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Combining ADMIRE and MV to
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Abstract— Aperture domain model image reconstruction
(ADMIRE) is a frequency-domain, model-based beamformer,
in part designed for removing reverberation and off-axis
clutter. Minimum variance (MV) is alternatively designed to
reduce off-axis interference and improve lateral resolution.
MV is known to be less effective in high incoherent noise
scenarios, and its performance in the presence of rever-
beration has not been evaluated. By implementing ADMIRE
before MV, the benefits of both these beamformers can
be achieved. In this article, the assumptions of MV are
discussed, specifically their relationship to reverberation
clutter. The use of ADMIRE as a preprocessing step to
suppress noise from simulations with linear scanning and
in vivo curvilinear kidney data is demonstrated, and both
narrowband and broadband implementations of MV are
applied. With optimal parameters, ADMIRE + MV demon-
strated sizing improvements over MV alone by an average
of 52.1% in 0-dB signal-to-clutter ratio reverberation cyst
simulations and 14.5% in vivo while improving the contrast
ratio compared to ADMIRE alone by an average of 15.1%
in simulations and 14.0% in vivo. ADMIRE + MV demon-
strated a consistentimprovement compared to DAS, MV, and
ADMIRE both in terms of sizing and contrast ratio.

Index Terms— Beamforming, image quality, in vivo, med-
ical ultrasound, minimum variance (MV), model, reverbera-
tion clutter, signal processing, simulation.

|. INTRODUCTION

ANY beamformers are designed with specific quality

metrics in mind, such as improving contrast ratio or
signal-to-noise ratio (SNR). Aperture domain model image
reconstruction (ADMIRE) [1]-[3] falls into this camp, with its
use primarily intended for decluttering (reducing reverberation
clutter, off-axis interference, and other sources of image degra-
dation), which results in generally improved contrast ratio
and SNR. Other beamformers may seek to improve resolu-
tion, a well-known example of which is minimum variance
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(MV). MV is often an attractive beamformer, in part due to
its rigorous mathematical basis, dating all the way back to
Capon’s original implementation in 1969 for use with seismic
data [4]. Though the applications of the original version were
somewhat limited given the assumptions that are made, it has
been adapted for use with ultrasound by many different groups
[5]-[15], each looking to address various shortcomings of the
original method. However, it is well known that MV still strug-
gles in environments where the signal-to-noise ratio (SNR) is
low, and this is especially true in the case of reverberation
clutter, as we will demonstrate in Section II.

We have previously shown in simple plane wave simulations
with minimal reverberation that ADMIRE can be used prior
to applying MV [16]. ADMIRE preserves the dimensionality
of the channel data, which means that it can function as a pre-
processing step, compared to most other beamformers that are
strictly for postprocessing. Since ADMIRE can improve SNR
and remove troublesome sources of interference, this opens
up the possibility that, by processing with both ADMIRE and
MYV, we can achieve a combined result that has both improved
contrast ratio and lateral resolution. In this article, we expand
on our previous work [16], [17] by examining the assumptions
of MV to shed some light on the issues, particularly in high
reverberation clutter environments and implementing both a
narrowband (NB) version and a broadband (BB) version of
MYV. We also include an expanded set of simulations with dif-
ferent sources of noise and more in vivo cases. We demonstrate
that ADMIRE + MV can often produce a better contrast ratio
and better lateral resolution than ADMIRE or MV alone.

[l. BACKGROUND
A. Applying MV to Ultrasound Imaging

MYV is mathematically designed to distinguish between a
finite number of sources located in the far-field (fewer than the
number of array elements). For a chosen source, when the SNR
is high, the beamformer places nulls at the locations of other
interfering plane waves (referred to as off-axis), minimizing
their contribution and suppressing the interference [4], [18].
Though Capon’s MV was formulated with passive sensing of
seismic data in mind, conceptually, the process is similar to
ultrasound with proper beamforming. Echoes in ultrasound
are caused by relatively near-field scatterers compared to
seismic signals, and so they appear as curved wavefronts at the
transducer. However, by applying correct receive delays to the
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echoes near the transmit focus, the received echoes from these
scatterers will take on the appearance of plane waves. Then,
the echoes from these scatterers can be differentiated based
on the direction of propagation of the plane waves, as is done
in the original work. In the ultrasound context, these off-axis
plane waves are caused by scatterers at a similar depth to the
focus but not directly at the focus.

MYV has proven itself a useful method for improving lateral
resolution though adaptation to ultrasound applications has
required addressing some of the limitations and assumptions
of the original method. Critics point out that Capon’s MV
is designed for NB applications in the far-field, with a low
correlation between on- and off-axis signals [19]. In addition,
the covariance matrix, of which the inversion is required for
the calculation, is often insufficiently robust when applied to
ultrasound. That being said, these issues have been addressed
and rectified by multiple groups.

Sasso and Cohen-Bacrie [5] looked to solve the correlation
problem by introducing a spatial smoothing preprocessing step
to induce decorrelation, which works by analyzing subarrays
and estimating a covariance matrix for each and averaging
the set. The NB assumption does not per se invalidate the
application (and many versions do not make considerations
for it), but Holfort e al. [7] specifically introduced a BB
implementation that breaks down the ultrasound signal in the
frequency domain into a set of NB windows, over which
the assumption is valid. The far-field assumption can be
addressed with proper delaying of the output data, which
flattens the incoming echoes. Finally, the lack of robust-
ness of the covariance matrix has been addressed by many
authors, and it usually consists of using spatial averaging
and diagonal loading to guarantee an invertible matrix. Diag-
onal loading has been demonstrated by many groups [20]—
[22], while spatial averaging was initially used as mentioned
for creating decorrelation. Eventually, Synnevag et al. [6]
presented a robust version for both diagonal loading
and spatial averaging, and discussed optimal parameters
for each.

