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ABSTRACT

As international efforts to mitigate greenhouse gases continue to fall short of
global targets, the scientific community increasingly debates the role of solar
geoengineering in climate policy. Given the infancy of these technologies, the
debate is not yet whether to deploy solar geoengineering but whether solar
geoengineering deserves consideration and research funding. Looming large
over this discussion is the moral hazard conjecture — normalizing solar geoen-
gineering will decrease mitigation efforts. Using a controlled experiment of
a collective-risk social dilemma that simulates the strategic decisions of hetero-
geneous groups to mitigate emissions and deploy solar geoengineering, we
find no evidence for the moral hazard conjecture. On the contrary, when people
in the experiment are given the option to deploy solar geoengineering, average
investment in mitigation increases.
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1. Introduction

A recent National Academies of Science, Engineering and Medicine report
recommends the U.S. invest in a 5-year $100-200 million solar geoengineer-
ing research program (National Academies of Sciences 2021). Solar geoen-
gineering — a large-scale intervention to cool the planet by managing the
amount of solar radiation that reaches the Earth - appeared as a climate
policy option in the 1960s (United States President’s Science Advisory
Committee-Environmental Pollution Panel 1965). In the subsequent
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decades, the scientific community has followed a ‘long-standing, self-
imposed, unspoken near-moratorium on solar geoengineering research’
(Wagner 2021). However, as international efforts to reduce global green-
house gases (GHG) continue to fall short, the potential for solar geoengi-
neering becomes more difficult to ignore (Aldy et al. 2021, National
Academies of Sciences 2021). The National Academies report (National
Academies of Sciences 2021) and prominent social and natural scientists
argue that research is needed to enhance policymakers’ understanding of
climate policy options and inform decisions of if, when and how to deploy
solar geoengineering technology (Parker 2014, Chavez 2016, MacMartin
et al. 2019, Parson 2021).

The report has sparked a lively debate on the role of solar geoengineering
in climate policy, with many scientists and commentators quickly expressing
opposition to the report’s recommendations (Biermann 2021, Stephens et al.
2021a, 2021b). A leading concern among critics is that solar geoengineering
opportunities will deter mitigation efforts. This effect is often referred to as
‘moral hazard’ (Keith 2000), but many experts have clarified that this term is
a misnomer (Reynolds 2019b). Others have termed the effect as ‘mitigation
deterrence’ (McLaren 2016), ‘risk compensation’ (Reynolds 2015), or
‘crowding out’ (Cherry et al. 2021). Regardless of the adopted term, a small
but emerging literature has set out to test the moral hazard conjecture and
largely finds that informing individuals about solar geoengineering options
tends to increase mitigation efforts, rather than decrease them (Fairbrother
2016, Merk et al. 2016, Austin and Converse 2021, Cherry et al. 2021). This is
sometimes referred to as ‘reverse moral hazard’ (Reynolds 2019a).

Existing studies, however, rely on survey responses by isolated individuals
to hypothetical scenarios (Fairbrother 2016, Cherry et al. 2021) or consumer
responses to information provision (Merk et al. 2016, Austin and Converse
2021). This work is limited to the analyses of stated preferences outside
potentially important strategic interactions among group members. The
findings in those studies, therefore, offer evidence on how people acting
alone respond to hypothetical scenarios that introduce solar geoengineering.
Such individual responses to solar geoengineering may stem from perceived
risks, moral concerns, or the novelty of the technology.

Considering that international climate policy is a collective action for
a collective problem, the moral hazard conjecture must consider important
strategic interactions (Moreno-Cruz 2015). Our study provides one of
the first attempt to move beyond individual-level moral hazard to examine
collective moral hazard. To illustrate, if one group member expects another
member to unilaterally deploy solar geoengineering, a best response may be
to increase or decrease mitigation. We conduct a collective-risk social
dilemma experiment based on a game-theoretic model to investigate strate-
gic mitigation and solar geoengineering decisions in order to avoid climate
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damages. Therefore, we consider both individual and collective channels
through which mitigation decisions are affected by the introduction of
solar geoengineering. Furthermore, by employing controlled experiments,
we also move beyond stated behavior in hypothetical scenarios to examine
actual behavior with consequential outcomes. While our experiment is the
first to investigate mitigation responses to solar geoengineering (i.e. ‘moral
hazard’), it follows an extensive literature that has used induced-value,
incentivized experiments to better understand strategic behavior in the social
sciences (Falk and Heckman 2009) and specifically in the context of climate
change policy (Barrett and Dannenberg 2012, Abatayo et al. 2020).

