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ABSTRACT

Aperture Domain Model Image REconstruction (ADMIRE)
is an advanced ultrasound beamforming method that uses a
model-based approach to suppress sources of acoustic clutter
and improve ultrasound image quality. However, it requires
solving an ill-posed inverse problem for which regularization
is utilized. As a result, the iterative nature of solving this
problem is computationally expensive, and the choice of regu-
larization bounds the fidelity of the obtained solution. There-
fore, in this work, we pose ADMIRE as a sparse coding prob-
lem and unfold the iterations of the iterative shrinkage and
thresholding algorithm (ISTA), training it end to end to yield
learned ISTA (LISTA). This enables effective tailoring of the
solver to the specific data distribution and task at hand, while
enjoying higher data efficiency and robustness than generic
deep learning methods. Evaluation of our proposed method
on both simulated cyst data and in vivo liver data demonstrates
its potential to outperform conventional ADMIRE.

Index Terms— ADMIRE, Beamforming, Deep Learn-
ing, Sparse Coding, ISTA

1. INTRODUCTION

Aperture Domain Model Image REconstruction (ADMIRE)
is a model-based ultrasound beamformer that suppresses
sources of acoustic clutter [1, 2, 3]. It involves computing the
short-time Fourier transform (STFT) of the received ultra-
sound data and then modeling the aperture domain data (i.e.,
the data across the transducer elements) for each frequency
in a given STFT window as a linear superposition of acous-
tic wavefronts returning from different scattering locations.
This is demonstrated in (1), where y is the aperture domain
data for a given frequency, X is a model matrix containing
predictors corresponding to the received aperture domain
data localized in time and frequency for different scattering
locations, and β contains the model coefficients.

y = Xβ (1)

To estimate β for this inverse problem, linear regression is
utilized. However, the inverse problem is ill-posed due to the

number of predictors being greater than the number of obser-
vations, meaning that regularization must be utilized to obtain
a solution. Due to this, an elastic-net penalty was used in pre-
vious works [1, 2, 3]. Once β̂ is obtained, only predictors
that are within a region of interest (ROI) are utilized to re-
construct the decluttered data as shown in (2), and the inverse
short-time Fourier transform is then computed.

yROI = XROIβROI (2)

Although ADMIRE is able to achieve significant im-
provements in ultrasound image quality and has been im-
plemented in real time [1, 2, 3, 4, 5, 6, 7, 8], it still suffers
from a high computational load and latency due to the iter-
ative nature of solving its inverse problem. Moreover, using
an elastic-net penalty provides just one solution of infinitely
many, meaning that there are potentially better strategies for
performing regularized model fits. Previous work by Gre-
gor and LeCun has shown that the iterative shrinkage and
thresholding algorithm (ISTA) for sparse coding (i.e., solv-
ing y = Xβ for sparse code β) can be learned in order
to perform fast approximations of sparse coding [9]. This
learned version of the algorithm (LISTA) was developed by
training a sparse encoder using information specific to the
target data-distribution. Therefore, in this work, we propose
adapting this framework and training a deep neural network
(DNN) sparse encoder for performing the model fits of AD-
MIRE. Deep learning has already been used for a variety
of ultrasound imaging applications [10, 11, 12, 13, 14], and
this data-driven approach provides the opportunity to both
improve the computational efficiency of ADMIRE and obtain
a more optimal solution in terms of ultrasound image quality.

2. METHODS

2.1. Deep Neural Network Sparse Encoder Architecture

Regarding the architecture of our deep neural network sparse
encoder, we unfold the iterations of the ISTA algorithm as a
feedforward neural network. To obtain the unfolding proce-
dure, we will first derive the model coefficient update corre-
sponding to one iteration of ISTA. Starting from the linear
model for ADMIRE shown in (3), we will assume that the
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residual errors of the model follow a Gaussian distribution
given by ϵi ∼ N (0, σ2), meaning that y also follows a Gaus-
sian distribution given by yi ∼ N (Xiβ, σ

2). This results in
the probability density function of yi given β being expressed
as (4). Moreover, for the model coefficients contained in β,
we will assume that the prior distribution follows a Laplacian
distribution with a mean of 0 and a scale parameter of 1

λ , giv-
ing the probability density function of βj as (5).

y = Xβ + ϵ (3)

p(yi | β) =
1√
2πσ

e
−(yi−Xiβ)2

2σ2 (4)

p(βj) =
λ

2
e−λ|βj | (5)

The maximum a posteriori (MAP) estimate of β is given by
(6), and using Bayes’ theorem along with the fact that p(y)
amounts to a scaling factor, it can be expressed as (7).

