be full rank, and the upper
bound on the step size required for convergence guarantees is
not quantified in terms of problem parameters like eigengap,
data dimension, etc. Thus, many gaps still remain to be filled
in distributed PCA.

The work in this paper is an extension of our preliminary
work in [1] that proposed two fast and efficient algorithms for
distributed PCA but did not provide any theoretical guarantees.
Both these algorithms were based on the generalized Hebbian
algorithm in the case of sample-wise distributed data. The first
version called distributed Sanger’s algorithm (DSA) used a
combine-and-adapt strategy, which was further developed and
analyzed in our previous work [49]. Although this strategy
has mainly been used in distributed optimization literature for
convex and strongly convex problems, we showed using exten-
sive analysis that even for the non-convex PCA problem, each

node converges linearly and globally, i.e., starting from any
random initial point. Though it is a linearly convergent one-
time scale algorithm, it only reaches to a neighborhood of the
optimal solution for a fixed step size. The algorithm, however,
does converge exactly in the case of decreasing step sizes but
with a slower rate of convergence. This result is coherent with
the combine-and-update based gradient descent solutions [50]
for distributed optimization. To overcome such limitations of
simple gradient descent-based algorithms, some new methods
have been proposed recently that deploy a technique called
“gradient-tracking”, which has been shown to converge exactly
in the case of convex [51], [52], strongly convex and some
non-convex problems [53]. In this paper, we use this gradient-
tracking idea to develop an algorithm for the non-convex
distributed PCA problem that linearly converges to an optimal
solution that is the same as its centralized counterpart.

A very recent paper on distributed PCA [54] used this
gradient-tracking idea to develop a two-time scale algorithm
called DeEPCA for subspace estimation. Our work has three
major differences as compared to DeEPCA: firstly, our algo-
rithm guarantees convergence to the eigenvectors of the global
covariance matrix and not just any rotated basis of the same
subspace, thereby making our algorithm a true PCA and not
just a principal subspace analysis (PSA) solution. Secondly, we
do not use any explicit consensus loop for ensuring agreement
in the network, making it a very communication-efficient solu-
tion and finally, DeEPCA requires explicit QR decomposition
in every iteration unlike our algorithm, thus requiring more
computations. Table I shows the convergence rates of the
important PCA/PSA algorithms for the case of sample-wise
distributed data. The table provides a comparison of the com-
munication and iteration complexities of various distributed
PCA (principal component analysis) and PSA (principal sub-
space analysis) algorithms in terms of error ϵ and eigengap
gap. If λl is the lth eigenvalue of the data covariance matrix,
then gapr := λK+1

λK
for PSA and gapr := max

k=1,...,K

λk+1

λk
for

PCA algorithms. Also, gap := λK−λK+1 for PSA algorithms
and gap := min

k=1,...,K
λk − λk+1 for PCA algorithms.

B. Our Contributions

The main contributions of this paper are 1) a novel algorithm
for distributed PCA called Fast and exAct diSTributed PCA
(FAST-PCA) based on a generalization of Krasulina’s method,
2) theoretical guarantees that show that the estimates given
by our method converge exactly and globally at a linear rate
to the eigenvectors of the global covariance matrix, and 3)
experimental results that further demonstrate the efficiency of
our solution for both synthetic and real-world datasets.

Our primary focus in this paper is to develop a solution for
distributed PCA when the data samples are scattered across
an arbitrarily connected network with no central node. While
PCA is often reduced to dimension reduction, we focus on
the dual goal of PCA that requires dimensionality reduction
as well as feature decorrelation. To that end, we propose
an algorithm based on Krasulina’s method using a gradient-
tracking approach. Since the original Krasulina’s method only
finds the dominant eigenvector, we also generalize it to the

4

TABLE I: Comparison of Communication and Iteration Costs for State-of-the-Art PCA/PSA Solutions

Comm./Iteration No. of Iterations Total Comm. PCA/PSA

DistSeqPM [38]–[40] O
(
K 1

log gap−1
r

log 1
ϵ

)
O

(
K 1

log gap−1
r

log 1
ϵ

)
O

(
K2 1

log2 gap−1
r

log2 1
ϵ

)
PCA

S-DOT [42] O
(

1

log gap−1
r

log 1
ϵ

)
O

(
1

log gap−1
r

log 1
ϵ

)
O

(
1

log2 gap−1
r

log2 1
ϵ

)
PSA

DeEPCA [54] O
(
log 1

gap

)
O

(
1

gap
log 1

ϵ

)
O

(
1

gap
log 1

gap
log 1

ϵ

)
PSA

distributed setting for the estimation of top K eigenvectors.
Our proposed FAST-PCA method is an iterative update algo-
rithm and its main attributes are that it is fast since it lacks any
explicit consensus loop and hence reduces the communication
overhead, and it converges exactly to the true eigenvectors
of the global covariance matrix at a linear rate. We provide
detailed convergence analysis to support our claims as well
as extensive numerical experiments where we compare our
method to centralized orthogonal iteration (OI) as the cen-
tralized baseline, as well as distributed PCA algorithms of se-
quential distributed power method (SeqDistPM), DeEPCA and
DSA. We provide the results for different network topologies
as well as eigengaps to further solidify our claims.

To the best of our knowledge, this is the first novel algo-
rithm for distributed PCA based on Krasulina’s method that
achieves fast and exact convergence to the true eigenvectors
of the global covariance matrix at every node of an arbitrarily
connected network.

C. Notation and Organization

The following notation is used in this paper. Scalars and
vectors are denoted by lower-case and lower-case bold letters,
respectively, while matrices are denoted by upper-case bold
letters. The operator | · | denotes the absolute value of a scalar
quantity. The superscript in a(t) denotes time (or iteration)
index, while at denotes the exponentiation operation. The
superscript (·)T denotes the transpose operation, the operator
⊗ denotes Kronecker product, ∥ · ∥F denotes the Frobenius
norm of matrices, while both ∥ · ∥ and ∥ · ∥2 denote the ℓ2-
norm of vectors. Given a matrix A, both aij and (A)ij denote
its entry at the ith row and jth column, while aj denotes its
jth column. The matrix Ia ∈ Ra×a denotes the identity matrix
of dimension a.

The rest of the paper is organized as follows. In Section II,
we describe and mathematically formulate the distributed PCA
problem, while Section III describes the proposed distributed
algorithm, which is based on Krasulina’s algorithm. In Sec-
tion IV-B, we derive an auxiliary result based on Krasulina’s
method that aids in the convergence analysis of the proposed
distributed algorithm, while convergence guarantees for the
proposed algorithm are provided in Section IV. Statements
and/or proofs of the key lemmas used to derive the main
results of this paper are provided as appendices. We provide
numerical results in Section V to show efficacy of the proposed
method and provide concluding remarks in Section VI.

II. PROBLEM DESCRIPTION

Principal Component Analysis (PCA) is a widely used
data preprocessing tool to find a low-dimensional subspace

that would decorrelate data features while retaining maximum
information. For data samples y ∈ Rd sampled from a zero-
mean distribution with covariance matrix Σ, PCA can be
mathematically formulated as

X = argmin
X∈Rd×K ,XTX=I

E
[
∥y −XXTy∥22

]
such that ∀l ̸= q,

(
E
[
XTyyTX

])
lq
= 0. (1)

The constraint
(
E
[
XTyyTX

])
lq

= 0, ∀l ̸= q, ensures

that X decorrelates the features of y. It is evident that
E
[
XTyyTX

]
= XTE

[
yyT

]
X will be a diagonal matrix

if and only if X contains the eigenvectors of E
[
yyT

]
= Σ.

Thus the search for a solution of PCA not only requires a
minimum reconstruction error solution, which will be given
by any basis of the subspace spanned by the dominant K
eigenvectors of the covariance matrix Σ, but the basis vectors
should specifically be the eigenvectors of Σ. In practice the
actual distribution of the samples and hence Σ is unknown and
a sample covariance matrix is used instead for PCA. For a set
of samples {yt}Nt=1, the sample covariance matrix is given by
C = 1

N−1

∑N
t=1(yt − ȳ)(yt − ȳ)T , where ȳ = 1

N

∑N
t=1 yt

is the sample mean. Henceforth, we shall assume ȳ = 0
without loss of generality because the mean can otherwise
be calculated and subtracted from the samples. The empirical
formulation of the PCA problem in terms of samples is thus
given as

X = argmin
X∈Rd×K ,XTX=I

N∑
t=1

∥yt −XXTyt∥22

such that ∀l ̸= q,
(
XT(

N∑
t=1

yty
T
t)X

)
lq
= 0. (2)

A distributed setting implies that the entire data matrix Y =[
y1, . . . ,yN

]
∈ Rd×N is unavailable at a single location. Let

us consider an undirected and connected network of M nodes
described by a graph G = {V, E}, where V = {1, . . . ,M} is
the set of nodes and E is the set of edges between the nodes.
For each node i, the set of its directly connected neighbors
is given by Ni. The data can be distributed among the nodes
along the rows, i.e., by features, or along the columns, i.e., by
samples. In this paper, we consider the case when the samples
{yt}Nt=1 are scattered spatially over a network. Thus, each
node i ∈ V has a non-overlapping subset of the samples Yi ∈
Rd×Ni such that Y =

[
Y1, . . . ,YM

]
. The PCA formulation

in this distributed case is:

X = argmin
X∈Rd×K ,XTX=I

M∑
i=1

∥Yi −XXTYi∥2F

5

such that ∀l ̸= q,
(
XT(

M∑
i=1

YiY
T
i)X

)
lq
= 0. (3)

Although the formulations (2) and (3) look similar, a major
difference is the unavailability of Yi’s at a single location,
rendering the methods for solving (2) unusable directly for
solving (3). Since each node carries different local data,
there is a difference in local objective function even though
the constraint is globally shared. This in turn leads to each
node maintaining its own copy Xi of the variable X . As
mentioned before, the goal of distributed PCA is for each node
to eventually reach the same solution, i.e., achieve network
consensus, given by the eigenvectors of C. Thus, the actual
PCA objective for the distributed case is

argmin
Xi∈Rd×K ,XT

i Xi=I

M∑
i=1

∥Yi −XiX
T
i Yi∥2F such that

∀j ∈ Ni,Xi = Xj and ∀l ̸= q,
(
XT

i (
M∑
i=1

YiY
T
i)Xi

)
lq
= 0.

(4)

Since each node i has access to a subset of data points Yi and
subsequently has a local covariance matrix Ci = 1

Ni
YiY

T
i ,

a naive solution is that each node solves its own PCA
formulation as follows:

Xi = argmin
Xi∈Rd×K ,XT

i Xi=I

∥Yi −XiX
T
i Yi∥2F

such that ∀l ̸= q,
(
XT

i YiY
T
i Xi

)
lq
= 0. (5)

However, the naive solution of (5) will have major drawbacks.
As explained earlier, PCA ideally aims to find the eigenvec-
tors of covariance Σ of the distribution the data points are
sampled from but instead uses sample covariance matrix C
because Σ is unknown in practice and E

[
C
]
= Σ. Since

C → Σ as the number of samples N increases, using only
the local covariance matrices would incur a higher loss in
the estimation of the eigenvectors. Furthermore, it is plausible
that the samples at a single node are not uniformly sampled
from the entire distribution and hence any estimation made
using local covariances would result in a biased estimate.
These reasons dictate that all the N samples in the network
should be incorporated somehow in the estimation of the
eigenvectors for dimension reduction and decorrelation at all
the nodes of the network. Additionally, in the case of sample-
wise distributed data, all nodes should agree and converge to a
common solution that is the same as the solution of (2) when
all the samples are available at a single location.

The constraint in (4) has two important properties. First,
since the solution lies on the Stiefel manifold and particularly,
it is a specific element of the manifold, the problem is non-
convex. Although this issue can be dealt with through convex
approximation of the problem [55], such an approach will
result in O(d2) computational and memory requirements since
it approximates the projection matrix of the d×K dimensional
subspace and that can be restrictive in the case of high-
dimensional data. At the same time, such convexification
leads to a relaxed constraint that would only give a rotated

basis of the subspace spanned by the eigenvectors of C
and not the eigenvectors themselves. Second, the constraint
XT

i (
∑M

i=1 YiY
T
i)Xi being diagonal is shared by all nodes

due to the reasons explained earlier. Thus meeting this global
constraint requires that all nodes of the network collaborate
to reach a common solution X = Xi,∀i ∈ V . Hence, in
this paper we propose an iterative algebraic method based
on Krasulina’s rule [14] for distributed PCA that ensures that
all nodes simultaneously converge to the eigenvectors of the
global covariance matrix C without having to share their
local covariance Ci. The algorithm converges exactly to the
eigenvectors of the global covariance matrix C at a linear rate
when the error is measured in terms of angles between the
estimates and the true eigenvectors.

