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Combining ADMIRE and MV to
Improve Image Quality

Siegfried Schlunk , Student Member, IEEE, and Brett Byram , Member, IEEE

Abstract— Aperture domain model image reconstruction
(ADMIRE) is a frequency-domain,model-based beamformer,
in part designed for removing reverberation and off-axis
clutter. Minimum variance (MV) is alternatively designed to
reduce off-axis interference and improve lateral resolution.
MV is known to be less effective in high incoherent noise
scenarios, and its performance in the presence of rever-
beration has not been evaluated. By implementing ADMIRE
before MV, the benefits of both these beamformers can
be achieved. In this article, the assumptions of MV are
discussed, specifically their relationship to reverberation
clutter. The use of ADMIRE as a preprocessing step to
suppress noise from simulations with linear scanning and
in vivo curvilinear kidney data is demonstrated, and both
narrowband and broadband implementations of MV are
applied. With optimal parameters, ADMIRE + MV demon-
strated sizing improvements over MV alone by an average
of 52.1% in 0-dB signal-to-clutter ratio reverberation cyst
simulations and 14.5% in vivo while improving the contrast
ratio compared to ADMIRE alone by an average of 15.1%
in simulations and 14.0% in vivo. ADMIRE + MV demon-
strated a consistent improvementcompared to DAS, MV, and
ADMIRE both in terms of sizing and contrast ratio.

Index Terms— Beamforming, image quality, in vivo, med-
ical ultrasound, minimum variance (MV), model, reverbera-
tion clutter, signal processing, simulation.

I. INTRODUCTION

M
ANY beamformers are designed with specific quality

metrics in mind, such as improving contrast ratio or

signal-to-noise ratio (SNR). Aperture domain model image

reconstruction (ADMIRE) [1]–[3] falls into this camp, with its

use primarily intended for decluttering (reducing reverberation

clutter, off-axis interference, and other sources of image degra-

dation), which results in generally improved contrast ratio

and SNR. Other beamformers may seek to improve resolu-

tion, a well-known example of which is minimum variance
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(MV). MV is often an attractive beamformer, in part due to

its rigorous mathematical basis, dating all the way back to

Capon’s original implementation in 1969 for use with seismic

data [4]. Though the applications of the original version were

somewhat limited given the assumptions that are made, it has

been adapted for use with ultrasound by many different groups

[5]–[15], each looking to address various shortcomings of the

original method. However, it is well known that MV still strug-

gles in environments where the signal-to-noise ratio (SNR) is

low, and this is especially true in the case of reverberation

clutter, as we will demonstrate in Section II.

We have previously shown in simple plane wave simulations

with minimal reverberation that ADMIRE can be used prior

to applying MV [16]. ADMIRE preserves the dimensionality

of the channel data, which means that it can function as a pre-

processing step, compared to most other beamformers that are

strictly for postprocessing. Since ADMIRE can improve SNR

and remove troublesome sources of interference, this opens

up the possibility that, by processing with both ADMIRE and

MV, we can achieve a combined result that has both improved

contrast ratio and lateral resolution. In this article, we expand

on our previous work [16], [17] by examining the assumptions

of MV to shed some light on the issues, particularly in high

reverberation clutter environments and implementing both a

narrowband (NB) version and a broadband (BB) version of

MV. We also include an expanded set of simulations with dif-

ferent sources of noise and more in vivo cases. We demonstrate

that ADMIRE + MV can often produce a better contrast ratio

and better lateral resolution than ADMIRE or MV alone.

II. BACKGROUND

A. Applying MV to Ultrasound Imaging

MV is mathematically designed to distinguish between a

finite number of sources located in the far-field (fewer than the

number of array elements). For a chosen source, when the SNR

is high, the beamformer places nulls at the locations of other

interfering plane waves (referred to as off-axis), minimizing

their contribution and suppressing the interference [4], [18].

Though Capon’s MV was formulated with passive sensing of

seismic data in mind, conceptually, the process is similar to

ultrasound with proper beamforming. Echoes in ultrasound

are caused by relatively near-field scatterers compared to

seismic signals, and so they appear as curved wavefronts at the

transducer. However, by applying correct receive delays to the
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echoes near the transmit focus, the received echoes from these

scatterers will take on the appearance of plane waves. Then,

the echoes from these scatterers can be differentiated based

on the direction of propagation of the plane waves, as is done

in the original work. In the ultrasound context, these off-axis

plane waves are caused by scatterers at a similar depth to the

focus but not directly at the focus.

MV has proven itself a useful method for improving lateral

resolution though adaptation to ultrasound applications has

required addressing some of the limitations and assumptions

of the original method. Critics point out that Capon’s MV

is designed for NB applications in the far-field, with a low

correlation between on- and off-axis signals [19]. In addition,

the covariance matrix, of which the inversion is required for

the calculation, is often insufficiently robust when applied to

ultrasound. That being said, these issues have been addressed

and rectified by multiple groups.

