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Abstract—
The rapid growth of in-memory computing powered by data-

intensive applications has increased the demand for DRAM in
servers. However, a DRAM-based system can be limiting for
modern workloads because of its capacity, cost, and power
consumption characteristics. Hybrid memory systems, which
consist of different types of memory, such as DRAM and
persistent memory, can help address many of these limitations.
One promising direction that has been explored in the recent
literature involves introducing persistent memory devices as a
second memory tier that is directly exposed to the CPU. The
resulting tiered memory design must address the fundamental
challenge of placing the right data in the right memory tier at
the right time while minimizing overhead. We present MULTI-
CLOCK, an efficient, low-overhead hybrid memory system that
relies on a unique page selection technique for tier placement.
MULTI-CLOCK’s page selection captures both page access recency
and frequency, and enables moving pages to appropriate tiers at
the right time within hybrid memory systems. We implemented
a Linux-based, NUMA-aware version of MULTI-CLOCK that is
entirely transparent and backward compatible with any existing
application. Our evaluation with diverse real-world applications
such as graph processing and key-value stores shows that MULTI-
CLOCK can improve the average throughput by as much as 352%
when compared with several state-of-the-art techniques for tiered
memory.

I. INTRODUCTION

Over the last several decades, DRAM performance and
capacity have followed Moore’s Law and thus kept up with
advances in CPU technology. However, DRAM-based memory
systems have two significant drawbacks — cost and power
consumption. These drawbacks impact their usage in both
enterprise servers and mobile systems. Most new genera-
tion applications are inherently memory-intensive, whereby
workloads demand access to high-performance yet low-cost
memory systems [1]–[4]. A complementary technological
change is the imminent availability of higher capacity and
lower power consuming byte-addressable persistent memory
(PM) technologies [5]–[7]. These new memories offer latency
and bandwidth for byte-addressable access that are within an
order of magnitude of those for DRAM [8], [9], with power
consumption being lower by 4-29x compared to DRAM [8].
These characteristics make the use of PM to extend the main
memory attractive. When using PM as the main memory,
its persistence capability becomes irrelevant, thereby entirely
avoiding its biggest performance overhead [10].

One appealing use of persistent memory is as a new tier
in a hybrid multi-tier memory system with tiers ordered from

high performance - low capacity to low performance - high
capacity. This approach allows applications to access their
data directly from persistent memory without first paging
into DRAM. However, managing persistent memory simply
as additional available memory (i.e., static tiering) could
compromise the effectiveness of the tiered memory system.
Once an application has exhausted higher performance tier
resources, future allocations for that application or any other
application on the system will have to be serviced from lower
performance tiers. Additionally, such allocations continue to
reside in lower performance tiers regardless of how important
the data becomes over its lifetime. Thus, the primary challenge
in building an efficient hybrid memory system is the dynamic
placement of pages in appropriate tiers. From a system design
standpoint, addressing this challenge translates to understand-
ing the relative importance of pages, identifying misplaced
pages in either tier and moving such pages to their optimal
tier, all while controlling the overhead of these operations.
The major contributions of our work are:

• We design an efficient page selection method for dynamic
page movement across memory tiers. This method enables
identifying pages suitable for specific memory tiers in an
online fashion, thereby adapting to the workload.

• We propose MULTI-CLOCK, a solution based on dynamic
tiering that overcomes the limitations of static tiering and
extends the system’s memory with improved performance
without sacrificing DRAM capacity.

• We develop a real-system prototype implementation of
MULTI-CLOCK using Linux version 5.3.1 by extending the
kernel’s page reclamation algorithm to include its dynamic
page migration logic.

• We evaluate the performance of our prototype using diverse
workloads including graph analytics and key-value stores to
compare MULTI-CLOCK with existing solutions.

We evaluate MULTI-CLOCK against Nimble [11], AutoTier-
ing [12], and Memory-mode [7]. Our evaluation with YCSB
workloads [13] using a Memcached [3] backend and with
GAPBS [14], a graph processing benchmark, shows that
MULTI-CLOCK provides up to 132% higher performance com-
pared with static tiering and up to 352% compared with other
state-of-art solutions such as Nimble [11], AutoTiering [12],
and Memory-mode [7]. From these experiments, we find that
the page selection mechanism in dynamic tiered memory
systems is of critical importance. We also demonstrate that
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Fig. 1. Heat-map of pages access frequencies depicts access frequencies
of the sampled pages in (a) RUBiS OLTP, (b) SPECpower (OLTP),
(c) Dacapo xalan and (d) Dacapo lusearch.

the state-of-the-art page selection mechanisms do not consider
page access frequency distributions for identifying page mi-
gration candidates, and we demonstrate that doing so is vital
for optimizing performance in a tiered memory system.

II. MOTIVATION

Integrating persistent memory (PM) devices into existing
systems force a rethink of the system architecture. Due to
the relatively high read and write latency and low bandwidth,
using only PM as the main memory is not ideal. On the other
hand, a hybrid memory system with DRAM and PM can
deliver both high throughput combined and increased capacity.
However, designing a memory hierarchy with PM to improve
the performance of applications is non-trivial.

One promising approach of utilizing PM is to configure
both DRAM and PM as separate tiers in a multi-tier memory
system. With tiering, data residing in the byte-addressable
PM is treated as resident in the main memory and directly
addressable by the CPU. Tiers represent disjoint sets of
memory frames. The operating system identifies which frames
belong to each memory type and assigns them to their proper
tier. Tiers can be arranged in a specific order, following the
characteristics of the different types of memory from Higher
Tier - high performance - low capacity to Lower Tier - low
performance - high capacity), to service memory allocations.

In this section, we discuss the diversity in the access patterns
of pages across applications. We also discuss why the careful
selection of candidate pages for specific tiers based on both
the frequency and recency is pivotal for performance. We
also discuss the existing solutions for the DRAM-PM tiered
memory systems and their limitations.