III. PROPOSED ALGORITHM: FAST-PCA

Iterative solutions such as the power method, Oja’s rule,
and Krasulina’s method have proven to be powerful tools
for PCA, i.e., dimension reduction and simultaneous feature
decorrelation in centralized settings when the data is collocated
or streaming at a single location. Although Krasulina’s and
Oja’s method have similar update rules, in this paper we extend
the Krasulina’s method to develop an algorithm for distributed
PCA in batch settings. The original Krasulina’s method was
developed as a stochastic approximation algorithm for esti-
mating the dominant eigenvector of the expected correlation
matrix (which is the same as the covariance matrix for zero-
mean inputs) in the case of streaming data. Let yt, t = 1, 2, . . .,
be data samples drawn from a zero-mean distribution at time
t. Then Krasulina’s method estimated the leading eigenvector
of Σ = E

[
yty

T
t

]
by the following update equation:

x(t+1) = x(t) + αt

(
Ctx

(t) − (x(t))TCtx
(t)

∥x(t)∥2
x(t)

)
, (6)

where Ct = yty
T
t is the covariance matrix obtained from one

sample and αt is the step size at time t. It was proved in [14]
that if the spectral norm of E

[
yty

T
t

]
remains bounded and∑

t α
2
t converges to zero as t → ∞, the update equation (6)

yields the dominant eigenvector of E
[
Ct

]
. One can interpret

Krasulina’s method as the solution to an optimization problem.
The estimation of the top eigenvector can often be posed as
the following optimization problem:

argmin
x∈Rd

f(x) = argmin
x∈Rd

− xTCtx

∥x∥2
(7)

The gradient of the function f(x) in (7) is:

∇f(x) = 1

∥x∥2
(
−Ctx

(t) +
(x(t))TCtx

(t)

∥x(t)∥2
x(t)

)
. (8)

Thus, (6) looks similar to applying stochastic gradient descent
to the nonconvex problem (7) where a step is taken in the
direction of negative of the gradient of the function but the
size of the step is scaled with the magnitude of the norm ∥x∥2.

In the distributed setup considered in this paper, samples
are not streaming but distributed across a connected network
of M nodes, where node i has access to a local covariance
matrix Ci such that

∑M
i=1 Ci = C, the global covariance

6

matrix. It is noteworthy that E
[
Ct

]
= E

[
Ci

]
= Σ and this

similarity between streaming and distributed setting motivates
the extrapolation of Krasulina’s method for the distributed
setting. For the dominant eigenvector K = 1, a naive approach
would be for each node to estimate an eigenvector using its
local data and update rule (6). However, that would result
in each node i to only estimate the dominant eigenvector of
Ci whereas the goal of distributed PCA is for every node to
estimate the eigenvector of the global covariance matrix C.
Furthermore, since Matrix Krasulina [16] only estimates the
dominant subspace, Krasulina’s method also needs to be gen-
eralized for the estimation of K > 1 dominant eigenvectors.

Estimation of the eigenvectors of C at every node without
sharing raw local covariance matrix Ci would require some
form of collaboration among the nodes of the network. As
mentioned earlier, our previous work [49] used a combine-and-
adapt strategy in a way that each node converges linearly but
only to a neighborhood of the true eigenvectors of the global
covariance matrix C. Even though we used the generalized
Hebbian algorithm [12], some straightforward calculations and
manipulations can show similar results for Krasulina’s method.
In this paper, we aim to fill that gap of inexact convergence
and propose a gradient-tracking based solution [51], [52] that
converges exactly and linearly to the true eigenvectors of C at
every node. If x(t)

i,1 is the estimate of the dominant eigenvector
at node i after the tth iteration, then we define a pseudo-
gradient at node i as follows:

hi(x
(t)
i,1) = Cix

(t)
i,1 −

(x
(t)
i,1)

TCix
(t)
i,1

∥x(t)
i,1∥2

x
(t)
i,1, (9)

which is similar to the update portion of (6). We call this entity
pseudo-gradient as this differs from how the gradient would
look like (refer to (8)) at node i by a factor of 1

∥x(t)
i,1∥2

. Addi-

tionally, for the estimation of kth, k = 2, . . . ,K, eigenvector,
we propose to generalize Krasulina’s update rule along the
lines of the generalized Hebbian algorithm [12] and combine
Krasulina’s method with Gram–Schmidt orthogonalization to
define a general pseudo-gradient as:

hi(x
(t)
i,k) = Cix

(t)
i,k −

(x
(t)
i,k)

TCix
(t)
i,k

∥x(t)
i,k∥2

x
(t)
i,k

−
k−1∑
p=1

(x
(t)
i,p)

TCix
(t)
i,k

∥x(t)
i,p∥2

x
(t)
i,p. (10)

Here, the term
(x

(t)
i,p)

TCix
(t)
i,k

∥x(t)
i,p∥2

x
(t)
i,p is analogous to Gram–

Schmidt orthogonalization and enforces the orthogonality of
x
(t)
i,k to x

(t)
i,p, p = 1, . . . , k − 1.

Let X(t)
i =

[
x
(t)
i,1, . . . ,x

(t)
i,K

]
∈ Rd×K be the estimate of the

K eigenvectors of the global covariance matrix C. A gradient
tracking-based algorithm also updates a second variable [52],
[53] in every iteration that essentially tracks the average of
the gradients at the nodes. In a similar fashion, let us define
a pseudo-gradient tracker matrix S

(t)
i =

[
s
(t)
i,1, . . . , s

(t)
i,K

]
∈

Rd×K that tracks the average of the pseudo-gradients at

each node. These S
(t)
i are updated along with the eigenvec-

tor estimates X
(t)
i in each iteration of our algorithm Fast

and exAct diSTributed PCA (FAST-PCA), which is described
in Algorithm 1. At each node i, the eigenvector estimates
X

(t)
j , j ∈ Ni, where Ni is the set of neighbors of node i,

are combined as a weighted average and updated with the
local copy of the gradient tracker S

(t)
i using a constant step

size α. Along with that, S(t)
i is also updated as a weighted

average of S(t)
j and difference of pseudo-gradients. The entity

hi(X
(t)
i) in the algorithm is the matrix of the psuedo-gradients,

i.e., hi(X
(t)
i) =

[
hi(x

(t)
i,1), . . . ,hi(x

(t)
i,K)

]
∈ Rd×K . The

weight matrix W =
[
wij

]
is a doubly stochastic matrix

that conforms to the underlying graph topology [56], i.e.,
wij ̸= 0 if (i, j) ∈ E or i = j and 0 otherwise. A necessary
assumption for convergence of the algorithm here is the graph
connectivity, which ensures that the magnitude of the second
largest eigenvalue of W is strictly less than 1. The gradient-
tracking based solutions are recently being very popular in
distributed optimization literature because of their fast and
exact convergence guarantees. Our main challenge here was
providing theoretical convergence guarantees inspite of the
non-convex nature of the problem. In the next section, we
provide detailed analysis of our proposed algorithm FAST-
PCA and show that the estimates x(t)

i,k at each node i converge
at a linear rate O(ρt), 0 < ρ < 1, for any random unit-
norm initialization and a certain condition on step size, to
the eigenvectors ±qk of the global covariance matrix C.

Algorithm 1 Fast and exAct diSTributed PCA (FAST-PCA)
Input: Y1,Y2, . . .YM ,W, α,K
Initialize: ∀i,X(0)

i ← Xinit : Xinit ∈ Rd×K ,XT
initXinit = I;

S
(0)
i ← hi(X

(0)
i)

for t = 0, 1, . . . do
Communicate X

(t)
i from each node i to its neighbors

Subspace estimate at node i: X
(t+1)
i ← 1

2X
(t)
i +∑

j∈Ni

wij

2 X
(t)
j + αS

(t)
i

Psuedo-gradient estimate at node i: S
(t+1)
i ← 1

2S
(t)
i +∑

j∈Ni

wij

2 S
(t)
j + hi(X

(t+1)
i)− hi(X

(t)
i)

end for

Return: X̃(t+1)
i =

[
x
(t+1)
i,1

∥x(t+1)
i,1 ∥

, . . . ,
x
(t+1)
i,K

∥x(t+1)
i,K ∥

]
, i = 1, 2, . . . ,M

IV. CONVERGENCE ANALYSIS

This section entails detailed analysis for our proposed
FAST-PCA algorithm. In the first subsection, we state the main
result regarding the convergence of FAST-PCA. The following
subsection provides an auxiliary result, which is followed by
the detailed proof of the main result.

A. Main Result

The main result of this paper shows that FAST-PCA con-
verges at a linear rate and exactly to the eigenvectors of
the global sample covariance matrix of the data distributed

7

in a connected network. Specifically, we have the following
theorem about the convergence result.

Theorem 1. Suppose α <
mink=1,...,K(λk−λk+1)

(K+5)(K+6) (1−β
9λ1

)2, where
λk, λk+1 are the kth and (k + 1)th largest eigenvalues of
C, β = max{|λ2(W)|, |λM (W)|}, qT

k x̄
(0)
k ̸= 0, and the

graph underlying the network is connected. Then the estimate
x
(t)
i,k from FAST-PCA converges to the eigenvector ±ckqk

corresponding to the largest eigenvalue λk of C at each node
i = 1, . . . ,M at a linear rate of O(1

log(1+αgap) log
1
ϵ), where

gap := mink=1,...,K λk − λk+1.

The detailed proof of Theorem 1 is given in Section IV-C.
Here we provide a discussion of the implications of the
theorem. From Theorem 1, we can see that if α <
mink(λk−λk+1)
(K+5)(K+6) (1−β

9λ1
)2, where λ1 is the largest eigenvalue of C,

K is the number of eigenvectors to be estimated and β is the
absolute value of the second-largest eigenvalue of the weight
matrix W, then the estimates x

(t)
i,k of the kth eigenvector

for k = 1, . . . ,K at ith node, i = 1, . . . ,M , converge at
a linear rate to a multiple of the eigenvector qk of C i.e.,
±ckqk. It is clear from the condition on α that with larger
eigengap (λk − λk+1), a larger range of step size is possible,
which directly affects the rate of convergence. Also, as the
connectivity in the network increases, β decreases, which
again increases the range of α, thus increasing the rate of
convergence.

B. Auxiliary Result
In this subsection, we provide an intermediate result that

will help the detailed analysis of our proposed algorithm. Let
C ∈ Rd×d be a covariance matrix whose eigenvectors are
ql, l = 1, . . . , d, with corresponding eigenvalues λl. With an
aim to estimate the first K eigenvectors of C, we define a
general update rule of the following form:

x
(t+1)
g,k = x

(t)
g,k + α

(
Cx

(t)
g,k −

(x
(t)
g,k)

TCx
(t)
g,k

∥x(t)
g,k∥2

x
(t)
g,k

−
k−1∑
p=1

qpq
T
p Cx

(t)
g,k

)
(11)

= x
(t)
g,k + α

(
Cx

(t)
g,k −

(x
(t)
g,k)

TCx
(t)
g,k

∥x(t)
g,k∥2

x
(t)
g,k −

k−1∑
p=1

λpqpq
T
p x

(t)
g,k

)
,

(12)

where α is a constant step size. Looking at Krasulina’s method
as applying SGD to the optimization problem (7), (11) can be
viewed as optimizing the Rayleigh quotient of the residual
covariance matrix C−

∑k−1
p=1 qpq

T
p C. Note that this is not an

algorithm in the true sense of the term as it cannot be im-
plemented because of its dependence on the true eigenvectors
qp. The sole purpose of this update equation is to help in
our ultimate goal of providing convergence guarantee for the
FAST-PCA algorithm. Also, the subscript ‘g’ here is simply
to denote that xt

g,k is a general iterate value and any update
rule of the form (12) has the same characteristics. On the other
hand, xt

i,k is the iterate value at node i, which has a different
update form in the case of our proposed algorithm.

Since ql, l = 1, . . . , d, are the eigenvectors of a real
symmetric matrix, they form a basis for d-dimensional space
and can be used for expansion of any vector x ∈ Rd. Let

x̃
(t)
g,k =

x
(t)
g,k

∥x(t)
g,k∥

=
d∑

l=1

z
(t)
k,lql, (13)

where z
(t)
k,l is the coefficient corresponding to the eigenvector

ql in the expansion of x̃(t)
g,k. The update equation (12) can be

re-written as:

x
(t+1)
g,k

∥x(t+1)
g,k ∥

=

(
x
(t)
g,k

∥x(t)
g,k∥

+ α
(
C

x
(t)
g,k

∥x(t)
g,k∥
−

(x
(t)
g,k)

TCx
(t)
g,k

∥x(t)
g,k∥2

x
(t)
g,k

∥x(t)
g,k∥

−
k−1∑
p=1

λpqpq
T
p

x
(t)
g,k

∥x(t)
g,k∥

)) ∥x(t)
g,k∥

∥x(t+1)
g,k ∥

(14)

x̃
(t+1)
g,k =

(
x̃
(t)
g,k + α

(
Cx̃

(t)
g,k −

(x
(t)
g,k)

TCx
(t)
g,k

∥x(t)
g,k∥2

x̃
(t)
g,k

−
k−1∑
p=1

λpqpq
T
p x̃

(t)
g,k

))
a
(t)
k , (15)

where a
(t)
k =

∥x(t)
g,k∥

∥x(t+1)
g,k ∥

. Multiplying both sides of (15) by qT
l

and using the fact that qT
l ql′ = 0 for l ̸= l′, we get

z
(t+1)
k,l = a

(t)
k

(
z
(t)
k,l + α(qT

l Cx̃
(t)
g,k − qT

l (

k−1∑
p=1

λpqpq
T
p x̃

(t)
g,k)

− (x̃
(t)
g,k)

TCx̃
(t)
g,kz

(t)
k,l)
)
.