B. Unresolved Problem—Reverberation Clutter

It is known that MV performs worse as noise content
increases, but we suggest here that reverberation clutter is
particularly problematic. From the original Capon paper [4],
it is assumed that incoming signals are unity amplitude
monochromatic plane waves. When properly delayed, on- and
off-axis signals take the form of plane waves, which mostly
satisfies this assumption, but reverberant signals (and other
complications, such as phase aberration) do not. Reverberant
signals originate from shallower depths than the target and
are effectively time-delayed to the target time index by means
of multipath scattering. This means that the delays applied
to reverberant signals will be mismatched, and those signals
will not be flattened into plane waves but, rather, will remain
spherical waves. In the case of phase aberration, this problem
may be further exaggerated, as there will be no ideal plane
waves, and all signals will have spherical components. This is
problematic, as we will demonstrate.

In the derivation in Capon’s paper [4], he arrives at an

important inequality

2
ps B_IBARE
K 1 — |B(Ak)|?
b is related to the scattering amplitude of the chosen plane
wave, R is the ratio of the incoherent noise power to the
total power for K sensors, |B(Ak)|> is the beamforming
array response pattern, and Ak is the difference between the
vector wavenumber of the chosen and off-axis plane waves.
Capon states that the inequality is satisfied when either R/K
or |B(Ak)|? is small, effectively meaning either when the
incoherent noise power is relatively low compared to the
number of sensors, or when the difference of the vector
wavenumbers k; and k; is sufficiently large. In the case of
two plane waves that are sufficiently separated (and, thus,
have sufficiently different vector wavenumbers) and given
a sufficiently low noise level, this method will be able to
resolve the two plane waves. Van Trees [18] makes a similar
assertion that the SNR must be reasonably high, and at most
K — 2 interfering plane waves must fall outside of the main
lobe for proper nulls to be formed for each of the interfering
signals [18].

However, spherical reverberant signals complicate things
on multiple levels. It should be noted that, in the Cartesian
plane, a given plane wave will have a fixed wavenumber,
the direction of which shows the direction of the wave.
However, the Weyl expansion tells us that a spherical wave
can be written as a linear combination of infinite plane waves
[23]-[25]; specifically,

—jkor —Jjk:|zl|
e % 1 = e—j(kxx+k,vy)e T dk.dky.  (2)
k y
—00 —00 Z

A spherical wave with ko is then composed of a continuous set
of plane waves with vector wavenumbers k = [k, k, k.| that
satisfy ko = (k2 —i—kg +k22)1/2. It is then apparent that there will
be an overlap between the fixed k; of our target plane wave
and the continuous set of possible values of k, for the spherical
reverberant wave. Therefore, some parts of the reverberant
wave will be too similar to k; and, thus, be unresolvable.
In addition, since the goal is to place nulls in the beampat-
tern in the directions of interference (i.e., the plane waves
corresponding to sufficiently different vector wavenumbers),
this is more difficult in a case where there is a continuous
set of plane waves. Thus, the beamformer will struggle with
rejecting the continuous set compared to well-defined discrete
plane waves. We simulated an example of a point target and
a reverberant target in Field II [26], [27], which is included
in Fig. 1 to show a visual example of how an on-target plane
wave and reverberant spherical wave have vector wavenumbers
with inherent overlap. In addition, we see that MV is unable to
properly reduce or eliminate the reverberant signal, resulting
in somewhat worse resolution of the primary target, though
still better than DAS alone. Fig. 1(g) shows an example of
the MV beampattern when an off-axis target is present and
the resulting null in the beampattern that is formed to suppress
that off-axis interference. In comparison, the case where the
off-axis target is replaced by a reverberant signal in the same
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Fig. 1. Field Il simulations of an individual point target (a)—(c) with-
out interference and (d)—(f) with reverberant signal interference. The
reverberant signal is simulated at a much shallower depth than the
point target and then time-delayed to appear at the same time index.
(a) and (d) Channel data at the depth of the point target. The arrows
indicate the directions of the vector wavenumbers of the echoes, showing
a subset of the possible wavenumbers in the reverberant spherical wave
case. (b) and (e) DAS and (c) and (f) MV images of the point target.
B-mode images are displayed on a 60-dB scale. (g) High-resolution beam
plot from MV of a separate simulation where the reverberant signal is
replaced with an off-axis target, highlighting the null that is created in the
off-axis case and the lack thereof in the reverberation case.

location shows how the beampattern tries to generally suppress
the reverberant region, but, from the b-mode images, we see
that it is less successful at suppressing that interference.

A final consideration is the ratio of the incoherent noise
power, R/K. It is stated that, as long as the noise contribution
is relatively low, the two waves could still be distinguish-
able. Diffuse reverberation clutter takes on a speckle-like
appearance in the final image and is relatively incoherent in
the aperture domain [28], [29]. Then, in the case of very
strong diffuse reverberation clutter, it may have the effect of
being strong enough to interfere with the MV beamformer.
Supporting this theory, Austeng et al. [30] showed that, in the
case of very strong phase aberration, MV has comparable
performance to DAS with Hamming apodization and slightly
worse than DAS with rectangular apodization. Here, we adopt
the understanding that diffuse reverberation clutter originates
from the complex tissue in the body wall [28], [31], [32].

Overall, reverberant signals and other nonplane wave signals
pose an additional challenge for MV due to the inability
to fully reject the overlap between the continuous vector
wavenumbers present in spherical signals and the discrete
vector wavenumber of an on-axis target. In these cases, or,
in general, in the presence of strong noise content, MV will
struggle or fail to narrow the main lobe, reducing performance.