A. Diversity in Page Access Patterns

Let us consider a simple tiered memory system wherein
pages are first allocated (or get ”born in”) in the DRAM tier.
When the system starts running low on free space in DRAM,
the system starts demoting less frequently accessed pages to
the PM tier to free up DRAM space for new allocations.
Without an available promotion mechanism, a demoted page

Fig. 2. Distribution of access frequencies for different page types depicts
the distribution of access frequencies in the performance windows for
the two types of pages: pages that were accessed only once during the
observation window and pages that were accessed multiple times in
the observation window. Workloads for the experiment: (a) RUBiS
OLTP, (b) SPECpower (OLTP), (c) Dacapo xalan and (d) Dacapo
lusearch.

would reside in the PM tier for the rest of its lifetime. If a
significant number of demoted pages get frequently accessed
post-demotion, a complementary promotion mechanism that
allows demoted pages to move back to the DRAM tier may
result in better system performance. However, a tiered system
with the facility of promoting pages from PM to DRAM can
improve performance only if promoted pages are accessed
relatively more frequently for a reasonable amount of time af-
terward. To evaluate the potential for a promotion mechanism
in improving workload performance, we recorded the access
patterns of pages in memory over time within applications.
To keep the overhead tractable, we randomly sampled pages
from memory, assigned them unique identifiers, and traced the
accesses to these sampled pages.

In Figure 1, the heatmap depicts the frequency of accesses of
the sampled pages for the execution periods of four workloads
from different benchmarks: (a) RUBiS OLTP benchmark [15],
(b) SPECpower (OLTP) [16] running at 80% of the maximum
throughput, (c) Dacapo xalan(XML to HTML conversation)
and (d) Dacapo lusearch(searching keyword over a corpus of
data using lucene) [17]. On the Y axis, 50 sampled pages
are sorted in ascending identifier order. The x axis represents
execution time. Each block of the heatmap shows the intensity
of the access frequency for a particular page for a particular
time segment. The heat maps indicate fairly diverse access
patterns for the sampled pages. Some pages show frequent
accesses throughout the execution period. We denote these
pages by DRAM friendly pages which should always reside
in DRAM. Other pages have very infrequent accesses over
the entire execution time. The total number of accesses from
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Tiering
Technique

Page Access
Tracking

Page Selection NUMA
Aware

Space
Overhead

Generality Evaluation Usability
Limitation

Key
InsightPromotion Demotion

Static-
Tiering N/A N/A N/A Yes N/A All PM None Straight forward

Thermostat Software
Page Fault N/A Frequency No Yes Huge

Page
Emulator
(KVM)

Not Open
Source

Poisoning huge
pages

AutoNUMA-
Tiering

Software
Page Fault Recency N/A Yes Yes All PM Config.

NUMA Paths NUMA balancing

AutoTiering Software
Page Fault Recency Frequency Yes Yes All PM Config.

NUMA Paths

Maintain N-bit
history for
demotion

Nimble Reference Bit Recency Recency No No All Emulator Config.
Launcher

Optimize huge
page migrations

AMP Reference Bit
Recency+

Frequency+
Random

Recency No Yes Huge
Page

Emulator
(QEMU)

No KMEM
DAX Support

Hybrid page
selection

MULTI-
CLOCK

Reference Bit Recency+
Frequency Recency Yes No All PM None Low overhead Re-

cency/Frequency

TABLE I
Comparison of existing memory tiering techniques.

these pages is very low compared to the total access count
during the execution. Thus, the tier residence of these pages
does not significantly impact the overall performance. Apart
from these two types of pages, we see that certain pages
can significantly benefit a tiered memory system. These Tier
friendly pages show bimodal access behavior whereby for
some time segments they get accessed at a much higher rate
than other time segments. If these pages can be identified
by analyzing their access patterns and moved to the DRAM
tier when they start to get accessed at a higher rate, the
overall application performance can potentially be improved.
Thus, our core motivation for a dynamic tiering system is
driven by two main observations: (a) the importance of pages
changes over time, and (b) at any given time, the importance
of different pages in the system can vary significantly.

Next, we investigate the importance of frequency of ac-
cesses along with the recency for identifying Tier friendly
pages. Recent works such as Nimble [11] select pages only
based on the recency since capturing frequency on the real
system with minimal overhead is challenging. To understand
the access frequency of pages, we divide the whole execution
period of the workloads that were used in the experiment in
Figure 1 into multiple sets of observation windows followed
by performance windows. We divide sampled pages that were
accessed into two defined categories: pages that were accessed
only once during that particular observation window and pages
that were accessed multiple times. Finally, we measure their
accesses in the next performance window, and we follow
the same procedure for all (observation window, performance
window) pairs. In the frequency distribution shown in Figure 2,
we can notice that pages that were accessed multiple times
in the observation windows are accessed with a much higher
frequency on average in the performance windows compared
to the pages that were accessed only once. This suggests that
pages with higher frequency in some observation windows
have a higher probability of getting accessed in the next
performance window.

B. Persistent Memory in Memory-mode

Persistent memory in Memory-mode is a natively system-
supported solution for using PM as memory. It is implemented
in recent memory controllers that support PM and by recent
operating systems that support PM DIMMs [7]. In Memory-
mode, DRAM is directly mapped as the cache for data stored
in PM and used as the last level cache in addition to the
L1/L2/L3 caches. The system recognizes only the PM as
memory. In a multi-socket system, DRAM can only act as
a cache for the PM DIMMs on the same socket [18]. The
primary limitation with using PM in Memory-mode is that
the available DRAM capacity is unusable by the operating
system and thus applications as well.

C. Memory Caching and Tiering

The classical caching problem when used with memory
hierarchies in computer systems is distinct from the dynamic
memory tiering problem. With caching, every item needs to be
fetched from the higher-performing tier (i.e., DRAM) before
accessing it. With tiering, in addition to the high performance
(DRAM) memory tier, there’s a second (lower-performing)
memory tier that is also directly accessible. Due to the small
performance gap between the high-performing and the lower-
performing tiers, items can be directly fetched from the lower-
performing tier without significant performance loss. Thus, the
core problem to address here is placing the right data in the
right memory tier, online.

Caching-aware applications (e.g., compilers) can organize
prefetching and increase memory access efficiency during
execution. In the future, if tiers of memory get individually
exposed to applications, it is conceivable that applications
can achieve prefetching of data from PM to DRAM via
OS hints. MULTI-CLOCK provides a currently usable method
where the kernel can automatically identify the hot items and
can serve them from the higher memory tier. This technique
is entirely oblivious to applications. Furthermore, dynamic
migration implemented in systems such as MULTI-CLOCK is
complementary to prefetching-based techniques and can also
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be effective in systems where prefetching is not feasible or
accurate.

