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Efficiently embedding and/or integrating mechanistic information with data-driven models is essential if it is
desired to simultaneously take advantage of both engineering principles and data-science. The opportunity for
hybridization occurs in many scenarios, such as the development of a faster model of an accurate high-fidelity
computer model; the correction of a mechanistic model that does not fully-capture the physical phenomena of
the system; or the integration of a data-driven component approximating an unknown correlation within a
mechanistic model. At the same time, different techniques have been proposed and applied in different litera-
tures to achieve this hybridization, such as hybrid modeling, physics-informed Machine Learning (ML) and
model calibration. In this paper we review the methods, challenges, applications and algorithms of these three
research areas and discuss them in the context of the different hybridization scenarios. Moreover, we provide a
comprehensive comparison of the hybridization techniques with respect to their differences and similarities, as
well as advantages and limitations and future perspectives. Finally, we apply and illustrate hybrid modeling,
physics-informed ML and model calibration via a chemical reactor case study.

1. Introduction

Recent developments in the broad field of data-science have led to a
series of breakthroughs in Machine Learning (ML) (Qin and Chiang,
2019; Lee et al., 2018) techniques. The Process Systems Engineering
(PSE) community is having an important debate on the roles data sci-
ence should have over first-principles, physics-based science (e.g.,
thermodynamics, transport phenomena, kinetics and mass balances)
(Venkatasubramanian, 2019). The key reasons for doubting the value of
ML in chemical engineering is their black-box nature, a term generally
used to acknowledge their poor extrapolating capabilities, lack of
interpretability. and unbounded uncertainty in predictions that may not
satisfy physical constraints. “Hybridization” holds the promise that the
data-dependent models are more reliable because they learn from both
data and physics (von Stosch et al. 2014b). The concept of
Hybrid-Modeling is not new to PSE. Indeed, hybrid modeling techniques
and applications have been growing in number since the early 90's
(Psichogios and Ungar, 1992; Rico-Martinez et al., 1992; Thompson and
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Kramer, 1994), especially for modeling dynamic systems common to
PSE. Following an explosion of advances in purely black-box ML tech-
niques, merging first-principles knowledge and ML is becoming the next
big trend, since it can increase accuracy and interpretability with less
data.

When reviewing all potential ways to merge data-driven with
physics-based models, a diverse set of approaches have been proposed in
different literatures, ranging from feature engineering (i.e., careful se-
lection of the inputs/outputs to a model), to simple additive models
comprised of separate physical and data-driven equations, to advanced
methods that embed physics within data-driven models using custom-
ized training and numerical techniques. In fact, concepts targeting the
same fundamental idea are often disguised under different terminology,
in different literatures and time periods. A helpful resource for dis-
tinguishing the nuances between like-minded ideas is a recent review
(Sansana et al., 2021), which offers an encyclopedic comparison of HM
approaches.

Though techniques for linking mechanistic and data-driven tools are
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as numerous as the systems they model, some methods shown promise
across multiple disciplines. In particular, three areas are reviewed in this
paper are: (a) “Hybrid Submodeling” (HSM), (b) “Physics-Informed ML”
(PI-ML), and (c) “Model calibration” (MC). Specifically, HSM contribu-
tions focus on identifying unknown or partially-known process mecha-
nisms constrained by known first-principles equations (typically, a
system of differential equations representing conservation balances)
(von Stosch et al. 2014b). PI-ML is in many ways a synonym to HSM, but
typically refers to techniques for constrained training of deep ML models
(e.g., adding physics-based loss terms, or changing weight parameters or
the ML model structure) based on prior knowledge (Chen et al., 2018;
Raissi et al., 2019). PI-ML and HSM techniques aim to maintain the
advantages inherent to data driven models (low computational cost),
while making models more generalizable and physically consistent. MC
is the process of updating the parameters of physics-based models with
statistical techniques (typically Bayesian methods) to compensate for
the model-data discrepancy (Kennedy and O’Hagan, 2001b). Although
these terms are widely used in the PSE, ML, and Statistics and Operations
Research literatures, respectively, these methods offer many similarities
and potential synergies that we hope to elucidate.

In this perspectives paper we first review the basic principles,
methods, algorithms and applications of HSM, PI-ML and MC. Most
importantly, we have compiled the similarities and differences in the
above areas and provide a comprehensive discussion on the challenges
and limitations of each approach, potential synergies and future per-
spectives. Finally, we present the capabilities of each approach on a
reactor modeling case study.

The sections of this paper are structured as follows. In Data-Driven
Models (Section 2), we discuss purely data-driven approaches for
modeling input-output data and focus on two popular techniques,
namely Neural Networks and Gaussian Process Models that will be used
in this work. Next, in Merging Data-Driven with First-Principles Models
(Section 3) we define First-Principles models and discuss potential sce-
narios for hybridization, as well as methods in HM, PI-ML and MC. In the
Applications section (Section 4) we review areas where HM, PI-ML and
MC have been applied, and in Software Implementations (Section 5) we
provide a list of algorithms and software available for each of the
techniques so far. Following this, this paper applies HM, PI-ML and MC
concepts on a case study for a chemical reactor (Section 6), ending with
a Perspectives discussion and Conclusions (Sections 7 and 8,
respectively).

2. Data-driven models

Purely data-driven models differ from first principles models in that
their parameters are fitted based on available data and often their pa-
rameters do not have a physically interpretable meaning. Thus, data-
driven models are often referred to as “black-box” or empirical models
and are primarily used for extracting correlations from data. The data
may come from designed physical experiments, historical databases, or
designed samples from mechanistic models or simulations, or any
combination of the above sources. One popular framework involving a
data-driven model is to replace a mechanistic model with a data-driven
surrogate (or emulator or metamodel). This surrogate model is trained
using data simulated from the mechanistic model. Surrogate modeling is
primarily motivated by the reduced computation time of the surrogate
model, which can be used to accelerate time-sensitive tasks such as
optimization, monitoring or control. Multiple reviews have been written
on this topic within chemical engineering alone (McBride and Sund-
macher, 2019; Bhosekar and lerapetritou, 2018), and the reader is
encouraged to consult these for specific examples. Note, however, that
surrogate modeling is not considered a hybrid or physics-informed
modeling technique as mechanistic information is not incorporated
into the model training or simulation. However, as done in Schafer et al.
(2019), the surrogate model is free to be merged with mechanistic
models at the time of application.
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Numerous data-driven models exist and can range in complexity
from generalized linear regression (e.g., linear and nonlinear terms that
maintain linearity in parameters) to universal nonlinear approximators
(e.g., Gaussian process, Neural Networks, Random Forests) and many
more. A general distinction between “parametric” and “nonparametric”
models can be found in the literature and will be adopted in this work. A
data-driven model is characterized as parametric if its parameters
associated with their accompanying terms, have some type of physical
interpretation. For example, a generalized linear regression model with
linear and quadratic terms can be considered as a parametric model
since the parameters associated with each term signify the importance of
linear and quadratic effects on the output prediction. On the other hand,
parameters in nonparametric models are not associated with terms that
have any physical meaning, such as the weights and biases of the nodes
of a Neural Network.

