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INTRODUCTION

I
n the past decade, society has been transformed by a rev-

olution in the collection and use of data. Over roughly 

the same period, the chemical process industry (CPI) has 

gone through a manufacturing renaissance in the US, with 

hundreds of billion dollars of construction on the Gulf Coast 

alone. The CPI employs more than 800,000 people in the US 

and has created products worth more than $700 billion in 

2017.[1] Despite the vast scale of the CPI, which encompass-

es oil and gas, chemicals, consumer products, and pharma-

ceuticals, this sector lags behind other areas in taking advan-

tage of data science.[2] The CPI is an interdisciplinary field 
that employs chemical engineers, chemists, material science 

engineers and bioengineers, all of whom need to design, op-

erate and optimize materials, formulations, processes, and 

products. A 2018 McKinsey study estimated that incorpo-

rating artificial intelligence in operations within the global 
CPI would realize $800 billion in annual value.[2] However, 

according to industry feedback, simply embedding data 

scientists without CPI training in risky chemical manufac-

turing environments does not lead to meaningful change in 

operations, and oftentimes leads to distrust of data-science 

from domain experts.[3] At the same time, the CPI’s current 

employees have domain expertise and first-hand experience 
of the effects of digitalization, but often lack the necessary 

programming and data science background. A key need in 

the US CPI is development of a highly skilled workforce that 

combines domain expertise in industrial-scale chemicals 

processing with robust and adaptable data science skills.[2, 4-8]

In response to this need, a new program was created at 

the Georgia Institute of Technology (GT), in the form of an 

online graduate certificate. The central aim of the “Online 
Graduate Certificate in Data Science for the Chemical Indus-

try” (DSCI) program is to create the opportunity for current 

undergraduates, graduate students, and CPI professionals 

to be trained together, to become part of the next genera-

tion of citizen data scientists that the CPI needs.[9] Industrial 

practitioners who complete this training are equipped to lead 

data-driven transformations in their companies and aim to 

see their own personal career prospects grow. Current Geor-

gia Tech students who complete the program interact with 

CPI professionals with practical and business experience in 

the context of using real industrial data. 

Graduate Certificates or “mini-Masters” degrees at Geor-
gia Tech are a unique model for graduate education that is 

available to both degree and non-degree students and require 

12 credit hours for completion. We have developed a fully 

online graduate certificate that involves two core courses de-

signed and offered by chemical engineering faculty focused 

on foundations of data science in an application-rich con-

text. These are followed by two courses chosen from a range 

of electives already offered online across campus on topics 

of data analytics (or, equivalently, data science) and machine 

learning (ML). Motivated by similar goals, other programs 

have been created in recent years. The MS Degree offered in 

the University of Washington was one of the first to offer a 
data-analytics degree specific to the chemical sciences, with 
a comprehensive program of 39 credits.[10] Other full MS de-

grees offered by chemical engineering departments include 

the MS in Chemical Engineering with a Concentration in 

Data and Computational Science at Columbia University, 

Purdue University’s Data-Science in Chemical Engineer-

ing MS, and Cornell University’s Computational Informat-

ics MS.[11-13] Finally, the “Graduate Data Science Certificate 
Program” offered at the University of Michigan is the anoth-

er offering with a similar number of credits as our program, 

although it is not specific to chemical engineering.[14] The 

program offered at Georgia Tech is different than the above 
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initiatives because it is designed to be a short program (mini-

MS with the possibility of extending to a full MS degree), 

and it is offered in an asynchronous online format designed 

for professionals.

Extensive discussions with industry colleagues indicated 

that our proposed program fills a critical gap in workforce 
development for the CPI. Although generic data science 

“boot camps” and MS degrees in data analytics exist, these 
resources do not provide sufficient depth on the challenges 
that are relevant to the data-driven applications emerging in 

the CPI. Specifically, they do not put enough focus on the 
objectives and constraints that are critical to the CPI, such 

as first-principles (i.e., mass and energy balances, thermody-

namics, kinetics, etc.), safety and engineering ethics, impact 

on energy efficiency and human health. The lack of domain 
specific focus and applications in these “generic” data sci-
ence settings might limit the ability of individuals trained by 

them to readily translate these skills into the specific needs 
of the CPI. Further, many existing programs specific to the 
chemical industry take too long for many people already in 

the workforce who want to broaden their skillset. Finally, 

existing graduate programs taught by computer scientists 

typically assume a prior expertise in programming that may 

not be consistent with some CPI professionals interested on 

this topic.

In this paper we describe the content and teaching innova-

tions we have incorporated in the two core courses, which 

aim to introduce chemical engineers to Python® program-

ming, data processing, ML, and optimization, using specific 
examples relevant to the CPI. The unique elements of the 

content of the courses that we have designed include: 

•	 introduction to Python programming assuming prior 

MATLAB®-based training

•	 introduction to basic statistics and ML using chemical 

engineering data sets (including benchmark data sets 

obtained by industry)

•	 embedding of ML models within chemical process op-

timization formulations 

•	 integration of data-driven models with chemical en-

gineering principles (physics-informed ML or hybrid 

modeling)

Teaching techniques that we have employed for effective 

online training include: 

•	 collaboration with Instructional Designers at Georgia 

Tech Professional Education (GTPE) for generation of 

carefully curated module-based video lectures

•	 design of frequent online coding-based skill-check as-

signments using Jupyter Notebooks®, Vocareum®, and 

both auto-grading and peer-grading techniques

•	 generation of vertically integrated groups that work 

together throughout the semester on a project for data-

driven decision making

As the first cohort of our students has graduated and the 
second one is underway, we will describe lessons learned 

and provide testimonials from students so far. 