D. Existing Tiered Memory Systems and Their Limitations

Table I shows the comparison of the existing and MULTI-
CLOCK tiering system. A straightforward way to tier is static
tiering, whereby a memory page, once mapped to a tier,
may not get reassigned to a different tier during its lifetime.
However, this is inefficient; when an application wins the
race to allocate memory from a higher tier, and such space
is exhausted, future allocations will be downgraded to use
lower tiers during their entire lifetime, regardless of how the
importance of the contained data changes over time.
[Software Page Fault Based Page Access Tracking.] Ther-
mostat [19] focused on tracking huge pages by poisoning
the page table entry (PTE) and triggering a software page
fault, and migrating cold pages to the lower memory tier.
AutoNUMA-tiering [20] and AutoTiering [12] are based on
AutoNUMA [21]. Similar to Thermostat, these solutions use
a software page fault technique called hint page fault to track
the page access and use recency to identify hot pages for
promotion. Although the software page fault techniques can
provide high accuracy in page access tracking, it is costly to
track all the pages as every page fault has to be handled before
accessing the page. Moreover, these techniques also require
additional memory to store each page’s individual scan time
on which its page hotness classification depends. AutoTiering
designs a conservative approach (AutoTiering-CPM) to mi-
grate pages to the best NUMA node. In addition, AutoTiering
maintains an n-bit vector for each page to determine the page
coldness and designs a progressive approach (AutoTiering-
OPM) to demote cold pages to lower tier. We could not
evaluate Thermostat as its source code was not available.
We evaluate both AutoTiering-CPM and AutoTiering-OPM to
compare the performance with MULTI-CLOCK. AutoTiering-
CPM is designed using AutoNUMA-tiering, and thus we did
not explicitly compare with AutoNUMA-tiering.
[Reference Bit Based Page Access Tracking.] Nimble [11]
focuses on transparent huge page (THP) migration, enables
multi-threaded concurrent migration, and two-sided page ex-
change to improve the overall page migration performance.
However, Nimble uses the existing page profiling technique of
the Linux kernel to exchange the top most recently accessed
pages in the lower tier with the least recently accessed pages
in the upper tier. Nimble is evaluated on an emulator, and
applications need to run through Nimble’s launcher to utilize
its page migration techniques. As Nimble mainly focuses
on the optimization of the overall page migration process,
we separated its hot/cold page identification technique and
implemented a single threaded Nimble page selection mecha-
nism in a real system for the singular purpose of comparing
against MULTI-CLOCK’s page selection mechanism. MULTI-
CLOCK itself is implemented as a built-in kernel feature, and
hence, applications do not require to follow any purpose-built
launcher mechanism for using MULTI-CLOCK.

AMP [22] proposes a tiered memory system that focuses
on page selection mechanisms based on the popular cache
replacement algorithms, including least-recently-used (LRU),
least-frequently used (LFU), and random selection. AMP is
designed, implemented, and evaluated using an emulator. AMP
uses one node, only for DRAM allocations, and the other node
only for PM allocations, which is unrealistic in a two socket
NUMA machine wherein each node typically has its own
DRAM, PM, and CPUs [7]. Moreover, AMP is implemented
on Linux kernel version 4.15, which does not support the
required KMEM DAX driver (available from kernel v5.1) to
use PM as the main memory in a tiered system. Furthermore,
the core design principle of AMP requires it to scan and profile
all the memory pages from both DRAM and PM tier, which
is impractical in the kernel on a real system as the number
of in-memory pages can grow to hundreds of millions for the
workloads we evaluated. Hence, for multiple practical reasons,
we could not deploy AMP on a real system for evaluation.

Identifying the hot/cold data in virtual memory manage-
ment may cause a high overhead. For low overhead, efficient
tracking, the Linux kernel implements CLOCK, which is the
approximation of the popular LRU cache replacement policy.
As tracking every in-memory page access is not feasible,
LFU is considered impractical for general virtual memory
management. The CLOCK algorithm does not consider the
frequency of the access. In a tiered memory system, as we
have shown in Section II-A, it is important to capture both
recency and frequency for hot/cold page identification. Hence,
in this paper, we try to solve the following two novel research
questions for tiered memory systems:
• RQ1: How to identify hot pages for promotion based on

recency and frequency?
• RQ2: How to design a simple and low overhead yet efficient

system in the kernel?

III. MULTI-CLOCK
A fundamental problem with static tiering is the mismatch

of page access performance requirements with tier perfor-
mance capabilities. Dynamic memory tiering mechanisms ad-
dress this problem with a solution that dynamically migrates
important pages to higher tiers and less important pages to
lower tiers. The principal hypothesis of designing MULTI-
CLOCK is that the pages that are recently accessed more than
once are more likely to be accessed in the near future. MULTI-
CLOCK determines the relative importance of pages within and
across tiers by running a modified version of Linux’s Page
Frame Reclamation Algorithm (PFRA) (which is based on the
CLOCK algorithm) to each memory tier separately.

MULTI-CLOCK is implemented based on the well-known
CLOCK because of its low overhead and effectiveness. How-
ever, MULTI-CLOCK does not use CLOCK exactly as it is.
The CLOCK algorithm approximates LRU by checking for
references when scanning the list of pages and moving any
referenced page to the head of the list. MULTI-CLOCK uses a
new approach to identify important pages in the lower tier.
In addition to the active and inactive lists, MULTI-CLOCK
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Fig. 3. MULTI-CLOCK architecture. The new data structures that we
add to each tier and the interaction between these data structures. The
arrows show the movement of pages across different page lists. The
solid arrow represents both MULTI-CLOCK and Nimble, the dashed
arrow is for MULTI-CLOCK only, and the dotted arrow is for Nimble
only. The label numbers do not represent any particular order of the
operations.

introduces a new promote list to select the candidate pages
for promotion. MULTI-CLOCK completely reworks how pages
are moved across the lists in both tiers, thus introducing a new
lifecycle of pages.

New pages are allocated from the DRAM. Once the DRAM
is full, pages are allocated from the PM tier. Every page
in the system is arranged in one of its tier’s three lists
according to their degree of hotness/coldness of accesses. The
DRAM tier in the system does not use a promote list since
there is no higher-performing tier to migrate pages to. With
these changes, MULTI-CLOCK is able to capture both recency
and frequency. Hence, although MULTI-CLOCK is based on
the CLOCK algorithm, it is different from CLOCK and has
significant algorithmic contributions and unique implementa-
tion challenges that we elaborate next in this section and in
Section IV.

A. Life Cycle of a Page
Figure 3 depicts the overall arrangement of lists in the

two tiers on the system and the possible movement of pages
within and across these tiers for both MULTI-CLOCK and
Nimble. Every list is scanned at various points in time to
make decisions regarding migrations. In MULTI-CLOCK, a
recently allocated page starts in the inactive list as shown in
the Figure 3(1). The inactive list of a higher-performing tier
maintains candidate pages for demotion, i.e., migration to a
lower-performing tier. A page is said to be referenced if any
type of access (i.e., read or write) occurs to the page. Both
inactive and active lists make a differentiation between pages
that were referenced and those that were not referenced since
the last scan.