This review focuses on only a subset of nonparametric data-driven
models, namely Neural Networks (NN) and Gaussian Process (GP)
models and explores how these can be merged with mechanistic
knowledge. The selection of these two techniques for this review is based
on the fact that they are universal approximators, which implies that
they are flexible and generalizable to be merged with physics in different
settings and applications. This is supported by the fact that NNs and GPs
are by far the most popular data-driven models in the areas reviewed in
this paper. Moreover, it can be argued that parametric models (i.e.,
generalized linear regression models) are in certain cases physics-
informed, if a-priori knowledge regarding the input-output relation-
ships is used to specify which features to include. However, this type of
hybridization is outside the scope of this review, and will only be
mentioned briefly. On the other hand, the non-parametric modeling NNs
and GPs are less restricted and can be modeled as black-boxes, or purely
data-driven. For completeness, a brief overview of the NNs and GPs is
provided below.

2.1. Gaussian process models

Gaussian Process (GP) modeling is a powerful tool to model proba-
bility over functions under the Bayesian framework (Rasmussen and
Williams, 2005). Due to its flexibility, a GP model can approximate an
arbitrary continuous function (Karniadakis 2020b) and capture
nonlinear dependencies between inputs (Gorbach et al., 2017). In
addition, its probabilistic nature enables the incorporation of different
sources of uncertainty (e.g., parameter uncertainty and experimental
uncertainty) as part of the model (Higdon et al., 2004). Gaussian Process
Regression (GPR) models the relationship (f) between the inputs X =
{x0}Y and the outputs ¥ = (y'V,y® ... y®™)T Here, X is a collection
of N sampled inputs x? and Y is a collection of the corresponding N
observed responses y) where i = 1,2, ...,N. GPR models the mapping
f:X-Y. Each x¥ is a p-dimensional vector that contains the input
variables of the system, x = (x(li),xg), ey xg))T, and we assume that
each observation y( is scalar for simplicity. GPR is a generalization of a
multivariate Gaussian distribution over functions (Rasmussen and Wil-
liams, 2005), where for any finite selection of points x(1), x(?), ..., x™)
(Y(x), Y(x@), ..., Y(x™))" =
U,y y®")T follows the multivariate Gaussian distribution
(MacKay, 2003). For noisy observations Y, independent and identically
distributed (i.i.d) Gaussian noise & ~ N(O,o—ﬁ) can be introduced to
capture the measurement noise: Y = f(X) + ¢. GPR starts by assuming a
prior distribution over function f that we wish to learn as follows:

the observation vector Y =

pfIX) ~ N(m(X), £(X,X)) €]
In Eq. (1), each element of the kernel matrix X(X,X) describes the
covariance between two outputs sampled in X. If the popular squared

exponential (SE) kernel is used, (i, j)th element of N x N covariance
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matrix (X, X) is calculated as (Eq. (2)):
)5 () = K{x0,29)

2
+ 0'55[/

(X, X) = cov(f(xC @

where §; is a Kronecker delta (55 = 1 iff i = j, otherwise 0). We call ¢ =
[t2,wq, 62] as the hyperparameters of the GP. Different types of kernel
functions (i.e., constant, Matern, periodic and many more) can be used
to encode specific characteristics (e.g., smoothness, periodicity) of the
underlying function f. Once the optimal parameters have been identi-
fied, given training measurements Y at sampling locations X, function
values f. at new test points X, can be predicted by (Eq. (3)):

Y m(x) ] [ZX.%) + i1
- N([m(&)]’[ 2(X.,) ) ®
To optimize the hyperparameters of a GPR model, the Bayesian
updating scheme is used. By conditioning the joint Gaussian prior on the
observed data points (X, Y) (i.e., Bayesian update) (Rasmussen and
Williams, 2005), we get the conditional distribution (i.e., posterior
predictive distribution) of f,. The core step of the methodology, is the
update of the prior distribution (belief) over function f (i.e., p(f|X)) to
the posterior distribution p(f|X, Y) based on the given observation data
X,Y) (Eq. (4)).

YIS, X0p(1X) _  p(YIf, X)p(1X)
p(Y[X) Jp(YIf, X)p(fIX)df

In Eq. (4), p(Y|f,X) is the likelihood function, p(Y|X) is the marginal
likelihood function, and p(f|X, Y) is the posterior predictive distribution.
The posterior predictive distribution f. at test points X, follows a
Gaussian distribution as shown in Eq. (5):

(X, X,)
(X, X.)

LIXLX, ¥~ N(m(X*) + (X, X)[E(X, X) + 021] !

| ®)

(¥ = m(X)), Z(X.,X.) — Z(X., X)(Z(X, X) + 621 Z(X,X*))
The hyperparameters ¢ of GPR is often estimated by maximizing
marginal log-likelihood function (Eq. (6)):

¢ = argmax|logp(Y|X)] = argmax[ - 7log|2 X, X)+ 00| - (Y —m

¢
X)) [E(X,X) + 621] " (Y — m(X)) — %vl()an'}

(6)

For the noise-free observations, ¢2 can be fixed to with zero.

2.2. Neural networks

Artificial neural networks (NN) (Krogh, 2008) are non-parametric
regressors that have received significant attention as computational
resources have grown. These models have excelled in Big-Data appli-
cations such as natural language processing, imaging, and automation
(Goldberg, 2017; McCann et al., 2017). Due to their feature of being
universal approximators (Cybenko 1989), NNs are capable of modeling
complex, nonlinear relationships in high dimensional spaces, provided
that there is a deterministic relationship between inputs and outputs and
sufficient/representative training data. The mathematical foundation of
a NN is based on the multi-layer perceptron model (Grossberg, 1988).
Fig. 1 provides a visual representation.

Here a simple two-layer model is shown that can be used to connect a
set of inputs to outputs. Input nodes feed the hidden nodes as a sum of
bias parameters z, and i= 1, ..., D inputs xp multiplied by j=1, ..., M,
corresponding weights w;; (represented as lines). The resulting value at
each hidden node passes through an activation function (h(x)) before
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Fig. 1. Neural Network structure showing input, hidden, and output variables
represented by nodes. Weights are represented by connecting lines and biases
by dark nodes (xo,zo) (Adapted from Bishop-Pattern Recognition and Machine
Learning (Bishop 2006)).

feeding the output layer, which again has its own activation function
(6(x)), and weight and bias parameters corresponding to the number of
outputs, k =1, ..., K. Thus, the NN output can be mathematically derived
as a function of input and network parameters, as shown in Eq. (7), for a
2-layer NN.

