
Distributed Detection with Multiple Sensors in the Presence of
Sybil Attacks

Wael Hashlamoun
Department of ECE

Birzeit University, Palestine
Email: hwael@birzeit.edu

Swastik Brahma
Department of CS

University of Cincinnati, USA
Email: brahmask@ucmail.uc.edu

Pramod K. Varshney
Department of EECS

Syracuse University, USA
Email: varshney@syr.edu

Abstract—This paper considers the problem of distributed de-
tection in the presence of a Sybil attack where a malicious sensor
node can send multiple falsified decisions using multiple fake
identities to a Fusion Center (FC) to degrade its decision-making
performance. We study the problem under the Neyman–Pearson
(NP) setup. We find that, due to the Sybil attack, the decisions
received at the FC become correlated and that the degree of
correlation is dependent on the number of fake identities used.
The paper characterizes the optimal Sybil attack that blinds the
FC, i.e., makes the FC incapable of making an informed decision.
We find that if the sum of the local detection and false alarm
probabilities of the sensor nodes is 1, the FC can be made blind
when at least 50% of the decisions are sent using fake identities.
However, if this condition is not met, then all decisions would
have to be sent using fake identities in order to blind the FC. The
paper also investigates strategic interactions between the FC and
the Sybil attacker using Game Theory and proves the existence
of a Nash Equilibrium (NE). Numerical results are presented to
gain important insights.

Index Terms—Sensor Networks, Distributed Detection, Sybil
Attack, Data Falsification, Game Theory.

I. INTRODUCTION

The problem of performing distributed detection by fusing
data from multiple sensors has been a well-studied topic [1]–
[3]. In distributed detection systems, multiple sensor nodes
observe a signal from a phenomenon of interest, make local
decisions regarding the state of the phenomenon based on
their observations, and then send their local decisions to a
fusion center (FC) which fuses the received decisions to make
a global decision regarding the phenomenon’s state. Due to
resource constraints, the local decisions made by the nodes
are often 1-bit in nature. Distributed detection was originally
motivated by its applications in military surveillance [2],
but with the advent of the Internet-of-Things (IoT), is now
being employed in a wide variety of applications, such as for
inferring road and traffic conditions [4], societal-scale environ-
mental monitoring [5], [6], and inferring dietary patterns [7].
Further, [8], [9] view social networks as sensing systems where
humans act as sensors for enabling the detection of the state
of a phenomenon, such as that of a sound event. Distributed
spectrum sensing (DSS) in cognitive radio networks [10] is yet
another example application of a distributed detection system.

This work was supported in part by the U.S. NSF under Award Number
CCF-2047701 and in part by the Zamalah Program, Bank of Palestine.

The distributed nature of the sensor nodes in such systems
makes them vulnerable to different types of cyber attacks [11],
such as jamming attacks [12], Byzantine attacks [13]–[17], and
eavesdropping attacks [18]. In fact, the resource constrained
nature of the sensor nodes, such as their limited energy and
computational capabilities, inhibits the use of sophisticated
security solutions, like cryptographic techniques, which ex-
acerbates security concerns. In recent years, security issues of
such distributed networks are increasingly being studied within
the networking [19], signal processing [20] and information
theory communities [21].

The type of attack on distributed detection that we consider
in this paper is a Sybil attack, originally described by [22]
in the context of peer-to-peer networks. In a Sybil attack,
one physical entity can present itself using multiple identities,
thereby controlling a substantial fraction of system resources
and undermining its performance. While past work has identi-
fied the vulnerability of sensory systems to Sybil attacks [23],
[24], to the best of our knowledge, the problem of performing
distributed detection using such systems in the presence of
Sybil attacks remains unexplored with a lack of analytical
results on the topic. We aim to fill this void in this paper.