During a scan, if a page has been marked referenced since
the previous scan is encountered, it is then marked as not

referenced and moved to the head of the list. On the other
hand, if the page was not referenced, it is moved according to
which list it belongs to: (a) if it belongs to the active list, it
is moved to the inactive list as shown in Figure 3 (4) and (7),
and (b) if it belongs to the inactive list is then migrated to its
lower tier, and if none exists, evicted out of memory (Figure
3 (6)). This movement of pages out of a list is referred as
the shrink of the source list. At the same time, when access
occurs to a page in the inactive list and that page was marked
as referenced, this page is activated by being moved to the
active list’s head, where it starts out by being marked as not
referenced (Figure 3 (3) and (5)). A similar process is followed
when a page is re-activated and is moved from the active list
to the promote list’s head (Figure 3(8)), where it becomes a
candidate for promotion (i.e., migration to a higher-performing
tier) as shown in Figure 3(10).

With this arrangement, the system is able to classify pages
into three categories: hot, warm, and cold. Hot pages navigate
the lists within a tier and eventually reach the promote list
where they become candidate pages to migrate to the higher-
performing tier. On the other extreme, cold pages remain in the
inactive list where they become candidates for migration to a
lower-performing tier when the tier experiences memory pres-
sure. Thus, MULTI-CLOCK makes decisions on how to place
each page within an appropriate tier and within an appropriate
list according to their access frequency and recency.

The key difference in the architecture of MULTI-CLOCK and
Nimble is shown in Figure 3. The life cycle in Nimble involves
the page only residing in the dotted box on the right side of the
Figure 3. Nimble does not have any promote list, and thus it
cannot differentiate between pages accessed exactly once and
those accessed more than once. Nimble selects a fixed number
of the top pages in the lower tier’s active list to promote to the
bottom of the higher tier’s active list as shown in Figure 3(11).
The number of pages that get selected by MULTI-CLOCK is
not fixed as it qualitatively chooses pages from the lower tier’s
active list based on recent re-accesses to the pages.

One of the key challenges in designing MULTI-CLOCK is
keeping track of accesses and updating the reference status
of pages in a timely matter. This is addressed differently
depending on the type of page access used by applications.
Applications can access memory pages in two ways: su-
pervised, using the operating system’s (OS) file system call
interface, and unsupervised, by memory mapping pages into
their address-space.

1) Supervised Access: This type of access is typically used
for file-backed pages, and it gives the OS control at the
moment of the access to perform the necessary book-keeping.
When applications use supervised access to memory pages,
the operating system is able to mark these pages referenced
(for e.g., in Linux, via mark_page_accessed()) and, if
necessary, to move between lists (activate or re-activate) before
even processing the requested data access.

2) Unsupervised Access: Accesses to anonymous or file-
backed memory that is directly mapped into the application’s
virtual address space via mmap are more difficult to monitor.
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This type of access is entirely unsupervised, and the OS is not
able to mark such pages as referenced. To handle unsupervised
access, MULTI-CLOCK relies on the page reference bit set by
the CPU in the process’ page table entry. During each scan,
as described earlier, before making any decision regarding
a specific page, MULTI-CLOCK checks within every process’
page table that maps it for a set referenced bit. If a referenced
bit is found set, MULTI-CLOCK updates the page status and
takes care of the necessary movement between lists (i.e., mark
as referenced, activate, or re-activate the page).

B. Promotion Mechanism

We design a new system daemon, kpromoted, that is
woken up periodically to scan the lists, update them, and
migrate any pages from the promote list to a higher tier due to
recent unsupervised accesses. Every time kpromoted runs, it
first selects the candidate pages for promotion and promotes
all the pages it selected. Thus, once a page is selected for
promotion, the page gets promoted to the DRAM in the same
kpromoted run. As kpromoted promotes all the pages
it selects, the number of promotions depends on the running
application. If the application frequently accesses a large
number of pages from the PM tier, the number of promotions
will increase. On the other hand, if the application does not
frequently access pages from the PM tier, kpromoted will
promote fewer pages or no pages at all.

Implicitly, MULTI-CLOCK relies on the periodicity of
kpromoted waking up to ensure that hot pages in lower
tiers are migrated to higher tiers in a timely manner. The
frequency of kpromoted’s execution defines the capacity of
the system to react quickly to workload changes. If scheduled
too frequently, excessive context switches to accommodate its
execution could also affect application performance. Careful
tuning of kpromoted’s execution schedule is necessary to
ensure that applications benefit from the promotion mechanism
in MULTI-CLOCK. In the prototype system we built, we chose
the kpromoted execution schedule to be every 1 second
as discussed in Section V-E and this worked fairly well
for the workloads we evaluated the system with. It resulted
in sufficient responsiveness in promoting hot pages without
imposing high CPU overheads due to unnecessary scanning
of every page in the LRU lists.

C. Demotion Mechanism

Demotion allows moving cold pages from a higher-
performing tier to a lower-performing tier when these pages
are no longer sufficiently important. MULTI-CLOCK’s design of
this mechanism is based on the page eviction design in today’s
virtual memory systems. To avoid running out of memory on a
given tier, a tier is marked under memory pressure proactively
when it reaches specific watermark levels. These levels are
calculated by the system according to the amount of memory
in the tier vs. the total amount of memory in the system.

If any tier is marked as being under memory pressure, each
list is scanned with the objective of freeing up memory. Any
page in the promote list is first attempted to be migrated

to a higher-performing tier, and if that is not possible —
for instance, the page is locked — then it is moved to
the active list. If the higher-performing tier is also under
memory pressure, promotions from the lower tier result in
immediate page demotions from the higher tier. Next, if the
ratio of pages in the active list with respect to the inactive
list exceeds a tunable threshold (inherited from PFRA and
typically

p
10 ⇤ n : 1, where n is the amount of memory

in GB available in the tier), pages not marked as referenced
in the active list are moved to the inactive list. Finally, the
inactive list is scanned in search of pages not marked as
referenced to be migrated to a lower tier. Migration may not
be possible, specifically because the candidate pages belong
to the lowest tier in the system. In this case, these pages are
written back to block storage (i.e., file-backed pages to file
system and anonymous pages to the swap area if available)
before triggering the out-of-memory (OOM) killer as the last
option.