Sasso and Cohen-Bacrie [5] looked to solve the correlation

problem by introducing a spatial smoothing preprocessing step

to induce decorrelation, which works by analyzing subarrays

and estimating a covariance matrix for each and averaging

the set. The NB assumption does not per se invalidate the

application (and many versions do not make considerations

for it), but Holfort et al. [7] specifically introduced a BB

implementation that breaks down the ultrasound signal in the

frequency domain into a set of NB windows, over which

the assumption is valid. The far-field assumption can be

addressed with proper delaying of the output data, which

flattens the incoming echoes. Finally, the lack of robust-

ness of the covariance matrix has been addressed by many

authors, and it usually consists of using spatial averaging

and diagonal loading to guarantee an invertible matrix. Diag-

onal loading has been demonstrated by many groups [20]–

[22], while spatial averaging was initially used as mentioned

for creating decorrelation. Eventually, Synnevåg et al. [6]

presented a robust version for both diagonal loading

and spatial averaging, and discussed optimal parameters

for each.

B. Unresolved Problem—Reverberation Clutter

It is known that MV performs worse as noise content

increases, but we suggest here that reverberation clutter is

particularly problematic. From the original Capon paper [4],

it is assumed that incoming signals are unity amplitude

monochromatic plane waves. When properly delayed, on- and

off-axis signals take the form of plane waves, which mostly

satisfies this assumption, but reverberant signals (and other

complications, such as phase aberration) do not. Reverberant

signals originate from shallower depths than the target and

are effectively time-delayed to the target time index by means

of multipath scattering. This means that the delays applied

to reverberant signals will be mismatched, and those signals

will not be flattened into plane waves but, rather, will remain

spherical waves. In the case of phase aberration, this problem

may be further exaggerated, as there will be no ideal plane

waves, and all signals will have spherical components. This is

problematic, as we will demonstrate.

In the derivation in Capon’s paper [4], he arrives at an

important inequality

b2 �
R

K

|B(1k)|2

1 − |B(1k)|2
. (1)

b is related to the scattering amplitude of the chosen plane

wave, R is the ratio of the incoherent noise power to the

total power for K sensors, |B(1k)|2 is the beamforming

array response pattern, and 1k is the difference between the

vector wavenumber of the chosen and off-axis plane waves.

Capon states that the inequality is satisfied when either R/K

or |B(1k)|2 is small, effectively meaning either when the

incoherent noise power is relatively low compared to the

number of sensors, or when the difference of the vector

wavenumbers k1 and k2 is sufficiently large. In the case of

two plane waves that are sufficiently separated (and, thus,

have sufficiently different vector wavenumbers) and given

a sufficiently low noise level, this method will be able to

resolve the two plane waves. Van Trees [18] makes a similar

assertion that the SNR must be reasonably high, and at most

K − 2 interfering plane waves must fall outside of the main

lobe for proper nulls to be formed for each of the interfering

signals [18].

However, spherical reverberant signals complicate things

on multiple levels. It should be noted that, in the Cartesian

plane, a given plane wave will have a fixed wavenumber,

the direction of which shows the direction of the wave.

However, the Weyl expansion tells us that a spherical wave

can be written as a linear combination of infinite plane waves

[23]–[25]; specifically,

e− jk0r

r
=

1

j2π

∫ ∞

−∞

∫ ∞

−∞

e− j (kx x+ky y) e− jkz |z|

kz

dkxdky. (2)

A spherical wave with k0 is then composed of a continuous set

of plane waves with vector wavenumbers k = [kx, ky, kz] that

satisfy k0 = (k2
x +k2

y +k2
z )

1/2. It is then apparent that there will

be an overlap between the fixed k1 of our target plane wave

and the continuous set of possible values of k2 for the spherical

reverberant wave. Therefore, some parts of the reverberant

wave will be too similar to k1 and, thus, be unresolvable.

In addition, since the goal is to place nulls in the beampat-

tern in the directions of interference (i.e., the plane waves

corresponding to sufficiently different vector wavenumbers),

this is more difficult in a case where there is a continuous

set of plane waves. Thus, the beamformer will struggle with

rejecting the continuous set compared to well-defined discrete

plane waves. We simulated an example of a point target and

a reverberant target in Field II [26], [27], which is included

in Fig. 1 to show a visual example of how an on-target plane

wave and reverberant spherical wave have vector wavenumbers

with inherent overlap. In addition, we see that MV is unable to

properly reduce or eliminate the reverberant signal, resulting

in somewhat worse resolution of the primary target, though

still better than DAS alone. Fig. 1(g) shows an example of

the MV beampattern when an off-axis target is present and

the resulting null in the beampattern that is formed to suppress

that off-axis interference. In comparison, the case where the

off-axis target is replaced by a reverberant signal in the same
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Fig. 1. Field II simulations of an individual point target (a)–(c) with-
out interference and (d)–(f) with reverberant signal interference. The
reverberant signal is simulated at a much shallower depth than the
point target and then time-delayed to appear at the same time index.
(a) and (d) Channel data at the depth of the point target. The arrows
indicate the directions of the vector wavenumbers of the echoes, showing
a subset of the possible wavenumbers in the reverberant spherical wave
case. (b) and (e) DAS and (c) and (f) MV images of the point target.
B-mode images are displayed on a 60-dB scale. (g) High-resolution beam
plot from MV of a separate simulation where the reverberant signal is
replaced with an off-axis target, highlighting the null that is created in the
off-axis case and the lack thereof in the reverberation case.

location shows how the beampattern tries to generally suppress

the reverberant region, but, from the b-mode images, we see

that it is less successful at suppressing that interference.