PROGRAM STRUCTURE

The DSCI program requires students to take the first 
core course on “Data Analytics for Chemical Engineers” 
(DACE) and subsequently the second core course on “Da-

ta-Driven Process Systems Engineering” (DDPSE). These 

two core courses have been designed and taught by chemi-

cal engineering faculty. Upon completion of these first two 
courses, students select two additional courses on more ad-

vanced data analytics, ML, or cybersecurity topics offered 

by the Computer Science and Industrial & Systems Engi-

neering Schools at Georgia Tech. A list of potential electives 

includes Computing for Data Analysis, Big-Data Systems & 

Analytics, Database Systems Concepts & Design, Temporal, 

Spatial & Adaptive Databases, Data & Visual Analytics, De-

sign & Analysis of Experiments, Stochastic Optimization, 

Data Mining & Statistical Learning, Information Security 

Policies & Strategies, and many more, for a total of 28 po-

tential courses. In this paper we will not describe the elec-

tives in detail but will focus on the introductory core DACE 

and DDPSE courses. We note that all lecture materials, 

along with a publicly sharable dataset generously provided 

by Dow Chemical, are freely available via the following two 

GitHub® repositories: https://github.com/medford-group/

data_analytics_ChE, and https://github.com/DDPSE/GT_

DataDrivenPSE_Course.

Our first DSCI course offers a brief introduction to Py-

thon, but we emphasize to prospective students that to be 

successful in the program, they need to have prior program-

ming experience in any language, and preferably experience 

with Python. If they do not have prior Python experience, the 

syllabus states that extra effort will be required to increase 

their level of expertise in Python throughout the semester. 

This has been a successful model that aims to bring students 

of different programming skills into common ground and 

avoids spending significant course time on basic program-

ming concepts that can be learned through other resourc-

es. Throughout the duration of the first two core courses, 
students are taught (through lectures, coding-based skill-

checks, and homework) advanced topics in Python-based 

ML and integration of ML and optimization, which ensures 

that the material is still challenging even for students who 

come in with a Python background. Moreover, the semes-

ter-long projects in each course provide an opportunity for 

students to define a problem that is interesting and engag-
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ing at their current skill level. Looking into the future, we 

hypothesize that students will enter the program with more 

Python programming expertise. However, we expect that 

the omission of basic Python programming from the course, 

along with its “project centric” focus, will keep the material 
relevant and challenging into the future.

The DSCI certificate was originally designed for students 
external to GT, mainly industrial professionals interested in 

learning data analytics. However, a survey within our PhD 

program indicated that 75% of our graduate students were 

interested in completing the certificate and obtaining the de-

gree as well as satisfying their minor requirement. Moreover, 

modified versions of the two core courses have been offered 
as electives to our undergraduate students, with increasing 

popularity. As a result, we embraced this unique opportunity 

to bring together these three populations of students and de-

signed our core courses and assignments to take advantage 

of this diversity to enhance learning. The enrollment of un-

dergraduate, graduate, and professional students in the two 

core courses for the first two years of course offerings is 
shown in Figure 1. Below, we will describe the content and 

learning outcomes of the DACE and DDPSE courses, fol-

lowed by a description of innovations on the teaching tech-

niques and tools used in those. 

Data Analytics for Chemical Engineers Course

Chemical engineers typically receive some basic training 

in numerical methods and programming, but these skills are 

not always reinforced throughout the curriculum, and in-

dustry professionals may have not practiced programming 

or linear algebra in many years. In addition, related disci-

plines such as chemistry and materials science often have 

even less mathematical training in their curricula. More-

over, the recent advances in data analytics and machine 

learning have resulted in new techniques and new jargon 

that are unfamiliar to industry professionals and even cur-

rent students in chemistry and chemical engineering. Al-

though there are a plethora of introductory courses on data 

analytics and machine learning available, they are typically 

not tailored to be accessible to students with a background in 

chemistry and chemical engineering, and they often rely on 

examples that are disconnected from the chemical industry.

The DACE course seeks to fill this training gap by provid-

ing assignments and examples designed to orient students 

from chemical engineering and related disciplines with the 

fields of data analytics and machine learning. At the end of 
the course, students should be able to (a) apply Python li-

braries to analyze, visualize, and organize data, (b) select 

appropriate analytics models and evaluate them using quan-

titative metrics, (c) optimize hyperparameters and features 

of analytics models to improve performance. The course is 

organized into six key topics: 

1. Numerical Methods (programming and linear algebra 

review)

2. Machine Learning for Regression (kernel ridgeregres-

sion, hyperparameter optimization, regression for 

high-dimensional data)

3. Machine Learning for Classification (generalized lin-

ear models, k-nearest neighbors, decision trees)

4. Data Management (basic data structuring, data access 

via API’s)

5. Exploratory Data Analysis (dimensional reduction, 

clustering, and generative models)