M
ye(x,w) = 0(214/,\/ (Zw X+ 1)> +Z,(j]>> (7)
=1

The choice of the activation function can significantly affect the NN’s
predictive performance. Common activation functions include sigmoids,
such as the logistic function, softmax function or hyperbolic tangent.
These are continuous functions that mimic the behavior of biological
neurons that turn on and off. In large-scale deep NNs, the piecewise
linear ReLU activation function has been used widely to speed up
training of network parameters, since sigmoid functions can present
vanishing gradient problems (Hochreiter, 1998). Eq. (8), which shows
the explicit form of a NN predictor can be trained by minimizing an
objective function that captures the error between predictions and data
(loss function). A single output loss function is shown below, where y; is
the model prediction, y, is the true value with N total data points.

N
Z o= (8)

The mean-squared error (MSE) is commonly used for regression
applications, where the goal is to minimize error between model pre-
diction and the true value in the dataset. Cross entropy loss functions are
often used for classification models with discrete outputs. Using the
chain rule, the gradients of the objective function with respect to model
weights are evaluated (Vf(w)). Weights are most commonly optimized
using the gradient descent method Eq. (9), while high-performing al-
ternatives also include genetic algorithms and quasi-Newton methods.

PMSE = f(w

Wr+l — WT _ an(wr) (9)

Hyperparameter # denotes the learning rate, which controls the step
size in the optimization routine. NN evaluation, gradient calculation,
and parameter updating continues iteratively until a finite set of training
iterations has been reached or an objective function tolerance is
satisfied.

3. Merging data-driven with first-principles models

There are numerous ways to merge first-principles and data-driven
tools for modeling, which span the entire gamut of applications in
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science and engineering where data is available and expert knowledge
can be communicated in mathematical form. First, let us define the types
of first-principles models discussed in this contribution. First-principles
models in this paper refer to models derived from fundamental laws of
physics, chemistry, thermodynamics, kinetics and transport phenomena,
such as mass balance and energy balances. The terms “mechanistic”,
“engineering”, and “physics-based” models are used in the literature to
describe such models and are used interchangeably in this paper. These
models come in different forms, such as fundamental algebraic equa-
tions, or a system of Ordinary or Partial Differential Equations (ODE or
PDE), or a combination of both, to form a general nonlinear algebraic
partial differential system of equations (NAPDE). Depending on the level
of the modeling detail, or fidelity, a first-principles model can be in the
form of a large complex computer simulation, with embedded hundreds
of different equations and numerical techniques coupled to produce
outputs, such as a Finite Element Method (FEM) model, a Computational
Fluid Dynamic (CFD) simulation, or a Discrete Element Method (DEM)
simulation. While first-principles models are available in different levels
of fidelity and accuracy, in this work we will refer to any model derived
based on fundamental knowledge as a first-principles model. Although
this contribution will focus on methods for systems with continuous
dynamics, there is no prohibition that such methods could not be
extended to stochastic systems or systems with discrete or non-
continuous relationships.

Broad surveys of hybrid approaches to integrate various types of
theory and data can be found in Karpatne et al. (2017), Willard et al.
(2020) and Riiden et al. (2019). Those surveys show that there are
numerous proposed approaches which are used to inform training of
data-driven models with physical knowledge, several of which are
strongly application-dependent, of which only a few are covered in
detail in subsequent sections. We limit our review to hybridization
techniques that involve the presence of a spatio-temporal and/or alge-
braic mechanistic model that is used in some way during the training
process (i.e., in the form of a constraint, or in combination with a
data-driven component).

The main reasons for merging mechanistic knowledge with data-
driven knowledge are ultimately better predictive ability of the final

Surrogate/Emulator:

Formula: Y(x) = DD(x; ¢)
Purpose: Replace first-principles
model with data-driven model using
high-fidelity data from first-principles fidelity data
model

A) B)

Physics-Informed Machine Learning
Formula: Y(x) = DD(x; ¢)

f(x,0) — DD(x; ¢) ~ 0
Purpose: Replace a PDE/ODE with a
data-driven model using first-principles
model and optionally experimental data

Structuring

model

D) E)

Assimilation/Correction:

Formula: Y(x) = f(x,0) + DD(x; ¢)
Purpose: Find relationship using data-
driven model between high and low-

Formula: Y(x) = DD(x, f(x, 0); ¢)
Purpose: Estimate relations using a
data-driven model with physical
constraints embedded in data-driven
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hybrid model (especially with reduced data requirements or in the
presence of noise), and/or improved interpretability of the hybrid
model. Depending on the structure of the known and unknown parts of
the system, or the reason for building a hybrid model, there are multiple
structures of hybrid models found in literature. In the next section we
attempt to delineate these different structures and discuss them with
respect to different methodologies.

3.1. Different structures of combined data-driven and first-principles
models

Building models to find correlation or causation between system
inputs and outputs is known by many names including model fitting,
training, parameter estimation, statistical inference, supervised
learning, or regression. Even within the subclass of regression-based
problems, various methods exist to merge data and physical insights.
The most prominent of these are categorized in Fig. 2. Each of these
schemes is reviewed in depth in this article. However, we first briefly
discuss here different motives for applying these methods.

Fig. 2 introduces general notation that will be used throughout this
article for describing hybrid modeling formulas. In Fig. 2, the output of
each hybrid model Y is considered a function of system inputs x.
Depending on the framework, the final predictive model may be a data-
driven model DD(-) (if first-principles is only considered during training)
with parameters ¢ or a data-driven model combined with a first-
principles model f(-) with mechanistic parameters 6. The terms 6 and ¢
are unique to the calibration framework and refer to the model
discrepancy and error function, respectively.

While no graphic could possibly capture all hybrid approaches and
some approaches have no consistent literature definition, we list com-
mon hybrid approaches using Fig. 2 as a guide.

e Scheme 2A: A data-driven surrogate model is used to create offline a
replacement model for a mechanistic model, which can then be
simulated faster online than the original mechanistic model. The
surrogate model is trained only on data and no further considerations
or constraints are imposed to embed physics.

Estimation:

Formula: Y(x) = f(x,6,DD(x; ¢))
Purpose: Estimate unknown phenomena
within a first-principles model using a data-
driven model

Q)

Calibration

Formula: Y (x) = f(x,0; ;) + 5(x; ) + €
Purpose: Calibrate first-principles model with
high-fidelity data by updating parameters of
MM or GP and introducing discrepancy and
error function Y

Fig. 2. Structure, notation and motivation for six hybrid modeling scenarios addressed in this paper.  and ¢ represent the parameters of the first principles and the
data-driven model, respectively. DD refers to Data-Driven Model and MM refers to the Mechanistic Model. Note that multi-fidelity data (Y, : low-fidelity data from
computer simulation, Y: high-fidelity data from experimental observations) are considered for MC.
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e Scheme 2B: When a mechanistic model is available, but fails to
accurately capture system behavior, a correction scheme may be
applied by modeling the residual between low-fidelity mechanistic
model and data via a data-driven model. Both the mechanistic model
and data-driven correction are simulated jointly to produce the
corrected output. If only the residual information is required, the HM
scheme follows the scheme in Scheme 2B

Scheme 2C: Like the hybrid correction scheme, this approach creates
a model with data-driven and mechanistic components. However,
unlike the correction scheme, the output of the data-driven compo-
nent aims to model a specific phenomenological relationship,
yielding a more interpretable output.