IV. IMPLEMENTATION

The existing Linux mechanism to describe physical memory
relies on the definition of nodes. In NUMA architectures,
each bank of memory is represented by a single NUMA
node. On the other hand, for UMA architectures, Linux
uses a single NUMA node to represent all physical memory
in the system. The data structure used to represent nodes
is called pglist_data. Each node is then divided into
memory ranges called memory zones, and Linux uses the
data structure zone to represent them in memory. Zones are
of different types, and each type is suitable for a different
usage (i.e., ZONE_DMA gathers physical addresses that can be
accessed by legacy hardware through DMA). We implemented
a prototype of MULTI-CLOCK for NUMA architectures for
Linux kernel v5.3.1. Our prototype evaluates a hybrid two-
tiered memory system: one tier of DRAM and another of
persistent memory. In comparison with Nimble, which requires
an additional launcher to run any workload on the kernel,
our implemented prototype of MULTI-CLOCK can directly run
any workload without any additional configuration setup or
prior knowledge. We used the Intel Optane DC Persistent
Memory on a real platform as the persistent memory tier
(discussed in Section V-A). Upon creating a new namespace
in devdax mode using the ndctl tool [23], we can hot-plug
the namespace as system memory with the DAX-KMEM driver.
DAX-KMEM driver is available in the kernel from v5.1 and
onwards. The DAX-KMEM driver separates newly added PM
from the DRAM by hot-plugging PM as a new node. We
modified the DAX-KMEM driver to tag the newly hot-plugged
node as a PM node, so that MULTI-CLOCK can recognize it by
adding a new flag in the pglist_data structure. Although
PM is hot-plugged as a new node, this node id is different
from the physical node of the PM, i.e., the socket where it
is physically installed. We define all the DRAM nodes as the
DRAM tier and all the PM nodes in the system as the PM
tier.
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Fig. 4. Page state diagram depicting the Linux implementation of MULTI-CLOCK Each vertex represents a page state; white vertices are original
PFRA page states while the gray vertex is a new page state introduced by MULTI-CLOCK. Solid edges represent Linux procedures that change
page state; dashed edges represent page migration to a different tier. Counterparts to shrink list methods are implicit on page allocations
that cause lists to expand. The numeric edge numbers do not represent any particular order of operations.

The main design principle of MULTI-CLOCK is to migrate
cold data from the DRAM tier to the PM tier and move
hot data from the PM tier to the DRAM tier. We rely on
the existing Linux migration mechanisms already in place for
the hot-plug/hot-remove of memory. Linux’s page migration
mechanism (migrate_pages()) is in charge of allocating
new memory pages given an allocation routine, copying the
memory contents from origin pages to the newly allocated
destination pages, and fixing any memory mappings that refer
to the migrated pages.

Originally, each memory node maintains its own set of LRU
lists: anonymous inactive, anonymous active, file inactive,
file active, and unevictable. We added two lists: anonymous
promote and file promote. Unevictable pages belong to the
unevictable list and are pages in the system that are locked
into memory (typically via mlock()) and cannot be evicted
nor migrated. Every evictable page in the system, depending
on being file-backed or anonymous, will belong to one set of
LRU lists (anonymous lists or file lists), and it will traverse
these by transitioning through different states as depicted in
Figure 4. We also extended the struct page flags which
maintain the status of a page during its existence to add a new
flag: PagePromote. This new flag is used by the OS to mark
that the page in question, which is to be added to the LRU lists,
belongs to the promote list. The memory overhead of these
modifications is negligible since we reused the list pointer on
the struct page to index the pages in the promote lists; we
also reused the space allocated for the page flags to maintain
the newly defined flag.

We implemented the system daemon discussed in Sec-
tion III-B as a new kernel thread, kpromoted, which is
woken up periodically to execute the migration of any pages
sitting in the promote list to a higher tier. This thread’s design
follows those of PFRA for the kswapd eviction daemon: one
kernel thread per NUMA node. This design aims to avoid lock

Source File New Lines Modified Lines
drivers/base/node.c 4 1
drivers/dax/kmem.c 10 0
include/linux/gfp.h 7 1
include/linux/mm.h 6 0

include/linux/mm inline.h 8 1
include/linux/mmzone.h 52 1

include/linux/nodemask.h 6 1
include/linux/page-flags.h 19 6

include/trace/events/mmflags.h 7 1
mm/Kconfig 3 0

mm/memcontrol.c 8 2
mm/migrate.c 1 0

mm/page alloc.c 43 2
mm/swap.c 59 6

mm/vmscan.c 364 7
mm/vmstat.c 16 0

TABLE II
Linux source code modifications measured as number of lines modified.

contention on critical per-node data structures.
Our implementation of the MULTI-CLOCK algorithm is en-

capsulated mostly within mm/vmscan.c and mm/swap.c.
Table II presents how much new code was added for
MULTI-CLOCK and which files were modified in the Linux’s
source code. In total, MULTI-CLOCK inserted 673 new
lines and modified 30 existing lines of code. We extended
mark_page_accessed() to check for pages that are al-
ready referenced and marked as active and are being refer-
enced again to mark such pages with the PagePromote

flag and to move them from their corresponding active list
to the promote list (see transition 10 in Figure 4). We
created a new shrink_promote_list() method that
complements the existing shrink_active_list() and
shrink_inactive_list() methods to handle move-
ments of pages out of the promote list. Migrations to the
upper tier are handled via shrink_promote_list() and
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migration to the lower tier (or evictions) are handled via
shrink_inactive_list(). Both methods result in a
physical frame in the tier being freed after the successful
migration of its contents.

Figure 4 depicts all the states and transitions of the pages.
New pages start with the inactive unreferenced state. Depend-
ing on whether the page was accessed since the last scan or
not, it can move to the inactive referenced state via transition
(1), and (2), can get demoted to the lower tier via (3), or can be
freed via (4). Pages not in LRU can also get added to inactive
unreferenced state via (5). Pages in the inactive referenced
state can either move to inactive unreferenced via (1) or move
to the active list via (6). Pages in the active list with the active
unreferenced state move to the active referenced state using
(7) or (8) if they get accessed. Furthermore, if the page is not
accessed for a long time, the page state changes to inactive
unreferenced via (9). From active referenced state, a page
moves to the promote list if it gets accessed via transition
(10). If pages in the promotion list do not get accessed, they
move to the active unreferenced state again via (11). If they
get accessed in this state, then pages remain in the same state,
as shown by (12). Lastly, kpromoted uses (13) to promote
all the pages found in this state.