In our model, we consider that a Sybil sensor node can
launch an attack by simultaneously exploiting two degrees-of-
freedom. First, we consider that a Sybil node can assume fake
identities either by fabricating new identities or disabling legit-
imate nodes and stealing their identities [23], [24]. Second, we
consider that the Sybil node can falsify its own local decision
regarding the phenomenon’s state to send multiple falsified
decisions (using the fake identities) to the FC. We find that
a distinctive feature of the Sybil attack is that it introduces
correlations among elements of the decision vector received
at the FC, with the degree of correlation being dependent on
the number of fake identities used. While accounting for such
correlations, under the Neyman-Pearson (NP) framework, we
analytically characterize the optimal Sybil attack that makes
the FC incapable of making an informed decision, in which
case we say that the FC is blind, as well as analyze strategic
interactions between the FC and the Sybil attacker using game
theoretic tools. Our results indicate that Sybil attacks pose a
severe threat to distributed detection systems, since even a
single Sybil attacker can blind the FC. Following are the main
contributions of the paper:978-1-6654-3540-6/22 c© 2022 IEEE
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Fig. 1. Sybil attack on a distributed detection system.

• We study the problem of a Sybil attack on distributed
detection, where a malicious sensor can assume multiple
fake identities to transmit multiple potentially falsified
local decisions to the FC to degrade its performance.

• We present a correlation structure to model the depen-
dencies that the Sybil attack introduces into the decision
vector received at the FC and characterize the degree of
correlation that the attack introduces.

• We analytically characterize the optimal Sybil attack that
blinds the FC to prevent it from making an informed
decision.

• We perform game theoretic analysis of strategic attack-
defense between the Sybil attacker and the FC and
analytically prove the existence of an NE.

The rest of the paper is organized as follows. Section II
models Sybil attacks on distributed detection. Section III
presents a correlation structure for modeling the dependencies
introduced by the Sybil attack. The optimal Sybil attack
that blinds the FC is characterized in Section IV. Section V
analyzes strategic attack-defense between the Sybil attacker
and the FC using game theoretic tools. Finally, Section VI
concludes the paper.

II. SYSTEM MODEL

Consider a binary hypothesis testing problem with a phe-
nomenon which can be in either one of two states, viz. H0 or
H1. Consider also a sensor network, comprised of M sensors
(nodes) and an FC. First, the sensors observe the phenomenon,
carry out local computations to decide the phenomenon’s state,
and then send their local decisions to the FC. Finally, the
FC makes a global decision regarding the phenomenon’s state
after processing the local decisions received from the sensors.
Observations at the sensors are assumed to be conditionally
independent and identically distributed (i.i.d) given the phe-
nomenon’s state. Communication channels are considered to
be error-free.

A. Modus Operandi of the Nodes

Based on its observation yi, each sensor i ∈ {1, · · · ,M}
makes a 1-bit local decision vi ∈ {0, 1} regarding the
phenomenon’s state using the likelihood ratio test (LRT) [1]:

p
(1)
Yi

(yi)

p
(0)
Yi

(yi)

vi=1

≷
vi=0

λ, (1)

where p(k)Yi
(yi) is the conditional probability density function

(PDF) of observation yi under state Hk, k = 0, 1, and λ is
the identical threshold used at all the sensors for the LRT
(use of identical thresholds is asymptotically optimal [25]).
We denote the probabilities of detection and false alarm of
each sensor i in the network by Pd = P (vi = 1|H1) and
Pf = P (vi = 1|H0), respectively, which hold for every sensor
in the network, irrespective or whether it is malicious or not.

In such a system, we consider the presence of a malicious
Sybil sensor (denoted as sensor s) which assumes d fake iden-
tities as well as falsifies its local decision with a probability
p to send d replicas of its potentially falsified decision to
degrade the FC’s decision-making performance (see Fig. 1).
Thus, denoting the decision vector received at the FC as
u = [u1, u2, · · · , uN ], u contains N = M − 1 + d decisions,
out of which M−1 decisions are from non-malicious (honest)
sensors and d decisions (viz. [us1 , · · · , usd ]) are from the Sybil
sensor, with ui = vi if i is an honest node. We also consider
that the d decisions in u from the Sybil node are flipped with
a probability p, such that

p = Prob(us1 = · · · = usd = b|vs = a)

= 1− Prob(us1 = · · · = usd = a|vs = a) (2)

is the probability that the Sybil node s sends us1 = · · · =
usd = b to the FC when its actual decision was a (a, b = 0, 1).