A final consideration is the ratio of the incoherent noise

power, R/K . It is stated that, as long as the noise contribution

is relatively low, the two waves could still be distinguish-

able. Diffuse reverberation clutter takes on a speckle-like

appearance in the final image and is relatively incoherent in

the aperture domain [28], [29]. Then, in the case of very

strong diffuse reverberation clutter, it may have the effect of

being strong enough to interfere with the MV beamformer.

Supporting this theory, Austeng et al. [30] showed that, in the

case of very strong phase aberration, MV has comparable

performance to DAS with Hamming apodization and slightly

worse than DAS with rectangular apodization. Here, we adopt

the understanding that diffuse reverberation clutter originates

from the complex tissue in the body wall [28], [31], [32].

Overall, reverberant signals and other nonplane wave signals

pose an additional challenge for MV due to the inability

to fully reject the overlap between the continuous vector

wavenumbers present in spherical signals and the discrete

vector wavenumber of an on-axis target. In these cases, or,

in general, in the presence of strong noise content, MV will

struggle or fail to narrow the main lobe, reducing performance.

C. Proposed Solution—Preprocessing With ADMIRE

The primary goal of this work is to improve the performance

of MV in these high reverberation clutter or complex in vivo

environments. To that end, we propose that a preprocessing

step before MV to remove these sources of interference

will do exactly that. ADMIRE is a method for removing

reverberation and off-axis clutter, as well as suppressing wave-

front aberration [1]–[3]. Crucially, for this work, ADMIRE is

a somewhat unique beamformer in that, when it processes

channel data, it does not alter the dimensionality of the

input data. This means that we can subsequently process the

decluttered data with other beamforming methods, in this case,

MV. We hypothesize that ADMIRE will be able to suppress

these difficult sources of interference, removing the spherical

components that MV struggles with and generally reducing the

number of interfering waves and improving effective SNR,

making it possible for MV to perform better than without

preprocessing. This gives us the possibility to create better

images than with either method alone.

III. BEAMFORMING ALGORITHMS

We implemented all beamformers in MATLAB (The Math-

Works, Natick, MA, USA).

A. Delay-and-Sum (DAS)

The DAS beamformer is defined by

SDAS(x, z) =

M
∑

i=1

wi(x, z)si (x, z) (3)

where S is the resulting image prior to enveloping or log

compression, x is the index for the a-line of the final image,

z is a discrete-time index, M is the total number of channels,

wi(x, z) is the weighting factor for channel i , and si(x, z)

is the delayed channel data. The weighting factor accounts

for receive apodization and can vary by depth and channel

(taking F-number into consideration) or be static as in the

case of a fixed rectangular window, where all channels are

weighted equally. Adjusting this weighting using Hamming

apodization has been shown to reduce sidelobes [33]. In this

work, we will use both normal DAS with fixed rectangular

apodization to show the raw data (DAS) and also DAS with

Hamming apodization as a commonly used weighting scheme

(DAS-Hamm).

B. Minimum Variance

MV can be thought of as an adaptively weighted and

delayed DAS image where the weighting factor is optimized

to improve lateral resolution by reducing off-axis clutter

[6], [7]. Bold characters here and for the rest of the text

indicate vectors. The optimized weights are defined as

w =
R−1

e

eH R−1e
(4)

where e is the steering vector, H is the conjugate transpose,

and R is the covariance matrix defined as

R(x, z) = E[s(x, z)s(x, z)H ] (5)

where E[·] denotes the expectation and s(x, z) is the delayed

aperture signal at lateral index x and depth z. To ensure

that R is invertible, we used subarray averaging and diagonal

loading methods [6]. The recommendations provided are to use

subarray lengths of L = 0.5 M and diagonal loading defined
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as � = 1 · tr(R̂), where 1 = 1/(10L) [6]. The estimated MV

signal is then defined as

ŜMV(x, z) =
1

M − L + 1

M−L
∑

l=0

w(x, z)H
s̄l(x, z) (6)

where s̄(x, z) is the delayed channel data for a given subarray.

We will call this version of MV the NB version, abbreviated

as MVNB, but we additionally implemented the BB version

devised by Holfort et al. [7], which we will denote as MVBB.

For both implementations, the optimal parameters for subarray

averaging and diagonal loading were estimated based on both

simulated and in vivo data. While diagonal loading does have a

small impact on image metrics, it is dwarfed by the impact of

subarray averaging, so, for consistency, we use 1 = 1/(10L),

unless stated otherwise. We include, in the results, multiple

subarray averaging cases to demonstrate the effect that it has

on resolution and sizing.

C. Aperture Domain Model Image Reconstruction

ADMIRE is a method for removing reverberation and off-

axis clutter, as well as suppressing wavefront aberration.

