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INTRODUCTION

olution in the collection and use of data. Over roughly

the same period, the chemical process industry (CPI) has
gone through a manufacturing renaissance in the US, with
hundreds of billion dollars of construction on the Gulf Coast
alone. The CPI employs more than 800,000 people in the US
and has created products worth more than $700 billion in
2017 Despite the vast scale of the CPI, which encompass-
es oil and gas, chemicals, consumer products, and pharma-
ceuticals, this sector lags behind other areas in taking advan-
tage of data science.” The CPI is an interdisciplinary field
that employs chemical engineers, chemists, material science
engineers and bioengineers, all of whom need to design, op-
erate and optimize materials, formulations, processes, and
products. A 2018 McKinsey study estimated that incorpo-
rating artificial intelligence in operations within the global
CPI would realize $800 billion in annual value.””’ However,
according to industry feedback, simply embedding data
scientists without CPI training in risky chemical manufac-
turing environments does not lead to meaningful change in
operations, and oftentimes leads to distrust of data-science
from domain experts.’! At the same time, the CPI’s current
employees have domain expertise and first-hand experience
of the effects of digitalization, but often lack the necessary
programming and data science background. A key need in
the US CPI is development of a highly skilled workforce that
combines domain expertise in industrial-scale chemicals
processing with robust and adaptable data science skills.>*#!

In the past decade, society has been transformed by a rev-

In response to this need, a new program was created at
the Georgia Institute of Technology (GT), in the form of an
online graduate certificate. The central aim of the “Online
Graduate Certificate in Data Science for the Chemical Indus-
try” (DSCI) program is to create the opportunity for current
undergraduates, graduate students, and CPI professionals
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to be trained together, to become part of the next genera-
tion of citizen data scientists that the CPI needs.”" Industrial
practitioners who complete this training are equipped to lead
data-driven transformations in their companies and aim to
see their own personal career prospects grow. Current Geor-
gia Tech students who complete the program interact with
CPI professionals with practical and business experience in
the context of using real industrial data.

Graduate Certificates or “mini-Masters” degrees at Geor-
gia Tech are a unique model for graduate education that is
available to both degree and non-degree students and require
12 credit hours for completion. We have developed a fully
online graduate certificate that involves two core courses de-
signed and offered by chemical engineering faculty focused
on foundations of data science in an application-rich con-
text. These are followed by two courses chosen from a range
of electives already offered online across campus on topics
of data analytics (or, equivalently, data science) and machine
learning (ML). Motivated by similar goals, other programs
have been created in recent years. The MS Degree offered in
the University of Washington was one of the first to offer a
data-analytics degree specific to the chemical sciences, with
a comprehensive program of 39 credits.!"” Other full MS de-
grees offered by chemical engineering departments include
the MS in Chemical Engineering with a Concentration in
Data and Computational Science at Columbia University,
Purdue University’s Data-Science in Chemical Engineer-
ing MS, and Cornell University’s Computational Informat-
ics MS.["-13 Finally, the “Graduate Data Science Certificate
Program” offered at the University of Michigan is the anoth-
er offering with a similar number of credits as our program,
although it is not specific to chemical engineering.!"¥ The
program offered at Georgia Tech is different than the above
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initiatives because it is designed to be a short program (mini-
MS with the possibility of extending to a full MS degree),
and it is offered in an asynchronous online format designed
for professionals.

Extensive discussions with industry colleagues indicated
that our proposed program fills a critical gap in workforce
development for the CPI. Although generic data science
“boot camps” and MS degrees in data analytics exist, these
resources do not provide sufficient depth on the challenges
that are relevant to the data-driven applications emerging in
the CPI. Specifically, they do not put enough focus on the
objectives and constraints that are critical to the CPI, such
as first-principles (i.e., mass and energy balances, thermody-
namics, kinetics, etc.), safety and engineering ethics, impact
on energy efficiency and human health. The lack of domain
specific focus and applications in these “generic” data sci-
ence settings might limit the ability of individuals trained by
them to readily translate these skills into the specific needs
of the CPI. Further, many existing programs specific to the
chemical industry take too long for many people already in
the workforce who want to broaden their skillset. Finally,
existing graduate programs taught by computer scientists
typically assume a prior expertise in programming that may
not be consistent with some CPI professionals interested on
this topic.