B. The Fusion Center

Based on u, the FC makes a global decision regarding
the state of the phenomenon. From a practical viewpoint, we
consider that the FC does not know which decisions in u
belong to the Sybil node, but rather views every decision to
have come from the Sybil node with the probability α = d/N
(following the law of large numbers). Now, for an honest
sensor i, we have

P (ui = 1|H1) = Pd (3a)
P (ui = 1|H0) = Pf (3b)

Further, since the Sybil node s sends d replicas of its
potentially falsified decision to the FC, the joint probability
mass functions (PMFs) of any subset containing w of the d
decisions are

P (us1 = · · · = usw = 1|H1)=Pd(1− p) + p(1− Pd)=P
(s)
d

(4a)

P (us1 = · · · = usw = 1|H0)=Pf (1− p) + p(1− Pf )=P
(s)
f

(4b)

for 1 ≤ w ≤ d, where p is the flipping probability of the
Sybil node (2). To be able to make the decision optimally,
employing (3) and (4), the FC has to construct the conditional
PMFs of u under H0 and H1, respectively. This is, however,
challenging due to the fact that, although the sensors’ observa-
tions, viz. y1, y2, · · · , yM , are considered independent under
both hypotheses, the Sybil attack, as described above, renders
the elements of u dependent. We model the dependency among
the elements of u in the next section.
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III. THE CORRELATION MODEL FOR THE SYBIL ATTACK

The Sybil attack, as discussed above, introduces correlation
among the decisions in u. In this section, we investigate the
degree of correlation, its dependence on p and α, and its
effect on the detection capability of the system. In addition,
we introduce the Kullback-Leibler divergence, as a surrogate
for the probability of error, to evaluate system performance.

A. The Pairwise Correlation Coefficient at the FC

We start by characterizing the correlation among pairs of
decisions in u.

LEMMA 1: Let ui and uj be two decisions in u. Then, the
correlation coefficient, ρ(k)(ui, uj), between ui and uj under
the phenomenon’s state Hk, k = 0, 1, is given by

ρ(k) =
ε
(k)
2 − (ε

(k)
1 )2

ε
(k)
1 (1− ε(k)1 )

(5)

where, ε(k)q is the qth order joint moment over decisions in u
under Hk with

ε
(1)
2 = (1− α)2(Pd)

2 + 2α(1− α)PdP
(s)
d + α2P

(s)
d (6a)

ε
(1)
1 = (1− α)Pd + αP

(s)
d (6b)

ε
(0)
2 = (1− α)2(Pf )2 + 2α(1− α)PfP

(s)
f + α2P

(s)
f (6c)

ε
(0)
1 = (1− α)Pf + αP

(s)
f (6d)

Proof: The correlation coefficient between ui and uj in
u is defined by [26]

ρ(k) =
E(k)(uiuj)− E(k)(ui)E

(k)(uj)√
Var(k)(ui)

√
Var(k)(uj)

(7)

where E(k)(·) and Var(k)(·) denote expectation and variance,
respectively, under Hk, k = 0, 1. Let k = 1 in (7). Now,
using (3a) and (4a), we can express P (ui = 1|H1) as

P (ui = 1|H1) = (1− α)Pd + αP
(s)
d (8)

To find P (ui = 1, uj = 1|H1), denote by i = H and i = S the
state that decision ui came from an honest node and the state
that it came from the Sybil node, respectively. Now, using (3a)
and (4a), we have

P (ui = 1, uj = 1|H1) =
∑

X∈{H,S}

∑
Y ∈{H,S}

P (i = X, j = Y )P (ui = 1, uj = 1|i = X, j = Y )

=(1− α)2(Pd)
2 + 2α(1− α)PdP

(s)
d + α2P

(s)
d (9)

Next, we find the expectation terms, E(1)(·), that appear in (7).
First, using (8), we have

E(1)(ui) =
∑

ui∈{0,1}

uiP (ui) = ε
(1)
1 (10)

where ε(1)1 is the first order moment under H1. Further,

Var(1)(ui) =
∑

ui∈{0,1}

(ui)
2P (ui)− (ε

(1)
1 )2 = ε

(1)
1 (1− ε(1)1 ) (11)

Next, using (9), E(1)(uiuj) can be shown to be

E(1)(uiuj) =
∑

uj∈{0,1}

∑
ui∈{0,1}

uiujP (uiuj) = ε
(1)
2 (12)

where ε(1)2 is the second order joint moment under H1.
Substituting (10), (11), and (12) into (7), we get the result

stated in the lemma for k = 1. Similarly, the lemma can be
shown to hold true for k = 0.