This gives

z
(t+1)
k,l = a

(t)
k

(
z
(t)
k,l − α(x̃

(t)
g,k)

TCx̃
(t)
g,kz

(t)
k,l

)
,

for l = 1, . . . k − 1, (16)

and z
(t+1)
k,l = a

(t)
k

(
z
(t)
k,l + α(λl − (x̃

(t)
g,k)

TCx̃
(t)
g,k)z

(t)
k,l

)
,

for l = k, . . . d. (17)

In the following theorem, we show that x(t)
g,k converges to a

multiple of the true eigenvector qk by proving convergence of
the coefficients z

(t)
k,l for l = 1, . . . , d.

Theorem 2. Suppose C has K distinct eigenvalues, i.e., λ1 >
λ2 > · · · > λK > λK+1 ≥ · · · ≥ λd ≥ 0 and α < 1

λ1
,

qT
k x

(0)
g,k ̸= 0, and ∥x(0)

g,k∥ = 1 for all k = 1, . . . ,K. Then the
update equation for x

(t)
g,k given by (12) converges at a linear

rate to a multiple of the eigenvector ±qk corresponding to
the kth largest eigenvalue λk of the covariance matrix C for
k = 1, . . . ,K.

Proof. We prove the linear convergence of x(t)
g,k to a multiple

of qk by proving that x̃
(t)
g,k converges to qk at a linear

rate. The convergence of x̃
(t)
g,k to qk requires convergence of

the lower-order coefficients z
(t)
k,1, . . . , z

(t)
k,k−1 and the higher-

order coefficients z
(t)
k,k+1, . . . , z

(t)
k,d to 0 and convergence of

z
(t)
k,k to ±1. To this end, Lemma 5 proves linear conver-

gence of the lower-order coefficients z
(t)
k,1, . . . , z

(t)
k,k−1 to 0

8

by showing
∑k−1

l=1 (z
(t)
k,l)

2 ≤ a1γ
t
k for some constants a1 >

0, γk = 1
1+αλk

< 1. Furthermore, Lemma 6 shows that∑d
l=k+1(z

(t)
k,l)

2 ≤ a2δ
t
k, where a2 > 0 and δk = 1+αλk+1

1+αλk
< 1,

thereby proving linear convergence of the higher-order coeffi-
cients to 0. The formal statements and proofs of Lemma 5
and Lemma 6 are given in Appendix A and Appendix B,
respectively. Finally, since ∥x̃(t)

g,k∥2 = 1, we have

d∑
l=1

(z
(t)
k,l)

2 = 1

or, 1− (z
(t)
k,k)

2 =
k−1∑
l=1

(z
(t)
k,l)

2 +
d∑

l=k+1

(z
(t)
k,l)

2

≤ a1γ
t
k + a2δ

t
k

< a3δ
t
k,

where a3 = max{a1, a2} and δk = max{γk, δk}. This shows
(z

(t)
k,k)

2 converges to 1 and (z
(t)
l,k)

2, l ̸= k, converges to 0 at a
linear rate of O(δtk) where δk = 1+αλk+1

1+αλk
. Thus, x̃(t)

g,k → ±qk

and (x̃
(t)
g,k)

TCx̃
(t)
g,k → λk. We also know from (12) that

x
(t+1)
g,k = x

(t)
g,k+

α
(
(C−

k−1∑
p=1

λpqpq
T
p)x

(t)
g,k −

(x
(t)
g,k)

TCx
(t)
g,k

∥x(t)
g,k∥2

x
(t)
g,k

)
i.e., ∥x(t+1)

g,k ∥
2 = ∥x(t)

g,k∥
2 + α2∥

(
(C−

k−1∑
p=1

λpqpq
T
p)x

(t)
g,k

−
(x

(t)
g,k)

TCx
(t)
g,k

∥x(t)
g,k∥2

x
(t)
g,k

)
∥2−

2α(x
(t)
g,k)

T
(
(C−

k−1∑
p=1

λpqpq
T
p)x

(t)
g,k −

(x
(t)
g,k)

TCx
(t)
g,k

∥x(t)
g,k∥2

x
(t)
g,k

)
= ∥x(t)

g,k∥
2 + α2∥

(
(C−

k−1∑
p=1

λpqpq
T
p)x

(t)
g,k−

(x
(t)
g,k)

TCx
(t)
g,k

∥x(t)
g,k∥2

x
(t)
g,k

)
∥2 + 2α

k−1∑
p=1

λp(x
(t)
g,k)

Tqpq
T
p x

(t)
g,k

= ∥x(t)
g,k∥

2 + α2∥(C−
k−1∑
p=1

λpqpq
T
p)x̃

(t)
g,k∥x

(t)
g,k∥

−
(x

(t)
g,k)

TCx
(t)
g,k

∥x(t)
g,k∥2

x̃
(t)
g,k∥x

(t)
g,k∥∥

2

+ 2α∥x(t)
g,k∥

2
k−1∑
p=1

λp(x̃
(t)
g,k)

Tqpq
T
p x̃

(t)
g,k. (18)

As x̃
(t)
g,k → ±qk and

(x
(t)
g,k)

TCx
(t)
g,k

∥x(t)
g,k∥2

→ λk, we have

(C−
k−1∑
p=1

λpqpq
T
p)x̃

(t)
g,k∥x

(t)
g,k∥ → ±Cqk∥x(t)

g,k∥ = ±λkqk∥x(t)
g,k∥

and

k−1∑
p=1

λp(x̃
(t)
g,k)

Tqpq
T
p x̃

(t)
g,k → 0.

Thus from (18), we get

∥x(t+1)
g,k ∥

2 − ∥x(t)
g,k∥

2 → 0,

which implies ∥x(t)
g,k∥ converges to some constant ck > 0

which further implies x
(t)
g,k → ±ckqk. ■

C. Analysis of FAST-PCA

In this subsection, we provide a detailed analysis proving
that the FAST-PCA algorithm converges at a linear rate to the
true eigenvectors qk, k = 1, . . . ,K, of the global covariance
matrix C. Specifically, let X(t)

i =
[
x
(t)
i,1, . . . ,x

(t)
i,K

]
∈ Rd×K

be the estimate of the K eigenvectors at node i, then we
show that square of the sine of the angle between x

(t)
i,k,∀i =

1, . . . ,M , and qk for k = 1, . . . ,K converges to 0 at the rate
of O(ρt) for some ρ ∈ (0, 1).

We know from Theorem 2 in the previous section that for
estimation of the kth eigenvector, any general iterate of the
form

x
(t+1)
g,k = x

(t)
g,k+α

(
Cx

(t)
g,k−

(x
(t)
g,k)

TCx
(t)
g,k

∥x(t)
g,k∥2

x
(t)
g,k−

k−1∑
p=1

qpq
T
p Cx

(t)
g,k

)
(19)

converges at a linear rate to a scalar multiple of the eigenvector
qk of C if the top K eigenvalues of C are distinct, i.e., λ1 >
λ2 > · · · > λK > λK+1 ≥ · · · ≥ λd ≥ 0 as well as if α < 1

λ1

and qT
k x

(0)
g,k ̸= 0. Specifically, x(t)

g,k converges to either ckqk

or −ckqk at a linear rate in this case. Mathematically,

∥x(t+1)
g,k − x∗

k∥ ≤ δk∥x(t)
g,k − x∗

k∥, for

0 < δk =
1 + αλk+1

1 + αλk
< 1 and x∗

k = ckqk or − ckqk.

(20)

Now, if W = [wij] is the weight matrix underlying the graph
representing the network, then the iterates of FAST-PCA for
the estimation of the kth eigenvector are given as follows:

x
(t+1)
i,k =

1

2
x
(t)
i,k +

∑
j∈Ni

wij

2
x
(t)
j,k + αs

(t)
i,k (21)

s
(t+1)
i,k =

1

2
s
(t)
i,k +

∑
j∈Ni

wij

2
s
(t)
j,k + hi(x

(t+1)
i,k)− hi(x

(t)
i,k),

(22)

where x
(t)
i,k is the estimate of the kth eigenvector, hi(x

(t)
i,k)

is the pseudo-gradient given as hi(x
(t)
i,k) = Cix

(t)
i,k −

(x
(t)
i,k)

TCix
(t)
i,k

∥x(t)
i,k∥2

x
(t)
i,k −

∑k−1
p=1

x
(t)
i,p(x

(t)
i,p)

TCi

∥x(t)
i,p∥2

x
(t)
i,k and s

(t)
i,k is the

estimate of the average pseudo-gradients. Let us define the

9

following stacked versions of the quantities x
(t)
i,k, s

(t)
i,k, and

hi(x
(t)
i,k) for i = 1, . . . ,M as

x
(t)
k =


x
(t)
1,k

x
(t)
2,k
...

x
(t)
M,k

 , h(x
(t)
k) =


h1(x

(t)
1,k)

h2(x
(t)
2,k)

...
hM (x

(t)
M,k)

 , s
(t)
k =


s
(t)
1,k

s
(t)
2,k
...

s
(t)
M,k

 .

Let x̄
(t)
k and s̄

(t)
k denote the average of {x(t)

i,k}Mi=1 and
{s(t)i,k}Mi=1, respectively. Taking the average of (21) and (22)
over all nodes i = 1, . . . ,M , we get

1

M

M∑
i=1

x
(t+1)
i,k = x̄

(t+1)
k = x̄

(t)
k + αs̄

(t)
k (23)

1

M

M∑
i=1

s
(t+1)
i,k = s̄

(t+1)
k

= s̄
(t)
k + g(x

(t+1)
k)− g(x

(t)
k) = g(x

(t+1)
k),

(24)

where g(x
(t)
k) = 1

M

∑M
i=1 hi(x

(t)
i,k) ∈ Rd. Additionally,

we also define the following stacked versions (denoted by
subscript ‘s’) such that all these are in RMd:

x̄
(t)
s,k =


x̄
(t)
k

x̄
(t)
k
...

x̄
(t)
k

 , s̄
(t)
s,k =


s̄
(t)
k

s̄
(t)
k
...

s̄
(t)
k

 , gs(x
(t)
k) =


g(x

(t)
k)

g(x
(t)
k)
...

g(x
(t)
k)

 .

Using these definitions, (21) and (22) can be re-written as

x
(t+1)
k =

1

2
((IM +W)⊗ Id)x

(t)
k + αs

(t)
k , (25)

s
(t+1)
k =

1

2
((IM +W)⊗ Id)s

(t)
k + h(x

(t+1)
k)− h(x

(t)
k).

(26)

Also,

s̄
(t+1)
s,k = s̄

(t)
s,k + gs(x

(t+1)
k)− gs(x

(t)
k) = gs(x

(t+1)
k) (27)

x̄
(t+1)
s,k = x̄

(t)
s,k + αs̄

(t)
s,k = x̄

(t)
s,k + αgs(x

(t)
k) (28)

g(x̄
(t)
s,k) =

1

M

M∑
i=1

(
Cix̄

(t)
k −

(x̄
(t)
k)TCix̄

(t)
k

∥x̄(t)
k ∥2

x̄
(t)
k −

k−1∑
p=1

x
(t)
i,p(x

(t)
i,p)

TCi

∥x(t)
i,p∥2

x̄
(t)
k

)
=

1

M

(
Cx̄

(t)
k −

(x̄
(t)
k)TCx̄

(t)
k

∥x̄(t)
k ∥2

x̄
(t)
k −

M∑
i=1

k−1∑
p=1

x
(t)
i,p(x

(t)
i,p)

TCi

∥x(t)
i,p∥2

x̄
(t)
k

)
. (29)

Now, we first show that x(t)
i,1 converges to a multiple of q1 at

a linear rate and then proceed with the proof for k = 2, . . . ,K
through induction.

Case I for Induction – k = 1: The iterates of FAST-PCA
for estimation of the dominant eigenvector are

x
(t+1)
i,1 =

1

2
x
(t)
i,1 +

∑
j∈Ni

wij

2
x
(t)
j,1 + αs

(t)
i,1 (30)

s
(t+1)
i,1 =

1

2
s
(t)
i,1 +

∑
j∈Ni

wij

2
s
(t)
j,1 + hi(x

(t+1)
i,1)− hi(x

(t)
i,1),

(31)

where hi(x
(t)
i,1) = Cix

(t)
i,1 −

(x
(t)
i,1)

TCix
(t)
i,1

∥x(t)
i,1∥2

x
(t)
i,1.

Lemma 1. The function hi : Rd → Rd with hi(v) = Civ −
(v)TCiv

∥v∥2 v is Lipschitz continuous with Lipschitz constant L1 =
6λ1.

The proof of this lemma is deferred to Appendix C. For Lip-
schitz continuous functions h(x1) and g(x1) defined above,
the following lemma holds true, the proof of which is deferred
to Appendix D.

