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Abstract—Aperture Domain Model Image REconstruction
(ADMIRE) is a beamformer that suppresses sources of acoustic
clutter by performing model-based fits of channel data. Each
fit requires solving an ill-posed, inverse problem using regu-
larization. Initially, these fits were performed with the elastic-
net constraint, but we recently proposed using a deep neural
network (DNN) for model fitting based on the learned iterative
shrinkage thresholding algorithm (LISTA). This approach used a
sigmoidal soft-thresholding activation function with a trainable
threshold to allow more flexible regularization, but the range
of learnable proximal operators of regularization priors is still
limited. Therefore, in this work, we propose using fully trainable
activation functions to allow for a wider range of operators
to be learned. Moreover, using simulated data, we demonstrate
the ability of this approach to provide further improvements in
ultrasound image quality.

Index Terms—ADMIRE, Beamforming, Deep Learning

I. INTRODUCTION

APERTURE Domain Model Image REconstruction (AD-
MIRE) is an adaptive beamforming method that im-

proves ultrasound image quality by suppressing sources of
acoustic clutter, and it can do so in real time via an open-
source, GPU-based implementation (https://github.com/VU-
BEAM-Lab/ADMIRE) [1]–[8]. It involves constructing model
matrices of the aperture domain data, localized in time and
frequency for different scattering locations, and then fitting
these models to the received aperture domain frequency data.
Once fit, only predictors within a specified region of interest
(ROI) are used to reconstruct the decluttered aperture do-
main frequency data. However, performing the model fits of
ADMIRE requires solving an ill-posed, inverse problem for
which linear regression with elastic-net regularization is used
to obtain a solution. This solution is one of infinitely many,
and it is possible that some other solutions provide further
improvements in image quality.

Therefore, to learn one of these other solutions, we pre-
viously proposed using a deep neural network (DNN) sparse
encoder based on the learned iterative shrinkage thresholding
algorithm (LISTA) [9] to perform the model fits of ADMIRE
[10], [11]. This is shown in Fig. 2, and it allows for a data-
driven approach to model fitting while still preserving the
model-based intuition of ADMIRE. The network architecture
is shown in Fig. 1, where the input to the network is X⊤y

and the output is β̂. In this case, X is the ADMIRE model
matrix for a given fit, y is the corresponding aperture domain
frequency data, and β̂ is the predicted model coefficients. For
the activation function, a sigmoidal soft-thresholding function
with the equation shown in (1) was used, where z is the
function input and γ is a trainable threshold that can be
different for each layer.

h(z) =
z

1 + e−(|z|−γ) (1)

Fig. 1: Diagram of the deep neural network sparse encoder
architecture for performing the model fits of ADMIRE. S
represents a fully connected layer.

Although the aforementioned soft-thresholding activation
function allows for more flexible regularization, it is still
limited in terms of the range of proximal operators of regular-
ization priors that can be learned. To address this, in this work,
we propose replacing the soft-thresholding activation function
at each layer of our DNN with a fully trainable activation
function. Therefore, a wider range of proximal operators of
regularization priors will be able to be learned, which in turn
will allow for more flexible model-based beamforming and
improved ultrasound image quality.

II. METHODS

To incorporate a fully trainable activation function, we
utilized a Padé activation unit (PAU). As shown in (2), PAUs
are activation functions that consist of a polynomial in the
numerator and a polynomial in the denominator, and the
polynomial coefficients are trainable weights. As a result,
PAUs have been shown to be able to approximate a wide
variety of functions [12].