Next, we prove some properties of the correlation coefficient
presented in Lemma 1.

LEMMA 2: For the correlation coefficient in (5), ρ(k) = 0
when α = 0; and ρ(k) = 1 when α = 1, k = 0, 1.

Proof: Let k = 1. First, considering α = 0, using (8),
(11), and (12), we get ε(1)1 = Pd, Var(1)(ui) = Pd(1 − Pd),
and ε(1)2 = (Pd)

2. Substituting these into (5), we get ρ(1) = 0.
Next, considering α = 1, using (8), (11), and (12), we get
ε
(1)
1 = P

(s)
d , Var(1)(ui) = P

(s)
d (1 − P (s)

d ), and ε
(1)
2 = P

(s)
d .

Substituting these into (5), we get ρ(1) = 1. Similarly, the
lemma can be shown to hold true for k = 0.

LEMMA 3: The degree of correlation between any pair of
decisions ui and uj in u increases monotonically as the
fraction of decisions from the Sybil node, α, increases.

Proof: For ρ(k) (5), we have ∂ρ(k)

∂α > 0, 0 ≤ α ≤ 1.

B. General Correlation Structure over the Decision Vector u

We now characterize the correlation structure among a set
of q decisions in u as a function of the pairwise correlation
coefficient in (5) and the first order moment over u. Note that,
for correlated binary decisions, the conditional PMFs of u,
when the local decision rules are given, and all local decisions
have the same characteristics, can be expressed in terms of the
joint moments of the elements of u as follows:

Pu0(m) =

(
N

m

) m∑
i=0

(−1)i
(
m

i

)
ε
(0)
N−m+1 (13a)

Pu1(m) =

(
N

m

) m∑
i=0

(−1)i
(
m

i

)
ε
(1)
N−m+1 (13b)

where, under Hk, k = 0, 1, Puk(m) is the PMF of u giving
the probability of having 0 ≤ m ≤ N decisions in favor of
H0, and ε(k)q is the qth order joint moment given by

ε(k)q = E(k)(ui1ui2 · · ·uiq ), q ∈ {1, 2, · · · , N} (14)

Characterization of the PMFs in (13a) and (13b) requires
the evaluation of the set of all N joint moments ε(k)q (14),
q ∈ {1, 2, · · · , N}, k = 0, 1. Specifically, the qth order joint
moment, under the Sybil attack, following a process similar
to the one used for the derivation of (12), can be found as

ε(1)q =(1− α)q(Pd)
q+

q∑
k=1

(
q

q − k

)
(1− α)q−k(Pd)

q−kαkP
(s)
d

(15a)

ε(0)q =(1− α)q(Pf )q+

q∑
k=1

(
q

q − k

)
(1− α)q−k(Pf )q−kαkP

(s)
f

(15b)
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Clearly, characterization of the joint PMFs in (13) using (15)
becomes intractable as N increases. Thus, for tractability, we
leverage a correlation structure presented in [27], which we
present in our context in the following remark.

REMARK 1: As proven in Lemma 2, the pairwise corre-
lation coefficient presented in (5), ρ(k) ∈ [0, 1], k = 0, 1,
with ρ(k) = 0 (which happens when α = 0) implying that
the received decisions are uncorrelated and ρ(k) = 1 (which
happens when α = 1) implying that the received decisions
are maximally correlated. In such a scenario, higher order
joint moments, ε(k)q for q ≥ 2, can be obtained recursively
using [27] as

ε(k)q = ε
(k)
1

q−2∏
l=0

ρ(k)(l + 1− ε(k)1 ) + ε
(k)
1

1 + lρ(k)
(16)

where ρ(k) is the correlation coefficient given in (5) and ε(k)1

is the first order moment under Hk given by (6b) and (6d).
In the rest of the paper, we employ the above correlation

structure in (16) to model dependencies and perform analysis.