Lemma 2. The following inequalities hold for L1 = 6λ1:
1) ∥h(x(t)

1)− h(x
(t−1)
1)∥2 ≤ L1∥x(t)

1 − x
(t−1)
1 ∥2

2) ∥g(x(t)
1)− g(x

(t−1)
1)∥2 ≤ L1√

M
∥x(t)

1 − x
(t−1)
1 ∥2

3) ∥g(x(t)
1)− g(x̄

(t)
s,1)∥2 ≤ L1√

M
∥x(t)

1 − x̄
(t)
s,1∥2

These inequalities aid the proof of our main theorem
presented next that shows the convergence of the iterate x

(t)
i,1

at node i to x∗
1 = ±c1q1, where c1 is a constant.

Proof of Theorem 1 for k = 1:
For proving the convergence of x

(t)
i,1 to x∗

1 = ±c1q1, ∀i =
1, . . . ,M , we prove that the distance of average x̄

(t)
1 from x∗

1,
the consensus error as well as the distance of s

(t)
i,1 from the

average pseudo-gradient g(x(t)
1) decay to zero at a linear rate.

From (26), we have

s
(t)
1 − gs(x

(t)
1) =

1

2
((IM +W)⊗ Id)s

(t−1)
1 − gs(x

(t−1)
1)+

h(x
(t)
1)− h(x

(t−1)
1)− (gs(x

(t)
1)− gs(x

(t−1)
1)).

From the definitions of s̄
(t)
1 , g(x(t−1)

1) and gs(x
(t−1)
1), it is

obvious that (1
M 11T ⊗ Id)s

(t−1)
1 = 1s̄

(t−1)
1 = s̄

(t−1)
s,1 =

gs(x
(t−1)
1). Thus,

∥s(t)1 − gs(x
(t)
1)∥

= ∥1
2
((IM +W)⊗ Id)s

(t−1)
1 − gs(x

(t−1)
1) + h(x

(t)
1)− h(x

(t−1)
1)

− (gs(x
(t)
1)− gs(x

(t−1)
1))∥

= ∥1
2
((IM +W)⊗ Id)s

(t−1)
1 − (

1

M
11T ⊗ Id)s

(t−1)
1 + gs(x

(t−1)
1)

− gs(x
(t−1)
1) + h(x

(t)
1)− h(x

(t−1)
1)− (gs(x

(t)
1)− gs(x

(t−1)
1))∥

= ∥(1
2
((IM +W)⊗ Id)−

1

M
11T ⊗ Id)(s

(t−1)
1 − gs(x

(t−1)
1))+

h(x
(t)
1)− h(x

(t−1)
1)− (gs(x

(t)
1)− gs(x

(t−1)
1))∥

≤ ∥((1
2
(IM +W)− 1

M
11T)⊗ Id)(s

(t−1)
1 − gs(x

(t−1)
1))∥+

∥h(x(t)
1)− h(x

(t−1)
1)− (gs(x

(t)
1)− gs(x

(t−1)
1))∥.

(32)

10

Next, we simplify the second term of the above inequality (32)
as follows:

∥h(x(t)
1)− h(x

(t−1)
1)− (gs(x

(t)
1)− gs(x

(t−1)
1))∥2

=∥h(x(t)
1)− h(x

(t−1)
1)∥2 + ∥gs(x

(t)
1)− gs(x

(t−1)
1)∥2

− 2⟨h(x(t)
1)− h(x

(t−1)
1),gs(x

(t)
1)− gs(x

(t−1)
1)⟩

=∥h(x(t)
1)− h(x

(t−1)
1)∥2 + ∥gs(x

(t)
1)− gs(x

(t−1)
1)∥2

− 2
M∑
i=1

⟨hi(x
(t)
i,1)− hi(x

(t−1)
i,1),g(x

(t)
1)− g(x

(t−1)
1)⟩

=∥h(x(t)
1)− h(x

(t−1)
1)∥2 +M∥g(x(t)

1)− g(x
(t−1)
1)∥2

− 2M⟨g(x(t)
1)− g(x

(t−1)
1),g(x

(t)
1)− g(x

(t−1)
1)⟩

=∥h(x(t)
1)− h(x

(t−1)
1)∥2 −M∥g(x(t)

1)− g(x
(t−1)
1)∥2

≤∥h(x(t)
1)− h(x

(t−1)
1)∥2.

Thus,

∥h(x(t)
1)− h(x

(t−1)
1)− (gs(x

(t)
1)− gs(x

(t−1)
1))∥

≤ ∥h(x(t)
1)− h(x

(t−1)
1)∥ ≤ L1∥x(t)

1 − x
(t−1)
1 ∥. (33)

From (32) and (33), we have the following

∥s(t)1 − gs(x
(t)
1)∥

≤ ∥((1
2
(IM +W)− 1

M
11T)⊗ Id)(s

(t−1)
1 − gs(x

(t−1)
1))∥

+ L1∥x(t)
1 − x

(t−1)
1 ∥

≤ 1 + β

2
∥s(t−1)

1 − gs(x
(t−1)
1)∥+ L1∥x(t)

1 − x
(t−1)
1 ∥, (34)

where β is absolute value of the second largest eigenvalue of
the weight matrix W, i.e., β = max{|λ2(W)|, |λM (W)|}. As
pointed out before, network connectivity ensures that β < 1.
Next, from (25) and (28), we have

x
(t)
1 − x̄

(t)
s,1 =

1

2
((IM +W)⊗ Id)x

(t−1)
1 − x̄

(t−1)
s,1 +

α(s
(t−1)
1 − gs(x

(t−1)
1))

= ((
1

2
(IM +W)− 1

M
11T)⊗ Id)(x

(t−1)
1 − x̄

(t−1)
s,1)

+ α(s
(t−1)
1 − gs(x

(t−1)
1)).

Thus,

∥x(t)
1 −x̄

(t)
s,1∥ ≤

1 + β

2
∥x(t−1)

1 −x̄(t−1)
s,1 ∥+α∥s(t−1)

1 −gs(x
(t−1)
1)∥.
(35)

Next, we bound ∥x̄(t)
1 − x∗

1∥. We know from (23)

x̄
(t)
1 = x̄

(t−1)
1 + αs̄

(t−1)
1 = x̄

(t−1)
1 + αg(x

(t−1)
1)

= x̄
(t−1)
1 + αg(x̄

(t−1)
s,1) + α(g(x

(t−1)
1)− g(x̄

(t−1)
s,1))

= x̄
(t−1)
1 +

α

M
(Cx̄

(t−1)
1 − (x̄

(t−1)
1)TCx̄

(t−1)
1

∥x̄(t−1)
1 ∥2

x̄
(t−1)
1)

+α(g(x
(t−1)
1)− g(x̄

(t−1)
s,1)).

Using (19) and (20), we know that an iterate of the form

x̄
(t)
1 = x̄

(t−1)
1 + α(Cx̄

(t−1)
1 − (x̄

(t−1)
1)TCx̄

(t−1)
1

∥x̄(t−1)
1 ∥2

x̄
(t−1)
1)

converges linearly as

∥x̄(t)
1 − x∗

1∥ ≤ δ1∥x̄(t−1)
1 − x∗

1∥,

where x∗
1 = ±c1q1 and δ1 = 1+αλ2

1+αλ1
. Thus,

∥x̄(t)
1 − x∗

1∥ ≤ δ1∥x̄(t−1)
1 − x∗

1∥+ α∥g(x(t−1)
1)− g(x̄

(t−1)
s,1)∥

≤ δ1∥x̄(t−1)
1 − x∗

1∥+ α
L1√
M
∥x(t−1)

1 − x̄
(t−1)
s,1 ∥.

(36)

Now we will bound ∥x(t)
1 − x

(t−1)
1 ∥. We know from (29)

g(x̄
(t)
s,1) =

1

M
(Cx̄

(t)
1 −

(x̄
(t)
1)TCx̄

(t)
1

∥x̄(t)
1 ∥2

x̄
(t)
1).

Thus g(x∗
s,1) = 1

M (Cx∗
1 −

(x∗
1)

TCx∗
1

∥x∗
1∥2 x∗

1) = 0, where x∗
s,1 =[

(x∗
1)

T, . . . , (x∗
1)

T
]T

. Hence,

∥gs(x̄
(t−1)
s,1)∥ =

√
M∥g(x̄(t−1)

s,1)∥ =
√
M∥g(x̄(t−1)

s,1)− g(x∗
s,1)∥

≤ L1

√
M∥x̄(t−1)

1 − x∗
1∥.

Using the above inequality and Lemma 2, we get

∥s(t−1)
1 ∥ = ∥s(t−1)

1 − gs(x
(t−1)
1) + gs(x

(t−1)
1)− gs(x̄

(t−1)
s,1)

+ gs(x̄
(t−1)
s,1)∥ (37)

≤ ∥s(t−1)
1 − gs(x

(t−1)
1)∥+ ∥gs(x

(t−1)
1)− gs(x̄

(t−1)
s,1)∥

+ ∥gs(x̄
(t−1)
s,1)∥ (38)

≤ ∥s(t−1)
1 − gs(x

(t−1)
1)∥+ L1∥x(t−1)

1 − x̄
(t−1)
s,1 ∥

+ L1

√
M∥x̄(t−1)

1 − x∗
1∥. (39)

Thus,

∥x(t)
1 − x

(t−1)
1 ∥ = ∥1

2
((IM +W)⊗ Id)x

(t−1)
1 − x

(t−1)
1 + αs

(t−1)
1 ∥

= ∥(1
2
((IM +W)⊗ Id)− IMd)(x

(t−1)
1 − x̄

(t−1)
s,1)

+ αs
(t−1)
1 ∥

≤ 2∥x(t−1)
1 − x̄

(t−1)
s,1 ∥+ α∥s(t−1)

1 ∥

≤ α∥s(t−1)
1 − gs(x

(t−1)
1)∥+ (2 + αL1)∥x(t−1)

1

− x̄
(t−1)
s,1 ∥+ αL1

√
M∥x̄(t−1)

1 − x∗
1∥ using (39),

where the second last inequality is because ∥ 12 ((IM +W)⊗
Id)− IMd∥ ≤ ∥12 (IM +W)∥+ ∥IMd∥ = 2. Using the above
inequality in (34), we get

∥s(t)1 − gs(x
(t)
1)∥ ≤ (

1 + β

2
+ αL1)∥s(t−1)

1 − gs(x
(t−1)
1)∥

+ L1(2 + αL1)∥x(t−1)
1 − x̄

(t−1)
s,1 ∥

+ αL2
1

√
M∥x̄(t−1)

1 − x∗
1∥. (40)

11

Writing a system of equations from (35), (36) and (40), we
have the following:∥s

(t)
1 − gs(x

(t)
1)∥

∥x(t)
1 − x̄

(t)
s,1∥√

M∥x̄(t)
1 − x∗

1∥

 ≤
(1+β

2 + αL1) L1(2 + αL1) αL2
1

α 1+β
2 0

0 αL1 δ1



×

∥s
(t−1)
1 − gs(x

(t−1)
1)∥

∥x(t−1)
1 − x̄

(t−1)
s,1 ∥√

M∥x̄(t−1)
1 − x∗

1∥

 , (41)

where ≤ implies element-wise inequalities. Let us define

P(α) =

(1+β
2 + αL1) L1(2 + αL1) αL2

1

α 1+β
2 0

0 αL1 δ1

 . Since P(α)

has non-negative entries and P2(α) has all positive entries,
each entry of Pt(α) will be O(ρ(P(α))t), where ρ(P(α)) is
the spectral radius of P(α). If we choose α such that ρ(P(α))

is < 1, then that implies ∥s(t)1 − g
(t)
v,1∥, ∥x

(t)
1 − x̄

(t)
v,1∥ and

∥x̄(t)
1 − x∗

1∥ converge at a linear rate. To find the required
condition on α, we show in Lemma 7 provided in Appendix E
that if α < λ1−λ2

42 (1−β
9λ1

)2, the spectral radius of P(α) is
strictly less than 1. This implies that if α < λ1−λ2

42 (1−β
9λ1

)2,
then ∥x̄(t)

1 − x∗
1∥, ∥x

(t)
i,1 − x̄

(t)
1 ∥ and ∥s(t)i,1 − g

(t)
1 ∥ converge at

a linear rate to 0. In other words, x(t)
i,1 converges linearly to

x∗
1 = ±c1q1, where c1 is some constant. ■
Case II for Induction – 2 ≤ k ≤ K:

We proceed with the proof of convergence for the rest of the
eigenvectors through induction. Assume that x(t)

i,p converges to
±cpqp for p = 1, . . . , k− 1 linearly, i.e., there exist constants
bi > 0 and νi < 1 such that

∥
k−1∑
p=1

(x(t)
i,p(x

(t)
i,p)

T

∥x(t)
i,p∥2

− qpq
T
p

)
∥ ≤ biν

t
i . (42)

In Case I, we proved x
(t)
i,1 converges to ±c1q1 linearly. By

induction, we assume x
(t)
i,p converges to ±cpqp for p =

1, . . . , (k − 1) at a linear rate, which leads to the inequality.
We use (42) to prove x

(t)
i,k converges to ±ckqk.