Scheme 2D: Similar to the scheme 2A in that a data-driven surrogate
model replaces a more complex mechanistic model. However, PI-ML
is more involved in that it accounts for mechanistic constraints
during training. In recent years, of special interest is when f(x(t), 6)
represents a system of differential equations and methods in deriv-
ative estimation (in particular, automatic differentiation) must be
used to ensure the data-driven model is a solution of the differential
form of the mechanistic model.

Scheme 2F: The Structuring approach builds known mechanistic
relationships (i.e., constraints) into an otherwise data-driven model.
Although applications for this approach are more narrow than other
hybrid approaches, when appropriate this scheme can improve
interpretability over a purely data-driven approach while identifying
both causal and correlative relationships. Depending on the
embedded structure, scheme 2F may call upon similar methods as the
PI-ML approach.

Scheme 2E: Model Calibration calibrates a low-fidelity mechanistic
model by utilizing both low-fidelity data (from the mechanistic
equation) and the high-fidelity data (from the experiment) to
generate high-fidelity output. It differs from the Correction scheme
in its use to fit or ‘calibrate’ unknown parameters of the mechanistic
model. Moreover, it attempts to more explicitly distinguish sources
of error by separately modeling discrepancies due to data uncer-
tainty and model uncertainty.

3.2. Hybrid (sub) modeling

Introduction

The framework most frequently associated with the keywords hybrid
modeling in academic literature consists of constructing models that have
distinct mechanistic and data-driven submodel(s). This framework is
frequently referred to as hybrid semi-parametric modeling, or simply
hybrid modeling (HM). To distinguish this method from other methods
discussed in this review, we refer to this framework as hybrid sub-
modeling (HSM) and the individual models merged to construct the HM
as submodels (SMs). Hybrid models should not be confused with hybrid
systems from control theory, which refer to control problems with both
discrete and continuous decisions (Goebel et al., 2009). HMs may consist
of multiple data-driven models, mechanistic models, or combinations
thereof. Methods for combining multiple data-driven models have been
reviewed extensively elsewhere (Hajirahimi and Khashei, 2020; Tasci-
karaoglu and Uzunoglu, 2014; Deb et al., 2017; Zendehboudi et al.,
2018). Instead, this review focuses on HMs that merge both mechanistic
and data-driven sub-models.

Methods

Applications in model building for process systems engineering (PSE)
that call for HSM can generally be divided into two categories: mecha-
nism estimation and mechanism correction. In the case of mechanism
estimation, the modeler has available a mechanistic model (e.g. a series
of conservation balances) within which one or more physical relation-
ships is unknown or partially-known (e.g., a reaction rate or friction
term) and estimates the unknown phenomena using a data-driven
model. Alternatively, if the mechanistic model is available, but there
exists a substantial discrepancy between observed data and mechanistic
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model predictions, the data-driven model is used to model the discrep-
ancy (Su et al., 1992; Lee et al., 2005; Duarte et al., 2004; Chen et al.,
2004). This latter formulation, sometimes referred to as discrepancy or
residual modeling, can be viewed as a more general version of mecha-
nism estimation and is herein referred to as mechanism (or model)
correction. Naturally, formulations that combine mechanism estimation
and correction have also been proposed (Thompson and Kramer, 1994;
Wang et al., 2010; Chen and Ierapetritou, 2020). Egs. (10)-(12) show
potential formulations of each for the case where the HSMs can be
modeled by differential equations.
Mechanism Estimation
dx
o = (), ¢(1),6,DD(x(1), $)) a0

Mechanism Correction

dx
E:f(x(t)rc(t)!a) an
XAttt = DD()CM ¢) 12

In the above equations (Egs. (10)-(12)), the state variables x are
modeled by mechanistic model f(), which is a function of the external
forcing (i.e., control or operating) variables c(t), mechanistic parameters
0, and data-driven relationships parameterized by ¢. It is worth noting
that mechanistic parameters y can be constant values or represent
mechanistic relationships with parameters that must also be estimated.
When using formulas of the form of Eq. (10), the mechanistic and data-
driven relationships must be evaluated simultaneously as the differential
equations are integrated. Conversely, in the mechanism correction
framework (Egs. (11) and (12)) the mechanistic SM can be simulated
independently of the data-driven SM; the outputs of the mechanistic
model at time t are used as inputs to the data-driven SM to predict
process conditions at time t+ At. The data-driven submodel can then
predict the system state directly or predict the state residual, which are
added to the mechanistic submodel predictions for the final state pre-
diction. Schematic representations of the above equations are presented
in Fig. 3.

While not representative of all HSM arrangement possibilities, HSM
arrangements depicted in Fig. 3 attempt to portray a general class of
methods for arranging HSMs for modeling dynamic data. Notably, many
authors choose to distinguish frameworks in Fig. 3 based on whether
information is exchanged between SMs “in series” or “in parallel” (von
Stosch et al., 2014b; van Can et al., 1997). However, as can be seen from
Fig. 3, this can be an oversimplification since HSM for model estimation
and model correction often exchange information in ways that are both
serial and in parallel. This is especially true for differential equation
models with mechanistic and data-driven terms. For these hybrid DEs,
relationships between SMs are generally recursive and coupled and thus
the relationship between data-driven and mechanistic terms are likewise
recursive rather than serial or parallel. This has been acknowledged by
other authors, preferring to use ‘integrated hybrid models’ (Quaghebeur
et al.,, 2021; Quaghebeur et al., 2022) or ‘universal differential equa-
tions’ (Rackauckas et al., 2020; Bangi et al., 2022) to describe hybrid
differential equation models. To avoid possible confusion, we use
mechanism estimation and correction to distinguish the end use of the
HSM framework. A study by Agarwal et al. exhaustively compared
possible ways to arrange hybrid submodels for applications in modeling
and control (Agarwal, 1997).

Whether used for mechanism estimation or correction, building the
HSMs follow the general steps of data preprocessing, model formulation,
model-fitting, validation, and testing/implementation. Preprocessing
can be further divided into steps for outlier removal, interpolation of
missing data, and feature selection. Bollas et al. demonstrated an
approach for identifying significant features when constructing HSMs
(Bollas et al., 2003). Preprocessing can sometimes include steps to
correlate measurable observables to unmeasurable quantities of interest,
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Fig. 3. Information flow between submodels for HMs for (a) mechanism estimation and (b) mechanism correction.

using a combination of data-driven and mechanistic modeling, creating
the equivalent of a soft sensor. When these correlation models are
combined with an overall system model, they may be referred to as
submodels of the HM (Meng et al., 2019; Thompson and Kramer, 1994;
Gibert et al., 2016; Lopez et al., 2020).