2. Experimental design

Our experiment consists of groups of players that can invest in solutions to
reduce damages from an impending disaster - akin to avoiding catastrophic
climate change. The baseline mitigation treatment is a variant of a public-
good game, in which members of a group have an experimental currency
(XC) that can be invested in group protection (i.e. mitigation), which benefits
all group members. Higher group investment in mitigation results in lower
XC losses for each group member. The socially optimal behavior is to invest
fully in mitigation (i.e. cooperation) though standard game theory predicts
no mitigation. Decades of research using public-good experiments consis-
tently report behavior in line with field observations — more cooperation
than game-theoretic equilibrium predictions but less than socially optimal
outcomes (Chaudhuri 2011).

The solar geoengineering (SGE) treatment extends the baseline treatment
by adding a second stage that allows players the option to deploy
a technology (e.g. stratospheric aerosol injection) to lessen the impact from
too little mitigation in the first stage.' After observing mitigation decisions
and outcomes, players in the SGE treatment have a second, albeit imperfect,
chance to partially avoid suffering losses. The second-chance option has four
important properties that correspond to solar geoengineering (Moreno-Cruz
and Keith 2013, Heyen et al. 2015). First, it is free to implement (capturing
that real-world SGE is relatively inexpensive). Second, more mitigation in
stage 1 reduces the need for SGE in stage 2. Third, SGE cannot fully protect
against losses (capturing that it is an imperfect substitute for mitigation).
Fourth, players have different preferred levels of SGE (both too much and too
little SGE 1is costly).

SGE is modelled as a ‘best-shot” technology - the highest level chosen is
the level realized for all group members (Barrett 2007, Weitzman 2015).
Theory predicts a free-driver result — the party that prefers the highest level
of SGE will deploy the technology to a point that exceeds the social optimum
(Weitzman 2015). Players can reduce the consequences of free-driver
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behavior by increasing investment in mitigation (Moreno-Cruz 2015). To
focus on this strategic behavior, we assume that the outcomes of the SGE
option are certain. Given that people are generally risk averse, certainty in
SGE outcomes makes the technology more attractive, resulting in more
substitution away from mitigation and towards SGE, thus tilting the decision
in favor of the moral hazard conjecture.

See the Supplementary Materials for the theoretical framework and pre-
dictions, the experimental parameters and instructions, and supporting
results from the data analyses. Supplemental materials can be accessed at
doi.org/10.17605/0sf.io/e6acp.

All experimental sessions were conducted online using a program specifically
developed for this study. Participants with no prior experience with the decision
setting were recruited from a large subject database of students at Appalachian
State University in Boone, NC. All standard protocols for induced-value con-
trolled experiments were followed. The study was approved by the Institutional
Review Board committee (#20200514TC02753), and data and code have been
deposited at Open Science Framework (see Supplementary Materials). After
obtaining informed consent, the participants completed instructions, answered
ex ante comprehension questions (88% correct), and then, they began the
experiment. During the session, participants did not communicate and were
only allowed to submit questions via chat to the experimenter.

All the experimental sessions consisted of 15 independent periods. To
correspond with the static nature of the theoretical framework, members
were unable to communicate (coordinate), and groups were reshuffled after
every period to minimize reputation effects and strategic behavior over
periods. Furthermore, to reinforce independence across periods, subjects
were informed their earnings would be determined by two randomly drawn
periods. After the experiment, participants answered five ex post comprehen-
sion questions with 94% of responses indicating they understood the experi-
ment. On average, the experimental sessions lasted about 60-70 min and
subjects earned approximately 21 USD, paid immediately after the session.

In the baseline treatment, there were 15 periods of the mitigation game
without a solar geoengineering option. In the SGE treatment, the first five
periods mirrored the baseline treatment (no SGE option), and the last
10 periods were the SGE treatment (mitigation w/ SGE option). We con-
ducted four sessions for each of the two treatments, and in total 120 unique
subjects participated in our experiments, resulting in 1800 individual-level
observations. Participants were assigned to groups of three, and the group
assignments changed each period, resulting in 600 unique groups. In the
baseline treatment, 63 subjects participated and generated 945 individual
observations and 315 group-level observations. In the SGE treatment, 57
subjects participated and generated 855 individual observations and 285
group-level observations.
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Figure 1. Average individual investment in mitigation over periods by treatment.