C. The Kullback-Leibler Divergence
We characterize the performance of the FC in the NP frame-

work using the Kullback-Leibler Divergence (KLD) between
the PMFs of u under H0 (13a) and H1 (13b). In the NP
framework, the objective is to minimize the global missed
detection probability (PM ) while keeping the global false
alarm probability (PF ) below a threshold. According to Stein’s
lemma [28], KLD represents the best error exponent of the
missed detection error probability in the NP setup, implying
that the FC’s decision-making performance improves with
KLD. Specifically, KLD between the two conditional PMFs
of u, viz., Pu0(m) (13a) and Pu1(m) (13b), at the FC is:

D(α, p) =
N∑
m=0

Pu1(m) log
Pu1(m)

Pu0(m)
(17)

Next, using (17) as the FC’s performance metric, we study
the optimal Sybil attack against a distributed detection system.

IV. OPTIMAL SYBIL ATTACK THAT BLINDS THE FC
In this section, we characterize the optimal Sybil attack

that “blinds” the FC, i.e, makes it incapable of making an
informed decision. Specifically, we say that the FC is blind if
the Sybil node can manipulate the received decision vector at
the FC such that it does not convey any information regarding
the phenomenon’s state. Based on Stein’s lemma [28], since
lower KLD (D) is, worse will be the performance of the FC,
and since D is always non-negative, to maximally degrade
the FC’s decision-making performance, the Sybil node would
have to adopt strategies that make D = 0 (in which case no
information reaches the FC and we say that it is blind).

In general, to make D = 0 in (17), we must have
Pu0(m) = Pu1(m), 0 ≤ m ≤ N . Now, note that in (16), all
higher order joint moments over decisions in u are expressed
in terms of the first and second order moments. Thus, making
the first and second order moments under H0 to be equal to

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 2. Optimal flipping probability (p) that blinds the FC versus the fraction
of decisions from the Sybil node (α).

their corresponding moments under H1 will yield ε(1)q = ε
(0)
q ,

1 ≤ q ≤ N , which would make Pu0(m) = Pu1(m),
0 ≤ m ≤ N (as can be noted from (13a) and (13b)).
Leveraging this approach, we characterize the optimal Sybil
attack that blinds the FC in the next theorem.

THEOREM 1: The FC becomes blind under the Sybil attack
when either one of the following two conditions is satisfied:
• All decisions are sent by the same Sybil node, i.e., α = 1,

with the Sybil node using the flipping probability p = 1/2.
• The sum of the local detection and false alarm probabil-

ities of the nodes is 1, i.e., Pd +Pf = 1, with αp = 1/2.
Proof: Denote by ∆1 the difference between the first

order moments under H1 and H0 of a decision ui in u. Then,
using (4a), (4b), (6b), and (6d), and simplifying, we get

∆1 = ε
(1)
1 − ε

(0)
1 = (Pd − Pf )(1− 2αp) (18)

Denote by ∆2 the difference between the second order joint
moments under H1 and H0 of two decisions, ui and uj , in u.
Then, using (4a), (4b), (6a), and (6c) and simplifying, we get

∆2 = ε
(1)
2 − ε

(0)
2 = (Pd − Pf )[α2 + (1− α2)(Pd + Pf )]

− 2αp(Pd − Pf )[2(Pd + Pf )(1− α) + 2α− 1] (19)

As discussed earlier, to blind the FC, the Sybil attacker
would have to make ∆1 = 0 and ∆2 = 0. Now, since Pd > Pf
for each point on the receiver operating characteristic of an
optimum detector, to make ∆1 = 0 in (18), we must have

αp = 1/2 (20)
Substituting (20) into (19), we get

∆2 = (Pd − Pf )(1− α)2[1− (Pd + Pf )] (21)

Clearly, to have ∆2 = 0 in (21), we must have α = 1 or
Pd + Pf = 1. Thus, we conclude that ∆1 = ∆2 = 0 when
either one of the following is true: a) α = 1 and p = 1/2, or,
b) Pd + Pf = 1 and αp = 1/2. This completes the proof.