In this paper we describe the content and teaching innova-
tions we have incorporated in the two core courses, which
aim to introduce chemical engineers to Python® program-
ming, data processing, ML, and optimization, using specific
examples relevant to the CPI. The unique elements of the
content of the courses that we have designed include:

* introduction to Python programming assuming prior
MATLAB®-based training

* introduction to basic statistics and ML using chemical
engineering data sets (including benchmark data sets
obtained by industry)

¢ embedding of ML models within chemical process op-
timization formulations

e integration of data-driven models with chemical en-
gineering principles (physics-informed ML or hybrid
modeling)

Teaching techniques that we have employed for effective
online training include:

¢ collaboration with Instructional Designers at Georgia
Tech Professional Education (GTPE) for generation of
carefully curated module-based video lectures

¢ design of frequent online coding-based skill-check as-
signments using Jupyter Notebooks®, Vocareum®, and
both auto-grading and peer-grading techniques
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e generation of vertically integrated groups that work
together throughout the semester on a project for data-
driven decision making

As the first cohort of our students has graduated and the
second one is underway, we will describe lessons learned
and provide testimonials from students so far.

PROGRAM STRUCTURE

The DSCI program requires students to take the first
core course on ‘“Data Analytics for Chemical Engineers”
(DACE) and subsequently the second core course on “Da-
ta-Driven Process Systems Engineering” (DDPSE). These
two core courses have been designed and taught by chemi-
cal engineering faculty. Upon completion of these first two
courses, students select two additional courses on more ad-
vanced data analytics, ML, or cybersecurity topics offered
by the Computer Science and Industrial & Systems Engi-
neering Schools at Georgia Tech. A list of potential electives
includes Computing for Data Analysis, Big-Data Systems &
Analytics, Database Systems Concepts & Design, Temporal,
Spatial & Adaptive Databases, Data & Visual Analytics, De-
sign & Analysis of Experiments, Stochastic Optimization,
Data Mining & Statistical Learning, Information Security
Policies & Strategies, and many more, for a total of 28 po-
tential courses. In this paper we will not describe the elec-
tives in detail but will focus on the introductory core DACE
and DDPSE courses. We note that all lecture materials,
along with a publicly sharable dataset generously provided
by Dow Chemical, are freely available via the following two

GitHub® repositories: https://github.com/medford-group/
data_analytics ChE, and https://github.com/DDPSE/GT
DataDrivenPSE Course.

Our first DSCI course offers a brief introduction to Py-
thon, but we emphasize to prospective students that to be
successful in the program, they need to have prior program-
ming experience in any language, and preferably experience
with Python. If they do not have prior Python experience, the
syllabus states that extra effort will be required to increase
their level of expertise in Python throughout the semester.
This has been a successful model that aims to bring students
of different programming skills into common ground and
avoids spending significant course time on basic program-
ming concepts that can be learned through other resourc-
es. Throughout the duration of the first two core courses,
students are taught (through lectures, coding-based skill-
checks, and homework) advanced topics in Python-based
ML and integration of ML and optimization, which ensures
that the material is still challenging even for students who
come in with a Python background. Moreover, the semes-
ter-long projects in each course provide an opportunity for
students to define a problem that is interesting and engag-
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ing at their current skill level. Looking into the future, we
hypothesize that students will enter the program with more
Python programming expertise. However, we expect that
the omission of basic Python programming from the course,
along with its “project centric” focus, will keep the material
relevant and challenging into the future.

The DSCI certificate was originally designed for students
external to GT, mainly industrial professionals interested in
learning data analytics. However, a survey within our PhD
program indicated that 75% of our graduate students were
interested in completing the certificate and obtaining the de-
gree as well as satisfying their minor requirement. Moreover,
modified versions of the two core courses have been offered
as electives to our undergraduate students, with increasing
popularity. As a result, we embraced this unique opportunity
to bring together these three populations of students and de-
signed our core courses and assignments to take advantage
of this diversity to enhance learning. The enrollment of un-
dergraduate, graduate, and professional students in the two
core courses for the first two years of course offerings is
shown in Figure 1. Below, we will describe the content and
learning outcomes of the DACE and DDPSE courses, fol-
lowed by a description of innovations on the teaching tech-
niques and tools used in those.