h(z) =
a0 + a1z + a2z

2 + · · ·+ amzm

1 + b1z + b2z2 + · · ·+ bnzn
(2)
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Fig. 2: Overview of ADMIRE using a neural network. (A) Obtain the time-delayed channel data and calculate the short-time
Fourier transform (STFT) along the depth dimension for each channel. (B) Obtain the corresponding model matrix for each
set of aperture domain frequency data that will be reconstructed in each STFT window in each beam, fit each model matrix
to its corresponding set of aperture domain frequency data using a neural network (sizes of red points correspond to how
much each scattering location contributes to the aperture domain frequency data), and reconstruct each set of aperture domain
frequency data by only using the predictors that correspond to scattering locations that are within a region of interest (ROI).
(C) Calculate the inverse short-time Fourier transform (ISTFT) of the reconstructed aperture domain frequency data in order to
obtain the decluttered channel data. Note that the scattering locations are not restricted to the depth range of the STFT window.
The grid of scattering locations illustrated in (B) corresponds to the first STFT window. For STFT windows that correspond
to deeper depths, the scattering locations can also be located in shallower depths because these locations can contribute to
off-axis scattering and multipath scattering that affect the aperture domain frequency data for the STFT window. Essentially,
as the depths become deeper for subsequent STFT windows, the depth range for possible scattering locations also increases.

For the purposes of DNN training, a modified version of
PAUs referred to as safe PAUs was utilized. The equation
for one safe PAU is shown in (3). This version of the PAU
was used in order to prevent obtaining a value of 0 in the
denominator during training, which would cause undefined
values. In addition, 5th and 4th order polynomials were used
in the numerator and denominator, respectively. As a result,
the same DNN architecture shown in Fig. 1 was used except
for the replacement of the activation function with a safe PAU
at each layer.

h(z) =
a0 + a1z + a2z

2 + · · ·+ amzm

1 + |b1z + b2z2 + · · ·+ bnzn|
(3)

To perform training, the Field II ultrasound simulation
package [13], [14] was used to simulate 10 phantoms that
each consisted of nine cysts of varying sizes. Each of these
cysts were scaled to have a certain contrast ratio value, where
the possible values were anechoic, −70 dB, −60 dB, −50 dB,
−40 dB, −30 dB, −20 dB, −10 dB, and 0 dB. Reverberation

clutter simulated using a pseudononlinear approach [15], [16]
and simulated off-axis clutter were also added to these 10
phantoms. Different signal-to-clutter ratios (SCRs) with pos-
sible values of −5 dB, 0 dB, 5 dB, 10 dB, 15 dB, and 20 dB
were used to scale the off-axis clutter and reverberation clutter
individually before they were added to the phantoms. More-
over, Gaussian noise yielding a signal-to-noise ratio (SNR) of
50 dB with respect to the combined clean and clutter data was
added. In total, 60 unique phantoms were obtained from this
process. After this, the short-time Fourier transform of each
phantom was computed to obtain the different sets of aperture
domain frequency data. In this case, due to the data being
simulated, the aperture domain frequency data corresponding
to the clean signal without clutter, the clutter signal, and
the clean signal with clutter were obtained. The ADMIRE
model matrices were also generated, and fourth-order blind
identification independent component analysis (FOBI-ICA)
[7], [8] was applied to reduce their sizes.

Training was performed in PyTorch [17] using the Adam op-
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Fig. 3: Distributions of model coefficients predicted by the best-performing sigmoidal soft-thresholding and PAU DNNs. In this
example, model coefficients were drawn from a uniform distribution and used with ADMIRE model matrices to create synthetic
sets of aperture domain frequency data. Therefore, the distributions in this case primarily represent the regularization prior that
each type of activation function imposes on the fitting process. Note that the y-axis is different between the histograms.

TABLE I
MEAN ERROR VALUES FOR IMAGE METRICS (N = 20 FOR MSE AND N = 180 FOR OTHER METRICS)

Activation Function Type CR Absolute Error (dB) CNR Absolute Error (dB) GCNR Absolute Error Normalized Envelope MSE Overall Rank Out of 1200 Cases