COROLLARY 1: The minimum fraction of decisions in u
that must come from the Sybil node to blind the FC is α = 1/2.

Proof: From the second condition in Theorem 1, it can
be noted that the minimum value of α needed to blind the FC
is 1/2, with α = 1/2 when p = 1.

In Fig. 2, considering Pd = 0.9 in (3a) and Pf = 0.1
in (3b), i.e., Pd + Pf = 1, we numerically found the flipping
probability (p) that makes D = 0 in (17) and plotted them
with varying fraction of decisions from the Sybil node (α). As
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can be noted from the figure, the condition for blinding the
FC follows αp = 1/2, which corroborates the blinding criteria
presented in Theorem 1 for Pd+Pf = 1. It can also be shown
that, for Pd+Pf 6= 1, numerically solving D = 0 yields α = 1
and p = 1/2. These results corroborate Theorem 1.

Next, we use game theory to investigate strategic attack-
defense techniques for the regime where the attacker does not
have sufficient resources to blind the FC.

V. GAME THEORETIC ATTACK-DEFENSE

In this section, we use game theory [29] to investigate
strategic interactions between the Sybil node and the FC,
with the Sybil node aiming to minimize, and the FC aiming
to maximize, the FC’s decision-making performance. Use
of KLD (17) as the FC’s performance metric in such a
scenario, however, becomes mathematically intractable for
analysis without relying on numerical techniques. Therefore,
we adopt a surrogate function, which is the sum of the squares
of ∆1(p, λ) (18) and ∆2(p, λ) (19), as the performance metric.
Note, it can be shown that D given in (17) increases with
∆1(p, λ) (18) as well as with ∆2(p, λ) (19). However, since
∆1(p, λ) and ∆2(p, λ) can be negative or positive, taking the
squares of the two quantities in the surrogate function becomes
necessary. Specifically, the surrogate function is defined as

∆(p, λ) = (∆1(p, λ))2 + (∆2(p, λ))2 (22)

where

∆1(p, λ)= [Pd(λ)− Pf (λ)][1− 2αp] (23a)
∆2(p, λ)=[Pd(λ)− Pf (λ)][α2 + (1− α2){Pd(λ) + Pf (λ)

}
]

−2αp{Pd(λ)− Pf (λ)}[2{Pd(λ) + Pf (λ)}(1− α) + 2α− 1]

(23b)

In the game, we consider that the FC chooses the threshold
λ of the LRT (1) conducted at the sensors, and that the Sybil
node chooses the flipping probability p (for a given α), with
the FC aiming to maximize (22), and the Sybil node aiming
to minimize (22). The game is clearly a zero-sum game.
Therefore, the Nash Equilibrium (NE) of the game (which
would coincide with its saddle point) corresponds to choosing
p∗ (for the Sybil) and λ∗ (for the FC) that solve the following
optimization problem:

max
λ

min
p

∆(p, λ) = min
p

max
λ

∆(p, λ) (24)

for a given α. Next, we investigate the NE of the game and
show that a pure strategy NE exists.

LEMMA 4: For a fixed λ, ∆ (22) is a convex function of p.
Proof: The second partial derivative of ∆ (22) w.r.t p

can be shown to be ∂2∆/∂p2 = 8α2(a2 + b2) ≥ 0, where
a = (Pd−Pf ) and b = (Pd−Pf )[2(Pd+Pf )(1−α)+2α−1],
implying that ∆ is a convex function of p.

LEMMA 5: For a fixed p, ∆ (22) is a quasi-concave func-
tion of λ attaining its maximum value at the critical point

λ∗ =
a1∆1 + b1∆2 + 2c1∆2Pf
a1∆1 + b1∆2 + 2c1∆2Pd

(25)

where

0

2
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Fig. 3. Utility function (∆(p, λ)) versus flipping probability (p) and local
sensor threshold (τ ), where τ = log λ+ 1/2, for α = 0.2.

a1(α, p) = 1− 2αp (26a)
b1(α, p) = α2 − 2αp(2α− 1) (26b)
c1(α, p) = 1− α2 − 4αp(1− α) (26c)