6. Feature Engineering (supervised dimensional reduc-

tion, symbolic regression, time series analysis)   

(Figure 2)

Figure 1. Enrollment of undergraduate, graduate, and professional students in the DSCI core courses with 

(a) total enrollment in each course per semester and (b) overall composition averaged across all courses.
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The course starts with a quick Python primer for students 

familiar with MATLAB or other languages and utilizes ba-

sic exercises in numerical methods, such as orthogonalizing 

matrices and solving multi-dimensional non-linear optimi-

zation problems to simultaneously build competency in Py-

thon and review the basic mathematical foundations needed 

for data analytics and machine learning. This module is of-

ten the most difficult for students who are unfamiliar with 
Python or have not practiced programming in a long time, 

so additional office hours and review sessions are provided 
in the first few weeks. The subsequent modules focus on su-

pervised models (classification and regression), with an em-

phasis on cross validation and hyperparameter optimization. 

After a midterm exam based on hands-on coding, the data 

management module “zooms out” and discusses common 
tools and best practices for how to prepare and organize data 

for analysis with Python or other programmatic approaches. 

The subsequent modules introduce unsupervised methods 

and feature engineering, and a coding-based comprehensive 

final exam assesses mastery of all topics.
Datasets in the course are chosen to be familiar to chemi-

cal engineers and include fitting peaks of spectra, predicting 
the synthesizability of materials, and correlating process in-

puts and outputs from a real chemical process dataset pro-

vided by Dow Chemical. Throughout the course students 

also work on a semester-long project for application of data 

science techniques to real datasets. These student-defined 
projects allow industry professionals to bring in problems 

from their work, or graduate students to bring in problems 

from their research. Students work with “vertically inte-

grated” groups of industry professionals, graduate, and un-

dergraduate students and work directly with instructors to 

define goals and build and optimize models throughout the 
semester. The projects are often continued in subsequent se-

mesters in the DDPSE course.

Data-Driven Process Systems Engineering Course

Optimization problems can be found everywhere in en-

gineering, in both industry and academia. However, most 

chemical engineering departments do not offer a course that 

discusses optimization specifically in the context of chemi-
cal engineering. At the same time, computational optimiza-

tion is very tightly linked to programming, data analytics, 

and machine learning. In academia, data analytics coupled 

with optimization is being used to enable or expedite scien-

tific discovery in materials science, pharmaceuticals, process 
systems engineering, and more.[3, 8, 15-20] Similarly, industry is 

entering an era of digitalization that has led to an explosion 

of chemical, process, manufacturing, and operations data.[3, 

5, 6, 8, 21] Undoubtedly a large fraction of chemical engineering 

graduates will face design, control, or operations optimiza-

tion problems that will also involve handling of data sets.

As data analytics becomes an influential tool for decision 
making in industry and academia, incorporation of such 

concepts in our curriculum will make our graduates com-

petitive in today’s market. The learning objectives for the 

DDPSE course are for students to be able to:

•	 explain the basic theory of linear, nonlinear and mixed-

integer optimization

•	 apply sampling, regression, validation and data-reduc-

tion techniques

•	 use data-driven techniques for optimization

•	 assess the dangers and ethics of the use of data for de-

cision making

The course material was divided into five parts: 
1. Basics of Optimization Theory (formulations, linear 

programming, nonlinear programming, mixed-integer 

programming)

2. Building Data-Driven Models To Represent Con-

straints and Objective Functions in Optimization (data 

pre-processing, regression, dimensionality-reduction) 

3. Data-Driven Optimization (sample-based optimiza-

tion, using regression for optimization, evolutionary 

optimization methods)

4. Inference of Results (assessing optimality, model vali-

dation, adaptive sampling)

5. Advanced Topics (integration of first principles with 
data-driven regression and handling uncertainty in op-

timization) 

Several topics introduced in the DACE course (assesement 

and validation, modeling, programming, and data anaylsis), 

are discussed again in the DDPSE course; however, the 

overlap is not significant because they are discussed with 
a different lens, specifically in the context of optimization. 
The interaction and overlap between the DACE and DDPSE 

courses are shown schematically in Figure 2. Student evalu-

ations have indicated that the level of overlap and the re-

introduction of similar topics from a different perspective 

are welcome. 

The DDPSC course first introduces students to the basics 
of optimization, such as how to formulate an optimization 

problem by introducing the correct variables, forming the 

appropriate objective function and constraints, and finally, 
identifying the characteristics of the optimization problem 

(i.e., linear, nonlinear, nonconvex, mixed integer). An over-

view of basic optimization theory for linear, nonlinear and 

mixed integer optimization is also covered, along with an 

overview of available state-of-the-art solvers and their capa-

bilities and limitations. Subsequently, the course discusses 

the challenges of dealing with data when it is not easy or 
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possible to derive the equations of the optimization formu-

lation. In this second part of the course, we discuss how to 

collect data, assess the quality of a data set, and use this data 

for regression. Building on the DACE course, various re-

gression, data-preprocessing, and dimensionality reduction 

techniques are discussed (e.g., linear and quadratic regres-

sion, generalized linear regression, neural networks, support 

vector regression, Gaussian processes and principal compo-

nent analysis). The importance of validation, regularization, 

and constraining of ML models using first-principles infor-
mation, as well as the danger of overfitting, are stressed, al-
ways in the context of how these affect optimization solu-

tions. Finally, the course discusses data-driven optimization 

techniques. First, direct-search and trust-region algorithms 

are discussed. Next, the course focuses on how to embed 

fitted regression models within optimization formulations 
to locate optimal solutions. Here, the importance of model 

mismatch and its effects on optimality, validation of the ob-

tained solutions, adaptive sampling, and optimal design of 

experiments are discussed. The course concludes with a final 
advanced topics module discussing uncertainty caused by 

data and how this can be handled in optimization using sto-

chastic programming or robust optimization.