Challenges

An important question to ask is what role the mechanistic SM plays
during training of the data-driven SM. Merging SMs during parameter
estimation invariably increases the modeling effort and compute time.
The answer generally depends on whether the features of the data-
driven model can be measured directly. In the case of mechanism
correction, the residual often can be computed with a pretrained
mechanistic SM and measurement data, and the data-driven SM is
trained separate from the mechanistic SM. However, when large gaps
exist in measured data, fitting the data-driven correction model together
with the mechanistic model can lead to improved performance (Wu and
Movellan, 2012).

Likewise, parameter estimation of the data-driven SM for mechanism
estimation can be performed in the presence (Psichogios and Ungar,
1992; Schubert et al., 1994) or separately from (Fiedler and Schuppert,
2008) the mechanistic model relationships. However, for systems
formulated by differential algebraic equations (DAEs) often the
data-driven SM is used to estimate a rate term which is not directly
measured. To avoid using the mechanistic SM during training of the
data-driven SM, early works proposed estimating the rates from state
data, using for example finite differences (van Can et al., 1997). Yet for
highly nonlinear, sparse or noisy data the accuracy of these rate esti-
mates can be inadequate. For such situations it has been shown that
integration of the differential equations during training is essential for
accurate modeling (van Can et al., 1999) and for enforcing physical
constraints (Oliveira, 2004).

When combined training of the data-driven SM with the mechanistic
DAEs cannot be avoided, several strategies are available for managing
computational costs. One strategy, applicable when multiple formula-
tions of the data-driven model are being considered, is the incremental
approach. In this approach, the modeler chooses to first fit multiple data-
driven models separate from other mechanistic relationships and then
selects the best-performing data-driven SM via cross-validation before
training data-driven and mechanistic SMs together (Kars and Marquadt
2008). A similar incremental approach has been proposed when esti-
mating the parameters of both the mechanistic and data-driven SMs
(Yang et al., 2011) as well as selecting candidate mechanisms from a
basis set via sparse regression (Willis and von Stosch, 2017). Another
strategy is to reduce the cost of integrating the DAEs. The integrated
framework proposed by (Psichogios and Ungar, 1992) relies on forward
sensitivity analysis for parameter estimation, which is computationally
expensive since the number of differential equations that must be inte-
grated increases with the number of parameters (Narayanan et al.,
2019). Thus, one way to reduce compute time is to leverage less precise
numerical methods when finer accuracy is not needed. In (Oliveira,
2004), researchers compared the computational efficiency of the Euler
method with a more sophisticated Runge-Kutta-based discretization

method, showing the latter required an increase in computation time by
two orders of magnitude. Other works have investigated methods for
reducing computation with adaptive step sizes (de Azevedo et al., 2015).
Most recently, strategies for reducing compute costs by avoiding inte-
gration of the sensitivity equations altogether have been investigated.
This strategy has been made possible by the recent development of
software integration routines with pervasive automatic differentiation
(AD) (Rackauckas et al., 2018). In brief, by avoiding the integration of
the sensitivity equations, there is potential to prevent the explosion in
computational cost for training DAE models with a large number of
parameters (Rackauckas et al., 2020; Chen et al., 2018).

Overall it should be mentioned that HSM structures should be pur-
sued once the modeler is as sure as can be that any errors are not caused
by local minima of the parameter estimation of the mechanistic model.
In other words, it is worth applying multi-start local or global optimi-
zation methods, to find the optimal parameters of the mechanistic model
before deciding to add data-driven corrections. In most cases, HSM
methods are pursued because it is known a-priori that some simplifying
assumption has been made, and/or it is very expensive or impractical to
identify the fully mechanistic model for a certain system.

As a final consideration, it is often the case that both the mechanistic
and data-driven SMs have parameters that require identifying (for ex-
amples see Yang et al., 2011). However, works that simultaneously train
the mechanistic and data-driven submodels predominantly assume that
the mechanistic model has no parameters or that their parameters are
fixed at known values. Thus, additional research is needed to weigh the
merits of schemes that estimate parameters, whether simultaneously or
sequentially, of multiple SM types. While identifying mechanistic pa-
rameters offers the potential for increased interpretability, a foreseeable
challenge is the presence of multiple local minima of the data-driven SM,
which may make finding meaningful values of mechanistic parameters
difficult (Francis-Xavier et al., 2021). If greater interpretability is needed
than what can be offered by the HSM paradigm, it may be advantageous
to use HSM as a data-driven means to a more mechanistic end (Bradley
and Boukouvala, 2021) rather than as an end in itself.

If the data available for training the DD components of the HSM
contain noise, HSM structures are advantageous over pure black-box
surrogates, especially when the DD component is trained together
with DE constraints. However, it is important to ensure that in all cases a
regression-type DD component is employed, and appropriate tuning of
its parameters is performed using cross-validation procedures, to ensure
overfitting is avoided.

3.3. Physics-informed machine learning

Introduction

An area that has gained significant attention in recent years is
Physics-Informed Machine Learning (PIML). It has emerged as a way to
take advantage of major advances in ML for the purposes of surrogate
modeling and system identification, while still enforcing physical
knowledge that is known about the system at hand. This can assuage
concerns that ML approaches abandon all of the useful information
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given from first principles models or that data-driven models may give
erratic results. While some of the proposed mathematical foundations
for enforcing differential-equation physical constraints or knowledge (e.
g. boundary and initial conditions) into ML models have been around for
decades (Lagaris et al., 1998), increased computational power, major
break-throughs in ML, and the power of automatic differentiation
(Baydin et al., 2017) has allowed for PIML models to show promise
across many disciplines and applications. These models incorporate
deep-learning architectures such as neural networks or Gaussian pro-
cesses, but also leverage known physical constraints specific to the
application. This may be particularly useful in applications where the
underlying physical models are too expensive to solve using traditional
methods or where first-principles knowledge is helpful yet insufficient in
predicting relationships between inputs and outputs. Major work has
been done in the areas of differential equations, physics, power systems,
and robotics. Many process systems engineering models rely on analo-
gous conservation balances that can also be formulated into a PIML
model.