V. EVALUATION

In this section, we evaluate the performance of our MULTI-
CLOCK implementation. The goal of our evaluation is to
determine if, when, and how the MULTI-CLOCK is able to
improve the performance of application workloads. We evalu-
ate using diverse workloads such as high memory-consuming
graph applications and key-value stores. We compare MULTI-
CLOCK performance with static tiering, Nimble, AutoTiering,
and Memory-mode. As Nimble uses Linux’s CLOCK (an ap-
proximation of LRU) based default page profiling mechanism,
we do not compare MULTI-CLOCK again with CLOCK or
LRU. We also avoid comparing MULTI-CLOCK with the Least
Frequently Used (LFU) policy as it requires tracking every
memory access, which is impractical. Additional reasons for
not comparing MULTI-CLOCK with other memory tiering tech-
niques such as AMP [22], Thermostat [19], and AutoNUMA-
Tiering [20], are discussed in Section II-D. Finally, we conduct
an in-depth sensitivity analysis to better understand the impact
of each component of MULTI-CLOCK.

A. Experimental Platform
We used a dual-socket Intel Xeon Gold 5218 Processor

with 16 cores per socket for evaluating and comparing the
performance of static tiering, Nimble, AutoTiering-CPM (AT-
CPM), and AutoTiering-OPM (AT-OPM) with MULTI-CLOCK.
This machine has 12 DDR4 (2666 MT/s) DIMMs of 16GB
in capacity each and 4 Intel Optane DC Persistent Memory
(DCPM) of 128GB in capacity each. In total, the available
memory space is 192GB DRAM and 512GB persistent mem-
ory. We used another platform to compare the performance
of static tiering, Memory-mode, and MULTI-CLOCK. This
machine runs a dual-socket Intel Xeon Processor with 24 cores

per socket. The system is equipped with 12 DDR4s (2666
MT/s), each 32GB in capacity and another 12 Intel Optane
DCPM with 128GB capacity per DIMM. Hence, the total
DRAM capacity is 376GB, and PM capacity is 1.5TB. The
only reason for using two separate machines is to expedite
the evaluation process.

B. Workloads

We evaluate MULTI-CLOCK using diverse workloads. Here,
we discuss our results using six different workloads from
Yahoo! Cloud Serving Benchmark (YCSB) [13] and six work-
loads from the GAP Benchmark Suite (GAPBS) [14]. YCSB
workloads are divided into two phases: a load phase and an
execution phase. The load phase is in charge of populating the
back-end key-value store with the required number of records.
On the other hand, the execution phase carries out diverse
types of operations over the back-end. These workloads are
named Workload A, B, C, D, E, and F. Workload A is a
mix of 50% reads, and 50% writes. Workload B is 95%
reads, and only 5% writes. Workload C is 100% read. None
of these workloads inserts new records except workload D,
where new items are added and read. Workload E issues short
ranges queries on the records. And in workload F, a record is
read, modified, and then written back. We also created a new
workload W, which issues 100% writes. For our evaluation,
we used Memcached [3], an in-memory cache service that
uses a large amount of main memory to maintain its data,
as the key-value store back-end of YCSB. One thing to note
is that YCSB’s workload E makes use of SCAN operations
that may or may not be implemented by the different back-
end key-value stores. Memcached does not implement SCAN
operations, making workload E non-operational. Further, the
load phase is the same for all workloads, and most workloads
(all but D and E) do not change the number of records in the
back-end. For all our experiments, we follow the prescribed
execution sequence [24] for the YCSB workloads. Since
workload D changes the number of records in the back-end, the
order of execution is arranged in the following manner: Load
Phase, Workload A, Workload B, Workload C, Workload F,
Workload W, and Workload D. We report the performance of
the six Workloads, excluding the data load phase.

GAPBS is a framework for graph analytics capable of run-
ning a wide variety of graph processing algorithms. It has six
workloads: Breadth-First Search (BFS), Single-Source Short-
est Paths (SSSP), PageRank (PR), Connected Components
(CC), Betweenness Centrality (BC), and Triangle Counting
(TC). For each of the six workloads, GAP first loads the
graph in memory and then executes multiple trials of the
workload. We report the average execution time taken per
trial for the workloads. During the execution phase, the actual
algorithm is executed over the already memory-resident graph
representation of the data.

C. Evaluation Result

To evaluate the overall performance of MULTI-CLOCK, we
first compare MULTI-CLOCK against systems using PM in
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Fig. 5. MULTI-CLOCK, Nimble, AutoTiering-CPM(AT-CPM), and
AutoTiering-CPM(AT-OPM) throughput comparison for YCSB work-
loads. Y axis presents the throughput normalized to static tiering
(higher is better).

static tiering, Nimble, AutoTiering-CPM, and AutoTiering-
OPM. Then we compare the performance of MULTI-CLOCK
with Memory-mode. We configure workloads for all the sys-
tems such that their memory footprints are larger than the
DRAM size and consume enough persistent memory. For both
MULTI-CLOCK and Nimble, we set the number of page scan
to 1024. The scanning interval of MULTI-CLOCK and Nimble
is set to one second as discussed in Section V-E.

1) Comparison With Tiered Memory Systems: We com-
pare the performance of static tiering, MULTI-CLOCK, Nim-
ble, AutoTering-CPM (AT-CPM), and AutoTiering-OPM (AT-
OPM) using YCSB and GAPBS workloads. Figure 5 shows
the performance for YCSB workloads. In Figure 5, the Y-axis
presents the throughput (operations per second) normalized to
static tiering; all the workloads are on the X-axis. MULTI-
CLOCK outperforms static tiering, Nimble, AT-CPM, and AT-
OPM for all the workloads.

For the YCSB workloads, MULTI-CLOCK outperforms static
tiering by 20-132%. MULTI-CLOCK achieves the maximum
throughput gain in Workload D as this workload inserts
new records and modifies the most recent records multiple
times. As MULTI-CLOCK selects the pages that are recently
accessed multiple times for promotion, Workload D and other
workloads with a similar property would get the most benefit
from MULTI-CLOCK. In comparison with Nimble, MULTI-
CLOCK achieves 9-36% better performance as MULTI-CLOCK
promotes pages more selectively than Nimble. The selective
promotion of MULTI-CLOCK helps to reduce the migration
overhead incurred for promoting less qualified pages. When
compared to AT-CPM, MULTI-CLOCK outperforms by 260-
677%. Finally, MULTI-CLOCK achieved 10-352% better per-
formance than AT-OPM. In comparison with MULTI-CLOCK,
AT-CPM and AT-OPM perform worse due to costly software
page fault-based page access tracking as well as the high
overhead of tracking the page history bits for identifying cold
pages.