Byram et al. [1] presented a detailed explanation of the com-

ponents of the algorithm, and additional specifics can be found

elsewhere [2], [3].

Processing occurs primarily in the frequency domain.

Dynamically delayed channel data are subdivided into mul-

tiple overlapping windows by depth, along which the Fourier

transform is performed [i.e., a short-time Fourier transform

(STFT)]. This produces a set of primary frequency com-

ponents, each of which is analyzed with a physics-based

model. This model contains the predicted aperture domain

signal responses for scatterers from all throughout the imaging

space. These predicted signals can be calculated based on the

well-defined physics of linear wave propagation, similar to

other linear simulation tools. These signals are defined by the

following equation:

ps(x; t, ω) =

N−1
∑

n=0

A(x; xn, zn, τn, ω)e jkτ(x;xn ,zn ,τn) (7)

where x is the position along the aperture, t and ω specify

the time and frequency for the signal, k is the corresponding

wavenumber, N is the total number of scatterers arriving at

the transducer at time t , and τ (x; xn, zn, τn) is the wavefront

delay for a signal received from (xn, zn) at time τn . Note that

τn can be different from t so that subtle shifts in phase can

be included in the model. Finally, A(x; xn, zn, τn, ω) is the

amplitude modulation across the aperture caused by the STFT

windows and element sensitivity.

The true value for N , the number of scatterers that make up

an observed signal, is unknowable. However, by oversampling

the imaging space, we can combine all of the individually

modeled signals into a model matrix, X , which gives the model

the flexibility to represent even a complex observed aperture

domain signal, y, by its component sources as

y = Xβ (8)

Fig. 2. Example of an ADMIRE model X, composed of a set of
estimated signals from locations considered to be clutter [sparsely
sampled, e.g., (a) and (b)] and a set from locations considered to be
ROI [highly sampled, e.g., (c)]. For a given aperture domain signal y, the
model can be used to estimate which sources are components of the
received signal, allowing us to remove signal components that are not
from the ROI.

where y is the post-STFT signal corresponding to a specific

frequency and a given a-line xn and depth zn , X is the set

of physical model predictors, and β is the unknown set of

model coefficients that we solve for. Fig. 2 is included to

give an intuitive sense of how each signal in the model

matrix X relates to a specific physical source location and,

in particular, shows how the model is composed of clutter

signals (Xclutter, those signals that we consider noise or clutter)

and region of interest (ROI) signals (XROI, signals that we want

to keep). Solving (8) reveals the composition of β, each entry

of which corresponds to one of those physical locations in the

imaging space. This gives us a breakdown of what physical

locations are contributing to the aperture domain signal since

they linearly combine to form y. By zeroing those coefficients

corresponding to signals outside of the ROI, we can simply

reconstruct the decluttered aperture signal with

ydecluttered = XβROI. (9)

Defining the ROI as some small region around (xn, zn)

removes any signals located off-axis or from reverberant

sources.

In practice, (8) is ill-posed due to the relatively small size

of y compared to the potentially large size of X depending

on the sampling of the model space. To solve for the model

predictors, ADMIRE uses the elastic-net regularization tech-

nique [34] with the optimization equation

β̂ = arg min
β

(||y − Xβ||2 + λ(α||β||1 + (1 − α)||β||22/2))

(10)

where ||β||1 is the L1 norm, ||β||2 is the L2 norm, and α is

a user-defined parameter set between 0 and 1 to control the

weighting between L1 and L2. λ is a regularization parameter

that controls the degrees of freedom [35]. The general rec-

ommendation is to choose α = 0.9 and λ = (0.0189/10)y
rms

based on the root mean square (rms) of the signal y. These

parameters are chosen based on previous work [1], [2] and are

generally robust across most imaging scenarios.

Once the aperture domain signal has been decluttered using

the coefficients solved by the elastic net and (9), the inverse
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STFT is applied to return to the time domain [36]. This results

in a decluttered version of the channel data. As with MV,

we tested multiple possible values for our α and λ parameters

but found that the default options listed produced the best

resolution both in simulations and in vivo.

In summary, since ADMIRE can distinguish between echoes

that return from different locations in the image, as represented

in Fig. 2, this allows the algorithm to selectively keep only

those signals that return from the ROI. Signals that originate

from close to the transducer, such as reverberant signals,

appear fundamentally different from those signals in the ROI,

allowing the elastic net to differentiate between the two during

the deconstruction. The same is true for other sources of image

degradation, such as off-axis clutter.

D. Post ADMIRE Processing

Since ADMIRE returns decluttered channel data, we can,

in theory, apply any beamforming method to data that have

already been processed with ADMIRE. Most commonly,

we simply sum the decluttered channel data like in DAS beam-

forming, but, rather than write ADMIRE + DAS, we simply

refer to this as ADMIRE. For this work, we consider the

additional possibility where we apply MV instead of DAS,

producing two cases: ADMIRE + MVNB for NB MV and

ADMIRE + MVBB for BB MV, abbreviated as AD + MVNB

and AD + MVBB, respectively.