β̂ = argmax
β

p(β | y) (6)

β̂ = argmax
β

p(y | β)p(β) (7)

Using (4), (5), and (7), the MAP estimate can be written as
shown in (8).

β̂ = argmax
β

N∏
i=1

1√
2πσ

e
−(yi−Xiβ)2

2σ2

P∏
j=1

λ

2
e−λ|βj | (8)

Rather than maximize this formula, we can minimize the neg-
ative logarithm and simplify further to obtain (9).

β̂ = argmin
β

N∑
i=1

(yi −Xiβ)
2

2σ2
+ λ

P∑
j=1

|βj | (9)

Multiplying through by σ2 and setting λ = λσ2, (9) is re-
duced to (10), which is the objective function for least-squares
regression with L1-regularization.

β̂ = argmin
β

1

2
∥y −Xβ∥2 + λ ∥β∥1 (10)

To minimize this objective function, the proximal gradient de-
scent algorithm can be utilized. The least-squares portion of
(10) is convex and differentiable, so we can first obtain a gra-
dient descent update for β in the form of (11), where µ is the
step size.

z(k) = β(k) − µX⊤(Xβ(k) − y) (11)

To account for the L1-regularization term that is convex but
not smooth, we can apply a soft-thresholding proximal oper-
ator hλ(z) to the gradient descent update.

hλ(z) =


z − λ if z > 0 and λ < |z|
z + λ if z < 0 and λ < |z|
0 if λ ≥ |z|

Therefore, the update for a single iteration of the ISTA algo-
rithm [9] is given by (12), where S = I − µX⊤X .

β(k+1) = hλ(Sβ
(k) + µX⊤y) (12)

Using (12), we can represent our network architecture as
shown in Fig. 1, where the number of layers corresponds to
a fixed number of ISTA iterations. The input to this network
is X⊤y, and the output is β̂, which contains the predicted
model coefficients for a given model fit. Note that in this dia-
gram, S represents a fully connected linear layer with weights
that can be learned rather than representing I − µX⊤X , and
instead of using µX⊤y, we simply use X⊤y. Moreover, a
sigmoidal soft-thresholding function with a learnable thresh-
old is used as the nonlinear activation function. The equation
for this function is shown in (13), where z is the input to
the function and γ is the learnable threshold. We use this
function as a smooth approximation to the soft-thresholding
function hλ(z). By using this approximation, the function
can be differentiated at all points, which is important when
using gradient descent methods for training a neural network.

z

1 + e−(|z|−γ) (13)

Fig. 1: Diagram of the deep neural network sparse encoder
architecture for performing the model fits of ADMIRE.

2.2. Training Strategies

To train the network to learn the ISTA algorithm, one frame
of human in vivo liver data acquired using a Verasonics (Vera-
sonics, Kirkland, WA) Vantage 128 ultrasound research sys-
tem and a C5-2 curvilinear transducer array was used. This
data was processed with ADMIRE, and the model fits were
performed by using the ISTA algorithm. For a given model
fit, ISTA was performed until the maximum model coefficient
change across all of the model coefficients became less than
1 × 10−4. Several thousand model fits were performed, and
this data was used to create training and validation data sets.
In terms of the training scheme, a mean-squared error (MSE)
loss function between the predicted model coefficients of the
network for a given training iteration and those produced by
the ISTA algorithm was used.
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Training was performed using PyTorch [15], and the
Adam optimizer [16] was used with a learning rate of 0.001.
In addition, different training cases were performed in which
the network architecture was modified to change the number
of fixed DNN ISTA iterations, where one iteration involves
applying a fully connected linear layer S, adding X⊤y, and
applying (13). Once trained, the different cases were eval-
uated on five test frames of in vivo liver data to compare
them. Fourth-order blind identification independent compo-
nent analysis (FOBI-ICA) [7, 8] was applied to the ADMIRE
model matrices to reduce their sizes.