C. Proposed Solution—Preprocessing With ADMIRE

The primary goal of this work is to improve the performance
of MV in these high reverberation clutter or complex in vivo
environments. To that end, we propose that a preprocessing
step before MV to remove these sources of interference
will do exactly that. ADMIRE is a method for removing
reverberation and off-axis clutter, as well as suppressing wave-
front aberration [1]-[3]. Crucially, for this work, ADMIRE is

a somewhat unique beamformer in that, when it processes
channel data, it does not alter the dimensionality of the
input data. This means that we can subsequently process the
decluttered data with other beamforming methods, in this case,
MYV. We hypothesize that ADMIRE will be able to suppress
these difficult sources of interference, removing the spherical
components that MV struggles with and generally reducing the
number of interfering waves and improving effective SNR,
making it possible for MV to perform better than without
preprocessing. This gives us the possibility to create better
images than with either method alone.

[1l. BEAMFORMING ALGORITHMS

We implemented all beamformers in MATLAB (The Math-
Works, Natick, MA, USA).

A. Delay-and-Sum (DAS)
The DAS beamformer is defined by

M
Spas(x,2) = D wi(x, 2)s;(x,2) 3)
i=1

where S is the resulting image prior to enveloping or log
compression, x is the index for the a-line of the final image,
z is a discrete-time index, M is the total number of channels,
w;(x, z) is the weighting factor for channel i, and s;(x, z)
is the delayed channel data. The weighting factor accounts
for receive apodization and can vary by depth and channel
(taking F-number into consideration) or be static as in the
case of a fixed rectangular window, where all channels are
weighted equally. Adjusting this weighting using Hamming
apodization has been shown to reduce sidelobes [33]. In this
work, we will use both normal DAS with fixed rectangular
apodization to show the raw data (DAS) and also DAS with
Hamming apodization as a commonly used weighting scheme
(DAS-Hamm).

B. Minimum Variance

MV can be thought of as an adaptively weighted and
delayed DAS image where the weighting factor is optimized
to improve lateral resolution by reducing off-axis clutter
[6], [7]. Bold characters here and for the rest of the text
indicate vectors. The optimized weights are defined as

R 'e
W= —— 4
el R-le @
where e is the steering vector, H is the conjugate transpose,
and R is the covariance matrix defined as

R(x,7) = E[s(x, 2)s(x, 2)] (5)

where E[-] denotes the expectation and s(x, z) is the delayed
aperture signal at lateral index x and depth z. To ensure
that R is invertible, we used subarray averaging and diagonal
loading methods [6]. The recommendations provided are to use
subarray lengths of L = 0.5 M and diagonal loading defined
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as € = A - tr(R), where A = 1/(10L) [6]. The estimated MV
signal is then defined as

M—L

> wix, 95,2 (6)

=0

Smv(x,z) = ML+l
where §(x, z) is the delayed channel data for a given subarray.
We will call this version of MV the NB version, abbreviated
as MVNB, but we additionally implemented the BB version
devised by Holfort et al. [7], which we will denote as MVBB.
For both implementations, the optimal parameters for subarray
averaging and diagonal loading were estimated based on both
simulated and in vivo data. While diagonal loading does have a
small impact on image metrics, it is dwarfed by the impact of
subarray averaging, so, for consistency, we use A = 1/(10L),
unless stated otherwise. We include, in the results, multiple
subarray averaging cases to demonstrate the effect that it has
on resolution and sizing.

C. Aperture Domain Model Image Reconstruction

ADMIRE is a method for removing reverberation and off-
axis clutter, as well as suppressing wavefront aberration.
Byram et al. [1] presented a detailed explanation of the com-
ponents of the algorithm, and additional specifics can be found
elsewhere [2], [3].

Processing occurs primarily in the frequency domain.
Dynamically delayed channel data are subdivided into mul-
tiple overlapping windows by depth, along which the Fourier
transform is performed [i.e., a short-time Fourier transform
(STFT)]. This produces a set of primary frequency com-
ponents, each of which is analyzed with a physics-based
model. This model contains the predicted aperture domain
signal responses for scatterers from all throughout the imaging
space. These predicted signals can be calculated based on the
well-defined physics of linear wave propagation, similar to
other linear simulation tools. These signals are defined by the
following equation:

N-1

pS(X; t; CU) = z A()C, .Xn, Zns Tn, w)ejk.[(x;xmzm.[n) (7)
n=0

where x is the position along the aperture,  and @ specify
the time and frequency for the signal, k is the corresponding
wavenumber, N is the total number of scatterers arriving at
the transducer at time ¢, and 7 (x; x,, 2,, 7,,) is the wavefront
delay for a signal received from (x,, z,) at time 7,. Note that
7, can be different from ¢ so that subtle shifts in phase can
be included in the model. Finally, A(x; x,, z,, Ty, @) is the
amplitude modulation across the aperture caused by the STFT
windows and element sensitivity.

The true value for N, the number of scatterers that make up
an observed signal, is unknowable. However, by oversampling
the imaging space, we can combine all of the individually
modeled signals into a model matrix, X, which gives the model
the flexibility to represent even a complex observed aperture
domain signal, y, by its component sources as

y=XpB (8)
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Fig. 2. Example of an ADMIRE model X, composed of a set of

estimated signals from locations considered to be clutter [sparsely
sampled, e.g., (a) and (b)] and a set from locations considered to be
ROI [highly sampled, e.g., (c)]. For a given aperture domain signal y, the
model can be used to estimate which sources are components of the
received signal, allowing us to remove signal components that are not
from the ROI.

where y is the post-STFT signal corresponding to a specific
frequency and a given a-line x, and depth z,, X is the set
of physical model predictors, and £ is the unknown set of
model coefficients that we solve for. Fig. 2 is included to
give an intuitive sense of how each signal in the model
matrix X relates to a specific physical source location and,
in particular, shows how the model is composed of clutter
signals (X¢juer, those signals that we consider noise or clutter)
and region of interest (ROI) signals (Xgroj, signals that we want
to keep). Solving (8) reveals the composition of S, each entry
of which corresponds to one of those physical locations in the
imaging space. This gives us a breakdown of what physical
locations are contributing to the aperture domain signal since
they linearly combine to form y. By zeroing those coefficients
corresponding to signals outside of the ROI, we can simply
reconstruct the decluttered aperture signal with

Ydecluttered = X BROI- )

Defining the ROI as some small region around (x,,z,)
removes any signals located off-axis or from reverberant
sources.