As we did with ADMIRE and MV individually, we tested

multiple parameter choices for the combined methods

AD + MVNB and AD + MVBB. We found that the default

ADMIRE parameters continued to be optimal, and changes to

diagonal loading in MV were generally imperceptible, except

in vivo where we were able to see measurable improve-

ment to AD + MVNB by reducing the diagonal loading to

1 = 1/(100L). Similar to when applying MV alone, changing

the length of the subarrays had a significant impact on the

resulting image and metrics, so we included these results and

some discussion in the following.

IV. METHODS

A. Simulated Speckle Texture for Measuring SNR

We mentioned that ADMIRE can improve SNR, which

would be beneficial to MV. To demonstrate this, we simulated

a simple speckle texture in Field II [26], [27] using the simu-

lation parameters in Table I. We then created 30 independent

realizations of Johnson–Nyquist (thermal) noise by simulating

normally distributed independent random noise using the randn

function in MATLAB to effectively create 30 “frames” of

independent noise. We combined the thermal noise and speckle

channel data such that it satisfied a specified SNR as defined

by

SNR = 10log10

(

PSOI

α2 Pthermal

)

(11)

where PSOI is the power of the channel data of the speckle

phantom, Pthermal is the power of the channel data of the

thermal noise, and α is the scalar for the thermal noise in order

TABLE I

FIELD II SIMULATION PARAMETERS FOR

CONTRAST TARGET PHANTOMS

to achieve the desired SNR. For this simulation, we targeted

an SNR of 0 dB.

These simulations were then processed with ADMIRE, and

the SNR was calculated before and after ADMIRE. We cal-

culated SNR using two methods. The first way, we used the

following equation:

SNRpower = 10log10

(

Psignal

Pnoise

)

(12)

where Psignal is estimated from the average across all 30 frames

and Pnoise was then estimated from the difference between each

frame and the estimated signal. Since the signal is static across

all frames, the signal power is calculated from the average

of the estimated signal, and the noise power is calculated

from the variance of all of the frames. The second method

was to use the correlation between frames to estimate SNR,

as done by Friemel et al. [37]. By calculating the correlation

coefficient ρ between each successive frame, the SNR can also

be estimated by

SNRframe = 10log10

(

ρ

1 − ρ

)

. (13)

B. Simulated Single-Target Phantoms

We simulated a single-point target using Field II to demon-

strate how MV behaves when a primary target is receiving

interference from a reverberant target. The simulation parame-

ters are given in Table I. The primary target was simulated at a

depth of 3 cm, while the reverberation target was simulated at

a depth of 0.5 cm and then time-shifted to the same time index

as our primary target, similar to how reverberation clutter has

been simulated in previous work [38], [39]. We could then

observe how the point spread function (PSF) differs for MVNB

and MVBB versus AD + MVNB and AD + MVBB without

and with that reverberation clutter. We in part used the width of

the PSF as an indicator for determining the optimal parameters

for both MV methods and post-ADMIRE methods.

C. Simulated Cyst Phantoms

To represent the scenario of high noise power reverberation

clutter, we used Field II to simulate 5-mm diameter anechoic
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cysts using the same parameters as in Table I, creating six

independent speckle realizations. We then simulated diffuse

reverberation clutter using the method described by Byram

and Shu [38], [39]. We added the reverberation clutter such

that it satisfied a 0-dB signal-to-clutter ratio (SCR) compared

to the cyst channel data. Though there has been relatively

little research into classifying what low or high reverbera-

tion clutter levels are in terms of SCR, we have previously

determined that 0-dB SCR is a plausible representation of

clutter corresponding to a difficult-to-image patient [40]. This

is backed up by other studies such as one where bladder

wall (signal)-to-clutter ratios calculated from image data were

between 30 and 0 dB for all sources of clutter, including

reverberation [41], suggesting that our target for channel data

is reasonable for in vivo scenarios.

To complement the reverberation clutter simulations,

we also simulated Johnson–Nyquist (thermal) noise, which

was added to the cyst channel data at the same 0-dB ratios.

We differentiate these thermal noise cases using the abbrevi-

ation SNR.

D. In Vivo Kidney Stone Data

We additionally captured in vivo kidney data from patients

suffering from kidney stone disease using a Verasonics Van-

tage Ultrasound System (Verasonics, Inc., Kirkland, WA,

USA) with a C5-2 curvilinear transducer. A plane wave

synthetic aperture acquisition was employed [42], where plane

waves were transmitted at multiple angles to achieve focusing

at all depths. A center frequency of 4.1667 MHz was used

to acquire 64 angles spanning 37◦. The data were acquired

under protocols approved by the Vanderbilt University IRB

(IRB# 170001).

E. Image Quality Metrics

For the simulated cyst phantoms, we computed the con-

trast ratio and the generalized contrast-to-noise ratio (gCNR)

[43], [44], and as a resolution metric, we included radial cyst

edge width [45]. The contrast ratio was defined as

contrast ratio = −20log10

(

µROI

µbackground

)

(14)

where µ is the mean value calculated from the enveloped data,

before log compression. gCNR is a generalized detectability

metric, which measures the overlap of the probability density

function between the ROI and the background, making it

more robust against stretches or compressions in dynamic

range. We used the conventional 100 bins for the histogram

estimation for this method. For these metrics, the ROI was

defined as the interior of the cyst, and the background was an

equivalently sized radial region surrounding the cyst.