Methods

Standard deep-learning models take labeled data and map the re-
lationships between inputs and outputs. Labeled data refers to data
points that have a measured or ground-truth output, which is very useful
for training, validating and testing against an objective measure of
model accuracy. Even when input-output relationships are highly-
nonlinear and not completely understood, ML models have shown
great success as function approximators with sufficient labeled training
data. A great insight in the physics-informed ML literature is the ability
to use unlabeled data points in order to penalize constraint violations
over the entire input space of the ML model (Raissi et al., 2019). Unla-
beled data refers to points in the input space without available measured
or ground truth values to compare model predictions to. Though most
ML training routines would ignore parts of the input space without data,
physics-informed training structures can instead enforce general phys-
ical knowledge of the system we know to be true. While many variations
and applications exist, the most common method is to add these
constraint violations directly to the loss function during ML model
training (see Fig. 5). The loss function evaluates how well the model is
performing and is minimized by changing model parameters over the
training routine. By including knowledge directly in the loss function,
the resulting model parameters will be biased towards the embedded
knowledge. This can be thought of as a soft constraint, as there is no
guarantee that it will be satisfied. Instead, the learning task balances the
two learning goals simultaneously: improving model agreement with
data and adjusting model parameters to follow known constraints. This
is useful if the full engineering model is too computationally expensive
to simulate repeatedly. For example, say we want to fit a surrogate ML
model to labeled data with inputs x and t and output y (Eq. (13))

y(t,x) = DD(t,x, ) 13)

Furthermore, in the physical system we are modeling, we know the
functional form of constraints that depends on input or output variables,
such as the generic equation and inequality shown in Eqgs. (14) and (15).

ftxy) =0 (14)

8(t,x,y) <0 1s)

If these constraints apply to the full input domain, this input space
can be discretized and the constraint can be numerically evaluated at the
discretized points, what some in the literature refer to as collocation
points. A loss function with a soft constraint can then be formulated as
shown in Eq. (16).
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In Eq. (16), the first term evaluates the mean squared error between a
set of N labeled data points and the ML model’s prediction and would be
common to the loss function in any regression task. The second and third
terms evaluate the known equality and inequality constraints, respec-
tively, at any unlabeled data point of sets Ny and N, respectively.
Hyperparameters (4,4,,4,) can be adjusted to control the relative weight
of these terms. In all deep learning models, finding optimal hyper-
parameters can be expensive and most methods simply consider grid
search techniques to balance over and underfitting of validation data. In
this way, the mechanistic terms in Eq. (16) can be treated the same as
regularization terms used in fully DD models.

A more rigorous variation of the soft constraint method outlined
above uses Lagrangian optimization theory and the hyperparameters
become Lagrangian multipliers (Fioretto et al., 2020). Depending on the
final values of A’s, this method can provide some level of guarantee for
the constraints at the training values. It also may avoid some
ill-conditioning issues in the simpler penalty approach. A full description
of this Lagrangian method applied to deep learning models can be found
in (Fioretto et al., 2020) and the underlying theory in Freund (2004).

Another common way to embed physical knowledge into ML models
is to pre-train, or initialize, model parameters. This could be done using
a subset of data collected from a single larger system or using a separate
data set from a system known to share physical characteristics with the
target system. Since many of the ML algorithms depend on stochastic
gradient descent, a pre-trained model can help to avoid local minima
that don’t obey physical knowledge. This is especially helpful when
fitting deep ML models to sparse data and is often called transfer
learning. A full review of transfer learning can be found in (Pan and
Yang, 2010). This idea has further been used in chemical engineering
literature under the term model migration (Lu et al., 2009), where their
goal is to utilize underlying physical knowledge of an old process model
to inform their new process model, then use a small data set to calibrate
new process parameters and conditions using NNs as surrogates. In (Luo
and Gao, 2015), model migration is explored for Gaussian process
models used to predict chemical reactor performance. A GP model is
trained under certain concentrations and temperatures, then model
migration is used to make predictions at extrapolated points. Further-
more, the authors explain an approach to perform model migration and
process optimization simultaneously.

Another area of research under the umbrella of PIML has looked into
designing the architecture of ML models to confer known physical
knowledge (Xia et al., 2008). This is the Physics-constrained Structuring
approach depicted in the HM comparison figure presented earlier
(Fig. 2, scheme E). By leveraging part of the ML model to impose physics,
the ML model becomes more interpretable while guaranteeing domain
knowledge is satisfied. This approach is especially relevant to NN
models that are highly customizable and modular in structure. A simple
example of this could include the use of ReLU or softmax activation
functions, to enforce non-negativity in output or intermediate variables.
Jia and co-workers (Jia et al., 2020) uses this idea when modeling the
density of water as a function of lake depth to ensure their prediction
model monotonically increases in density as a function of depth, as this
is a well-known fluid property. Similar ideas are used to enforce struc-
ture in chemical flowsheet models (Wu et al., 2020). Monotonicity
constraints have been systematically applied to other data driven model
structures, such as decision tree models (Potharst and Feelders, 2002).
This algorithm has been implemented into Python packages such as
LightGBM (Hart et al., 2017).

More complex physical knowledge can be built into ML
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architectures, such as local mass balances in differential form. In many
applications, encoder-decoder structures are used to filter out mea-
surement noise and transform data into a lower dimensional, informa-
tion rich space (Vincent et al., 2008; Chen et al., 2018; Kim et al., 2020).
Work in turbulence modeling has used non-trainable layers that
compute the continuity equation to provide constraints that are built
into the model itself (Mohan et al., 2020). A schematic of their approach
is shown in Fig. 4.

In the above schematic, V represents input velocity data, which has

some noise associated with it. V represents the “coarse-grained” repre-
sentation of the velocity after passing through the autoencoder to filter

out noise. A represents the vector potential which is explicitly defined in
the physical fluid dynamics balance equations. Autoencoders are com-
mon when working with black-box models, since it is important to fit
underlying signal instead of data-set noise. They comprise of two parts:
an encoder which takes the input data and recasts into a lower dimen-
sional representation and decoder that transforms the low dimensional
data back into the same dimensional space as the encoder input. Local
coherence in physical data motivates the use of Convolutional Neural
Network (CNN) architectures, as high-dimensional data that has spatial
dependencies on nearby features (e.g. pixels in image processing) use
CNNs s to abstract spatial information from data. The final Convolutional
Neural Network (CNN) has a kernel defined in a way that acts as the V
operator. For a full discussion and explanation of CNNs see (Dhillon and
Verma, 2020). The overall model structure allows a lower dimensional
representation to be found, while still enforcing the continuity equation.
In the same field, researchers have used customized CNNs to incorporate
various physical knowledge, such as uniform motion, rotation, and
scaling (Wang et al., 2020). Their results show significant improvements
in generalizability.

The area with the most extensive literature in Physics-Informed ML
deals with the solution of complex differential equation models. ML
models, including NNs, have long been used in the numerical solution of
these systems due to their characteristic as universal function approx-
imators (Dissanayake and Phan-Thien, 1994; Cybenko, 1989). Many
approaches to this are very relevant to the earlier work of Lagaris et al.
(1998), which formulates a trial solution to a differential equation as
shown below.

w,(x) = A(x) + F(x, N(x, w)) a7

In Eq. (17), A(x) represents initial and boundary condition contri-
butions to the solution, while F represents the functional form of the
solution that is decoupled from these conditions and N represents the
output of the neural network model. The trial solution in Eq. (17) can be
analytically differentiated with respect to the independent variable (x),
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to match the original differential form and from here an unconstrained
optimization problem is formulated to minimize violation of the dif-
ferential equation with network parameters (w) as the decision variable.
The authors demonstrate several functional forms of the trial solution
for first order ODEs, second order ODEs, systems of ODEs and nonlinear
PDEs. It is important that samples from an analytical solution are
available and that the candidate solution can be constructed from the
known differential equation. Subsequent work in this area has increased
the dimensional size of problems solved through this DL method (>200
dimensions) (Sirignano and Spiliopoulos, 2018) and various generalized
algorithms have been developed to automatically generate trial solu-
tions. In (Sirignano and Spiliopoulos, 2018), authors propose a “Deep
Galerkin Method” algorithm which generates random sample points to
avoid the need for traditional mesh methods (intractable in high di-
mensions) and utilizes stochastic gradient descent to find parameters
that minimize squared error between the model prediction and the
analytical solution.