In practice, (8) is ill-posed due to the relatively small size
of y compared to the potentially large size of X depending
on the sampling of the model space. To solve for the model
predictors, ADMIRE uses the elastic-net regularization tech-
nique [34] with the optimization equation

B = argrr}jn(lly — XBIP + el BIh + (1 = a)[18115/2))
(10)

where ||f]|; is the L1 norm, ||f]||; is the L2 norm, and a is
a user-defined parameter set between 0 and 1 to control the
weighting between L1 and L2. 1 is a regularization parameter
that controls the degrees of freedom [35]. The general rec-
ommendation is to choose a = 0.9 and 4 = (0.0189/10)y,
based on the root mean square (rms) of the signal y. These
parameters are chosen based on previous work [1], [2] and are
generally robust across most imaging scenarios.

Once the aperture domain signal has been decluttered using
the coefficients solved by the elastic net and (9), the inverse
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STFT is applied to return to the time domain [36]. This results
in a decluttered version of the channel data. As with MV,
we tested multiple possible values for our o and A parameters
but found that the default options listed produced the best
resolution both in simulations and in vivo.

In summary, since ADMIRE can distinguish between echoes
that return from different locations in the image, as represented
in Fig. 2, this allows the algorithm to selectively keep only
those signals that return from the ROI. Signals that originate
from close to the transducer, such as reverberant signals,
appear fundamentally different from those signals in the ROI,
allowing the elastic net to differentiate between the two during
the deconstruction. The same is true for other sources of image
degradation, such as off-axis clutter.

D. Post ADMIRE Processing

Since ADMIRE returns decluttered channel data, we can,
in theory, apply any beamforming method to data that have
already been processed with ADMIRE. Most commonly,
we simply sum the decluttered channel data like in DAS beam-
forming, but, rather than write ADMIRE + DAS, we simply
refer to this as ADMIRE. For this work, we consider the
additional possibility where we apply MV instead of DAS,
producing two cases: ADMIRE + MVNB for NB MV and
ADMIRE + MVBB for BB MV, abbreviated as AD + MVNB
and AD 4+ MVBB, respectively.

As we did with ADMIRE and MV individually, we tested
multiple parameter choices for the combined methods
AD 4+ MVNB and AD + MVBB. We found that the default
ADMIRE parameters continued to be optimal, and changes to
diagonal loading in MV were generally imperceptible, except
in vivo where we were able to see measurable improve-
ment to AD + MVNB by reducing the diagonal loading to
A = 1/(100L). Similar to when applying MV alone, changing
the length of the subarrays had a significant impact on the
resulting image and metrics, so we included these results and
some discussion in the following.

V. METHODS
A. Simulated Speckle Texture for Measuring SNR

We mentioned that ADMIRE can improve SNR, which
would be beneficial to MV. To demonstrate this, we simulated
a simple speckle texture in Field II [26], [27] using the simu-
lation parameters in Table I. We then created 30 independent
realizations of Johnson—-Nyquist (thermal) noise by simulating
normally distributed independent random noise using the randn
function in MATLAB to effectively create 30 “frames” of
independent noise. We combined the thermal noise and speckle
channel data such that it satisfied a specified SNR as defined
by

Psor )

SNR = 10lo _ (1)
Ero (azpthermal

where Pgsor is the power of the channel data of the speckle

phantom, Pperma 1S the power of the channel data of the

thermal noise, and a is the scalar for the thermal noise in order

TABLE |
FIELD Il SIMULATION PARAMETERS FOR
CONTRAST TARGET PHANTOMS

Parameter Value
Number of elements 117
Number of mathematical elements (lateral) 7

Number of mathematical elements (elevation) 11
Element height 4 mm
Element width 0.254 mm
Kerf 0.003 mm
Lateral pitch 0.257 mm
Center frequency (fc) 3 MHz
Sampling frequency (simulation) (fs) 640 MHz
Sampling frequency (downsampled) (fs) 40 MHz
Bandwidth 60%
Transmit focal depth 3 cm

Transmit/receive f-number 1

to achieve the desired SNR. For this simulation, we targeted
an SNR of 0 dB.

These simulations were then processed with ADMIRE, and
the SNR was calculated before and after ADMIRE. We cal-
culated SNR using two methods. The first way, we used the

following equation:
P, signal)
Proise

where Pgna is estimated from the average across all 30 frames
and P, Was then estimated from the difference between each
frame and the estimated signal. Since the signal is static across
all frames, the signal power is calculated from the average
of the estimated signal, and the noise power is calculated
from the variance of all of the frames. The second method
was to use the correlation between frames to estimate SNR,
as done by Friemel ef al. [37]. By calculating the correlation
coefficient p between each successive frame, the SNR can also
be estimated by

SNRpower = 1010g10( (12)

SNRrame = 1010g10(£). (13)

B. Simulated Single-Target Phantoms

We simulated a single-point target using Field II to demon-
strate how MV behaves when a primary target is receiving
interference from a reverberant target. The simulation parame-
ters are given in Table I. The primary target was simulated at a
depth of 3 cm, while the reverberation target was simulated at
a depth of 0.5 cm and then time-shifted to the same time index
as our primary target, similar to how reverberation clutter has
been simulated in previous work [38], [39]. We could then
observe how the point spread function (PSF) differs for MVNB
and MVBB versus AD + MVNB and AD + MVBB without
and with that reverberation clutter. We in part used the width of
the PSF as an indicator for determining the optimal parameters
for both MV methods and post-ADMIRE methods.