In addition to calculating the width of the PSF in our

point target simulation, we estimated radial cyst edge width

similar to Bottenus et al. [45] as a more practical measure of

lateral resolution by radially averaging values of equal distance

from the center of the cyst within ±10◦ of the lateral axis.

This produces a function of intensity versus radius, which is

normalized by subtracting by µROI and scaling by µbackground.

Fig. 3. Example of MVNB and AD + MVNB radial intensity curves from
which the cyst edge width is estimated as the distance that it takes to
rise from 0.25 to 0.75 (indicated with the dashed lines).

Then, the width is estimated as the rise distance on this curve.

This is done for both the left- and right-hand sides of the

anechoic cysts. An example showing two such radial intensity

curves is shown in Fig. 3. For this work, we considered the

rise distance from 0.25 to 0.75, representing a measurement

similar to that of the FWHM, as has been done with similar

methods in previous work [46].

For the in vivo kidney stone cases, the stone ROI was man-

ually selected on a 30-dB dynamic range b-mode image with a

contour map as reference. A radial background region was then

automatically calculated as 1.5 times the size of the selected

stone, centered on the stone. This allowed us to calculate the

contrast ratio and gCNR of the stone for all cases and provided

a lateral measure of the stone size. Since kidney stones behave

as coherent targets [47]–[49], we consider smaller measures of

stone size to be an improvement. We also estimate the SNR in

these cases by implementing the robust version of the lag-one

coherence method devised by Vienneau et al. [50] based on

original work by Hyun et al. [51] and Long et al. [52]. Sim-

ilar to the simulations, this was estimated before and after

processing with ADMIRE. In these in vivo cases, since we

lack the multiple frames required to differentiate thermal noise

from other clutter types, the SNR value estimated represents

the combination of all types of noise: thermal, reverberation,

or others.

To complete our parameter testing for MV and ADMIRE,

we tested our suite of parameter choices on both the simulated

cysts, and some of the in vivo cases to determine if the optimal

parameters change between simulations and the in vivo data.

Examples of interesting parameters are included in the results

section to demonstrate how these choices can impact our

image quality metrics.

F. Histogram Matching

We include as a supplementary material the histogram

matching [53] results and discussion for all the anechoic

cyst simulations and in vivo cases above to compare against

the image quality metrics calculated when no matching is

performed. These results are purely supplementary for those
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TABLE II

BRIGHT TARGET SIMULATION METRICS

readers interested and will not be discussed in the main text

presented here.

V. RESULTS

A. Simulated Speckle SNR Results

From the 30 realizations of independent thermal noise,

both SNRpower and SNRframe were calculated before and after

ADMIRE. SNRpower increased from 0.984 to 22.8 dB after

ADMIRE. Average SNRframe increased from 0.72 ± 0.01 to

22.65 ± 0.08 dB after ADMIRE. Both methods show that

ADMIRE produces a significant increase in SNR.

B. Point Target Simulation Results

The PSFs of the point target simulation results are shown

in Fig. 4 to demonstrate the impact of the subarray averaging

parameter on MV. To summarize the differences caused by

subarray averaging, we focused on two cases, L = 0.5 M and

L = 0.75 M, for both MVNB and MVBB with and without

ADMIRE. The PSF for each case is shown in Fig. 4(b) and (d),

while the widths of the PSF for each case at −6 and −30 dB

are included in Table II. From these results alone, MVNB

benefits significantly from increasing the subarray size regard-

less of reverberation level. In comparison, MVBB prefers

L = 0.5 M for the no reverberation case and L = 0.75 M for

the with reverberation case. From the PSF plot in the figure,

MVBB behaves rather erratically when the subarray size gets

large, whereas MVNB has a more uniform improvement with

increased subarray size. As a result, we generally include both

parameter choices for MVNB while focusing on L = 0.5 M

for MVBB in the simulated results.

Fig. 4 also shows that ADMIRE behaves almost identically

to DAS, only slightly improving the sidelobes off-axis in the

reverberation case. In comparison, MVNB at L = 0.75 M

has by far the best performance when there is no reverber-

ation clutter (or any significant noise source) present. Even

at L = 0.5 M, it still outperforms all other beamformers,

including the combined method AD + MVNB, though this

still performs better than just ADMIRE by itself. However,

in the presence of a strong reverberation signal, MVNB suffers

substantially with the full-width at half-maximum increasing

by 64%. In this case, preprocessing with ADMIRE grants

Fig. 4. Parameter testing for the subarray length (L) versus the full
aperture length (M) for both NB (MVNB) and BB (MVBB) implementa-
tions. PSFs for (a) and (b) bright target with no reverberation interference
and (c) and (d) bright target with an interfering reverberant signal.
(e)–(g) In vivo example of MVNB with varying subarray lengths, demon-
strating how increasing the subarray length can lead to general image
quality degradation.

a significant increase in performance, with AD + MVNB

performing in the reverberation case equivalently to how

MVNB alone performed in the noise-free case. Strangely,

AD + MVBB generally performed poorly, worse than running

just MVBB alone, regardless of the choice of parameters.