In addition, rather than learning to mimic ISTA, our
framework can be adapted to learn unique, data-driven model
fitting schemes. Specifically, we can train with targets that are
better tailored to achieving the end goal of ADMIRE, which
is suppressing acoustic clutter. To obtain these targets, we
used ultrasound data simulated using the Field II simulation
package [17, 18]. This data consisted of hypoechoic and ane-
choic cysts with added reverberation clutter (simulated using
a pseudo nonlinear approach [19]) and noise, and the benefit
of using simulated data is that the ground-truth clean and
clutter aperture domain STFT signals are known. Using this
data, we trained the network using the following schemes.
Scheme 1: The network was trained to best reconstruct the
clutter signal. This was done by taking the predicted model
coefficients of the network for a given training iteration, using
them along with the ADMIRE model matrix X to compute
the predicted clutter signal as ŷclutter = Xclutterβ̂clutter,
and then computing the MSE loss between the predicted clut-
ter signal and the ground-truth clutter signal. For the purposes
of training, the reverberation clutter and noise were consid-
ered to be the clutter signal.
Scheme 2: The network was trained to best reconstruct the
clean signal using steps similar to Scheme 1.
Scheme 3: The network was trained to best reconstruct both
the clutter and clean signals. This was done by computing
the predicted clutter and clean signals as well as computing
the predicted combined signal given by ŷ = Xβ̂ for a given
iteration and then using a joint loss function consisting of the
addition of the clutter signal MSE loss, the clean signal MSE
loss, and the combined signal MSE loss.

For each scheme, the DNN architecture was set to three
fixed DNN ISTA iterations as shown in Fig. 1. Once trained,
the networks were evaluated on five test cyst simulation data
sets with added reverberation clutter and noise as well as one
test frame of in vivo liver data. Other methods including
delay-and-sum (DAS) beamforming, ADMIRE using cyclic
coordinate descent to perform linear regression with elastic-
net regularization (α = 0.9), ADMIRE using ISTA to per-
form linear regression with L1-regularization, and a DNN that
was trained to mimic the ISTA algorithm were also evaluated.
FOBI-ICA was applied to the ADMIRE model matrices. As
an additional study, the different DNN methods were trained
again, but the number of fixed DNN ISTA iterations was var-

ied. Once trained, the normalized image envelope reconstruc-
tion error between each method and the ground-truth clean
signal for each test cyst data set was computed and averaged
as a function of the number of fixed DNN ISTA iterations.

3. RESULTS

3.1. Learning the ISTA Algorithm (LISTA)

Fig. 3 shows the MSE between the coefficients predicted by
the DNN and those produced by the ISTA algorithm for the
test in vivo liver data. It also shows the MSE between the re-
constructed sets of normalized envelope data for the DNN and
the ISTA algorithm. Based off this plot, it appears as though
the number of fixed DNN ISTA iterations does not make a
significant difference in terms of model coefficient predic-
tion accuracy. Moreover, it shows that producing the lowest
MSE for coefficient prediction does not necessarily result in
the lowest MSE for normalized envelope data reconstruction.
This is most likely because other operations for ADMIRE are
performed after model fitting, such as reconstructing the de-
cluttered aperture domain frequency data and computing the
inverse short-time Fourier transform. In terms of computa-
tional efficiency, performing the model fits using the ISTA
algorithm required an average of approximately 6,927 itera-
tions. As a result, using a DNN can dramatically reduce the
computational load of model fitting. Note that the step size
used for the ISTA algorithm for each fit was 1

L , where L was
set to be slightly larger than the largest eigenvalue of X⊤X .