C. Simulated Cyst Phantoms

To represent the scenario of high noise power reverberation
clutter, we used Field II to simulate 5-mm diameter anechoic
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cysts using the same parameters as in Table I, creating six
independent speckle realizations. We then simulated diffuse
reverberation clutter using the method described by Byram
and Shu [38], [39]. We added the reverberation clutter such
that it satisfied a 0-dB signal-to-clutter ratio (SCR) compared
to the cyst channel data. Though there has been relatively
little research into classifying what low or high reverbera-
tion clutter levels are in terms of SCR, we have previously
determined that 0-dB SCR is a plausible representation of
clutter corresponding to a difficult-to-image patient [40]. This
is backed up by other studies such as one where bladder
wall (signal)-to-clutter ratios calculated from image data were
between 30 and O dB for all sources of clutter, including
reverberation [41], suggesting that our target for channel data
is reasonable for in vivo scenarios.

To complement the reverberation clutter simulations,
we also simulated Johnson—Nyquist (thermal) noise, which
was added to the cyst channel data at the same 0-dB ratios.
We differentiate these thermal noise cases using the abbrevi-
ation SNR.

D. In Vivo Kidney Stone Data

We additionally captured in vivo kidney data from patients
suffering from kidney stone disease using a Verasonics Van-
tage Ultrasound System (Verasonics, Inc., Kirkland, WA,
USA) with a C5-2 curvilinear transducer. A plane wave
synthetic aperture acquisition was employed [42], where plane
waves were transmitted at multiple angles to achieve focusing
at all depths. A center frequency of 4.1667 MHz was used
to acquire 64 angles spanning 37°. The data were acquired
under protocols approved by the Vanderbilt University IRB
(IRB# 170001).

E. Image Quality Metrics

For the simulated cyst phantoms, we computed the con-
trast ratio and the generalized contrast-to-noise ratio (gCNR)
[43], [44], and as a resolution metric, we included radial cyst
edge width [45]. The contrast ratio was defined as

contrast ratio = —2010g10(&) (14)

Mbackground

where u is the mean value calculated from the enveloped data,
before log compression. gCNR is a generalized detectability
metric, which measures the overlap of the probability density
function between the ROI and the background, making it
more robust against stretches or compressions in dynamic
range. We used the conventional 100 bins for the histogram
estimation for this method. For these metrics, the ROI was
defined as the interior of the cyst, and the background was an
equivalently sized radial region surrounding the cyst.

In addition to calculating the width of the PSF in our
point target simulation, we estimated radial cyst edge width
similar to Bottenus et al. [45] as a more practical measure of
lateral resolution by radially averaging values of equal distance
from the center of the cyst within £10° of the lateral axis.
This produces a function of intensity versus radius, which is
normalized by subtracting by uror and scaling by gpackground-
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Fig. 3. Example of MVNB and AD + MVNB radial intensity curves from
which the cyst edge width is estimated as the distance that it takes to
rise from 0.25 to 0.75 (indicated with the dashed lines).

Then, the width is estimated as the rise distance on this curve.
This is done for both the left- and right-hand sides of the
anechoic cysts. An example showing two such radial intensity
curves is shown in Fig. 3. For this work, we considered the
rise distance from 0.25 to 0.75, representing a measurement
similar to that of the FWHM, as has been done with similar
methods in previous work [46].

For the in vivo kidney stone cases, the stone ROI was man-
ually selected on a 30-dB dynamic range b-mode image with a
contour map as reference. A radial background region was then
automatically calculated as 1.5 times the size of the selected
stone, centered on the stone. This allowed us to calculate the
contrast ratio and gCNR of the stone for all cases and provided
a lateral measure of the stone size. Since kidney stones behave
as coherent targets [47]-[49], we consider smaller measures of
stone size to be an improvement. We also estimate the SNR in
these cases by implementing the robust version of the lag-one
coherence method devised by Vienneau et al. [S0] based on
original work by Hyun et al. [51] and Long et al. [52]. Sim-
ilar to the simulations, this was estimated before and after
processing with ADMIRE. In these in vivo cases, since we
lack the multiple frames required to differentiate thermal noise
from other clutter types, the SNR value estimated represents
the combination of all types of noise: thermal, reverberation,
or others.

To complete our parameter testing for MV and ADMIRE,
we tested our suite of parameter choices on both the simulated
cysts, and some of the in vivo cases to determine if the optimal
parameters change between simulations and the in vivo data.
Examples of interesting parameters are included in the results
section to demonstrate how these choices can impact our
image quality metrics.

F. Histogram Matching

We include as a supplementary material the histogram
matching [53] results and discussion for all the anechoic
cyst simulations and in vivo cases above to compare against
the image quality metrics calculated when no matching is
performed. These results are purely supplementary for those

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on March 07,2023 at 16:34:34 UTC from IEEE Xplore. Restrictions apply.



SCHLUNK AND BYRAM: COMBINING ADMIRE AND MV TO IMPROVE IMAGE QUALITY

2657

TABLE Il
BRIGHT TARGET SIMULATION METRICS

PSF Width at Various Amplitudes (mm)

No Reverb With Reverb

Amplitude -6dB -30dB | -6dB -30dB
DAS 0.493 0.939 | 0.503 6.284

"MVNBL=05M | 0080  0.631 | 0.174 ~ 4155
MVNB L=0.75M 0.059 0.411 | 0.097 0.561

"MVBBL=05M | 0.110 ~ 0.863 | 0216 ~ 5.097
MVBB L=0.75M 0.116 0.939 | 0.142 0.768

" ADMIRE | 0463 ~ 0939 | 0471 ~ 1187

" AD+MVNB'L=05M | 0.153 ~ 0.868 | 0.084  0.671
AD+MVNB L=0.75M | 0.119 0.752 | 0.058 0.465

" AD+MVBB L=05M | 0.160  0.895 | 0284 1123
AD+MVBB L=0.75M | 0.204 0.939 | 0.129 0.658

readers interested and will not be discussed in the main text
presented here.