However, regardless of NB or BB, the combined method

uniformly performed better than just ADMIRE alone and by

extension also DAS.

C. Anechoic Cyst Simulation Results

The MVNB cases for the simulated cysts in Fig. 5 show

that increasing the subarray size can result in the degradation

of the speckle in the background. As expected from this,

Table III shows that cyst edge width and contrast ratio are

improved with higher subarray sizes though gCNR is lost as

a result. This means that the ideal subarray size in these cases

may depend on which metrics are more important for a given

application. Since both subarray size choices produce viable

images, we included both in the tables and figures for MVNB.

The example cysts in Fig. 5 and the cyst edge width

measurements in Table III show a general agreement with

the bright target simulations. These simulations are split

into a noise-free case, a reverberation clutter case (0-dB

SCR), and a thermal noise case (0-dB SNR). In these cases,

we measured cyst edge width as a complement to PSF

width in the bright target simulations and additionally showed

more traditional image quality metrics: contrast ratio and

gCNR. Unlike in the simple bright targets, in these cases,

AD + MVNB (L = 0.75 M) always outperforms ADMIRE

and MVNB alone in terms of both cyst edge width and
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Fig. 5. Sample cases of an anechoic cyst with no added noise, added reverberation clutter (0-dB SCR), and added thermal noise (0-dB SNR)
displayed on a 50-dB dynamic range. The black solid circles indicate the true region of the cyst and a background speckle region surrounding it for
use with our imaging metrics. The white solid lines show the radial region for which the cyst boundary width was estimated.

TABLE III

ANECHOIC CYST SIMULATION METRICS

contrast ratio but loses some gCNR compared to ADMIRE

to compensate. Even AD + MVNB (L = 0.5 M) performs

similar to ADMIRE in terms of contrast ratio and gCNR, and

still demonstrates an improved cyst edge width compared to

both methods. Interestingly, in the high reverberation clutter

case (0-dB SCR), AD + MVNB (L = 0.5 M) has a better

cyst edge width compared to AD + MVNB (L = 0.75 M),

suggesting that the loss of gCNR, in that case, did impact

the cyst edge appearance. This is also reflected in the much

lower variance in the reverberation case for AD + MVNB

(L = 0.5 M) compared to all other methods, showing consis-

tency similar to the noise-free and thermal noise cases. A final

observation is that AD + MVBB never demonstrates any

significant improvement compared to just ADMIRE in any of

the three cases. Overall, AD + MVNB generally outperforms

all of the other methods, with the benefits being most readily

apparent in the reverberation clutter and thermal noise cases.

D. In Vivo Kidney Stone Results

Fig. 4(e)–(g) shows different choices of subarray sizes for

MVNB for in vivo Case 1. Compared to the simulated data,

this case shows very obvious image degradation as the subar-

ray size increases, to the point where the image is no longer

recognizable as a kidney at L = 0.75 M. Since image quality

is critical to delineating the kidney stone, L = 0.25 M was

better for all cases (necessary to identify the kidney stones

correctly). The exception to this was AD + MVNB for which

increasing subarray averaging to L = 0.5 M without losing

image quality was possible.

Case 1 with the optimal MV parameters is shown in Fig. 6.

Visually, an improvement in general image contrast with

ADMIRE-based methods is seen compared to non-ADMIRE-

based methods. The general image clarity and boundaries of

the kidney also appear the most defined in the AD + MVNB

image, and the highlighted kidney stone (marked by the red

arrow) appears sharper compared to ADMIRE alone (or any

other method). Fig. 7 shows Case 1 and several others zoomed

in specifically on the kidney stone of interest, with the stone

region drawn in red. The measured stone size is indicated

on the images by the blue line and also included along with

contrast ratio and gCNR in Table IV. In these in vivo cases,

both AD + MVNB and AD + MVBB generally perform

well, shrinking the apparent size of the stone and boosting

contrast ratio and gCNR compared to ADMIRE, MV, or DAS,

suggesting better prospects for AD + MVBB compared to

the simulations. The only case where the combined methods

do not improve upon ADMIRE or MV is Case 5, which is
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Fig. 6. Comparisons of the b-mode images for Case 1 on a 60-dB
dynamic range for the MV methods both individually (c) and (e) and after
preprocessing with ADMIRE (d) and (f). The kidney stone is indicated by
the red arrow in the DAS image.

included in the figure. From the b-mode images, it would

seem that the surrounding tissue complicates the case, such

that, even with improved resolution, the distinction between

stone and background tissue is ambiguous, resulting in no

improvement to sizing. The contrast ratio and gCNR are still

both improved. The estimated SNR for all noise sources based

on the lag-one coherence improved, on average, in these cases

from −0.49 ± 5.99 dB before ADMIRE to 20.75 ± 1.32 dB

after processing with ADMIRE.

Both the NB and BB implementations of MV perform well

in vivo, with AD + MVNB averaging slightly better statistics

and appearing somewhat better in the b-mode images corre-

sponding to generally better gCNR. However, both methods do

succeed at what they were designed to do. The two combined

methods each measure the smallest stone size in three of the

six cases, with AD + MVNB being slightly more consistent

at improving contrast ratio and gCNR compared to ADMIRE

or the base MV methods.