PAU 17.29 1.79 0.033 0.003 1
Sigmoidal Soft-Thresholding 22.57 1.39 0.049 0.002 171

timizer [18] and three different training schemes. For scheme
1, the model coefficients predicted by the network for a given
training iteration were taken and used along with the corre-
sponding ADMIRE model matrices to compute the predicted
clutter signal, and a mean-squared error (MSE) loss function
was then computed between the predicted signal and the
ground-truth clutter signal. Note that, for training, the clutter
signal included the added Gaussian noise. For scheme 2, the
same operations were performed as scheme 1 except that they
were done for the clean signal without clutter, and for scheme
3, the operations were done for both signals resulting in two
MSE loss functions. For the DNN architecture, the newly
proposed PAU DNN was used as well as the previous DNN
that used sigmoidal soft-thresholding. Three fully connected
layers were used in both cases. For each architecture and
training scheme combination, 100 models were trained with
different weight initializations that were achieved by varying
the seed for the pseudorandom number generator in PyTorch.
This resulted in 600 total models being trained.

Once trained, each model was used to perform the model fits
of ADMIRE for 20 cyst phantom data sets. 10 phantoms had
0 dB SCR clutter added to them, and the other 10 had 10 dB
SCR clutter added. In addition, all phantoms, with respect to
the combined clean and clutter data, had 50 dB SNR Gaussian
noise added to them. Once the fits were performed, the
decluttered aperture domain frequency data for each phantom
was reconstructed by either directly using the ROI predictors
or by first computing the clutter signal and then subtracting it
from the aperture domain data. This provided two processing
cases for each model for a total of 1200 processing cases.

For the cysts of the processed phantoms for each pro-
cessing case, metrics including contrast ratio (CR), contrast-

to-noise ratio (CNR), and generalized contrast-to-noise ratio
(GCNR) were computed. Normalized envelope mean-square
error (MSE) was also computed between each processed frame
of data and the corresponding ground-truth clean frame of
data. Thus, for each processing case, 180 CR, CNR, and
GCNR values were obtained (180 total cysts across the phan-
toms) along with 20 MSE values (20 total phantoms). These
metric values were then used to rank the processing cases.
This was done by taking the values for a given metric for a
given processing case and then computing the mean absolute
error (MAE) between those values and the values for the
ground-truth clean data. For MSE, the average of the 20 MSE
values was taken. Doing so provided four error values for the
four metrics for each processing case. For a given metric, the
error values across the processing cases were ranked based on
lowest error. This resulted in each processing case having four
ranks, and the average of these ranks was computed to provide
an overall rank to a given processing case.

In addition, to analyze the proximal operators of regular-
ization priors that were learned by the best-performing sig-
moidal soft-thresholding DNN and the best-performing PAU
DNN, a separate experiment was performed in which model
coefficients were generated from a uniform distribution. These
coefficients were used along with ADMIRE model matrices to
generate aperture domain frequency data rather than simulating
aperture domain frequency data using Field II. Model fits
were then performed using the two DNNs, and histograms
of the predicted model coefficients were created. The purpose
of doing this was that due to the coefficients being drawn
from a uniform distribution, the histogram of the predicted
coefficients should primarily reflect the regularization prior
that is imposed on the coefficients.
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III. RESULTS

Table I displays the mean error values for the best-
performing PAU and sigmoidal soft-thresholding DNN cases.
The top performing PAU DNN case was one that was trained
with training scheme 2 and that reconstructed the aperture
domain frequency data by directly utilizing ROI predictors.
The top performing sigmoidal soft-thresholding DNN case
was trained with training scheme 1 and reconstructed the
aperture domain frequency data by directly utilizing ROI
predictors. Fig. 4 shows an example phantom processed with
these two cases. In addition, Fig. 3 shows the model coefficient
distributions obtained for the best-performing sigmoidal soft-
thresholding and PAU DNN models when performing the
experiment where model fits were performed with synthetic
aperture domain frequency data that was generated from model
coefficients drawn from a uniform distribution. As can be
seen, it appears as though the sigmoidal soft-thresholding
DNN imposes a regularization prior that resembles a Laplacian
distribution, as expected, while the PAU DNN imposes a
different regularization prior with a bimodal distribution.