Lemma 3. The function hi,t : Rd → Rd with hi,t(v) = Civ−
(v)TCiv

∥v∥2 v − −
∑k−1

p=1

x
(t)
i,p(x

(t)
i,p)

T

∥x(t)
i,p∥2

Civ is Lipschitz continuous

with constant Lk = λ1(k + 5).

The proof of this lemma is deferred to Appendix F. Using
this lemma and the definition of g(xk), the following lemma
holds true, the proof of which is the same as that of Lemma 2.

Lemma 4. The following inequalities hold with Lk = λ1(k+
5) :

1) ∥h(x(t)
k)− h(x

(t−1)
k)∥2 ≤ Lk∥x(t)

k − x
(t−1)
k ∥2

2) ∥g(x(t)
k)− g(x

(t−1)
k)∥2 ≤ Lk√

M
∥x(t)

k − x
(t−1)
k ∥2

3) ∥g(x(t)
k)− g(x̄

(t)
s,k)∥2 ≤

Lk√
M
∥x(t)

k − x
(t)
s,k∥2

Proof of Theorem 1 for k > 1:

Using the definitions of x
(t)
k , s

(t)
k , gs(x

(t)
k), h(x

(t)
k) and

same algebraic manipulations as in proof for the case of k = 1,
we get

∥s(t)k − gs(x
(t)
k)∥ ≤ 1 + β

2
∥s(t−1)

k − gs(x
(t−1)
k)∥

+ Lk∥x(t)
k − x

(t−1)
k ∥ (43)

and

∥x(t)
k −x̄

(t)
s,k∥ ≤

1 + β

2
∥x(t−1)

k −x̄(t−1)
s,k ∥+α∥s(t−1)

k −gs(x
(t−1)
k)∥.
(44)

Now, we bound ∥x̄(t)
k − x∗

k∥. We know

g(x̄
(t)
s,k)

=
1

M

(
Cx̄

(t)
k −

(x̄
(t)
k)TCx̄

(t)
k

∥x̄(t)
k ∥2

x̄
(t)
k −

M∑
i=1

k−1∑
p=1

x
(t)
i,p(x

(t)
i,p)

T

∥x(t)
i,p∥2

Cix̄
(t)
k

)
=

1

M

(
Cx̄

(t)
k −

(x̄
(t)
k)TCx̄

(t)
k

∥x̄(t)
k ∥2

x̄
(t)
k −

M∑
i=1

k−1∑
p=1

qpq
T
p Cix̄

(t)
k

)
− 1

M

M∑
i=1

k−1∑
p=1

(x(t)
i,p(x

(t)
i,p)

T

∥x(t)
i,p∥2

− qpq
T
p

)
Cix̄

(t)
k

=
1

M

(
Cx̄

(t)
k −

(x̄
(t)
k)TCx̄

(t)
k

∥x̄(t)
k ∥2

x̄
(t)
k −

k−1∑
p=1

qpq
T
p Cx̄

(t)
k

)
− 1

M

M∑
i=1

k−1∑
p=1

(x(t)
i,p(x

(t)
i,p)

T

∥x(t)
i,p∥2

− qpq
T
p

)
Cix̄

(t)
k

= g
′
(x̄

(t)
s,k)− f(x̄

(t)
s,k),

where g
′
(x̄

(t)
s,k) = 1

M (Cx̄
(t)
k − (x̄

(t)
k)TCx̄

(t)
k

∥x̄(t)
k ∥2

x̄
(t)
k −∑k−1

p=1 qpq
T
p Cx̄

(t)
k) and f(x̄

(t)
s,k) =

1
M

∑M
i=1

∑k−1
p=1(

x
(t)
i,p(x

(t)
i,p)

T

∥x(t)
i,p∥2

− qpq
T
p)Cix̄

(t)
k . From (23),

we have

x̄
(t)
k = x̄

(t−1)
k + αs̄

(t−1)
k = x̄

(t−1)
k + αg(x

(t−1)
k)

= x̄
(t−1)
k + αg(x̄

(t−1)
s,k) + α(g(x

(t−1)
k)− g(x̄

(t−1)
s,k))

= x̄
(t−1)
k +

α

M
(Cx̄

(t−1)
k −

(x̄
(t−1)
k)TCx̄

(t−1)
k

∥x̄(t−1)
k ∥2

x̄
(t−1)
k −

k−1∑
p=1

qpq
T
p Cx̄

(t−1)
k)− αf(x̄

(t−1)
s,k) + α(g(x

(t−1)
k)− g(x̄

(t−1)
s,k)).

Using (19) and (20), we know that an iterate of the form

x̄
(t)
k = x̄

(t−1)
k + α(Cx̄

(t−1)
k −

(x̄
(t−1)
k)TCx̄

(t−1)
k

∥x̄(t−1)
k ∥2

x̄
(t−1)
k

−
k−1∑
p=1

qpq
T
p Cx̄

(t−1)
k)

converges linearly for α < 1
λ1

and qT
k x̄

(0)
k ̸= 0 as

∥x̄(t)
k − x∗

k∥ ≤ δk∥x̄(t−1)
k − x∗

k∥,

12

where x∗
k = ±ckqk and δk = 1+αλk+1

1+αλk
. Thus, using (19) and

(20), we know

∥x̄(t)
k − x∗

k∥ ≤ δk∥x̄(t−1)
k − x∗

k∥+ α∥g(x(t−1)
k)− g(x̄

(t−1)
s,k)∥+

α∥f(x̄(t−1)
s,k)∥ (45)

≤ δk∥x̄(t−1)
k − x∗

k∥+ α
Lk√
M
∥x(t−1)

k − x̄
(t−1)
s,k ∥+

α∥f(x̄(t−1)
s,k)∥. (46)

Now, we will bound ∥x(t)
k − x

(t−1)
k ∥. Since

g
′
(x̄

(t)
s,k) =

1
M (Cx̄

(t)
k −

(x̄
(t)
k)TCx̄

(t)
k

∥x̄(t)
k ∥2

x̄
(t)
k −

∑k−1
p=1 qpq

T
p Cx̄

(t)
k),

we have g
′
(x∗

s,k) = 1
M (ckCqk − ckq

T
k Cckqk

c2k∥qk∥2 qk −∑k−1
p=1 qpq

T
p Cckqk) = 0. Hence,

∥g
′

s(x̄
(t−1)
s,k)∥ =

√
M∥g

′
(x̄

(t−1)
s,k)∥

=
√
M∥g

′
(x̄

(t−1)
s,k)− g

′
(x∗

s,k)∥

≤ Lk

√
M∥x̄(t−1)

k − x∗
k∥.

Using the above inequality and Lemma 4, we get

∥s(t−1)
k ∥ = ∥s(t−1)

k − gs(x
(t−1)
k) + gs(x

(t−1)
k)− gs(x̄

(t−1)
s,k)

+ g
′

s(x̄
(t−1)
s,k)− fs(x̄

(t−1)
s,k)∥

≤ ∥s(t−1)
k − gs(x

(t−1)
k)∥+ ∥gs(x

(t−1)
k)− gs(x̄

(t−1)
s,k)∥

+ ∥g
′

s(x̄
(t−1)
s,k)∥+ ∥fs(x̄(t−1)

s,k)∥

≤ ∥s(t−1)
k − gs(x

(t−1)
k)∥+ Lk∥x(t−1)

k − x̄
(t−1)
s,k ∥

+ Lk

√
M∥x̄(t−1)

k − x∗
k∥+

√
M∥f(x̄(t−1)

s,k)∥. (47)

Thus,

∥x(t)
k − x

(t−1)
k ∥ = ∥(W ⊗ I)x

(t−1)
k − x

(t−1)
k + αs

(t−1)
k ∥

= ∥(W ⊗ I− I)(x
(t−1)
k − x̄

(t−1)
s,k) + αs

(t−1)
k ∥

≤ 2∥x(t−1)
k − x̄

(t−1)
s,k ∥+ α∥s(t−1)

k ∥

≤ α∥s(t−1)
k − gs(x

(t−1)
k)∥+ (2 + αLk)×

(48)

∥x(t−1)
k − x̄

(t−1)
s,k ∥+ αLk

√
M∥x̄(t−1)

k − x∗
k∥

+ α
√
M∥f(x̄(t−1)

s,k)∥ using (47). (49)

Using the above inequality in (43), we get

∥s(t)k − gs(x
(t)
k)∥ ≤ (

1 + β

2
+ αLk)∥s(t−1)

k − gs(x
(t−1)
k)∥

+ Lk(2 + αLk)∥x(t−1)
k − x̄

(t−1)
s,k ∥+

αL2
k

√
M∥x̄(t−1)

k − x∗
k∥+ αLk

√
M∥f(x̄(t−1)

s,k)∥. (50)

Writing a system of equations from (50), (44) and (46), we
have the following:∥s

(t)
k − gs(x

(t)
k)∥

∥x(t)
k − x̄

(t)
s,k∥√

M∥x̄(t)
k − x∗

k∥

 ≤
(1+β

2 + αLk) Lk(2 + αLk) αL2
k

α 1+β
2 0

0 αLk δk



×

∥s
(t−1)
k − gs(x

(t−1)
k)∥

∥x(t−1)
k − x̄

(t−1)
s,k ∥√

M∥x̄(t−1)
k − x∗

k∥

+ ∥f(x̄(t−1)
s,k)∥

αLk

√
M

0

α
√
M

 .

(51)

Let us define Pk(α) =(1+β
2 + αLk) Lk(2 + αLk) αL2

k

α 1+β
2 0

0 αLk ρk

 . Since Pk(α)

has non-negative entries and P2
k(α) has all positive

entries, each entry of Pt
k(α) will be O(ρ(Pk(α))

t),
where ρ(Pk(α)) is the spectral radius of Pk(α). From
Lemma 7 in Appendix E, we know if we choose
α < λk−λk+1

(k+5)(k+6) (
1−β
9λ1

)2, then ρ(Pk(α)) < 1. Also, we

know f(x̄
(t)
s,k) = 1

M

∑M
i=1

∑k−1
p=1(

x
(t)
i,p(x

(t)
i,p)

T

∥x(t)
i,p∥2

− qpq
T
p)Cix̄

(t)
k .

Thus,

∥f(x̄(t)
s,k)∥ = ∥

1

M

M∑
i=1

k−1∑
p=1

(
x
(t−1)
i,p (x

(t−1)
i,p)T

∥x(t−1)
i,p ∥2

− qpq
T
p)Cix̄

(t−1)
k ∥

≤ 1

M

M∑
i=1

∥
k−1∑
p=1

(
x
(t−1)
i,p (x

(t−1)
i,p)T

∥x(t−1)
i,p ∥2

− qpq
T
p)∥∥Ci∥∥x̄(t−1)

k ∥.

From (42), we know ∥
∑k−1

p=1(
x
(t−1)
i,p (x

(t−1)
i,p)T

∥x(t)
i,p∥2

−qpq
T
p)∥ ≤ biν

t
i .

Let b = (maxi bi)λ1∥x̄(t−1)
k ∥ > 0 and ν = maxi νi < 1. Thus

the system of equations becomes∥s
(t)
k − gs(x

(t)
k)∥

∥x(t)
k − x̄

(t)
s,k∥√

M∥x̄(t)
k − x∗

k∥

 ≤ ρ(Pk(α))
t

∥s
(0)
k − gs(x

(0)
k)∥

∥x(0)
k − x̄

(0)
s,k∥√

M∥x̄(0)
k − x∗

k∥


+ bνt

αLk

√
M

0

α
√
M

 . (52)

This implies that if α < λk−λk+1

(k+5)(k+6) (
1−β
9λ1

)2, then ∥x̄(t)
k −x∗

k∥,
∥x(t)

i,k − x̄
(t)
k ∥ and ∥s(t)i,k − g

(t)
k ∥ converge at a linear rate to 0.

In other words, x(t)
i,k converges linearly to x∗

k = ±ckqk, where
ck is some constant. ■

In summary, FAST-PCA converge exactly to the true
eigenvectors whilst completely doing away with the need
of explicit consensus loop. Table II provides a comparison
of the communication and iteration complexities of various
distributed PCA and PSA algorithms in terms of error ϵ and
eigengap gap. Since our proposed algorithm has a reduced
dependence of the total iteration complexity on gap, our
solutions are significantly faster than other algorithms as also
shown through numerical experiments in the next section. It
is worth noting here that the total iteration complexity of
DeEPCA and FAST-PCA become comparable in the case of
small gap since log(1 + x) ≈ x for small x. Nonetheless,
the total communication cost—a major performance metric for
any distributed algorithm—of FAST-PCA in this case would
still be less than that of DeEPCA by a factor of log 1

gap , which
would be a significant factor for small gap. The computational
complexity per iteration per node of the proposed method
is O(K2d). Additionally, in the statement of Theorem 1, it
requires that the average of the initial x̄(0)

k be not orthogonal
to qk. Such condition is easy to meet in practical applications,
since any small disturbance can make the initialization meet
this condition. Thus, random initialization at each node will
work for all practical purposes.