VI. DISCUSSION

AD + MVNB demonstrated an improvement over ADMIRE

and MVNB in every case, simulated and in vivo, with the

exception of the noise-free single bright target simulation.

AD + MVBB was unimpressive in simulations, perform-

ing similar to ADMIRE, but showed similar improvements

in vivo compared to the NB version. ADMIRE combined with

MV overall showed improvements to resolution and general

imaging quality metrics, especially in the cases with high

TABLE IV

IMAGE METRICS FOR In Vivo KIDNEY CASES

reverberation clutter or thermal noise. Our primary hypothesis

in this work was that ADMIRE could remove sources of rever-

beration and off-axis clutter that would otherwise degrade the

performance of MV. Our simulations clearly demonstrate that

high noise reduces the ability of MV to properly separate sig-

nals and improve resolution though this has been well-known

since the original implementations of MV. However, we did

show that both versions of MV struggle significantly more

when the interference is reverberation clutter compared to

thermal noise, even when both are presented at similar signal-

to-noise levels. While we can increase the subarray size to

compensate for the increased noise presence, this comes at

a severe cost of degraded image quality and does not fully

mitigate the added noise. We have shown that by preprocessing

with ADMIRE, we can improve the resolution and contrast

ratio compared to MV alone and outperform ADMIRE in

terms of resolution and often in terms of contrast ratio as well.

The NB implementation of MV showed the most universal

promise when complemented with ADMIRE, demonstrating

noticeable and consistent improvements in the simulations

and in vivo. AD + MVBB suffered somewhat in simulations,

performing generally worse compared to ADMIRE, though

still an improvement compared to MVBB alone. This may

be due in part to some interactions with the way data are

simulated and the similarity of processing that occurs for

both ADMIRE and MVBB since both take advantage of the

frequency spectrum to process data in an NB fashion in similar

ways. Whatever the exact cause, this phenomenon does not

carry over to the in vivo results, where AD + MVBB gen-

erally shows improvements compared to both ADMIRE and

MVBB. However, MVNB does slightly outperform MVBB,
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Fig. 7. B-mode images on a 30-dB dynamic range of a selection of the in vivo kidney stones. The individual stones are manually highlighted in red
with the help of a contour map, and the background used for image quality metrics is shown in yellow based on the stone region selected. The blue
line shows the lateral length of the stone region.

and considering the increased computation time the BB variant

requires, it is easy to recommend MVNB as the more effective

complement to ADMIRE.

ADMIRE as a choice for preprocessing performed as

expected. From the cyst simulations for the specific interfer-

ence sources, ADMIRE was visually able to suppress both

types and improve image quality metrics compared to DAS.

We additionally confirmed in simulated speckle phantoms that

ADMIRE could produce significant improvements to SNR in

the presence of thermal noise, and we similarly estimated SNR

but for all noise types in the in vivo cases to demonstrate a

similar level of improvement. Since MV performance is heav-

ily dependent on the level of SNR of the image, this supports

the idea that ADMIRE is a powerful option to improve MV

in these low SNR cases. While we cannot specifically differ-

entiate between reverberation clutter and other noise sources

in vivo due to the lack of the additional frame data required,

the simulations make it clear that reverberation clutter has

a much stronger impact on MV performance compared to

thermal noise.

Perhaps the main concern with implementing MV with

ADMIRE, or MV in general, is the choice of parameters.

We demonstrated that the subarray size by itself can have

a significant impact on resolution and general image quality,

depending on what one is willing to sacrifice to boost the

other. In simulations and simple imaging scenarios, it may

be easy to sacrifice visibility to improve resolution, but, it is

clear that, in more complex in vivo cases, this may not be

true. Even as groups are investigating ways to automatically

optimize these parameters, it is difficult to say how easy it

will be to optimize these more complex cases. A consolation,

perhaps, is that, regardless of what parameters we used in this

work, AD + MVNB generated improvements compared to

ADMIRE and MV, except in those in vivo cases where high

subarray sizes degraded image quality so significantly that the

image was no longer recognizable.

VII. CONCLUSION

We have shown in this work that, because ADMIRE and

MV seek to improve images in different ways, this allows us

to combine these methods to create images of superior quality

than either method alone. In particular, we had hypothesized

that MV would benefit from a denoising preprocessing step

based on the fundamentals of the MV method, and we hoped

that ADMIRE would benefit from improved lateral resolution.

We implemented both NB and BB implementations of MV and
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found that AD + MVNB produced in vivo images that were

better than images from either method alone. AD + MVNB

was able to improve resolution compared to just MVNB while

simultaneously improving the contrast ratio that ADMIRE

provides. Thus, not only did AD + MVNB attain the best

image quality of both methods, it, in fact, managed to improve

upon the best aspects of each as well. In future work, we will

continue to investigate both how we can better tune ADMIRE

and MV to further promote improved image quality, as well

as investigate other methods that could be incorporated into

the processing pipeline.
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