Data Analytics for Chemical Engineers Course

Chemical engineers typically receive some basic training
in numerical methods and programming, but these skills are
not always reinforced throughout the curriculum, and in-
dustry professionals may have not practiced programming
or linear algebra in many years. In addition, related disci-
plines such as chemistry and materials science often have
even less mathematical training in their curricula. More-
over, the recent advances in data analytics and machine

learning have resulted in new techniques and new jargon
that are unfamiliar to industry professionals and even cur-
rent students in chemistry and chemical engineering. Al-
though there are a plethora of introductory courses on data
analytics and machine learning available, they are typically
not tailored to be accessible to students with a background in
chemistry and chemical engineering, and they often rely on
examples that are disconnected from the chemical industry.

The DACE course seeks to fill this training gap by provid-
ing assignments and examples designed to orient students
from chemical engineering and related disciplines with the
fields of data analytics and machine learning. At the end of
the course, students should be able to (a) apply Python li-
braries to analyze, visualize, and organize data, (b) select
appropriate analytics models and evaluate them using quan-
titative metrics, (c) optimize hyperparameters and features
of analytics models to improve performance. The course is
organized into six key topics:

1. Numerical Methods (programming and linear algebra
review)

2. Machine Learning for Regression (kernel ridgeregres-
sion, hyperparameter optimization, regression for
high-dimensional data)

3. Machine Learning for Classification (generalized lin-
ear models, k-nearest neighbors, decision trees)

4. Data Management (basic data structuring, data access
via API’s)

5. Exploratory Data Analysis (dimensional reduction,
clustering, and generative models)

6. Feature Engineering (supervised dimensional reduc-
tion, symbolic regression, time series analysis)
(Figure 2)
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Figure 1. Enrollment of undergraduate, graduate, and professional students in the DSCI core courses with
(a) total enrollment in each course per semester and (b) overall composition averaged across all courses.
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The course starts with a quick Python primer for students
familiar with MATLAB or other languages and utilizes ba-
sic exercises in numerical methods, such as orthogonalizing
matrices and solving multi-dimensional non-linear optimi-
zation problems to simultaneously build competency in Py-
thon and review the basic mathematical foundations needed
for data analytics and machine learning. This module is of-
ten the most difficult for students who are unfamiliar with
Python or have not practiced programming in a long time,
so additional office hours and review sessions are provided
in the first few weeks. The subsequent modules focus on su-
pervised models (classification and regression), with an em-
phasis on cross validation and hyperparameter optimization.
After a midterm exam based on hands-on coding, the data
management module “zooms out” and discusses common
tools and best practices for how to prepare and organize data
for analysis with Python or other programmatic approaches.
The subsequent modules introduce unsupervised methods
and feature engineering, and a coding-based comprehensive
final exam assesses mastery of all topics.

Datasets in the course are chosen to be familiar to chemi-
cal engineers and include fitting peaks of spectra, predicting
the synthesizability of materials, and correlating process in-
puts and outputs from a real chemical process dataset pro-
vided by Dow Chemical. Throughout the course students
also work on a semester-long project for application of data
science techniques to real datasets. These student-defined
projects allow industry professionals to bring in problems
from their work, or graduate students to bring in problems
from their research. Students work with “vertically inte-
grated” groups of industry professionals, graduate, and un-
dergraduate students and work directly with instructors to
define goals and build and optimize models throughout the
semester. The projects are often continued in subsequent se-
mesters in the DDPSE course.