Building off the work of Lagaris et al. (1998), Raissi et al. utilized the
power of automatic differentiation to preclude the need for analytical
derivatives and applied PDE knowledge to feed-forward neural net-
works, which they call “physics-informed neural networks” (PINNSs)
(Raissi et al., 2019). The PINN formulation is analogous to the Eqs. (14)—
(16), where f becomes a differential constraint computed via automatic
differentiation. They show that this is a very powerful technique for
modeling PDE’s when model outputs are differentiable with respect to
model inputs. A schematic of the PINN is shown in Fig. 5.

The authors use sampled points across the problem domain or
“collocation points” to calculate coherence to PDE and BC knowledge,
while using analytical solutions for data. This work uses primarily
Dirichlet boundary conditions. Despite the heavy focus of PI-ML
methods on NN models, Gaussian Process models have also been
employed. In (Raissi and Karniadakis (2017b) Raissi, Perdikaris, and
Karniadakis 2017b), the authors present how numerical Gaussian Pro-
cess regression models can be used to solve PDEs from noisy data. They
use a backwards Euler approximation of the PDE to express each solu-
tion point as a function of previous Gaussian Process prior. Hyper-
parameters in the kernel model are optimized at each step with the
resulting Gaussian Process model able to predict data for the next step.
By linking each time step in this way, PDE knowledge is incorporated
into the DL model. Their results show that for classic physics-based PDEs
accurate solutions can be found with sparse training data. This method
did not perform as well with non-linear operators, since linear approx-
imations must be used. Since then, an inference procedure usually
nonlinear Gaussian Processes has been developed that can be considered
a Bayesian version of PINNs (Yang et al., 2021). One major advantage of
the physics-informed Gaussian process models (PIGPs) is the estimate of

Non-trainable
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—{_

Latent Space
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Fig. 4. Example of enforcing physical knowledge within NN architectures via constraint layers and encoder-decoder layers.
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Fig. 5. Schematic representation of Physics-Informed NNs Used for PDE’s.

uncertainty which is absent in analogous PINN models. A full review on
the comparison between PINNs and PIGPs can be found in Kevrekidis
et al. (2020). Another methodologically related topic is Sobolev training
of NNs (Czarnecki et al., 2017), where the model is trained on not just
state data but also derivative data if available. This may be useful in the
area of network compression, where one wants a smaller network that
best approximates the large model or when computing derivatives of
high fidelity models isn’t computationally prohibitive (Tsay, 2021).

Challenges

Overall, the methods and applications outlined show many current
strengths, along with limitations and areas for future work. Physics-
informed ML show great potential in the field of PSE and can be
directly applied to many already existing research directions. A direct
application includes improving the robustness of PSE surrogate models
which are commonly used to approximate complex unit operations with
the ultimate goal of optimization or control. To be suitable for control, a
model must define the relationship between system states and control-
lable variables. However, PINNs designed for the solution and fitting of
differential equations do not use states but rather independent variables
such as time and spatial coordinates as inputs to enable derivative
calculation. Recent work has sought to extend PINNs to state-space
modeling for control (Arnold and King, 2021), though a comparison
with standard data-driven approaches is lacking. Other PIML ap-
proaches formulate the PINNs as a purely state-space model. These ap-
proaches owe their success to taking advantage of the stationary nature
of the problem (Fioretto et al., 2020) or system symmetry (Lutter et al.,
2019). An issue with these approaches is their complex integration be-
tween the physics and data-driven model may not be extensible to other
systems. Assuming these barriers can be overcome, PIML may enable
PSE surrogates to find optimal values that are more consistent with the
ground truth physics. Model Predictive Control (MPC) is an area where
hybrid model structures can thrive due to their quick computation and
on-line ‘learning’. Analogous to how NN models in robotics control can
be embedded with Newtonian physics balances to achieve
physics-informed online learning, one may imagine incorporating an
energy balance into an ML based MPC model for process temperature
regulation.

On the other hand, PINNSs still share many of the weaknesses of
traditional NNs: lack of interpretability, heavy initial training cost,
challenges with extrapolation, and the requirement of many represen-
tative data or collocation points. Though they can mitigate some of the
previously listed concerns, it is doubtful that they can displace many of
the heavier first-principles models that have long been accepted
academically and in industry. While PINNs have a great number of
studies for systems well-posited physical relationships, there is sparsity
of studies in areas relevant to chemical process systems, such as opti-
mization of systems with time-varying control actions, disturbances, and
poorly understood physics. Initial studies comparing PINNs with HSMs

employing numerical methods have shown PINNs to be less flexible and
less accurate (Mitusch et al., 2021). Another study explored the forward
and inverse solution of a reaction system using a modified PINNs
framework and illustrated how unmeasured state data could limit the
identifiability of the fitted reaction parameters (Gusmao et al., 2020). A
more general treatment of challenges associated with PINNs can be
found in (Karniadakis et al., 2021).

However, there has also been some work to overcome these weak-
nesses for specific applications. Addressing the issue of lengthy training
times, conservative PINNS (cPINNs) (Jagtap et al., 2020) and extended
PINNs (XPINNs) (Karniadakis 2020a) are frameworks for sub-dividing
the spatio-temporal domain into intervals regressed by separate NNs.
Although not demonstrated, this approach lends itself to high paral-
lelizability. More difficult to quantify, however, is the added time
required to train hyperparameters of multiple NNs and decide how to
properly decompose the spatio-temporal domain into an appropriate
number of sub-intervals. Previously discussed Langrangian Dual tech-
niques can improve and automate hyperparameter training. Further
speed-ups in training and prediction accuracy have been achieved by
employing adaptive activation functions (Jagtap et al., 2020) and
modifying gradient contributions (Wang et al., 2020).

In all these examples, the authors demonstrate that the PINN
framework supersedes the accuracy of purely data-driven approaches
and requires less data. They also simulate faster than and are competi-
tive in accuracy to the analytical model, at least for most interpolation
tasks and certain extrapolation tasks (discussed later in Section 7).
Moreover, in certain circumstances the PINN can predict more accu-
rately than the analytical model. For example, in a robotics control study
the PINN was shown to outperform the control actions of an analytical
model since the PINN was able to be updated online (Lutter et al., 2019).
Work on power systems have shown PINNs to generate far more accu-
rate solutions than other reduced order modeling methods (Fioretto
et al., 2020). In many ways, physics-informed ML represents a bridge
between two major areas of scientific computing which may enable
tackling real-world problems requiring both theoretical and empirical
resources.