The course introduces students to Python and Pyomo®,[22] 

while the majority of the lectures are in the form of Jupy-

ter Notebooks.[23] This platform enables interactive problem 

solving and data visualization. The largest component of 

the course grade is based on a semester-long group project. 

Students identify, formulate and solve their own data-driven 

optimization problem, either by using their research data or 

by using publicly available databases. 

Teaching Innovations

Module-Based Lecture Videos. In both courses, the in-

structors worked with GTPE to record curated, high-qual-

ity short videos that were released in a sequence of topics, 

via the feature of Modules on Canvas®. Every week a new 

module was released that included a sequence of 6-8 short 

videos. This structure was central to the asynchronous on-

line format of the course. Despite the asynchronous online 

format of the courses, assessment results indicated that stu-

dents found the collection of short theme-based recordings, 

coupled with weekly knowledge checks and all other assess-

ments, engaging and efficient.
Coding Assignments Using Jupyter Notebooks and Vo-

careum. In addition to the recorded lectures, the course 

material in both courses is heavily based on Python pro-

gramming, and Jupyter Notebooks are used in the course to 

present students with an integrated document that contains 

explanations of concepts along with functioning code. Most 

lecture notes are provided in a set of Jupyter Notebooks that 

students can access via GitHub and are made permanently 

and publicly available so that students can access them even 

after the course is over. 

In addition, both courses use the Vocareum platform 

for hosting assignments and exams in Jupyter Notebooks. 

Weekly homework assignments include an auto-graded 

“skill check” where students complete coding exercises that 
can be submitted repeatedly for instant feedback, allowing 

them to keep attempting tasks until they master the skills 

needed to successfully write and utilize coding tools. There 

are also homework assignments that include more open-end-

Figure 2. Overview of the Data Analytics for Chemical Engineers (red text) and Data-Driven Process Systems 

Engineering courses (blue text). Assessment and validation, modeling, programming, and data analysis are first 
introduced in Data Analytics for Chemical Engineers, but are reviewed and placed into the broader context of    

optimization and problem solving in Data-Driven Process Systems Engineering.
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ed questions where students apply their skills to problems 

similar to what they might encounter in their projects. These 

homework sets are peer graded, allowing students to see 

how others solve the problem and get multiple perspectives 

on how to think about a dataset and optimization formula-

tion, or how to apply different tools. Exams are also based 

on Jupyter Notebooks hosted on Vocareum and utilize a 

combination of auto-graded questions and instructor-graded 

open-ended questions, ensuring that students find the exams 
consistent in style and content with their prior assignments. 

Vertically Integrated Team-Building. The unique envi-

ronment of classes with mixed internal and external stu-

dents provides many advantages for students. For example, 

Georgia Tech students may have broader digital and cod-

ing skills, but external students may bring a clearer view 

of the application opportunities and industrial challenges. A 

program that allows these groups to interact and learn from 

each other can synergize their different perspectives and 

lead to more effective training for all. This environment has 

allowed us to test the effectiveness of project-based learn-

ing in vertically integrated project groups.[24, 25] The groups 

consist of undergraduate, graduate, and industry students. 

This structure provides undergraduate students a chance to 

gain first-hand insight into graduate school and industry ca-

reers, and provides industry students with the opportunity 

to mentor undergraduates and learn from graduate students. 

The graduate and industry students are responsible for work-

ing together to provide the dataset and define the goals for 
the course project, and all group members are expected to 

delegate tasks and work together on completing the goals. 

Importantly, teams are required to meet for at least one hour 

every week and are encouraged to work together on home-

work and other assignments, and to complete a bi-weekly 

group evaluation to ensure that all members are participating 

and behaving professionally. These requirements help drive 

engagement by requiring regular, synchronous interactions 

between students and helps create a cohesive and supportive 

team where group members can learn from each other. 

Project-Based Learning. A key feature of our program is 

the use of capstone projects in which external students are 

encouraged to bring real-world data to define group projects. 
Georgia Tech’s experience with industrial collaborations 

and already in-place master agreements have been leveraged 

to address potential intellectual property concerns. The out-

come is a unique training experience for a new generation of 

students using real data. The project is completed by “verti-
cally integrated” groups of four or five students (typically 
one student from industry, two graduate students, and two 

undergraduate students). The project starts early in the se-

mester when the industry and graduate students are required 

to provide the dataset for the project and define the goals. 
Teams are encouraged to work on real datasets and prob-

lems from industry or graduate research. (Some examples 

and outcomes of this approach are provided in the Results 

and Assessment section of this paper.) This project-driven 

course design and its focus on real problems help motivate 

students and provide concrete examples of how the tech-

niques they learn can be applied to real problems. In DACE 

the project is broken into multiple phases (data preparation, 

baseline model development, model improvement, and fi-

nal report/presentation). Similarly, in DDPSE the phases 

include data preparation or collection, optimization formu-

lation, development of optimization method(s)/algorithm(s), 

and final report/presentation. In both courses, teams receive 
feedback from instructors at regular checkpoints. Students 

can retroactively revise any portion of the project to yield 

the highest quality results by the end of the semester.