13

TABLE II: Comparison of Communication and Iteration Costs of FAST-PCA With Related Methods

Comm./Iteration No. of Iterations Total Comm. PCA/PSA

DistSeqPM [38]–[40] O
(
K 1

log gap−1
r

log 1
ϵ

)
O

(
K 1

log gap−1
r

log 1
ϵ

)
O

(
K2 1

log2 gap−1
r

log2 1
ϵ

)
PCA

S-DOT [42] O
(

1

log gap−1
r

log 1
ϵ

)
O

(
1

log gap−1
r

log 1
ϵ

)
O

(
1

log2 gap−1
r

log2 1
ϵ

)
PSA

DeEPCA [54] O
(
log 1

gap

)
O

(
1

gap
log 1

ϵ

)
O

(
1

gap
log 1

gap
log 1

ϵ

)
PSA

DSA [49] 1

O
(

1
log(1+αgap)

log 1
ϵ

)
up to ϵ = O (α) O

(
1

log(1+αgap)
log 1

ϵ

)
PCA

FAST-PCA (This Work) 2 O
(

1
log(1+αgap)

log 1
ϵ

)
O

(
1

log(1+αgap)
log 1

ϵ

)
PCA

Furthermore, the convergence results can be extended to the
case of repeated eigenvalues through some straightforward but
tedious calculations. In that case the iterates can be proved
to converge to a vector in the subspace spanned by the
eigenvectors corresponding to the (repeated) eigenvalue. Due
to space constraints, we leave that extension for future work.

V. EXPERIMENTAL RESULTS

In this section, we demonstrate the efficacy of our pro-
posed FAST-PCA algorithm through experiments on syn-
thetic as well as real-world data. We compare the perfor-
mance of our algorithm with existing algorithms of (cen-
tralized) orthogonal iteration (OI), (centralized) sequential
power method (SeqPM), distributed sequential power method
(SeqDistPM), distributed orthogonal iteration algorithms (S-
DOT, SA-DOT) [42], an orthogonal iteration+gradient tracking
based method DeEPCA [54] and our previously proposed dis-
tributed Sanger’s algorithm (DSA) [49]. In the case of OI and
SeqPM, we assume that all the samples are available at a single
location and, for the estimation of K dominant eigenvectors
of C, SeqPM performs power method K times sequentially
starting from the most dominant eigenvector. SeqDistPM is
the distributed version of SeqPM, which uses an explicit
consensus loop with a fixed number Tc of consensus iterations
per iteration of the power iteration [38], [39], whereas S-
DOT and SA-DOT are distributed versions of OI using fixed
and increasing number of consensus iterations per orthogonal
iteration. The DSA is a distributed generalized Hebbian al-
gorithm that converges linearly to a neighborhood of the true
eigenvectors of the global covariance matrix. Assuming that
the cost of communicating Rd×K matrices across the network
in one (outer loop) iteration is one unit, the x-axes of all the
plots indicate the total communication cost, i.e., total inner
and outer loop communications. In the algorithms with one
time scale, this is the same as the number of total outer loop
iterations (since inner iterations = 0). The y-axes of the plots
express the average angle between the estimated eigenvectors
x
(t)
i,k and the true eigenvectors ±qk across all the M nodes in

the network given by

E =
1

MK

M∑
i=1

K∑
k=1

(
1−

(
xT
i,kqk

∥xi,k∥

)2)
. (53)

A. Synthetic Data
We study the effects of factors like eigengap and dis-

tinct/repeated eigenvalues on the performance of our algorithm

in comparison to various other existing PCA and distributed
PCA algorithms. To that end, we generate Erdos–Renyi graphs
(p = 0.5) and cyclic graphs to simulate the distributed setup
with M = 20 nodes. We also generate synthetic data with
different (ratio) eigengaps of gapr = λK+1

λK
∈ {0.8, 0.97}. The

data is generated such that each node has 5000 i.i.d samples,
i.e., Ni = 5000 with d = 20 drawn from a multivariate
Gaussian distribution with zero mean and fixed covariance
matrix Σ. The number of eigenvectors to be estimated is set
to K = 5. For SeqPM, SeqDistPM and S-DOT, the number
of consensus iterations per outer loop iteration is Tc = 50 and
the number of maximum consensus iterations in the case of
SA-DOT is set to 50 as well. For the Erdos–Renyi topology,
we use a step size of α = 0.7 for our algorithm and for cyclic
graph, we use α = 0.1. These values correspond to the best
performing step sizes chosen after trial-and-error. The results
reported are an average of 10 Monte-Carlo simulations each
for a different random initialization.

Figure 1 compares the performance of our proposed FAST-
PCA algorithm with centralized OI, SeqPM, SeqDistPM, S-
DOT, SA-DOT, DeEPCA and DSA when the subspace eigen-
values λ1, . . . , λK are distinct, i.e., λ1 > λ2 > . . . > λK . It is
clear that our algorithm significantly outperforms SeqPM and
SeqDistPM since estimating one eigenvector at a time slows
down the convergence of these methods. Also, the requirement
of an explicit consensus loop implies the communication cost
of these methods is high as indicated by the plots. Even
though S-DOT and SA-DOT estimate the whole subspace (but
not necessarily the eigenvectors) simultaneously, an explicit
consensus loop makes those relatively slow as well. As ex-
pected, since DSA converges only to a neighborhood of the
true solutions, our new proposed algorithm outperforms it.
The performance of FAST-PCA is better than of DeEPCA
in case of Erdos–Renyi graph, but deprecates for a cycle
graph. It is desired from any distributed algorithm to perform
similar to their centralized counterparts and it is clear from the
figures that our algorithm FAST-PCA performs very similar to
centralized OI.

Figure 2 shows a similar performance comparison when the
subspace eigenvalues are very close to each other, i.e. λ1 ≈
λ2 ≈ . . . ≈ λK . The Gaussian distribution generated in this
case has covariance matrix Σ with equal subspace eigenvalues
but due to the finite number of samples, the eigenvalues of C
are not exactly equal albeit almost equal. It is evident that the
performance of every algorithm significantly deprecates in this

14

(a) Erdos–Renyi, gapr = 0.8 (b) Erdos–Renyi, gapr = 0.97

(c) Cycle, gapr = 0.8 (d) Cycle, gapr = 0.97

Fig. 1: Performance comparison of FAST-PCA with various
algorithms for two different eigengaps and two graph topolo-
gies. Here, the top K + 1 eigenvalues of C are distinct.

TABLE III: Effect of Network Size on the Runtime

M 10 20 50
Runtime (in secs) 0.98 1.75 4

scenario. Nonetheless, in this case FAST-PCA outperforms all
other algorithms including DeEPCA, while still being close to
centralized OI in terms of performance.

As already discussed, one of the key attributes of our
proposed FAST-PCA algorithm is that it is a one time-scale
algorithm. As evident from Table II, all algorithms including
FAST-PCA require more iterations when subspace eigenvalues
are close to each other. The main advantage of FAST-PCA over
other competing algorithms including DeEPCA is reduced
dependence on eigengap. This is further illustrated through
Figure 3a which shows the effect of change in eigengap
on the iteration complexity of FAST-PCA and DeEPCA.
Reducing the eigengap by half increases the convergence time
of both algorithms but the increase in DeEPCA is nearly
3 times, whereas the increase in FAST-PCA is less than 2.
Here, d = 200, K = 5. Figure 3b shows the effect of
graph connectivity on the performance of FAST-PCA. As
expected, smaller β i.e., stronger graph connectivity leads to
faster convergence. Furthermore, the performance for a fully
connected graph is same as that of the centralized solution.
Here, we used d = 20,K = 1, gap = 0.2.

Another network parameter that we study is the network
size, i.e., number of nodes in the network M . For an Erdos–
Renyi graph, if we keep the connectivity factor p constant,
say p = 0.5, then as M increases the number of connections
in the network increases, thereby reducing β, which in turn
decreases the iteration complexity. But more connections im-
ply more communications and bigger network size imply more
computations per round, which increases the overall runtime
of the algorithm. Table III shows the effect of network size
on the runtime of the proposed FAST-PCA algorithm.

(a) Erdos–Renyi, gapr = 0.8 (b) Erdos–Renyi, gapr = 0.97

(c) Cycle, gapr = 0.8 (d) Cycle, gapr = 0.97

Fig. 2: Performance comparison of FAST-PCA with various
algorithms for two different eigengaps and two graph topolo-
gies in the case of first K (almost) equal eigenvalues.

(a) Effect of eigengap on
performance of FAST-PCA vs
DeEPCA.

(b) Effect of graph connectivity
(β) on performance of FAST-
PCA.

Fig. 3: Effect of various parameters on the performance of
FAST-PCA.

B. Real-World Data

We also provide some results for the real-world datasets of
MNIST [57] and CIFAR10 [58]. We simulate the distributed
setup with an Erdos–Renyi graph with p = 0.5 and M = 20
nodes. Both these datasets have N = 60, 000 samples dis-
tributed equally among the nodes, making Ni = 3000. The
data dimensions are d = 784 for MNIST and d = 1024
for CIFAR10. Figure 4a shows the comparison of the various
PCA algorithms for MNIST dataset when K = 10 dominant
eigenvectors are estimated. The step size used for FAST-PCA
and DSA in this case is α = 0.1. Similar results for CIFAR10
are shown in Figure 4b when K = 5 and α = 0.8 is used.

VI. CONCLUSION

In this paper, we proposed and analyzed a novel algorithm
for distributed Principal Component Analysis (PCA) that truly
serves the complete purpose of dimension reduction and uncor-
related feature learning in the scenario where data samples are
distributed across a network. We provided detailed theoretical
analysis to prove that our proposed algorithm converges lin-
early, exactly and globally, i.e., starting from any random unit

15

(a) MNIST, K = 10 (b) CIFAR10, K = 5

Fig. 4: Performance comparison of FAST-PCA with various
algorithms for MNIST and CIFAR10.

vectors, to the eigenvectors of the global covariance matrix.
We also provided experimental results that further validate
our claims and demonstrate the communication efficiency and
overall effectiveness of our solution. In the future, we aim to
solve the problem of distributed PCA for estimation of multi-
ple eigenvectors in the case of streaming data. Other possible
directions are considering asynchronicity in the network and
the case of directed and time-varying graphs.

APPENDIX A
STATEMENT AND PROOF OF LEMMA 5

Lemma 5. Suppose z
(0)
k,k ̸= 0 and α < 1

λ1
. Then the following

is true for γk =
(

1
1+αλk

)2
< 1 and some constant a1 > 0:

k−1∑
l=1

(z
(t+1)
k,l)2 ≤ a1γ

t+1
k . (54)

Proof. For l = 1, . . . , k− 1 we know from (17) that z(t+1)
k,l =

a
(t)
k

(
1−α(x̃(t)

g,k)
TCx̃

(t)
g,k

)
z
(t)
k,l . Since (x̃

(t)
g,k)

TCx̃
(t)
g,k ≤ λ1 < 1

α ,
we have 1 + α(λk − (x̃

(t)
g,k)

TCx̃
(t)
g,k) > αλk ≥ 0.

Thus, we have for l = 1, · · · k − 1,(
z
(t+1)
k,l

z
(t+1)
k,k

)2

=

(
1− α(x̃

(t)
g,k)

TCx̃
(t)
g,k

1 + α(λk − (x̃
(t)
g,k)

TCx̃
(t)
g,k)

)2(
z
(t)
k,l

z
(t)
k,k

)2

=

(
1− αλk

1 + α(λk − (x̃
(t)
g,k)

TCx̃
(t)
g,k)

)2(
z
(t)
k,l

z
(t)
k,k

)2

≤
(
1− αλk

1 + αλk

)2(z(t)k,l

z
(t)
k,k

)2
=
(1

1 + αλk

)2(z(t)k,l

z
(t)
k,k

)2
= γk

(z(t)k,l

z
(t)
k,k

)2
, γk =

(1

1 + αλk

)2
< 1.