Fig. 4: Example phantom with added 0 dB SCR clutter and
50 dB Gaussian noise processed with the best-performing
sigmoidal soft-thresholding and PAU DNN cases. The ground-
truth clean data and delay-and-sum (DAS) are also shown as
well as example image metrics calculated for one cyst using
the displayed cyst (white) and background (blue) masks.

IV. DISCUSSION

When ranking the processing cases based on image metric
error, the top 170 ranked cases were all DNNs that used
PAUs instead of sigmoidal soft-thresholding for the activation
function. This demonstrates that using fully trainable activation
functions can be used to achieve further improvements in
ultrasound image quality. Moreover, Fig. 3 exhibits that these
improvements are obtained due to the ability of PAUs to learn a
wider range of proximal operators of regularization priors and
therefore allow for more flexible model-based beamforming.

V. CONCLUSION

In this work, we developed a framework for performing
flexible model-based beamforming through the incorporation
of fully trainable activation functions, and we demonstrated

the ability of this framework to achieve further improvements
in ultrasound image quality.

VI. ACKNOWLEDGMENT

The authors would like to thank the staff of the AC-
CRE computing resource. This work was supported by NIH
grants R01HL156034, R01EB020040, and S10OD016216-
01, NAVSEA grant N0002419C4302, and NSF award IIS-
1750994.

REFERENCES

[1] B. Byram and M. Jakovljevic, “Ultrasonic multipath and beamforming
clutter reduction: A chirp model approach,” IEEE Trans. Ultrason.,
Ferroelectr., Freq. Control, vol. 61, no. 3, pp. 428–440, 2014.

[2] B. Byram, K. Dei, J. Tierney, and D. Dumont, “A model and regulariza-
tion scheme for ultrasonic beamforming clutter reduction,” IEEE Trans.
Ultrason., Ferroelectr., Freq. Control, vol. 62, no. 11, pp. 1913–1927,
2015.

[3] K. Dei and B. Byram, “The impact of model-based clutter suppression
on cluttered, aberrated wavefronts,” IEEE Trans. Ultrason., Ferroelectr.,
Freq. Control, vol. 64, no. 10, pp. 1450–1464, 2017.

[4] C. Khan, K. Dei, S. Schlunk, K. Ozgun, and B. Byram, “A Real-
Time, GPU-Based Implementation of Aperture Domain Model Image
REconstruction.” IEEE Trans. Ultrason., Ferroelectr., Freq. Control, vol.
68, no. 6, pp. 2101–2116, Feb. 2021.

[5] C. Khan and B. Byram, “GENRE (GPU Elastic-Net REgression): A
CUDA-accelerated package for massively parallel linear regression with
elastic-net regularization,” J. Open Source Softw., vol. 5, no. 54, p. 2664,
2020.

[6] K. Dei, S. Schlunk, and B. Byram, “Computationally efficient imple-
mentation of aperture domain model image reconstruction,” IEEE Trans.
Ultrason., Ferroelectr., Freq. Control, vol. 66, no. 10, pp. 1546–1559,
Oct. 2019.

[7] J. F. Cardoso, “Source separation using higher order moments,” in Proc.
Int. Conf. Acoust., Speech, Signal Process., 1989, pp. 2109–2112.

[8] J. Shlens, “A tutorial on independent component analysis,” 2014,
arXiv:1404.2986. [Online]. Available: http://arxiv.org/abs/1404.2986

[9] K. Gregor and Y. LeCun, “Learning fast approximations of sparse cod-
ing,” in Proceedings of the 27th international conference on international
conference on machine learning, 2010, pp. 399-406.

[10] C. Khan, R. J. G. van Sloun, and B. Byram, “Performing aperture
domain model image reconstruction (ADMIRE) using a deep neural net-
work sparse encoder,” 2021 IEEE International Ultrasonics Symposium
(IUS), 2021, pp. 1-4.

[11] C. Khan, R. J. G. van Sloun, and B. Byram, “Unfolding model-
based beamforming for high quality ultrasound imaging,” 2022 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2022, pp. 8682-8686.

[12] A. Molina, P. Schramowski, and K. Kersting, “Padé Activation Units:
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