3.2. Learning Custom, Data-Specific Model Fitting

Table I shows image metrics obtained with different methods
as well as the normalized image envelope reconstruction er-
ror between each method and the ground-truth clean signal
for the test cyst data sets. The results for the one frame of in
vivo liver data are shown in Fig. 2. For the DNN trained to
mimic ISTA, it was trained using only the simulated data, and
this was compared to the DNN with three fixed ISTA itera-
tions that was trained using one frame of in vivo liver data in
the previous section. The latter had better performance, so it
is the one that is shown in Table I and Fig. 2. For the cyst
results, using the DNN that was trained to best reconstruct
the clutter signal produced image metrics that had the over-
all greatest similarity to the ground-truth clean signal. It also
produced the highest contrast ratio value for the in vivo liver
data frame. For this method as well as the DNN with three
loss functions, the performance was better when reconstruct-
ing the clutter signal and then subtracting it from the aperture
domain frequency data to obtain the decluttered signal rather
than directly reconstructing it from the ROI predictors. This
is similar to iterative ADMIRE [20]. Moreover, Fig. 4 shows
the normalized image envelope reconstruction error between
each DNN method and the ground-truth clean signal for the
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TABLE I
TEST CYST SIMULATION RESULTS USING DIFFERENT METHODS (N = 5)

Method Contrast Ratio (dB) Contrast-to-Noise Ratio (dB) Generalized Contrast-to-Noise Ratio Mean-Squared Error

Ground-Truth Clean Signal 25.75 ± 0.92 4.73 ± 0.70 0.98 ± 0.01 —
Delay-and-Sum (DAS) 19.07 ± 1.02 4.16 ± 0.74 0.88 ± 0.04 0.001 ± 0.000
ADMIRE (Cyclic Coordinate Descent Algorithm) 23.53 ± 1.04 3.29 ± 0.91 0.92 ± 0.03 0.006 ± 0.002
ADMIRE (ISTA Algorithm) 23.03 ± 1.06 3.19 ± 0.89 0.92 ± 0.03 0.006 ± 0.002
ADMIRE (ISTA DNN) 24.06 ± 1.21 2.60 ± 0.82 0.92 ± 0.03 0.008 ± 0.002
ADMIRE (DNN Clutter Signal Loss Function) 25.63 ± 1.33 3.17 ± 0.75 0.94 ± 0.03 0.006 ± 0.002
ADMIRE (DNN Clean Signal Loss Function) 20.46 ± 1.26 3.72 ± 0.72 0.89 ± 0.03 0.005 ± 0.001
ADMIRE (DNN Three Loss Functions) 22.42 ± 0.94 3.16 ± 0.80 0.91 ± 0.03 0.006 ± 0.001

Fig. 2: In vivo liver data images produced using different methods. All images are displayed with a dynamic range of 60 dB.
The masks used for computing the contrast ratio values are displayed.

Fig. 3: Model coefficient prediction error and envelope recon-
struction error between the DNN and the ISTA algorithm as
a function of the number of fixed DNN ISTA iterations. For
each iteration case, the MSE values were calculated for five
test frames of in vivo liver data and then averaged.

five test cyst data sets as a function of the number of fixed
DNN ISTA iterations. This plot shows that increasing the
number of fixed DNN ISTA iterations does not necessarily
decrease the normalized image envelope reconstruction error.

4. DISCUSSION

The results show that using a DNN can produce computa-
tionally efficient approximations of coefficients for the model
fits of ADMIRE. Moreover, this approach can be tailored us-
ing data-specific information in order to learn custom model
fitting schemes that have the potential to outperform conven-
tional ADMIRE in terms of ultrasound image quality. In addi-
tion, compared to an end-to-end DNN approach, our approach
maintains the model-based intuition of ADMIRE because we
are only using a DNN to determine an optimal linear combi-
nation of features produced by our own physics-based model.

Fig. 4: Envelope reconstruction error between each DNN
method and the cyst ground-truth clean signal as a function
of the number of fixed DNN ISTA iterations. The MSE was
computed for each cyst data set and then averaged over the
five test cyst data sets. The ISTA algorithm result is also pro-
vided. For the ISTA DNN case, the results are for training
with simulated data only.

5. CONCLUSION

Using a deep neural network sparse encoder provides a com-
putationally efficient and data-driven approach to solving the
ADMIRE inverse problem, and it has the potential to out-
perform conventional ADMIRE in terms of ultrasound image
quality. Future work includes utilizing a larger and more vari-
able training data set and optimizing hyperparameters.
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