V. RESULTS
A. Simulated Speckle SNR Results

From the 30 realizations of independent thermal noise,
both SNRpower and SNRyame were calculated before and after
ADMIRE. SNRower increased from 0.984 to 22.8 dB after
ADMIRE. Average SNRyme increased from 0.72 £ 0.01 to
22.65 £+ 0.08 dB after ADMIRE. Both methods show that
ADMIRE produces a significant increase in SNR.

B. Point Target Simulation Results

The PSFs of the point target simulation results are shown
in Fig. 4 to demonstrate the impact of the subarray averaging
parameter on MV. To summarize the differences caused by
subarray averaging, we focused on two cases, L = 0.5 M and
L = 0.75 M, for both MVNB and MVBB with and without
ADMIRE. The PSF for each case is shown in Fig. 4(b) and (d),
while the widths of the PSF for each case at —6 and —30 dB
are included in Table II. From these results alone, MVNB
benefits significantly from increasing the subarray size regard-
less of reverberation level. In comparison, MVBB prefers
L = 0.5 M for the no reverberation case and L = 0.75 M for
the with reverberation case. From the PSF plot in the figure,
MVBB behaves rather erratically when the subarray size gets
large, whereas MVNB has a more uniform improvement with
increased subarray size. As a result, we generally include both
parameter choices for MVNB while focusing on L = 0.5 M
for MVBB in the simulated results.

Fig. 4 also shows that ADMIRE behaves almost identically
to DAS, only slightly improving the sidelobes off-axis in the
reverberation case. In comparison, MVNB at L = 0.75 M
has by far the best performance when there is no reverber-
ation clutter (or any significant noise source) present. Even
at L =0.5M, it still outperforms all other beamformers,
including the combined method AD + MVNB, though this
still performs better than just ADMIRE by itself. However,
in the presence of a strong reverberation signal, MVNB suffers
substantially with the full-width at half-maximum increasing
by 64%. In this case, preprocessing with ADMIRE grants
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Fig. 4. Parameter testing for the subarray length (L) versus the full
aperture length (M) for both NB (MVNB) and BB (MVBB) implementa-
tions. PSFs for (a) and (b) bright target with no reverberation interference
and (c) and (d) bright target with an interfering reverberant signal.
(e)—(g) In vivo example of MVNB with varying subarray lengths, demon-
strating how increasing the subarray length can lead to general image
quality degradation.

a significant increase in performance, with AD + MVNB
performing in the reverberation case equivalently to how
MVNB alone performed in the noise-free case. Strangely,
AD + MVBB generally performed poorly, worse than running
just MVBB alone, regardless of the choice of parameters.
However, regardless of NB or BB, the combined method
uniformly performed better than just ADMIRE alone and by
extension also DAS.

C. Anechoic Cyst Simulation Results

The MVNB cases for the simulated cysts in Fig. 5 show
that increasing the subarray size can result in the degradation
of the speckle in the background. As expected from this,
Table III shows that cyst edge width and contrast ratio are
improved with higher subarray sizes though gCNR is lost as
a result. This means that the ideal subarray size in these cases
may depend on which metrics are more important for a given
application. Since both subarray size choices produce viable
images, we included both in the tables and figures for MVNB.

The example cysts in Fig. 5 and the cyst edge width
measurements in Table III show a general agreement with
the bright target simulations. These simulations are split
into a noise-free case, a reverberation clutter case (0-dB
SCR), and a thermal noise case (0-dB SNR). In these cases,
we measured cyst edge width as a complement to PSF
width in the bright target simulations and additionally showed
more traditional image quality metrics: contrast ratio and
gCNR. Unlike in the simple bright targets, in these cases,
AD + MVNB (L =0.75 M) always outperforms ADMIRE
and MVNB alone in terms of both cyst edge width and
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Fig. 5. Sample cases of an anechoic cyst with no added noise, added reverberation clutter (0-dB SCR), and added thermal noise (0-dB SNR)
displayed on a 50-dB dynamic range. The black solid circles indicate the true region of the cyst and a background speckle region surrounding it for
use with our imaging metrics. The white solid lines show the radial region for which the cyst boundary width was estimated.

TABLE IlI
ANECHOIC CYST SIMULATION METRICS

Cyst Edge Width (mm)
Added Interference None 0dB SCR 0dB SNR
DAS 0.189£0.025 0.216+0.154 0.171£0.015
DAS-Hamm 0.21840.028  0.347+0.274  0.202-+0.060
" MVNB L=0.5M | 0.305+£0.230 0.641+0.623  0.3034+0.291
MVNB L=0.75M 0.101+0.037  0.292+0.362  0.155+0.134
"MVBBL=05M | 0204+0.029 043740395 0.259+0.282
ADMIRE 0.1624+0.022  0.218+0.179  0.138-+0.022
" AD+MVNB L=0.5M | 0.132+0.028  0.140£0.054  0.121+0.033
AD+MVNB L=0.75M | 0.098+0.026 0.183+0.174  0.105-:0.021
" AD+MVBB L=0.5M | 0.178+0.017 0.18440.130  0.154+0.016
Contrast Ratio (dB)
Added Interference None 0dB SCR 0dB SNR
DAS 31.9+1.1 121407 143407
DAS-Hamm -38.840.8 -11.441.1 -14.04+0.7
"MVNB L=05M | -303+1.0  -797+£1.1 ~ -102+08
MVNB L=0.75M 24.441.7 -4.83+1.4 -5.58+0.8
"MVBBL=05M | -36.6+£0.7  -10.0£09  -12.0+07
ADMIRE 431413 215415 -29.9+1.1
" AD+MVNB L=0.5M | -42.1+14 = 21.0+£17  -304+14 =
AD+MVNB L=0.75M | -46.1+1.5 24.742.6 -33.54+2.4
" AD+MVBB L=05M | -46.7+13  -205+17  -295+12
generalized Contrast-to-Noise Ratio (gCNR)
Added Interference None 0dB SCR 0dB SNR
DAS 0.992+0.003 0.774+0.032  0.932+£0.015
DAS-Hamm 0.999+0.002 0.745+0.061  0.923+0.016
" MVNB L=0.5M | 0.969+0.014 0.489+0.055 0.7254+0.026
MVNB L=0.75M 0.8194+0.028  0.2324+0.045  0.390-£0.021
" MVBB L=05M | 0.994+0.002 0.6494+0.055 0.854+0.020
ADMIRE 0.9924+0.005  0.879+0.030  0.982--0.011
" AD+MVNB L=0.5M | 0.988+0.005 0.75040.060  0.930+0.022
AD+MVNB L=0.75M | 0.79240.073  0.676+0.047  0.783-£0.095
" AD+MVBB L=0.5M | 0.997£0.003 0.863:0.046 0.983+0.009