Data-Driven Process Systems Engineering Course

Optimization problems can be found everywhere in en-
gineering, in both industry and academia. However, most
chemical engineering departments do not offer a course that
discusses optimization specifically in the context of chemi-
cal engineering. At the same time, computational optimiza-
tion is very tightly linked to programming, data analytics,
and machine learning. In academia, data analytics coupled
with optimization is being used to enable or expedite scien-
tific discovery in materials science, pharmaceuticals, process
systems engineering, and more.?8 1520 Similarly, industry is
entering an era of digitalization that has led to an explosion
of chemical, process, manufacturing, and operations data.
5.6.8.211 Undoubtedly a large fraction of chemical engineering
graduates will face design, control, or operations optimiza-
tion problems that will also involve handling of data sets.
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As data analytics becomes an influential tool for decision
making in industry and academia, incorporation of such
concepts in our curriculum will make our graduates com-
petitive in today’s market. The learning objectives for the
DDPSE course are for students to be able to:

* explain the basic theory of linear, nonlinear and mixed-
integer optimization

e apply sampling, regression, validation and data-reduc-
tion techniques

* use data-driven techniques for optimization

* assess the dangers and ethics of the use of data for de-
cision making

The course material was divided into five parts:

1. Basics of Optimization Theory (formulations, linear
programming, nonlinear programming, mixed-integer
programming)

2. Building Data-Driven Models To Represent Con-
straints and Objective Functions in Optimization (data
pre-processing, regression, dimensionality-reduction)

3. Data-Driven Optimization (sample-based optimiza-
tion, using regression for optimization, evolutionary
optimization methods)

4. Inference of Results (assessing optimality, model vali-
dation, adaptive sampling)

5. Advanced Topics (integration of first principles with
data-driven regression and handling uncertainty in op-
timization)

Several topics introduced in the DACE course (assesement
and validation, modeling, programming, and data anaylsis),
are discussed again in the DDPSE course; however, the
overlap is not significant because they are discussed with
a different lens, specifically in the context of optimization.
The interaction and overlap between the DACE and DDPSE
courses are shown schematically in Figure 2. Student evalu-
ations have indicated that the level of overlap and the re-
introduction of similar topics from a different perspective
are welcome.

The DDPSC course first introduces students to the basics
of optimization, such as how to formulate an optimization
problem by introducing the correct variables, forming the
appropriate objective function and constraints, and finally,
identifying the characteristics of the optimization problem
(i.e., linear, nonlinear, nonconvex, mixed integer). An over-
view of basic optimization theory for linear, nonlinear and
mixed integer optimization is also covered, along with an
overview of available state-of-the-art solvers and their capa-
bilities and limitations. Subsequently, the course discusses
the challenges of dealing with data when it is not easy or
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Figure 2. Overview of the Data Analytics for Chemical Engineers (red text) and Data-Driven Process Systems

Engineering courses (blue text). Assessment and validation, modeling, programming, and data analysis are first

introduced in Data Analytics for Chemical Engineers, but are reviewed and placed into the broader context of
optimization and problem solving in Data-Driven Process Systems Engineering.

possible to derive the equations of the optimization formu-
lation. In this second part of the course, we discuss how to
collect data, assess the quality of a data set, and use this data
for regression. Building on the DACE course, various re-
gression, data-preprocessing, and dimensionality reduction
techniques are discussed (e.g., linear and quadratic regres-
sion, generalized linear regression, neural networks, support
vector regression, Gaussian processes and principal compo-
nent analysis). The importance of validation, regularization,
and constraining of ML models using first-principles infor-
mation, as well as the danger of overfitting, are stressed, al-
ways in the context of how these affect optimization solu-
tions. Finally, the course discusses data-driven optimization
techniques. First, direct-search and trust-region algorithms
are discussed. Next, the course focuses on how to embed
fitted regression models within optimization formulations
to locate optimal solutions. Here, the importance of model
mismatch and its effects on optimality, validation of the ob-
tained solutions, adaptive sampling, and optimal design of
experiments are discussed. The course concludes with a final
advanced topics module discussing uncertainty caused by
data and how this can be handled in optimization using sto-
chastic programming or robust optimization.

The course introduces students to Python and Pyomo®,*?
while the majority of the lectures are in the form of Jupy-
ter Notebooks.”! This platform enables interactive problem
solving and data visualization. The largest component of
the course grade is based on a semester-long group project.
Students identify, formulate and solve their own data-driven
optimization problem, either by using their research data or
by using publicly available databases.
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Teaching Innovations

Module-Based Lecture Videos. In both courses, the in-
structors worked with GTPE to record curated, high-qual-
ity short videos that were released in a sequence of topics,
via the feature of Modules on Canvas®. Every week a new
module was released that included a sequence of 6-8 short
videos. This structure was central to the asynchronous on-
line format of the course. Despite the asynchronous online
format of the courses, assessment results indicated that stu-
dents found the collection of short theme-based recordings,
coupled with weekly knowledge checks and all other assess-
ments, engaging and efficient.