RESULTS AND ASSESSMENT

Example of Project Outcomes When Using 

Industrial Data Within Vertically Integrated Groups

Project topics range widely but must be related to chemical 

engineering or chemistry, and often come from real indus-

try or research projects. In DACE some examples include 

the prediction of polymer solubility, prediction of battery 

lifetime from early cycle data, analysis of mass spectros-

copy data for nanoparticle size detection, prediction of the 

outputs of unit operations in a cumene production process, 

and prediction of power generation by a turbine generator. 

In DDPSE some of the topics studied include optimization 

of organic electronics, the development of an optimal “Iso-

therm Modeler” tool, calibration of plasma mass spectrome-

try data, optimization of hippocampal neurons, optimization 

of vanadium flow battery design, optimization of phosphor-
ic acid production, design of a biopharmaceutical reactor, 

building design for minimization of energy consumption, 

and optimization of air quality in the classroom by schedul-

ing the operation of air purifiers based on real online mea-

surements of air quality. 

Ideally, projects provide an opportunity for industry stu-

dents to bring in a real problem and gain tangible value from 

the project. A specific example is the prediction of turbine 
power generation project from Fall 2020, led by partici-

pants from The Mosaic Company, which produces phos-

phate fertilizers. In this project students utilized a variety of 

regression models to predict the power output of a turbine 

generator as a function of operating parameters. Industrial 

students were able to provide real process data, allowing 

other students in the group to gain experience working with 

a “data historian” and overcoming challenges associated 
with cleaning and processing real industry data. The results, 

shown in Figure 3, showed strong predictive capability and 

motivated the students to continue working on this project 

in DDPSE, using the results as the foundation of an internal 

project at Mosaic that has an estimated gross return of $8 

million. In DDPSE, the same students worked on the opti-
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mization of supply chain of phosphate production. In their 

model they considered costs associated with processing and 

transportation and used real data to develop correlations that 

were embedded within the optimization model. In the con-

clusions of the group’s project report assignment they state 

“…this study has yielded valuable business insights and a 

flexible optimization model that can be utilized in the future 
for deeper investigations into the supply chain of phosphate 

production…These results can be fed into the larger discus-

sion and investigation of Mosaic’s cost model and provide 

the ability for the mine planning department to make data 

driven decisions.”

This project highlights how the project-driven curricu-

lum connects the two core courses of the data science cer-

tificate program and drives engagement with students and 
industry. The highlighted example project also shows that 

there is continuity and cohesiveness of topics built in the 

two core courses. This allows students to learn about how 

to process and analyze their data as well as  how to use the 

techniques from DACE to make optimal decisions or solve 

inverse problems. In other words, the two core courses are 

designed to “close the loop” between data collection, pro-

cessing, analysis, and decision-making. 

This project-driven format has also led to success stories 

on the academic front. Specifically, one of the graduate stu-

dents provided data from his research, which led to a suc-

cessful peer-reviewed publication.[26] In this publication, 

literature data on processing and mobility properties of or-

ganic field effect transistors were used to develop a classifi-

cation model to aid in identifying optimal design regions of 

polymer concentrations. Results of this data-driven model 

were confirmed by experiments. 

Visualization and Analysis of High-Dimensional 

Data Using the Dow Dataset

One strategy used to make the course more accessible and 

engaging for chemists and chemical engineers is the use of 

datasets relevant to chemical engineering and related disci-

pline. This diverges from typical computer science courses 

and boot camps, where examples often focus on generic toy 

datasets, text processing, or image analysis. In the DSCI 

courses, we supplement standard datasets such as MNIST 
[27] and UCI ML Repository,[28] with examples including 

analysis of infrared spectra, prediction of materials proper-

ties, and correlating process inputs and outputs for chemi-

cal processes. One specific example, generously provided 
by Dow Chemical, is a dataset of approximately 10k points 

in a time series that correlates approximately 40 operating 

parameters to the impurity level from a series of distillation 

columns (Figure 4a). 

The Dow dataset is provided as a raw spreadsheet that 

includes common artifacts and missing values, providing 

an opportunity for students to learn to “wrangle” data into 
well-organized structures suitable for analysis. Students also 

use supervised regression techniques to make quantitative 

prediction of process outputs as a function of process inputs 

and learn to assess the quality and accuracy of the resulting 

models (Figure 4b). Moreover, students use techniques such 

as dimensional reduction and clustering to analyze the data 

and to identify different operating regimes, including outlier 

detection (Figure 4c). These experiences help students con-

nect the various data science techniques back to concepts 

from chemical engineering such as start-up and shutdown, 

flow rates, and impurity levels.

Assessment of Learning Outcomes and Student 

Experience

When creating this new program, we defined two objec-

tives in assessing student success: 

•	 Objective 1: Competence in Fundamentals of Data 

Science in Chemical Manufacturing. Students will 

develop and demonstrate competence in fundamental 

knowledge of data science relevant to chemical manu-

facturing.