Figure 6 presents the results of executing different GAPBS’s
workloads normalized to static tiering. The Y-axis shows
the normalized execution time; the X-axis presents all the
workloads. As we can see, MULTI-CLOCK outperforms static
tiering by 4-68% for the GAPBS workloads. When compared

Fig. 6. Performance comparison of GAPBS workloads. Y axis presents
the normalized execution time to the static tiering (lower is better).

to Nimble, MULTI-CLOCK improved the execution time by
1-16%. In both comparisons, MULTI-CLOCK reduces the ex-
ecution time of the SSSP workload the most. Similar to the
YCSB workloads, in GAPBS, MULTI-CLOCK benefits from
the better page selection mechanism for promotions.

In comparison with AT-CPM, MULTI-CLOCK reduces the
execution time by 3-68% for SSP, PR, CC, and TC workloads.
However, AT-CPM shows 3% and 1% better performance than
MULTI-CLOCK for BFS and BC workloads. As AT-CPM tries
to find the best location of the pages, its performance thus
highly depends on the initial placement of the pages. If pages
are already placed in the best locations, AT-CPM needs to
migrate fewer pages. We think the slight performance gain
for BFS and BC workloads might be due to this reason.
On the other hand, MULTI-CLOCK shows better performance
than AT-OPM by 4-62%. Compared to AT-CPM, AT-OPM
induces additional overhead of identifying cold pages and page
demotions, which is the reason for the observed performance.

From Figure 5 and Figure 6 we observe that the MULTI-
CLOCK achieved better performance gain for the YCSB work-
loads than the GAPBS’s workloads. The performance of the
graph processing algorithms can depend on the locality of the
data [25]. We assume that the GAPBS workloads first allocate
memory that would be accessed the most as graph processing
workloads are known to exhibit substantial locality [26]. As
static tiering, MULTI-CLOCK, Nimble, AT-CPM, and AT-OPM
fill the DRAM first, DRAM contains most of the highly
accessed pages. Hence, the performance of the MULTI-CLOCK,
Nimble, AT-CPM, and AT-OPM is close to the static tiering
for most of the GAPBS workloads. However, by selectively
promoting the hot pages from PM to DRAM, MULTI-CLOCK
achieves a slightly better performance on average than other
tiering mechanisms across different workloads.

In Section II-A, we analyzed the workloads from various
benchmarks to show the existence of DRAM-friendly and Tier-
friendly pages. The goal of MULTI-CLOCK is to identify these
pages and place the frequently accessed pages in the DRAM
tier. Workloads with weak locality will not have such a division
of pages and would not benefit from MULTI-CLOCK. On the
other hand, workloads with strong locality will have many
DRAM and Tier friendly pages and can reap benefits from
the dynamic tiering capabilities of MULTI-CLOCK. Among the
YCSB workloads, workload D inserts new data in PM (as
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Fig. 7. Performance comparison of MULTI-CLOCK with Memory-mode.
Y axis presents the normalized performance in (a) throughput (higher
is better) and (b) execution time (lower is better).

DRAM is already full) and frequently accesses the recently
inserted data, thereby exhibiting a stronger locality than the
other workloads. In comparison with static tiering, MULTI-
CLOCK obtains the greatest performance gain (132%) for this
workload.

2) Comparison With Memory-mode:: Finally, we compare
the performance of MULTI-CLOCK with Memory-mode. As
Memory-mode uses all of the DRAM capacity for caching,
to allow for a competitive comparison with MULTI-CLOCK,
we set the workload size to be 4x of the available DRAM
capacity.

In Figure 7, the Y-axis shows performance normalized
to that of static tiering. Figure 7(a) shows the normalized
throughput for the YCSB workloads and Figure 7(b) shows the
normalized execution time for the GAPBS’s PageRank algo-
rithm. For the YCSB workloads, MULTI-CLOCK outperforms
Memory-mode by as much as 9% and operates within 2% of
Memory-mode’s performance. For PageRank, MULTI-CLOCK
outperforms Memory-mode by 21%. To improve application
performance, Memory-mode uses all the available DRAM as
cache, thus hiding the available DRAM capacity from the ap-
plications; it achieves as much as 2% better performance than
MULTI-CLOCK. On the other hand, MULTI-CLOCK exposes all
the available DRAM and PM capacity to the application and
provides performance that is either better or very similar to
Memory-mode.

D. Performance Analysis
To understand the reason behind MULTI-CLOCK’s better

performance outcomes, we first analyze the number of pages
promoted by MULTI-CLOCK and Nimble. Then we see how
many of these promoted pages are getting re-accessed again
from the DRAM tier. This discussion helps us understand
MULTI-CLOCK in more detail.

1) Number of page promotions: In Figure 8, we report the
number of pages being promoted across tiers for both MULTI-
CLOCK and Nimble. In Figure 8, the Y-axis shows the average
number of pages promoted in a time window. We chose the
time window as twenty seconds. The X-axis represents the
time window ID. As we can see from the figure, the average
number of pages Nimble promotes is always 1024. This is
because Nimble always selects a fixed number of pages for

Fig. 8. The average amount of pages promoted in each scan over time. Y-
axis is the average number of pages that are promoted in 20 seconds
window. X-axis presents the time window IDs.

Fig. 9. The average re-access percentage of the promoted pages in each
scan. Y-axis is the average number of promoted pages that got re-
accessed. The average is calculated based on a time window of 20
seconds. X-axis presents the time window IDs.

promotion, and we used 1024 as the fixed value. On the other
hand, MULTI-CLOCK promotes 758 pages on average per scan.
Similar to Nimble, MULTI-CLOCK scans a maximum of 1024
pages, but unlike Nimble, MULTI-CLOCK selects the pages
that have been recently accessed multiple times. If pages that
do not get re-accessed again in the future get promoted to
DRAM, then the overhead to promote such pages can hurt
system performance.

2) Percentage of Pages Re-accessed: Now, we analyze the
number of pages that have been promoted in the last scan, get
re-referenced again from the DRAM. In Figure 9, the Y-axis
shows the re-access percentage, which represents the average
percentage of the recently promoted pages which have been re-
accessed. The average percentage is calculated for 20 second
time window. The time window IDs are shown on the X-axis.
From Figure 9, we can see that pages promoted by MULTI-
CLOCK have 15% higher re-access percentage than Nimble.
In combination with Figure 8, we come to an interesting ob-
servation. Nimble promotes more pages than MULTI-CLOCK,
but a lower percentage of the promoted pages are re-accessed
again. This explains the improved performance results that we
observed with YCSB and GAPBS workloads.