Coding Assignments Using Jupyter Notebooks and Vo-
careum. In addition to the recorded lectures, the course
material in both courses is heavily based on Python pro-
gramming, and Jupyter Notebooks are used in the course to
present students with an integrated document that contains
explanations of concepts along with functioning code. Most
lecture notes are provided in a set of Jupyter Notebooks that
students can access via GitHub and are made permanently
and publicly available so that students can access them even
after the course is over.

In addition, both courses use the Vocareum platform
for hosting assignments and exams in Jupyter Notebooks.
Weekly homework assignments include an auto-graded
“skill check” where students complete coding exercises that
can be submitted repeatedly for instant feedback, allowing
them to keep attempting tasks until they master the skills
needed to successfully write and utilize coding tools. There
are also homework assignments that include more open-end-
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ed questions where students apply their skills to problems
similar to what they might encounter in their projects. These
homework sets are peer graded, allowing students to see
how others solve the problem and get multiple perspectives
on how to think about a dataset and optimization formula-
tion, or how to apply different tools. Exams are also based
on Jupyter Notebooks hosted on Vocareum and utilize a
combination of auto-graded questions and instructor-graded
open-ended questions, ensuring that students find the exams
consistent in style and content with their prior assignments.

Vertically Integrated Team-Building. The unique envi-
ronment of classes with mixed internal and external stu-
dents provides many advantages for students. For example,
Georgia Tech students may have broader digital and cod-
ing skills, but external students may bring a clearer view
of the application opportunities and industrial challenges. A
program that allows these groups to interact and learn from
each other can synergize their different perspectives and
lead to more effective training for all. This environment has
allowed us to test the effectiveness of project-based learn-
ing in vertically integrated project groups.?* ! The groups
consist of undergraduate, graduate, and industry students.
This structure provides undergraduate students a chance to
gain first-hand insight into graduate school and industry ca-
reers, and provides industry students with the opportunity
to mentor undergraduates and learn from graduate students.
The graduate and industry students are responsible for work-
ing together to provide the dataset and define the goals for
the course project, and all group members are expected to
delegate tasks and work together on completing the goals.
Importantly, teams are required to meet for at least one hour
every week and are encouraged to work together on home-
work and other assignments, and to complete a bi-weekly
group evaluation to ensure that all members are participating
and behaving professionally. These requirements help drive
engagement by requiring regular, synchronous interactions
between students and helps create a cohesive and supportive
team where group members can learn from each other.

Project-Based Learning. A key feature of our program is
the use of capstone projects in which external students are
encouraged to bring real-world data to define group projects.
Georgia Tech’s experience with industrial collaborations
and already in-place master agreements have been leveraged
to address potential intellectual property concerns. The out-
come is a unique training experience for a new generation of
students using real data. The project is completed by “verti-
cally integrated” groups of four or five students (typically
one student from industry, two graduate students, and two
undergraduate students). The project starts early in the se-
mester when the industry and graduate students are required
to provide the dataset for the project and define the goals.
Teams are encouraged to work on real datasets and prob-
lems from industry or graduate research. (Some examples
and outcomes of this approach are provided in the Results
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and Assessment section of this paper.) This project-driven
course design and its focus on real problems help motivate
students and provide concrete examples of how the tech-
niques they learn can be applied to real problems. In DACE
the project is broken into multiple phases (data preparation,
baseline model development, model improvement, and fi-
nal report/presentation). Similarly, in DDPSE the phases
include data preparation or collection, optimization formu-
lation, development of optimization method(s)/algorithm(s),
and final report/presentation. In both courses, teams receive
feedback from instructors at regular checkpoints. Students
can retroactively revise any portion of the project to yield
the highest quality results by the end of the semester.