Proof: Let us rewrite ∆1 (23a) and ∆2 (23b) as

∆1 = a1(Pd − Pf ) (27a)
∆2 = b1(Pd − Pf ) + c1(P 2

d − P 2
f ) (27b)

where a1 (26a), b1 (26b), and c1 (26c) are constants that do
not involve λ. The partial derivative of ∆ (22) w.r.t λ is

∂∆

∂λ
= 2∆1

∂Pf
∂λ

[
a1

(
∂Pd
∂Pf

− 1

)]
+ 2∆2

∂Pf
∂λ

[
b1

(
∂Pd
∂Pf

− 1

)
+ 2c1

(
Pd
∂Pd
∂Pf

− Pf
)]

(28)

Recognizing that ∂Pd/∂Pf = λ, we can simplify (28) as

∂∆

∂λ
= 2

∂Pf
∂λ

[λ(a1∆1 + b1∆2 + 2c1∆2Pd)

− (a1∆1 + b1∆2 + 2c1∆2Pf )] (29)

Setting ∂∆/∂λ = 0 in (29), we get λ∗ as given in (25).
Next, we investigate the sign of ∂∆/∂λ when λ < λ∗ and

when λ > λ∗. Dividing both sides of (29) by (a1∆1 +b1∆2 +
2c1∆2Pf ), and using (25), we get

∂∆/∂λ

a1∆1 + b1∆2 + 2c1∆2Pf
= 2

∂Pf
∂λ

(
λ− λ∗

λ∗

)
(30)

Using (26a), (26b), and (26c), it can be shown that a1∆1 +
b1∆2 + 2c1∆2Pf > 0 when Pf < 0.5 (which is the
case in practice). Also, we note from the properties of the
receiver operating characteristic of an optimum detector that
∂Pf/∂λ < 0. Thus, when λ < λ∗, ∂∆/∂λ > 0, and when
λ > λ∗, ∂∆/∂λ < 0. Hence, ∆ is a quasi-concave function
of λ attaining its maximum value at λ = λ∗.

THEOREM 2: A pure strategy NE which solves (24) exists.
Proof: Since we have proven that, given λ, ∆ is a convex

function of p (Lemma 4), and given p, ∆ is a quasi-concave
function of λ (Lemma 5), we conclude using the Debreu-
Fan-Glicksberg theorem [29] that a pure strategy NE which
solves (24) exists.
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Next, we provide numerical results to corroborate our game
theoretic results. Consider a phenomenon which can be in
state H0 or H1, with the sensors’ observations under each
state following a Gaussian distribution, viz. H0 ∼ N (0, 1)
and H1 ∼ N (1, 1). Consider α = 0.2. In Fig. 3, we plot
∆(p, λ) (22) versus both p and τ , where τ = log λ + 1/2
for λ defined in (1). From the figure, we can observe the
convexity of ∆(p, λ) w.r.t p for a fixed τ (which corroborates
Lemma 4) as well as the quasi-concavity of ∆(p, λ) w.r.t τ
for a fixed p (which corroborates Lemma 5). Such a nature of
∆(p, λ) indicates the existence of a saddle-point as mentioned
in Theorem 2, which occurs at (p∗, τ∗) = (1, 0.3) as marked
in the figure.

VI. CONCLUSION

The problem of distributed detection pertains to the employ-
ment of data from multiple distributed sensors for inferring the
state of a phenomenon of interest. Such systems have histori-
cally found applications in diverse areas with the importance
of such system having become further bolstered by the advent
of IoT. This paper investigated the problem of a Sybil attack on
a distributed detection system where a malicious Sybil sensor
can send falsified decisions using multiple fake identities to
degrade an FC’s decision-making performance. The paper
studied the problem in the Neyman-Pearson setup. The paper
showed that such an attack introduces correlations among
the elements of the received decision vector at the FC and
presented a correlation structure to model such dependencies.
Accounting for the correlations introduced, the paper charac-
terized the optimal Sybil attack that would blind the FC, i.e.,
would prevent the FC from receiving any information, under
different scenarios. Further, using game theory, the paper also
analyzed strategic attack-defense between the Sybil attacker
and the FC and proved the existence of an NE. Numerical
results were presented to provide important insights.
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