•	 Objective 2: Competence in Software Applications of 

Data Science in Chemical Manufacturing. Students 

will develop and demonstrate competence in using 

programming and software that uses data science to 

solve real-world problems in chemical manufacturing.

Figure 3. Example of original data from a turbine power generator at The Mosaic Company (blue), along with    

the predictions from a data-driven model (red).
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In the first year of the program, to evaluate Objective 1, 
the score on the final exam of DACE was analyzed to deter-
mine the number of students earning 80% or higher, with a 

target of 75% of students meeting this criterion. For the in-

ternal Georgia Tech students, 88% (n above 80% = 15, total 

n = 17) of the learners received a final exam score of 80% 
or higher in DACE. For the external online students, 86% (n 

above 80% = 6, total n = 7) of the learners received a final 
exam score of 80% or higher in DACE. 

For Objective 2, the score on the final exam of DDPSE 
was similarly analyzed to determine the number of students 

earning 80% or higher, again with a target of 75% of stu-

dents meeting this criterion. Among internal Georgia Tech 

students, 76% (n above 80% = 16, total n = 21) of the learn-

ers received a final exam score of 80% or higher in DDPSE. 
For the online students, 86% (n above 80% = 6, total n = 7) 

received a final exam score of 80% or higher in DDPSE. 
Thus, in the first year of the program, both the internal and 
the external cohorts performed above the target level in both 

objectives. 

Mid-semester surveys were also conducted for external 

students in the first cohort of the program. Six of the seven 
students responded to the survey. When asked “What was 
your primary motivation for obtaining this graduate certifi-

cate?,” four students indicated that it was to expand their 

knowledge base.  One selected “change jobs/get a new job,” 
and one selected “other.” When asked, “What is your current 
employment status?,” five students indicated that they were 
working full-time while one was a student.

Students were also asked, “So far, how would you rate 
your satisfaction with the following aspects of course deliv-

ery?” The results are shown in Figure 5. Overall, students 

were most satisfied with the online lectures, the quality of 
feedback from instructors, and the number of opportunities 

to interact with course instructors. Since these are online 

courses, it is particularly notable that the students are satis-

fied with their interactions with the instructors. The students 
reported being less satisfied with the number of opportuni-
ties to interact with fellow students, and that concern is be-

ing considered in current offerings of the course. 

Another question dealt with instructional technology, as 

shown in Figure 6. Students were most satisfied with Canvas 
and least satisfied with HonorlockTM, the software used for 

virtual proctoring. In subsequent semesters the instructors 

reduced or even eliminated the use of proctoring software 

and incorporated honor code statements into exams.

Students were also asked, “So far, how would you rate 
your experience in the Online Graduate Certificate in Data 
Science for the Chemical Industry?” Three students indicat-

ed that the program exceeded or far exceeded their expecta-

Figure 4. Examples of (a) a process flow diagram for the Dow dataset, (b) a parity plot visualizing the results of a regression      

model, and (c) a comparison of multiple types of dimensional reduction and clustering analyses, where different colors      

represent different “clusters” of operating conditions, and the stars represent the centroid of each cluster.
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tions, two students indicated that 

it met expectations, and one stu-

dent indicated that it fell short of 

expectations. Based on this sur-

vey together with direct student 

feedback, the program is continu-

ing to build upon its successful 

early performance to serve stu-

dent needs.

DISCUSSION

As one of the first stand-alone 
graduate certificates at Georgia 
Tech, this program can be a mod-

el for others to adopt, partnering 

with professional education for 

this online asynchronous format. 

The Graduate Certificate in Data 
Science for the Chemical Indus-

try is Georgia Tech’s first fully 
online graduate certificate. By serving both off-campus and 
Georgia Tech students, it creates a template for much broad-

er innovation in graduate education that is likely to appeal to 

a large group of students for whom a complete online MS is 

too large of a commitment. The program also has the poten-

tial for improving diversity, equity, and inclusion in chemi-

cal engineering. The School of Chemical & Biomolecular 

Engineering at Georgia Tech graduates one of the largest 

and most diverse student populations in the discipline in 

the US,[29] and the asynchronous online format allows for 

improved inclusion of non-traditional and continuing edu-

cation students who may be juggling education with other 

family or work responsibilities. Although the current demo-

graphics of the chemical industry do not reflect the diversity 
of society, a testimonial from at least one participant who 

was a member of an under-represented group from indus-

try indicated that the knowledge they gained within the first 
year of the program enabled them to pursue leadership roles 

Figure 5. Response to “So far, how would you rate your satisfaction with the following aspects of course delivery?”

Figure 6. Responses to “Please rate your satisfaction with the following 

course technologies.”
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in new data-science related careers within the company. This 

example suggests that the program may help advance the 

careers of existing under-represented industry professionals. 

Nonetheless, we recognize that there is considerable room 

for improvement in encouraging participation of under-rep-

resented students, and we strongly encourage participation 

from under-represented groups both at Georgia Tech and 

within the chemical industry.

The diversity of the student backgrounds and perspectives 

is a strength of the program, especially for the vertically in-

tegrated group projects. However, it also means that some 

students may struggle, for example, with programming in 

the first course. Notably, the diversity in skill level is rela-

tively consistent across the various types of students. Some 

undergraduates are double-majoring with computer science, 

while others have only had basic training in programming. 