RESULTS AND ASSESSMENT

Example of Project Outcomes When Using
Industrial Data Within Vertically Integrated Groups

Project topics range widely but must be related to chemical
engineering or chemistry, and often come from real indus-
try or research projects. In DACE some examples include
the prediction of polymer solubility, prediction of battery
lifetime from early cycle data, analysis of mass spectros-
copy data for nanoparticle size detection, prediction of the
outputs of unit operations in a cumene production process,
and prediction of power generation by a turbine generator.
In DDPSE some of the topics studied include optimization
of organic electronics, the development of an optimal “Iso-
therm Modeler” tool, calibration of plasma mass spectrome-
try data, optimization of hippocampal neurons, optimization
of vanadium flow battery design, optimization of phosphor-
ic acid production, design of a biopharmaceutical reactor,
building design for minimization of energy consumption,
and optimization of air quality in the classroom by schedul-
ing the operation of air purifiers based on real online mea-
surements of air quality.

Ideally, projects provide an opportunity for industry stu-
dents to bring in a real problem and gain tangible value from
the project. A specific example is the prediction of turbine
power generation project from Fall 2020, led by partici-
pants from The Mosaic Company, which produces phos-
phate fertilizers. In this project students utilized a variety of
regression models to predict the power output of a turbine
generator as a function of operating parameters. Industrial
students were able to provide real process data, allowing
other students in the group to gain experience working with
a “data historian” and overcoming challenges associated
with cleaning and processing real industry data. The results,
shown in Figure 3, showed strong predictive capability and
motivated the students to continue working on this project
in DDPSE, using the results as the foundation of an internal
project at Mosaic that has an estimated gross return of $8
million. In DDPSE, the same students worked on the opti-
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Figure 3. Example of original data from a turbine power generator at The Mosaic Company (blue), along with
the predictions from a data-driven model (red).

mization of supply chain of phosphate production. In their
model they considered costs associated with processing and
transportation and used real data to develop correlations that
were embedded within the optimization model. In the con-
clusions of the group’s project report assignment they state
“...this study has yielded valuable business insights and a
flexible optimization model that can be utilized in the future
for deeper investigations into the supply chain of phosphate
production...These results can be fed into the larger discus-
sion and investigation of Mosaic’s cost model and provide
the ability for the mine planning department to make data
driven decisions.”

This project highlights how the project-driven curricu-
lum connects the two core courses of the data science cer-
tificate program and drives engagement with students and
industry. The highlighted example project also shows that
there is continuity and cohesiveness of topics built in the
two core courses. This allows students to learn about how
to process and analyze their data as well as how to use the
techniques from DACE to make optimal decisions or solve
inverse problems. In other words, the two core courses are
designed to “close the loop” between data collection, pro-
cessing, analysis, and decision-making.

This project-driven format has also led to success stories
on the academic front. Specifically, one of the graduate stu-
dents provided data from his research, which led to a suc-
cessful peer-reviewed publication.?! In this publication,
literature data on processing and mobility properties of or-
ganic field effect transistors were used to develop a classifi-
cation model to aid in identifying optimal design regions of
polymer concentrations. Results of this data-driven model
were confirmed by experiments.

Visualization and Analysis of High-Dimensional
Data Using the Dow Dataset

One strategy used to make the course more accessible and
engaging for chemists and chemical engineers is the use of
datasets relevant to chemical engineering and related disci-
pline. This diverges from typical computer science courses
and boot camps, where examples often focus on generic toy
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datasets, text processing, or image analysis. In the DSCI
courses, we supplement standard datasets such as MNIST
7 and UCI ML Repository,” with examples including
analysis of infrared spectra, prediction of materials proper-
ties, and correlating process inputs and outputs for chemi-
cal processes. One specific example, generously provided
by Dow Chemical, is a dataset of approximately 10k points
in a time series that correlates approximately 40 operating
parameters to the impurity level from a series of distillation
columns (Figure 4a).

The Dow dataset is provided as a raw spreadsheet that
includes common artifacts and missing values, providing
an opportunity for students to learn to “wrangle” data into
well-organized structures suitable for analysis. Students also
use supervised regression techniques to make quantitative
prediction of process outputs as a function of process inputs
and learn to assess the quality and accuracy of the resulting
models (Figure 4b). Moreover, students use techniques such
as dimensional reduction and clustering to analyze the data
and to identify different operating regimes, including outlier
detection (Figure 4c). These experiences help students con-
nect the various data science techniques back to concepts
from chemical engineering such as start-up and shutdown,
flow rates, and impurity levels.