contrast ratio but loses some gCNR compared to ADMIRE
to compensate. Even AD + MVNB (L = 0.5 M) performs
similar to ADMIRE in terms of contrast ratio and gCNR, and
still demonstrates an improved cyst edge width compared to
both methods. Interestingly, in the high reverberation clutter
case (0-dB SCR), AD + MVNB (L = 0.5 M) has a better
cyst edge width compared to AD + MVNB (L = 0.75 M),

suggesting that the loss of gCNR, in that case, did impact
the cyst edge appearance. This is also reflected in the much
lower variance in the reverberation case for AD + MVNB
(L = 0.5 M) compared to all other methods, showing consis-
tency similar to the noise-free and thermal noise cases. A final
observation is that AD + MVBB never demonstrates any
significant improvement compared to just ADMIRE in any of
the three cases. Overall, AD + MVNB generally outperforms
all of the other methods, with the benefits being most readily
apparent in the reverberation clutter and thermal noise cases.

D. In Vivo Kidney Stone Results

Fig. 4(e)—(g) shows different choices of subarray sizes for
MVNB for in vivo Case 1. Compared to the simulated data,
this case shows very obvious image degradation as the subar-
ray size increases, to the point where the image is no longer
recognizable as a kidney at L = 0.75 M. Since image quality
is critical to delineating the kidney stone, L = 0.25 M was
better for all cases (necessary to identify the kidney stones
correctly). The exception to this was AD + MVNB for which
increasing subarray averaging to L = 0.5 M without losing
image quality was possible.

Case 1 with the optimal MV parameters is shown in Fig. 6.
Visually, an improvement in general image contrast with
ADMIRE-based methods is seen compared to non-ADMIRE-
based methods. The general image clarity and boundaries of
the kidney also appear the most defined in the AD + MVNB
image, and the highlighted kidney stone (marked by the red
arrow) appears sharper compared to ADMIRE alone (or any
other method). Fig. 7 shows Case 1 and several others zoomed
in specifically on the kidney stone of interest, with the stone
region drawn in red. The measured stone size is indicated
on the images by the blue line and also included along with
contrast ratio and gCNR in Table IV. In these in vivo cases,
both AD + MVNB and AD + MVBB generally perform
well, shrinking the apparent size of the stone and boosting
contrast ratio and gCNR compared to ADMIRE, MV, or DAS,
suggesting better prospects for AD + MVBB compared to
the simulations. The only case where the combined methods
do not improve upon ADMIRE or MV is Case 5, which is
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TABLE IV
IMAGE METRICS FOR In Vivo KIDNEY CASES
Measured Stone Size (mm)

Case 1 2 3 4 5 6
DAS 0.489 0.445 0.814 0482 0.595 0.535
DAS-Hamm 0.526 0.457 0.812 0486 0.623 0.550
MVNB L=0.25M 0495 0473 0.813 0.593 0.595 0.550
MVBB L=0.25M 0.508 0.432 0.791 0.505 0.611 0.555
ADMIRE 0.508 0.407 0.750 0.498 0.576 0.495
AD+MVNB L=0.5M | 0.432 0.367 0.734 0.437 0.623 0.437
AD+MVBB L=0.25M | 0.501 0.356 0.695 0.385 0.638 0.471

Contrast Ratio (dB)

Case 1 2 3 4 5 6
DAS 190 146 9.68 139 11.5 11.4
DAS-Hamm 18.5 16.4 10.0 13.9 12.0 11.5
MVNB L=0.25M 18.3 14.8 9.74 13.6 10.9 11.2
MVBB L=0.25M 186 158 105 13.9 10.9 11.3
ADMIRE 21.6 19.3 8.14 14.9 12.7 14.0
AD+MVNB L=0.5M 23.6 233 971 164 137 166
AD+MVBB L=0.25M | 21.8 21.2 11.6 15.5 10.6 17.2

generalized Contrast-to-Noise Ratio (gCNR)

Case 1 2 3 4 5 6
DAS 0.781 0.649 0.582 0.683 0.632 0.609
DAS-Hamm 0.781 0.726 0.609 0.721 0.661 0.600
MVNB L=0.25M 0.800 0.633 0.603 0.680 0.563 0.598
MVBB L=0.25M 0.793 0.716 0.618 0.676 0.603 0.593
ADMIRE 0.862 0.748 0.566 0.670 0.642 0.700
AD+MVNB L=0.5M | 0.895 0.893 0.579 0.749 0.707 0.798
Fig. 6. Comparisons of the b-mode images for Case 1 on a 60-d8 ~_AD+MVBB L=025M | 0855 0878 0615 0705 0471 0.785

dynamic range for the MV methods both individually (c) and (e) and after
preprocessing with ADMIRE (d) and (f). The kidney stone is indicated by
the red arrow in the DAS image.

included in the figure. From the b-mode images, it would
seem that the surrounding tissue complicates the case, such
that, even with improved resolution, the distinction between
stone and background tissue is ambiguous, resulting in no
improvement to sizing. The contrast ratio and gCNR are still
both improved. The estimated SNR for all noise sources based
on the lag-one coherence improved, on average, in these cases
from —0.49 £ 5.99 dB before ADMIRE to 20.75 £ 1.32 dB
after processing with ADMIRE.