Similarly, some industry professionals are actively work-

ing on data science projects, while others have not had a 

programming course in many years. While this may shift 

as undergraduate curricula evolve, we anticipate significant 
diversity in skill level across all student groups to be a chal-

lenge for the foreseeable future. The asynchronous format of 

the course provides unique possibilities for individually tai-

loring the curriculum to each student. As a first step, we rec-

ommend that students take an optional Python “boot camp” 
before beginning the first course if they do not already have 
experience with Python. In addition, we track student en-

gagement throughout the semester using a combination of 

multiple choice “knowledge checks” and auto-graded pro-

gramming “skill checks” that allow students to submit their 
code an unlimited number of times until it is correct. These 

checks often drive engagement at weekly office hours, and 
students who struggle are encouraged to set up individual 

meetings with instructors or TAs as needed. In addition, the 

mandatory weekly group meetings help ensure that students 

remain engaged with the course and provide them with peer 

support if they are struggling with coding basics. The rela-

tively high retention rate between the two courses (Figure 1) 

indicates that these support strategies are successful.

We feel that the current DSCI program serves the needs 

of both chemical industry professionals and Georgia Tech 

students well and helps fill an educational gap in the current 
standard curriculum of chemical engineering education. We 

note that the DSCI courses generally focus on more “basic” 
concepts and forego recent and emerging advances such as 

deep learning. This was an intentional decision, with the goal 

of building a strong conceptual framework and providing a 

broad overview, rather than attempting to train students in 

the most advanced techniques. However, we also recognize 

that the field is still evolving. One potential disadvantage of 
the online asynchronous format is the relatively static nature 

of pre-recorded lectures. This can be mitigated in the short 

term by revising individual topics/lectures as needed or add-

ing additional supplemental modules that can address urgent 

educational needs identified by industry participants. For 
example, towards the end of the DDPSE course, advanced 

topics are covered, such as physics-informed ML and how 

that is linked to the optimization theory taught earlier in the 

course, as well as the concept of deep neural networks and 

why/when one would use them. This material did not ex-

ist in the first offering of the course and was added in the 
second year based on new research and feedback from stu-

dents. In the longer term, the development of new courses, 

or the full re-design of the existing course curriculum may 

be necessary to address the changing skillsets of incoming 

students or to teach new skills that arise as machine learning 

and artificial intelligence are more deeply embedded into the 
chemical process industry. At the same time, we also note 

that the programming and data-analytics skills provided to 

the students can serve as an entry point to more advanced 

training or alternative careers outside of the chemical pro-

cess industry. We have seen examples of such students who 

graduated from the program and continued to MS degrees 

in computer science, secured jobs in consulting, and even 

worked for start-up companies for block-chain technology. 

This indicates that the skills that chemical engineering stu-

dents learn through these courses are flexible and will likely 
enable graduates from the DSCI program to adapt to the 

changing needs of the field without the need for additional 
(re)training.

CONCLUDING REMARKS

Georgia Tech’s DSCI provides a pathway for industry pro-

fessionals to learn data science in the context of the chemical 

industry, in an asynchronous online format that is conducive 

for working professionals. The vertically integrated project 

groups allow internal and external students to collaborate on 

projects involving real data, bringing together their diverse 

perspectives and skills. 

ACKNOWLEDGMENTS

The authors thank Chris Jacobs (3M), Leo Chiang (Dow), 

and Zak Kuiper (Mosaic) for their formative input and con-

tribution of data sets. The authors would also like to thank 

the Georgia Tech Professional Education group for their hard 

work creating high-quality video lectures, their continuous 

support of teaching tools via Canvas, and their expertise on 

effective online course design. Finally, the authors would 

like to thank the Georgia Tech and the ChBE administration 

(David Sholl, Carson Meredith, and Christopher Jones) for 

their continued support. 



Vol. 56, No. 4, Fall 2022 259

REFERENCES

1. Fernández L. U.S. Chemical industry - statistics & facts. https://

www.statista.com/topics/1526/chemical-industry-in-the-us/.  Ac-

cessed August 19, 2022.

2. Chui M, Manyika J, Miremadi M, Henke N, Chung R, Nel P, and 

Malhotra S (2018) Notes from the AI frontier: Applications and 

value of deep learning. https://www.mckinsey.com/featured-in-

sights/artificial-intelligence/notes-from-the-ai-frontier-applications-
and-value-of-deep-learning  Accessed August 25, 2022.

3. Chiang L, Lu B, and Castillo I (2017) Big data analytics in 

chemical engineering. Annual Review of Chemical and Biomo-

lecular Engineering. 8(1):63-85. DOI: 10.1146/annurev-chembio-

eng-060816-101555.

4. Duever TA (2019) Data science in the chemical engineering cur-

riculum. Processes. 7(11):830.  

5. Feise HJ and Schaer E (2021) Mastering digitized chemical engi-

neering. Education for Chemical Engineers. 34:78-86. DOI: https://

doi.org/10.1016/j.ece.2020.11.011. 

6. The National Academies of Sciences, Engineering and Medicine 

(2018) Data Science for Undergraduates.

7. The National Academies of Sciences,  Engineering, and Medicine 

(2022) New Directions for Chemical Engineering.