Assessment of Learning Outcomes and Student
Experience

When creating this new program, we defined two objec-
tives in assessing student success:

¢ Objective 1: Competence in Fundamentals of Data
Science in Chemical Manufacturing. Students will
develop and demonstrate competence in fundamental
knowledge of data science relevant to chemical manu-
facturing.

¢ Objective 2: Competence in Software Applications of
Data Science in Chemical Manufacturing. Students
will develop and demonstrate competence in using
programming and software that uses data science to
solve real-world problems in chemical manufacturing.
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Figure 4. Examples of (a) a process flow diagram for the Dow dataset, (b) a parity plot visualizing the results of a regression
model, and (c) a comparison of multiple types of dimensional reduction and clustering analyses, where different colors
represent different “clusters” of operating conditions, and the stars represent the centroid of each cluster.

In the first year of the program, to evaluate Objective 1,
the score on the final exam of DACE was analyzed to deter-
mine the number of students earning 80% or higher, with a
target of 75% of students meeting this criterion. For the in-
ternal Georgia Tech students, 88% (n above 80% = 15, total
n = 17) of the learners received a final exam score of 80%
or higher in DACE. For the external online students, 86% (n
above 80% = 6, total n = 7) of the learners received a final
exam score of 80% or higher in DACE.

For Objective 2, the score on the final exam of DDPSE
was similarly analyzed to determine the number of students
earning 80% or higher, again with a target of 75% of stu-
dents meeting this criterion. Among internal Georgia Tech
students, 76% (n above 80% = 16, total n = 21) of the learn-
ers received a final exam score of 80% or higher in DDPSE.
For the online students, 86% (n above 80% = 6, total n = 7)
received a final exam score of 80% or higher in DDPSE.
Thus, in the first year of the program, both the internal and
the external cohorts performed above the target level in both
objectives.

Mid-semester surveys were also conducted for external
students in the first cohort of the program. Six of the seven
students responded to the survey. When asked “What was
your primary motivation for obtaining this graduate certifi-
cate?,” four students indicated that it was to expand their
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knowledge base. One selected “change jobs/get a new job,”
and one selected “other.” When asked, “What is your current
employment status?,” five students indicated that they were
working full-time while one was a student.

Students were also asked, “So far, how would you rate
your satisfaction with the following aspects of course deliv-
ery?” The results are shown in Figure 5. Overall, students
were most satisfied with the online lectures, the quality of
feedback from instructors, and the number of opportunities
to interact with course instructors. Since these are online
courses, it is particularly notable that the students are satis-
fied with their interactions with the instructors. The students
reported being less satisfied with the number of opportuni-
ties to interact with fellow students, and that concern is be-
ing considered in current offerings of the course.

Another question dealt with instructional technology, as
shown in Figure 6. Students were most satisfied with Canvas
and least satisfied with Honorlock™, the software used for
virtual proctoring. In subsequent semesters the instructors
reduced or even eliminated the use of proctoring software
and incorporated honor code statements into exams.

Students were also asked, “So far, how would you rate
your experience in the Online Graduate Certificate in Data
Science for the Chemical Industry?” Three students indicat-
ed that the program exceeded or far exceeded their expecta-
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Figure 5. Response to “So far, how would you rate your satisfaction with the following aspects of course delivery?”
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this online asynchronous format.
The Graduate Certificate in Data
Science for the Chemical Indus-
try is Georgia Tech’s first fully
online graduate certificate. By serving both off-campus and
Georgia Tech students, it creates a template for much broad-
er innovation in graduate education that is likely to appeal to
a large group of students for whom a complete online MS is
too large of a commitment. The program also has the poten-
tial for improving diversity, equity, and inclusion in chemi-
cal engineering. The School of Chemical & Biomolecular
Engineering at Georgia Tech graduates one of the largest
and most diverse student populations in the discipline in
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Figure 6. Responses to “Please rate your satisfaction with the following

course technologies.”