E. Scanning Interval Sensitivity
As described in Section IV, the kpromoted daemon wakes

up after a specific time interval. kpromoted is responsible
for moving pages from the inactive list to the active list, from
the active list to the promote list, and from the promote list to
the DRAM tier. Varying this time interval in MULTI-CLOCK is
expected to affect the performance of the application. We set
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Fig. 10. Throughput comparison of Static tiering, MULTI-CLOCK, and
Nimble with different scan intervals for YCSB Workload A. Y axis
presents throughput (higher is better).

the time interval to 100ms, 250ms, 500ms, 1s, 5s, and 60s and
run the workload A from YCSB with each of these MULTI-
CLOCK versions. Nimble uses a similar daemon thread to
promote pages periodically. Similar to MULTI-CLOCK, we also
evaluated Nimble with different time intervals. From Figure
10 we see that overall MULTI-CLOCK performs better when
compared to Nimble. For larger scan intervals above 5s, we
do not observe much difference due to the lag in the reaction
time. The one-second scan interval was found to be the best
performing for various workloads, but in Figure 10, we only
show the results for YCSB workload A as a representative.
Hence, we chose the one-second scanning interval for all the
other evaluations for MULTI-CLOCK and Nimble.

F. Overhead

Mainly the overhead of MULTI-CLOCK includes the over-
head for promotion and demotion of the pages across different
tiers. While running memory access intensive applications, the
overhead depends on which tier the pages are being accessed
from. First, if DRAM pages are heavily accessed, then there
will be no overhead due to no migration being incurred.
Second, if pages from the PM tier are heavily accessed,
then to reduce access latency, MULTI-CLOCK will identify
these pages and promote them to DRAM, incurring promotion
overheads as well as demotion overheads if the DRAM is
full. However, if the application is memory intensive, then
the promoted pages would be accessed repeatedly from the
DRAM tier, which can benefit the application due to DRAM’s
lower access latency. Thus, for memory-intensive workloads,
MULTI-CLOCK’s benefit will surpass the migration overhead.

VI. RELATED WORK

Emerging persistent memory technologies show promise
in three distinct areas: non-volatility, very large capacity (as
compared to DRAM), and performance suitable for direct
load/store access by the CPU. Most studies on persistent
memory, far too many to list here, focus on the non-volatility,
using it to replace or extend block storage, implement persis-
tent caches, or explore the persistent execution of processes
that can survive power failures [27]–[31]. In contrast, our
work focuses on the large capacity characteristic of persistent
memory and the ability to directly read, write, and execute
data residing in persistent memory.

There have been many studies that explore the use of
different types of memory for the building of hybrid memory
systems. Such systems make use of the different characteristics
of the available memory types to combine them into a hybrid
solution. Most hybrid memory systems do not establish any
specific hierarchy between the different memory types as tiered
memory systems do. As discussed in Section II-D, Thermo-
stat [19], Nimble [11], AMP [22], AutoNUMA-Tiering [20],
and AutoTiering [12] are the recent works on dynamic tiered
memory system.

Yang [32] proposes a design to use persistent memory
as a NUMA node efficiently. This tiered design is aware of
both DRAM and PM nodes and handles promotion/demotion
for anonymous pages only via NUMA balancing. In contrast,
MULTI-CLOCK selects pages for promotion more carefully by
scanning pages periodically and moving them across inactive,
active, and newly added promote list depending on page
access. Moreover, MULTI-CLOCK is capable of managing all
types of pages, anonymous and file-backed pages, making
MULTI-CLOCK a complete solution.

Qureshi et al. [33], Dhiman et al. [34], Ramos et al. [35], and
Lee et al. [36] propose hybrid memory systems, where DRAM
is used as buffer cache, PM is used as the DRAM’s extension,
and a hardware-based solution is used to find best page
replacement policy. In contrast to these works, we provide
a page selection mechanism that can be used to improve the
performance of a dynamic tiered memory system without any
hardware modification, where DRAM and PM both co-exist
as system main memory.

Many replacement algorithms have been studied in the past
in the context of caching [37]–[43]. Our solution is orthogonal
to these efforts and builds upon existing memory replacement
mechanisms, and presents a modified page migration and
replacement algorithm for tiered memory.

Liu et al. [44] provide object-level memory allocation and
migration in hybrid memory systems. Data placement and
migration at the object granularity requires modification of the
existing application to use the new APIs. In contrast, MULTI-
CLOCK operates seamlessly at the kernel level, and existing
applications can be run as-is without any modification.

VII. DISCUSSION

MULTI-CLOCK relies on the page reference bit for clas-
sifying pages according to their frequency of accesses and
characterizing the importance of a page. In the current version,
MULTI-CLOCK does not differentiate between the data read
and write. One possible improvement to this approach is to
also include the dirtiness information for memory pages in
a weighted formula to compute the importance of a page.
By including this extra information, we could weigh the
different types of accesses for a page (read or write) in
the decision of page placement. This additional information
becomes particularly relevant when the underlying memory
hardware exhibits non-uniform latency for the different types
of accesses. For instance, some PM devices, e.g., Intel Optane
PM, are known to have asymmetric read and write latencies.
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The scanning interval for MULTI-CLOCK is 1s as we dis-
cussed in Section V-E. We compared the performance of
MULTI-CLOCK across multiple scanning intervals and chose
the 1s scan interval. However, it could be valuable to dynami-
cally adjust the scanning interval for kpromoted by analyz-
ing the characteristics of the running workload. Additionally,
it will also be interesting to see the performance of MULTI-
CLOCK with varying DRAM and PM ratios.

VIII. CONCLUSIONS

Byte-addressable, high capacity memory such as PM opens
up a new space for optimization of the memory system design
and implementation. In this work we design and develop
MULTI-CLOCK, a dynamic memory tiering system that is
designed to ensure that the right data is in the right tier
at the right time. Unlike some other recent approaches for
tiered systems, MULTI-CLOCK uses both access recency and
frequency to identify potential pages for migration without
adding significant system overhead. We deployed MULTI-
CLOCK in a real system by developing a prototype that runs
CentOS 7 (Linux kernel 5.3.1) and evaluated our prototype
using graph processing and key-value store workloads. Our
results demonstrate that MULTI-CLOCK is able to significantly
improve the performance of these workloads compared to the
state-of-the-art techniques without compromising the amount
of usable main memory made available to these workloads.
MULTI-CLOCK sources can be downloaded at https://doi.org/
10.5281/zenodo.5790897
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