8. Venkatasubramanian V (2019) The promise of artificial intelli-
gence in chemical engineering: Is it here, finally? AIChE Journal. 

65(2):466-478. DOI: https://doi.org/10.1002/aic.16489.

9. Georgia Tech - Graduate Certificate in Data Science for the Chemi-
cal Industry. https://www.chbe.gatech.edu/data-science-certificate. 

Accessed August 19, 2022.

10. University of Washington - Advanced Data Science Option. https://

www.cheme.washington.edu/graduate_students/prosp_grad/pro-

gram/ADS.html. Accessed August 19, 2022.

11. Columbia University - MS in Chemical Engineering with Concen-

tration in Data and Computational Science. https://www.cheme.

columbia.edu/ms-chemical-engineering-concentration-data-and-

computational-science. Accessed August 19, 2022.

12. Purdue University - Data Science MS. https://engineering.purdue.

edu/ChE/academics/graduate/masters/datascience-concentration. 

Accessed August 19, 2022.

13. Cornell University - Computational Informatics. https://www.

cheme.cornell.edu/cbe/academics/graduate-programs/meng/spe-

cializations/computational-informatics. Accessed August 19, 2022.

14. University of Michigan - Data Science Certificate. https://midas.

umich.edu/certificate/. Accessed August 19, 2022.

15. Lee JH, Shin J, and Realff MJ (2018) Machine learning: Overview 

of the recent progresses and implications for the process systems 

engineering field. Computers & Chemical Engineering. 114:111-

121. DOI: https://doi.org/10.1016/j.compchemeng.2017.10.008.

16. Medford AJ, Kunz MR, Ewing SM, Borders T, and Fushimi 

R (2018) Extracting Knowledge from Data through Catalysis 

Informatics. ACS Catalysis. 8(8):7403-7429. DOI: 10.1021/

acscatal.8b01708.

17. Pistikopoulos EN, Barbosa-Povoa A, Lee JH, Misener R, Mitsos 

A, Reklaitis GV, Venkatasubramanian V, You F, and Gani R (2021) 

Process systems engineering–the generation next? Computers & 

Chemical Engineering. 147:107252. 

18. Qin SJ (2014) Process data analytics in the era of big data. AIChE 

Journal. 60(9):3092-3100. DOI: https://doi.org/10.1002/aic.14523.

19. Schmidt J, Marques MRG, Botti S, and Marques MAL (2019) 

Recent advances and applications of machine learning in solid-state 

materials science. npj Computational Materials. 5(1):83. DOI: 

10.1038/s41524-019-0221-0.

20. Udugama IA, Gargalo CL, Yamashita Y, Taube MA, Palazoglu A, 

Young BR, Gernaey KV, Kulahci M, and Bayer C (2020) The role 

of big data in industrial (bio)chemical process operations. Indus-

trial & Engineering Chemistry Research. 59(34):15283-15297. 

DOI: 10.1021/acs.iecr.0c01872.

21. Westmoreland PR (2014) Opportunities and challenges for a Gold-

en Age of chemical engineering. Frontiers of Chemical Science and 

Engineering. 8(1):1-7. DOI: 10.1007/s11705-014-1416-z.

22. Hart WE, Laird CD, Watson J-P, Woodruff DL, Hackebeil GA, 

Nicholson BL, and Siirola JD (2017) Pyomo-Optimization Model-

ing in Python. Springer. New York, NY.

23. Verrett J, Boukouvala F, Dowling A, Ulissi Z, and Zavala V (2020) 

Computational notebooks in chemical engineering curricula. 

Chemical Engineering Education. 54(3):143-150. https://journals.

flvc.org/cee/article/view/116661 Accessed August 19, 2022.

24. Baxter M, Byun B, Coyle EJ, Dang T, Dwyer T, Kim I, Lee C, 

Llewallyn R, and Sephus N (2011) On project-based learning 

through the vertically-integrated projects program. Proceedings 

2011 Frontiers in Education Conference (FIE). DOI: 10.1109/

FIE.2011.6143064.

25. ElZomor M, Mann C, Doten-Snitker K, Parrish K, and Chester 

M (2018) Leveraging vertically integrated courses and problem-

based learning to improve students’ performance and skills.  

Journal of Professional Issues in Engineering Education and 

Practice. 144(4):04018009. DOI: doi:10.1061/(ASCE)EI.1943-

5541.0000379.

26. Venkatesh R, Zheng Y, Viersen C, Liu A, Silva C, Grover M, and 

Reichmanis E (2021) Data science guided experiments identify 

conjugated polymer solution concentration as a key parameter in 

device performance. ACS Materials Letters. 3(9):1321-1327. DOI: 

10.1021/acsmaterialslett.1c00320.

27. Deng L (2012) The mnist database of handwritten digit images for 

machine learning research [best of the web]. IEEE Signal Process-

ing Magazine. 29(6):141-142.  

28. Dua D and Graff C. UCI Machine Learning Repository. http://ar-

chive.ics.uci.edu/ml. Accessed August 19, 2022.

29. ASEE. American Society for Engineering Education. 

https://ira.asee.org/profiles-of-engineering-engineering-
technology/#:~:text=ASEE%20publishes%20the%20leading%20

data,%26%20Engineering%20Technology. Accessed August 19, 

2022. 