Therefore, for l = 1, . . . , k − 1, (z
(t+1)
k,l)2 ≤

γt+1
k

(
z
(0)
k,l

z
(0)
k,k

)2
(z

(t+1)
k,k)2. Since ∥x̃(t+1)

k ∥2 = 1 and ∥x̃(0)
k ∥2 = 1,

hence (zt+1
k,k)2 ≤ 1 and z

(0)
k,l ≤ 1. Also, because of the

assumption z
(0)
k,k ̸= 0, let us assume (z

(0)
k,k)

2 > η̃. Thus, we
can write

k−1∑
l=1

(zt+1
k,l)2 ≤ γt+1

k

k−1∑
l=1

1

η̃
= a1γ

t+1
k . (55)

■

APPENDIX B
STATEMENT AND PROOF OF LEMMA 6

Lemma 6. Suppose z
(0)
k,k ̸= 0 and α < 1

λ1
. Then the following

is true for ρk =
(

1+αλk+1

1+αλk

)2
< 1 and some constant a2 > 0:

d∑
l=k+1

(z
(t+1)
k,l)2 ≤ a2ρ

t+1
k . (56)

Proof. For l = k, . . . , d we know from (17) that z
(t+1)
k,l =

a
(t)
k

(
1 + α(λl − (x̃

(t)
g,k)

TCx̃
(t)
g,k)
)
z
(t)
k,l . Since (x̃

(t)
g,k)

TCx̃
(t)
g,k ≤

λ1 < 1
α , we have 1+α(λl− (x̃

(t)
g,k)

TCx̃
(t)
g,k) > αλl ≥ 0,∀l =

k, . . . , d.
Thus, we have for l = k + 1, · · · d,(
z
(t+1)
k,l

z
(t+1)
k,k

)2

=

(
1 + α(λl − (x̃

(t)
g,k)

TCx̃
(t)
g,k)

1 + α(λk − (x̃
(t)
g,k)

TCx̃
(t)
g,k)

)2(
z
(t)
k,l

z
(t)
k,k

)2

=

(
1− α(λk − λl)

1 + α(λk − (x̃
(t)
g,k)

TCx̃
(t)
g,k)

)2(
z
(t)
k,l

z
(t)
k,k

)2

≤
(
1− α(λk − λl)

1 + αλk

)2(z(t)k,l

z
(t)
k,k

)2
=
(1 + αλl

1 + αλk

)2(z(t)k,l

z
(t)
k,k

)2
≤
(1 + αλk+1

1 + αλk

)2(z(t)k,l

z
(t)
k,k

)2
= ρk

(z(t)k,l

z
(t)
k,k

)2
, ρk =

(1 + αλk+1

1 + αλk

)2
< 1.

Therefore, for l = k + 1, . . . , d, (z
(t+1)
k,l)2 ≤

ρt+1
k

(
z
(0)
k,l

z
(0)
k,k

)2
(z

(t+1)
k,k)2. Since ∥x̃(t+1)

k ∥2 = 1 and ∥x̃(0)
k ∥2 = 1,

hence (zt+1
k,k)2 ≤ 1 and z

(0)
k,l ≤ 1. Also, since z

(0)
k,k ̸= 0, let us

assume (z
(0)
k,k)

2 > η̃. Thus, we can write

d∑
l=k+1

(zt+1
k,l)2 ≤ ρt+1

k

d∑
l=k+1

1

η̃
= a2ρ

t+1
k . (57)

■

APPENDIX C
PROOF OF LEMMA 1

For a continuous and differentiable function f : Rd → Rd,
we know ∥f(x)− f(y)∥ ≤ ∥∇f(x)∥∥x− y∥. Thus, the Lips-

16

chitz constant can be given by the upper bound of ∥∇f(x)∥.
For the following function,

hi(v) = Civ −
(v)TCiv

∥v∥2
v,

taking derivative on both sides gives

∂

∂v
hi(v) = Ci −

∂

∂v

((v)TCiv

∥v∥2
)
vT − (v)TCiv

∥v∥2
I

= Ci −
2∥v∥2Civ − 2(v)TCivv

∥v∥4
vT − (v)TCiv

∥v∥2
I

= Ci −
2Civv

T

∥v∥2
+

2(v)TCivvv
T

∥v∥4
− (v)TCiv

∥xi,1∥2
I.

∥ ∂

∂v
hi(v)∥ ≤ ∥Ci∥+ ∥

2Civv
T

∥v∥2
∥+ ∥2(v)

TCivvv
T

∥v∥4
∥

+ ∥ (v)
TCiv

∥v∥2
I∥

≤ λi,1 + 2
λi,1∥v∥2

∥v∥2
+ 2|(v)TCiv|

∥v∥2

∥v∥4

+
|(v)TCiv|
∥v∥2

where, λi,1 = ∥Ci∥

≤ λi,1 + 2λi,1 + 2λi,1 + λi,1 = 6λi,1.

Thus,

∥hi(v1)− hi(v2)∥ ≤ 6λi,1∥v1 − v2∥ ≤ 6λ1∥v1 − v2∥,
(58)

where the last inequality uses the fact that Ci ⪯ C, hence
λi,1 ≤ λ1. ■

APPENDIX D
PROOF OF LEMMA 2

This lemma uses Lemma 1 to prove three inequalities that
aid in the proof of Theorem 1.

Proof. 1. First, we prove the Lipschitz continuity of the
stacked function h(x

(t)
1).

∥h(x(t)
1)− h(x

(t−1)
1)∥22 =

M∑
i=1

∥hi(x
(t)
i,1)− hi(x

(t−1)
i,1)∥2

≤ L2
1

M∑
i=1

∥x(t)
i,1 − x

(t−1)
i,1 ∥2

= L2
1∥x

(t)
1 − x

(t−1)
1 ∥2

∥h(x(t)
1)− h(x

(t−1)
1)∥2 ≤ L1∥x(t)

1 − x
(t−1)
1 ∥.

2. Here, we prove the Lipschitz continuity of the function
g(x

(t)
1).

∥g(x(t)
1)− g(x

(t−1)
1)∥22 =

1

M2
∥

M∑
i=1

(hi(x
(t)
i,1)− hi(x

(t−1)
i,1))∥2

≤ 1

M2
M

M∑
i=1

∥hi(x
(t)
i,1)− hi(x

(t−1)
i,1)∥2

≤ L2
1

M

M∑
i=1

∥x(t)
i,1 − x

(t−1)
i,1 ∥2

=
L2
1

M
∥x(t)

1 − x
(t−1)
1 ∥2

∥g(x(t)
1)− g(x

(t−1)
1)∥2 ≤

L1√
M
∥x(t)

1 − x
(t−1)
1 ∥2.

3. Using the Lipschitz continuous property of g(x(t)
1), we get

∥g(x(t)
1)− g(x̄

(t)
s,1)∥2 ≤

L1√
M
∥x(t)

1 − x̄
(t)
s,1∥2.

■

APPENDIX E
STATEMENT AND PROOF OF LEMMA 7

Lemma 7. For a matrix Pk(α) such that

P(α) =

(1+β
2 + αLk) Lk(2 + αLk) αL2

k

α 1+β
2 0

0 αLk δk


where Lk = (k+5)λ1 and δk = 1+αλk+1

1+αλk
, the spectral radius

ρ(Pk(α)) is strictly less than 1 if α < λ1−λ2

42 (1−β
9λ1

)2.

Proof. Since Pk(α) is a non-negative matrix, by Perron-
Frobenius theorem its characteristic polynomial has a simple
positive real root r such that ρ(Pk(α)) = r. We know
δk = 1+αλk+1

1+αλk
< 1 and Lk = (k + 5)λ1. Now, the

characteristic polynomial p(γ) of P(α) is given as

p(γ) = |γI−P(α)|

=

∣∣∣∣∣∣
γ − (1+β

2 + αLk) −Lk(αLk + 2) −αL2
k

−α γ − 1+β
2 0

0 −αLk γ − δ1

∣∣∣∣∣∣
= (γ − 1 + β

2
− αLk)(γ −

1 + β

2
)(γ − δk)+

α(−Lk(αLk + 2)(γ − δk)− α2L3
k)

=
(
(γ − 1 + β

2
− αLk)(γ −

1 + β

2
)−

αLk(αLk + 2)
)
(γ − δk)− α3L3

k

= p0(γ)(γ − δk)− α3L3
k,

where

p0(γ) = (γ − 1 + β

2
− αLk)(γ −

1 + β

2
)− αLk(αLk + 2)

= γ2 − (1 + β + αLk)γ +
1 + β

2
(
1 + β

2
+ αLk)− αLk(αLk + 2)

= (γ − γ1)(γ − γ2),

17

with γ1, γ2 being the roots of p0(γ), given as

γ1, γ2 =
1 + β + αLk ±

√
5α2L2

k + 8αLk

2
. (59)

If 0 < α < 1
Lk

, αLk < 1 and it implies α2L2
k < αLk <√

αLk. Thus,

γ1, γ2 =
1 + β + αLk ±

√
5α2L2

k + 8αLk

2

<
1 + β + αLk +

√
5α2L2

k + 8αLk

2

<
1 + β +

√
αLk +

√
5αLk + 8αLk

2

<
1 + β +

√
αLk +

√
16αLk

2

=
1 + β + 5

√
αLk

2
= γ0.

For γ ≥ γ0, p0(γ) ≥ (γ − γ0)
2. Now, let γ∗ = max{1 −

1
2
α(λk−λk+1)

1+αλk
, 1+β

2 + 4.5
√
αL1

√
(1+αλk)L1

λk−λk+1
} > γ0. Then

p(γ∗) ≥ 1

2

α(λk − λk+1)

1 + αλk
(4.5

√
αLk

√
(1 + αλk)Lk

λk − λk+1

− 2.5
√
αLk)

2 − α3L3
k

≥ 1

2

α(λk − λk+1)

1 + αλk+1

(
4.5
√
αLk

√
(1 + αλk)Lk

λk − λk+1

− 2.5
√
αLk

√
(1 + αλk)Lk

λk − λk+1

)2 − α3L3
k

≥ 1

2

α(λk − λk+1)

1 + αλk

(
2
√

αLk

√
(1 + αλk)Lk

λk − λk+1

)2 − α3L3
k

= 2α2L2
k − α3L3

k ≥ 0.

Since p(γ) = p0(γ)(γ − δk) − α3L3
k ≥ (γ − γ0)

2(γ −
δk) − α3L3

k, evidently it is a strictly increasing function on
[max{δk, γ0},+∞) and since this interval includes γ∗, p(γ)
has no real roots on (γ∗,+∞). Thus, the real root of the
characteristic polynomial is ≤ γ∗. Hence ρ(Pk(α)) ≤ γ∗. If
we choose α such that γ∗ < 1, then ρ(Pk(α)) < 1 and the
convergence would be linear. For γ∗ < 1, we need

1 + β

2
+ 4.5

√
αLk

√
(1 + αλk)Lk

λk − λk+1
< 1

√
αLk

√
(1 + αλk)Lk

λk − λk+1
<

1− β

9

(αLk)
(1 + αλk)Lk

λk − λk+1
< (

1− β

9
)2

α(1 + αλk) <
λk − λk+1

L2
k

(
1− β

9
)2

=
λk − λk+1

λ2
k(k + 5)2

(
1− β

9
)2.

If α < 1
Lk

= 1
(k+5)λ1

≤ 1
(k+5)λk

, then αλk < 1
k+5 . Thus,

1 + αλk < k+6
k+5 . If α < λk−λk+1

(k+5)(k+6) (
1−β
9λ1

)2 < 1
Lk

= 1
(k+5)λ1

,
that is k+6

k+5α < λk−λk+1

λ2
1(k+5)2

(1−β
9)2, then α(1 +αλk) <

k+6
k+5α <

λk−λk+1

λ2
1(k+5)2

(1−β
9)2. ■

APPENDIX F
PROOF OF LEMMA 3

For a continuous function f : Rd → Rd, we know ∥f(x)−
f(y)∥ ≤ ∥∇f(x)∥∥x − y∥. Thus, the Lipschitz constant can
be given by the upper bound of ∥∇f(x)∥. Taking derivative
on both sides of the function

hi,t(v) = Civ −
(v)TCiv

∥v∥2
v −

k−1∑
p=1

x
(t)
i,p(x

(t)
i,p)

T

∥x(t)
i,p∥2

Civ

we get

∂

∂v
hi,t(v) = Ci −

∂

∂v

((v)TCiv

∥v∥2
)
vT − (v)TCiv

∥v∥2
I

−
(k−1∑

p=1

x
(t)
i,p(x

(t)
i,p)

T

∥x(t)
i,p∥2

Ci

)T
= Ci −

2∥v∥2Civ − 2(v)TCivv

∥v∥4
vT − (v)TCiv

∥v∥2
I

−
(k−1∑

p=1

x
(t)
i,p(x

(t)
i,p)

T

∥x(t)
i,p∥2

Ci

)T
= Ci −

2Civv
T

∥v∥2
+

2(v)TCivvv
T

∥v∥4
− (v)TCiv

∥v∥2
I

−
k−1∑
p=1

Ci

x
(t)
i,p(x

(t)
i,p)

T

∥x(t)
i,p∥2

∥ ∂

∂v
hi,t(v)∥ ≤ ∥Ci∥+ ∥

2Civv
T

∥v∥2
∥+ ∥2(v)

TCivvv
T

∥v∥4
∥+

∥ (v)
TCiv

∥v∥2
I∥+

k−1∑
p=1

∥Ci

x
(t)
i,p(x

(t)
i,p)

T

∥x(t)
i,p∥2

∥

≤ λi,1 + 2
λi,1∥v∥2

∥v∥2
+ 2|(v)TCiv|

∥v∥2

∥v∥4
+

|(v)TCiv|
∥v∥2

+
k−1∑
p=1

∥Ci∥∥
x
(t)
i,p(x

(t)
i,p)

T

∥x(t)
i,p∥2

∥

≤ λi,1 + 2λi,1 + 2λi,1 + λi,1 + λi,1(k − 1)

= (k + 5)λi,1

Thus,

∥hi,t(v1)− hi,t(v2)∥ ≤ λi,1(k + 5)∥v1 − v2∥
≤ λ1(k + 5)∥v1 − v2∥

■

REFERENCES

[1] A. Gang, H. Raja, and W. U. Bajwa, “Fast and communication-efficient
distributed PCA,” in Proc. 2019 IEEE International Conf. Acoustics,
Speech and Signal Process. (ICASSP), 2019, pp. 7450–7454.