the US, and the asynchronous online format allows for
improved inclusion of non-traditional and continuing edu-
cation students who may be juggling education with other
family or work responsibilities. Although the current demo-
graphics of the chemical industry do not reflect the diversity
of society, a testimonial from at least one participant who
was a member of an under-represented group from indus-
try indicated that the knowledge they gained within the first
year of the program enabled them to pursue leadership roles
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in new data-science related careers within the company. This
example suggests that the program may help advance the
careers of existing under-represented industry professionals.
Nonetheless, we recognize that there is considerable room
for improvement in encouraging participation of under-rep-
resented students, and we strongly encourage participation
from under-represented groups both at Georgia Tech and
within the chemical industry.

The diversity of the student backgrounds and perspectives
is a strength of the program, especially for the vertically in-
tegrated group projects. However, it also means that some
students may struggle, for example, with programming in
the first course. Notably, the diversity in skill level is rela-
tively consistent across the various types of students. Some
undergraduates are double-majoring with computer science,
while others have only had basic training in programming.
Similarly, some industry professionals are actively work-
ing on data science projects, while others have not had a
programming course in many years. While this may shift
as undergraduate curricula evolve, we anticipate significant
diversity in skill level across all student groups to be a chal-
lenge for the foreseeable future. The asynchronous format of
the course provides unique possibilities for individually tai-
loring the curriculum to each student. As a first step, we rec-
ommend that students take an optional Python “boot camp”
before beginning the first course if they do not already have
experience with Python. In addition, we track student en-
gagement throughout the semester using a combination of
multiple choice “knowledge checks” and auto-graded pro-
gramming “skill checks” that allow students to submit their
code an unlimited number of times until it is correct. These
checks often drive engagement at weekly office hours, and
students who struggle are encouraged to set up individual
meetings with instructors or TAs as needed. In addition, the
mandatory weekly group meetings help ensure that students
remain engaged with the course and provide them with peer
support if they are struggling with coding basics. The rela-
tively high retention rate between the two courses (Figure 1)
indicates that these support strategies are successful.

We feel that the current DSCI program serves the needs
of both chemical industry professionals and Georgia Tech
students well and helps fill an educational gap in the current
standard curriculum of chemical engineering education. We
note that the DSCI courses generally focus on more “basic”
concepts and forego recent and emerging advances such as
deep learning. This was an intentional decision, with the goal
of building a strong conceptual framework and providing a
broad overview, rather than attempting to train students in
the most advanced techniques. However, we also recognize
that the field is still evolving. One potential disadvantage of
the online asynchronous format is the relatively static nature
of pre-recorded lectures. This can be mitigated in the short
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term by revising individual topics/lectures as needed or add-
ing additional supplemental modules that can address urgent
educational needs identified by industry participants. For
example, towards the end of the DDPSE course, advanced
topics are covered, such as physics-informed ML and how
that is linked to the optimization theory taught earlier in the
course, as well as the concept of deep neural networks and
why/when one would use them. This material did not ex-
ist in the first offering of the course and was added in the
second year based on new research and feedback from stu-
dents. In the longer term, the development of new courses,
or the full re-design of the existing course curriculum may
be necessary to address the changing skillsets of incoming
students or to teach new skills that arise as machine learning
and artificial intelligence are more deeply embedded into the
chemical process industry. At the same time, we also note
that the programming and data-analytics skills provided to
the students can serve as an entry point to more advanced
training or alternative careers outside of the chemical pro-
cess industry. We have seen examples of such students who
graduated from the program and continued to MS degrees
in computer science, secured jobs in consulting, and even
worked for start-up companies for block-chain technology.
This indicates that the skills that chemical engineering stu-
dents learn through these courses are flexible and will likely
enable graduates from the DSCI program to adapt to the
changing needs of the field without the need for additional
(re)training.

CONCLUDING REMARKS

Georgia Tech’s DSCI provides a pathway for industry pro-
fessionals to learn data science in the context of the chemical
industry, in an asynchronous online format that is conducive
for working professionals. The vertically integrated project
groups allow internal and external students to collaborate on
projects involving real data, bringing together their diverse
perspectives and skills.
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