Both the NB and BB implementations of MV perform well
in vivo, with AD + MVNB averaging slightly better statistics
and appearing somewhat better in the b-mode images corre-
sponding to generally better gCNR. However, both methods do
succeed at what they were designed to do. The two combined
methods each measure the smallest stone size in three of the
six cases, with AD + MVNB being slightly more consistent
at improving contrast ratio and gCNR compared to ADMIRE
or the base MV methods.

VI. DISCUSSION

AD + MVNB demonstrated an improvement over ADMIRE
and MVNB in every case, simulated and in vivo, with the
exception of the noise-free single bright target simulation.
AD 4+ MVBB was unimpressive in simulations, perform-
ing similar to ADMIRE, but showed similar improvements
in vivo compared to the NB version. ADMIRE combined with
MYV overall showed improvements to resolution and general
imaging quality metrics, especially in the cases with high

reverberation clutter or thermal noise. Our primary hypothesis
in this work was that ADMIRE could remove sources of rever-
beration and off-axis clutter that would otherwise degrade the
performance of MV. Our simulations clearly demonstrate that
high noise reduces the ability of MV to properly separate sig-
nals and improve resolution though this has been well-known
since the original implementations of MV. However, we did
show that both versions of MV struggle significantly more
when the interference is reverberation clutter compared to
thermal noise, even when both are presented at similar signal-
to-noise levels. While we can increase the subarray size to
compensate for the increased noise presence, this comes at
a severe cost of degraded image quality and does not fully
mitigate the added noise. We have shown that by preprocessing
with ADMIRE, we can improve the resolution and contrast
ratio compared to MV alone and outperform ADMIRE in
terms of resolution and often in terms of contrast ratio as well.

The NB implementation of MV showed the most universal
promise when complemented with ADMIRE, demonstrating
noticeable and consistent improvements in the simulations
and in vivo. AD + MVBB suffered somewhat in simulations,
performing generally worse compared to ADMIRE, though
still an improvement compared to MVBB alone. This may
be due in part to some interactions with the way data are
simulated and the similarity of processing that occurs for
both ADMIRE and MVBB since both take advantage of the
frequency spectrum to process data in an NB fashion in similar
ways. Whatever the exact cause, this phenomenon does not
carry over to the in vivo results, where AD + MVBB gen-
erally shows improvements compared to both ADMIRE and
MVBB. However, MVNB does slightly outperform MVBB,
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MVNB MVBB
L=025M L=0.25M

ADMIRE AD+MVNB AD+MVB
L=05M  L=0.25M

Fig. 7. B-mode images on a 30-dB dynamic range of a selection of the in vivo kidney stones. The individual stones are manually highlighted in red
with the help of a contour map, and the background used for image quality metrics is shown in yellow based on the stone region selected. The blue

line shows the lateral length of the stone region.

and considering the increased computation time the BB variant
requires, it is easy to recommend MVNB as the more effective
complement to ADMIRE.

ADMIRE as a choice for preprocessing performed as
expected. From the cyst simulations for the specific interfer-
ence sources, ADMIRE was visually able to suppress both
types and improve image quality metrics compared to DAS.
We additionally confirmed in simulated speckle phantoms that
ADMIRE could produce significant improvements to SNR in
the presence of thermal noise, and we similarly estimated SNR
but for all noise types in the in vivo cases to demonstrate a
similar level of improvement. Since MV performance is heav-
ily dependent on the level of SNR of the image, this supports
the idea that ADMIRE is a powerful option to improve MV
in these low SNR cases. While we cannot specifically differ-
entiate between reverberation clutter and other noise sources
in vivo due to the lack of the additional frame data required,
the simulations make it clear that reverberation clutter has
a much stronger impact on MV performance compared to
thermal noise.

Perhaps the main concern with implementing MV with
ADMIRE, or MV in general, is the choice of parameters.
We demonstrated that the subarray size by itself can have

a significant impact on resolution and general image quality,
depending on what one is willing to sacrifice to boost the
other. In simulations and simple imaging scenarios, it may
be easy to sacrifice visibility to improve resolution, but, it is
clear that, in more complex in vivo cases, this may not be
true. Even as groups are investigating ways to automatically
optimize these parameters, it is difficult to say how easy it
will be to optimize these more complex cases. A consolation,
perhaps, is that, regardless of what parameters we used in this
work, AD + MVNB generated improvements compared to
ADMIRE and MV, except in those in vivo cases where high
subarray sizes degraded image quality so significantly that the
image was no longer recognizable.

VIl. CONCLUSION

We have shown in this work that, because ADMIRE and
MYV seek to improve images in different ways, this allows us
to combine these methods to create images of superior quality
than either method alone. In particular, we had hypothesized
that MV would benefit from a denoising preprocessing step
based on the fundamentals of the MV method, and we hoped
that ADMIRE would benefit from improved lateral resolution.
We implemented both NB and BB implementations of MV and
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found that AD + MVNB produced in vivo images that were
better than images from either method alone. AD + MVNB
was able to improve resolution compared to just MVNB while
simultaneously improving the contrast ratio that ADMIRE
provides. Thus, not only did AD + MVNB attain the best
image quality of both methods, it, in fact, managed to improve
upon the best aspects of each as well. In future work, we will
continue to investigate both how we can better tune ADMIRE
and MV to further promote improved image quality, as well
as investigate other methods that could be incorporated into
the processing pipeline.
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