[2] A. Gang and W. U. Bajwa, “The best of both worlds: Distributed PCA
that is both exact and communication efficient,” in Proc. 2022 30th
European Signal Process. Conf. (EUSIPCO), 2022, pp. 732–736.

[3] M. Marjani, F. Nasaruddin, A. Gani, A. Karim, I. A. T. Hashem,
A. Siddiqa, and I. Yaqoob, “Big IoT data analytics: Architecture,
opportunities, and open research challenges,” IEEE Access, vol. 5, pp.
5247–5261, 2017.

18

[4] M. Hubert, P. J. Rousseeuw, and S. Verboven, “A fast method for robust
principal components with applications to chemometrics,” Chemometrics
Intell. Laboratory Syst., vol. 60, no. 1, pp. 101–111, 2002.

[5] T. Bouwmans, S. Javed, H. Zhang, Z. Lin, and R. Otazo, “On the
applications of robust PCA in image and video processing,” Proc. IEEE,
vol. 106, no. 8, pp. 1427–1457, 2018.

[6] H. Hotelling, “Analysis of a complex of statistical variables into principal
components.” J. Educational Psychology, vol. 24, no. 6, pp. 417–441,
1933.

[7] W. U. Bajwa, V. Cevher, D. Papailiopoulos, and A. Scaglione, “Machine
learning from distributed, streaming data,” IEEE Signal Process. Mag.,
vol. 37, no. 3, pp. 11–13, May 2020.

[8] Z. Yang, A. Gang, and W. U. Bajwa, “Adversary-resilient distributed and
decentralized statistical inference and machine learning: An overview of
recent advances under the Byzantine threat model,” IEEE Signal Process.
Mag., vol. 37, no. 3, pp. 146–159, 2020.

[9] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A
review and new perspectives,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 8, p. 1798—1828, August 2013.

[10] P. Baldi and K. Hornik, “Neural networks and principal component
analysis: Learning from examples without local minima,” Neural Netw.,
vol. 2, no. 1, p. 53–58, Jan. 1989.

[11] E. Oja and J. Karhunen, “On stochastic approximation of the eigenvec-
tors and eigenvalues of the expectation of a random matrix,” J. Math.
Anal. Applicat., vol. 106, no. 1, pp. 69 – 84, 1985.

[12] T. D. Sanger, “Optimal unsupervised learning in a single-layer linear
feedforward neural network,” Neural Netw., vol. 2, no. 6, pp. 459 –
473, 1989.

[13] D. O. Hebb, The Organization of Behavior : A Neuropsychological
Theory. Wiley New York, 1949.

[14] T. P. Krasulina, “Method of stochastic approximation in the determina-
tion of the largest eigenvalue of the mathematical expectation of random
matrices,” Autom. Remote Control, vol. 1970, pp. 215–221, 1970.

[15] A. Balsubramani, S. Dasgupta, and Y. Freund, “The fast convergence
of incremental PCA,” in Advances in Neural Information Processing
Systems, C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and
K. Q. Weinberger, Eds., vol. 26. Curran Associates, Inc., 2013.

[16] C. Tang, “Exponentially convergent stochastic k-PCA without variance
reduction,” in NeurIPS, 2019.

[17] K. Pearson, “On lines and planes of closest fit to systems of points in
space,” Philosophical Mag., vol. 2, pp. 559–572, 1901.

[18] G. H. Golub and C. F. Van Loan, Matrix Computations (3rd Ed.).
Baltimore, MD, USA: Johns Hopkins University Press, 1996.

[19] C. Lanczos, “An iteration method for the solution of the eigenvalue
problem of linear differential and integral operators,” J. Research Nat.
Bureau Standards, 1950.

[20] Z. Yi, M. Ye, J. C. Lv, and K. K. Tan, “Convergence analysis of a
deterministic discrete time system of Oja’s PCA learning algorithm,”
IEEE Trans. Neural Netw., vol. 16, no. 6, pp. 1318–1328, Nov 2005.

[21] J. C. Lv, Z. Yi, and K. K. Tan, “Global convergence of GHA learning
algorithm with nonzero-approaching adaptive learning rates,” IEEE
Trans. Neural Netw., vol. 18, no. 6, pp. 1557–1571, 2007.

[22] N. Vaswani, Y. Chi, and T. Bouwmans, “Rethinking PCA for modern
data sets: Theory, algorithms, and applications,” Proc. IEEE, vol. 106,
no. 8, pp. 1274–1276, 2018.

[23] N. Vaswani, T. Bouwmans, S. Javed, and P. Narayanamurthy, “Robust
subspace learning: Robust PCA, robust subspace tracking and robust
subspace recovery,” IEEE Signal Process. Mag., vol. 35, pp. 32–55, 07
2018.

[24] S. Hauberg, A. Feragen, R. Enficiaud, and M. J. Black, “Scalable robust
principal component analysis using Grassmann averages,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 38, no. 11, pp. 2298–2311, 2016.

[25] H. Zou, T. Hastie, and R. Tibshirani, “Sparse principal component
analysis,” J. Computational and Graphical Stat., vol. 15, no. 2, pp. 265–
286, 2006.

[26] H. Zou and L. Xue, “A selective overview of sparse principal component
analysis,” Proc. IEEE, vol. 106, no. 8, pp. 1311–1320, 2018.

[27] Z.-J. Bai, R. H. Chan, and F. T. Luk, “Principal component analysis
for distributed data sets with updating,” in Advanced Parallel Process.
Technologies. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005,
pp. 471–483.

[28] N. An and S. Weber, “On the performance overhead tradeoff of dis-
tributed principal component analysis via data partitioning,” in Proc.
Annu. Conf. Inform. Sci. Syst. (CISS), 2016, pp. 578–583.

[29] M. A. Livani and M. Abadi, “Distributed PCA-based anomaly detection
in wireless sensor networks,” in Proc. Int. Conf. Internet Technology
Secured Transactions, 2010, pp. 1–8.

[30] H. Imtiaz and A. D. Sarwate, “Distributed differentially private algo-
rithms for matrix and tensor factorization,” IEEE J. Select. Topics Signal
Process., vol. 12, no. 6, pp. 1449–1464, 2018.

[31] D. A. Tarzanagh, M. K. S. Faradonbeh, and G. Michailidis, “Online
distributed estimation of principal eigenspaces,” in Proc. 2019 IEEE
Data Sci. Workshop (DSW), 2019, pp. 27–31.

[32] B. Xiao, Y. Li, B. Sun, C. Yang, K. Huang, and H. Zhu, “Decentralized
PCA modeling based on relevance and redundancy variable selection
and its application to large-scale dynamic process monitoring,” Process
Safety and Environmental Protection, vol. 151, pp. 85–100, 2021.

[33] A. Grammenos, R. Mendoza Smith, J. Crowcroft, and C. Mascolo,
“Federated principal component analysis,” in Proc. Adv. Neural Inform.
Process. Syst., vol. 33. Curran Associates, Inc., 2020, pp. 6453–6464.

[34] S. X. Wu, H.-T. Wai, L. Li, and A. Scaglione, “A review of distributed
algorithms for principal component analysis,” Proc. IEEE, vol. 106,
no. 8, pp. 1321–1340, 2018.

[35] D. Kempe and F. McSherry, “A decentralized algorithm for spectral
analysis,” J. Comput. and Syst. Sci., vol. 74, no. 1, pp. 70 – 83, 2008.

[36] A. Scaglione, R. Pagliari, and H. Krim, “The decentralized estimation of
the sample covariance,” in Proc. 2008 42nd Asilomar Conf. on Signals,
Syst. and Comput., 2008, pp. 1722–1726.

[37] L. Li, A. Scaglione, and J. H. Manton, “Distributed principal subspace
estimation in wireless sensor networks,” IEEE J. Sel. Topics Signal
Process., vol. 5, no. 4, pp. 725–738, Aug 2011.

[38] H. Raja and W. U. Bajwa, “Cloud K-SVD: Computing data-adaptive
representations in the cloud,” in Proc. 2013 51st Annual Allerton Conf.
Commun., Control and Computing (Allerton), 2013, pp. 1474–1481.

[39] H. Raja and W. U. Bajwa, “Cloud-K-SVD: A collaborative dictionary
learning algorithm for big, distributed data,” IEEE Trans. Signal Pro-
cess., vol. 64, no. 1, pp. 173–188, Jan 2016.

[40] H. Wai, A. Scaglione, J. Lafond, and E. Moulines, “Fast and privacy
preserving distributed low-rank regression,” in Proc. IEEE Int. Conf.
Acoustics, Speech and Signal Process., (ICASSP), 2017, pp. 4451–4455.

[41] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Syst. & Control Letters, vol. 53, no. 1, pp. 65–78, 2004.

[42] A. Gang, B. Xiang, and W. U. Bajwa, “Distributed principal subspace
analysis for partitioned big data: Algorithms, analysis, and implemen-
tation,” IEEE Transactions on Signal and Information Processing over
Networks, vol. 7, pp. 699–715, 2021.

[43] M. Hong, D. Hajinezhad, and M.-M. Zhao, “Prox-PDA: The proximal
primal-dual algorithm for fast distributed nonconvex optimization and
learning over networks,” in Proc. 34th Int. Conf. Mach. Learning,
vol. 70. PMLR, 06–11 Aug 2017, pp. 1529–1538.

[44] P. Bianchi and J. Jakubowicz, “Convergence of a multi-agent projected
stochastic gradient algorithm for non-convex optimization,” IEEE Trans.
Autom. Control, vol. 58, no. 2, pp. 391–405, 2013.

[45] H. Wai, A. Scaglione, J. Lafond, and E. Moulines, “A projection-free
decentralized algorithm for non-convex optimization,” in Proc. 2016
IEEE Global Conf. Signal and Inform. Process. (GlobalSIP), 2016, pp.
475–479.

[46] S. Chen, A. Garcia, M. Hong, and S. Shahrampour, “Decentralized
riemannian gradient descent on the Stiefel manifold,” arXiv preprint
arXiv:2102.07091, 2021.

[47] F. L. Andrade, M. A. Figueiredo, and J. Xavier, “Distributed Picard
iteration,” arXiv preprint arXiv:2104.00131, 2021.

[48] ——, “Distributed Picard iteration: Application to distributed EM and
distributed PCA,” arXiv preprint arXiv:2106.10665, 2021.

[49] A. Gang and W. U. Bajwa, “A linearly convergent algorithm for
distributed principal component analysis,” Signal Processing, vol. 193,
p. 108408, 2022. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S016516842100445X

[50] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Trans. Autom. Control, vol. 54, no. 1, pp.
48–61, Jan 2009.

[51] W. Shi, Q. Ling, G. Wu, and W. Yin, “EXTRA: an exact first-order
algorithm for decentralized consensus optimization,” SIAM J. Optim.,
vol. 25, no. 2, pp. 944–966, 2015.

[52] G. Qu and N. Li, “Harnessing smoothness to accelerate distributed
optimization,” IEEE Trans. Control Netw. Syst., vol. 5, no. 3, pp. 1245–
1260, 2018.

[53] P. D. Lorenzo and G. Scutari, “NEXT: In-network nonconvex optimiza-
tion,” IEEE Trans. Signal Inform. Process. Netw., vol. 2, no. 2, pp.
120–136, 2016.

[54] H. Ye and T. Zhang, “DeEPCA: Decentralized exact PCA with
linear convergence rate,” Journal of Machine Learning Research,
vol. 22, no. 238, pp. 1–27, 2021. [Online]. Available: http:
//jmlr.org/papers/v22/21-0298.html

https://www.sciencedirect.com/science/article/pii/S016516842100445X
https://www.sciencedirect.com/science/article/pii/S016516842100445X
http://jmlr.org/papers/v22/21-0298.html
http://jmlr.org/papers/v22/21-0298.html

19

[55] R. Arora, A. Cotter, and N. Srebro, “Stochastic optimization of PCA
with capped MSG,” in Advances Neural Inform. Process. Systs., 2013,
pp. 1815–1823.

[56] S. Boyd, P. Diaconis, and L. Xiao, “Fastest mixing Markov chain on a
graph,” SIAM REVIEW, vol. 46, pp. 667–689, 2003.

[57] Y. LeCun, C. Cortes, and C. Burges, “MNIST handwritten digit
database,” ATT Labs, vol. 2, 2010.

[58] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Tech. Rep., 2009.

	Introduction
	Relation to Prior Work
	Our Contributions
	Notation and Organization

	Problem Description
	Proposed Algorithm: FAST-PCA
	Convergence Analysis
	Main Result
	Auxiliary Result
	Analysis of FAST-PCA

	Experimental Results
	Synthetic Data
	Real-World Data

	Conclusion
	Appendix A: Statement and Proof of Lemma 5
	Appendix B: Statement and Proof of Lemma 6
	Appendix C: Proof of Lemma 1
	Appendix D: Proof of Lemma 2
	Appendix E: Statement and Proof of Lemma 7
	Appendix F: Proof of Lemma 3
	References