Our experiment allows us to test the moral hazard conjecture by compar-
ing investments in mitigation with and without an option to deploy solar
geoengineering. The moral hazard conjecture predicts a decrease in mitiga-
tion levels when solar geoengineering is an option. The experimental design
also allows a test of the ‘free-driver” hypothesis (Weitzman 2015).

3. Results

Figure 1 shows the average investment in mitigation with and without the
solar geoengineering option. In both treatments, over the first five periods,
we observe the well-documented behavior in social dilemma experiments —
partial cooperation that decays over time (Chaudhuri 2011). Moreover, the
average investment in mitigation over the first five periods closely overlaps,
which is expected given that the treatments are identical in those periods.
Subjects had an endowment of 100 XC that could be invested in mitigation
each period. From Figure 1, we observe that the average investment in
mitigation is 47.7 and 48.1 in the baseline and SGE treatments, respectively.

Once players are introduced to solar geoengineering as a second-chance
option (period 6), however, we observe a gap in mitigation investment across
the two treatments but not in the direction the moral hazard conjecture
predicts — mitigation is higher in the SGE treatment (baseline: 32.6 vs. SGE:
40.99). This finding is observed across different SGE preferences and is
robust to conditional estimates using generalized least squares that take
advantage of the panel nature of the data to control for participant-, per-
iod-, and session-specific-effects, as well as observational dependence within
sessions with robust standard errors (see Supplemental Material). Results
therefore do not support the moral hazard conjecture.
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Contrary to what is predicted by the moral hazard conjecture, results are
more consistent with the suggestion that solar geoengineering may serve as
a clarion call to increase mitigation efforts (Moreno-Cruz 2015). Conditional
estimates indicate that the SGE treatment leads to increases in mitigation
relative to the baseline (p = 0.029), which is consistent with the findings from
recent survey-based studies (Austin and Converse 2021, Cherry et al. 2021).

We also find evidence of free-driving behavior that leads to excessive
levels of solar geoengineering, which is consistent with Weitzman (2015).
On average, the chosen level of SGE is about 25% higher than the optimal
level (77.97 vs. 62.39, p = 0.019), and as predicted, these inefficiencies are
largely driven by the party that prefers the highest level of SGE (80.5% of
cases). This finding is in line with Abatayo et al. (2020) who report free-
driving behavior and excessive solar geoengineering in a one-stage game, but
unlike in our framework, they do not consider investment in mitigation.

The threat of free-driving behavior may underlie the finding that players
respond to solar geoengineering with greater investment in mitigation.
Rather than an easy coordinating solution, solar geoengineering introduces
complex strategic behavior across policy instruments. By increasing mitiga-
tion, one party can reduce the need for and potential harm from other party’s
deployment of solar geoengineering.

4. Summary

Reynolds (2019a) explains that the concern over moral hazard ‘has been the
most widespread basis for resistance to solar geoengineering (p.32).” This
study is the first to test the moral hazard conjecture in a controlled experi-
ment that mimics the strategic decisions of heterogeneous groups to mitigate
GHG emissions with and without the option of deploying solar geoengineer-
ing. Managing climate change is clearly more complex than the decisions
made in this study. Yet, induced-value laboratory experiments isolate beha-
vioral responses to consequential tradeoffs that generally extend beyond the
controlled setting (Alm et al. 2015, Snowberg and Leeat 2021). The method is
particularly useful when the proposed policies have no counterpart in reality,
such as climate change (Barrett and Dannenberg 2012, Abatayo et al. 2020).

Fundamentally, our experimental results provide insights into how people
respond when presented with a cheap but imperfect substitute (i.e. a quick
technology fix) to cooperation behavior (i.e. mitigation) aimed at resolving
a collective-risk social dilemma. Designed to capture incentives and tensions
presented by solar geoengineering, the experiment offers evidence that is
contrary to the “moral-hazard” conjecture. Rather, the results suggest that
solar geoengineering may lead to greater mitigation efforts. Given response
to solar geoengineering likely depends on the nature of the technology,
future research should explore how mitigation efforts respond to changes
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in the technology (e.g., risk, efficacy). Our findings emerge from a collective
decision setting that incorporates important strategic influences in the
absence of coordination. The lack of support for the moral hazard conjecture
in our strategic incentivized setting is qualitatively similar to previous sur-
vey-based studies that elicit responses from people that act alone (Austin and
Converse 2021, Cherry et al. 2021) and more broadly consistent with the
experimental literature on social dilemmas (Chaudhuri 2011).

Note

1. Stratospheric aerosol injection is also referred to solar radiation modification,
solar radiation management or climate engineering.
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