3.4. Model calibration

Introduction

In Model Calibration (MC), the typical scenario includes three
components (a) a complex computer simulation that contains many
equations and unknown parameters (e.g., Finite Element Model,
Computational Fluid Dynamics model, system of Partial Differential
Equations, etc.), (b) observed or experimental data (considered high-
fidelity data), and (c) surrogate model(s) (typically GPR model(s)) to
calibrate the computer simulation and capture the discrepancy between
the computer simulation and the observed data. Computer simulations
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are essential to understand and predict complex systems (Santner et al.,
2003), however, simplifying assumptions often used in computer sim-
ulations cause a discrepancy between the simulation output and the
experimental data. Moreover, the parameters of the computer simula-
tion are often unknown. In this scenario, a GPR model can be trained
using the low-fidelity simulation output and high-fidelity experimental
data, by adjusting the parameters (i.e., calibration parameters (6), GPR
hyperparameters (¢)), with the ultimate goal of calibrating the simula-
tion model to predict the high-fidelity experimental data. MC can be
viewed as an example of multifidelity modeling in the sense that it
considers both high-fidelity and low-fidelity data.

Methods

Variable inputs (x) and the calibration parameters (¢) are two kinds
of inputs that are required to run a computer model. Variable inputs (x)
are the inputs that can be observed or often controlled when conducting
physical experiments. Calibration parameters () refer to any physical or
tuning parameters that are unknown or not measurable from the ex-
periments but are used/required to run the computer simulation. As an
illustrative example, when designing a distillation column for the sep-
aration of two unknown chemicals, let us assume that the number of
stages, the reflux ratio, and the enthalpy of chemicals are needed to run
the simulation. The number of stages and the reflux ratio are examples of
variable inputs, while the enthalpy of chemicals are example of cali-
bration parameters since true values are unknown to the modeler but are
required to run a simulation. Since the true values of the calibration
parameters are unknown, there is no way to observe the computer
simulation output without specifying them (Kennedy and O’Hagan,
2001a). To run the simulation, researchers may try a brute force
approach wherein they choose multiple values of the calibration pa-
rameters and settle for the value that minimizes the error between the
computer simulation output f(x, §) and the real data Y(x). However, this
approach is challenging when the dimension of calibration parameter
space (0) becomes large, or each computer simulation run is expensive.
To overcome this issue, Kennedy and O’Hagan (Kennedy and O’Hagan,
2001a) proposed a combined framework to calibrate the computer
model using the observed data (Eq. (18)):

Y(x) =f(x,0) +6(x) +¢ (s
where Y(x) is the true output of the system, f(x,6) is the computer
model output, §(x) is a discrepancy function to capture errors between
the model and the true output, and ¢ is the measurement error which
captures the effect of noise or failed-to-include variables in the system
(Joseph and Yan, 2015). In the case where f(x,6) is an analytical
equation, this can be directly embedded within Eq. (18). However, the
most common scenario, which we also assume here, is the situation
where f(x, 0) is expensive or complex computer model, which is repre-
sented by a GPR surrogate. The discrepancy function §(x) is also typi-
cally represented by another GP surrogate.

We assume computer simulations Y; are observed at set of points S;

= [(x;, 01), (x5, 02)..., (X Oy)]and experimental observations Y are
observed at S3(0) = [(x1,0), (x2,0)..., (xu,0)] with some unknown cali-
bration parameters 6. Note that ¢ are generally assumed to be constant
over the experiment. For each trial of computer experiments, computer
simulation output y; in Y = [y1,¥2,...,yn]| is observed for (x}, @i) when i
=1,2,...,N. When we construct joint data vector d with simulation data
Y, and the observed data Y, d = [Y;, Y] T the likelihood for the vector d
follows the distribution in Eq. (19).
P0. #) =i e~ d - )5 =) a9
Note that we have two sets of parameters (0: calibration parameters,
¢: GP hyperparameters) in the model. The mean and variance of the

likelihood for the vector d are shown in (Egs. (20) and (21)).

10

Computers and Chemical Engineering 166 (2022) 107898

E(d|0, ¢) =, — {mﬁféig))] + {mﬁ?sz)] 20)
| Ee(S1,81) Z:(82(0), S1)
artdlo- 4)= {2/-(51 $:(0)) Z(5:(0),5:(0)) + 25(5,52) + Gl
@

where my(-) and ms(-) denotes the mean function of computer simulation
and discrepancy function, respectively; X(S1,S:) is the covariance
matrix between set of points in S;; X¢(S1,S2(6)) is the covariance matrix
between set of simulation points in §; and experimental observations in
S2(0); Z5(S2,S2) is the covariance matrix between set of points in Ss.
Note that ¢ is not included in covariance matrix X;(Sz,S2) because
discrepancy function § is not a function of 6. ¢2 is the noise variance
where ¢ ~ N(0,62), and Iy is the M x M identity matrix.

If we use a squared-exponential kernel (See Eq. (2)) for the two GPR
models (f and §) and assume noise-free computer simulation data,
ke((-, +),(-,+)) and k;(-,-) become:

(5.8, (510) = exp (5 pwra o~ )"+ -07]) (22

ks (x[,xj) = Tﬁexp( — %w{; (x[ — x/-)z) (23)
where the hyperparameters of each kernel are ¢y = [rfz.,wf,l.,wf, »] and
¢5 = [t2,ws]. From the joint distribution of the computer simulation Y;
and experimental observations Y, the joint posterior distribution of the
GPR hyperparameters ¢ = ¢, ¢;, 62] and calibration parameters 6 is
obtained (Eq. (24)).

P(0, ¢ld)xP(d|0, p)P(6, ¢) = P(d

0, p)P(O)P($) 24

In Eq. (24), an independent assumption between priors (e.g., P(6, ¢)
= P(0)P(¢)) is often used to facilitate the calculation for the posterior
distribution (Higdon et al., 2004; Kennedy and O’Hagan, 2001a)

While an analytical expression for P(6, ¢|d) can be obtained from full
joint posterior distribution of ¢ and 6, it is an intractable function of ¢
(Kennedy and O’Hagan, 2001a). Therefore, full Bayesian analysis is
difficult to obtain posterior calibration parameters P(6|d) since it re-
quires multidimensional integration (Bayarri et al., 2007; Higdon et al.,
2004). As a substitite, the Markov chain Monte Carlo (MCMC) sampling
method is often used to estimate a posterior (Diaconis, 2009); however,
it requires expert knowledge and careful tuning of MCMC parameters to
obtain proper posterior distributions (Bayarri et al., 2007; Liu et al.,
2009). One of the popular methods that tackles this issue is called the
modular Bayesian approach (Arendt et al., 2012), which separately es-
timates the GPR hyperparameters ¢; and [¢5,62], and uses the obtained
posterior hyperparameters ¢* = [r/)}, ¢, 6%] to calculate the posterior
distribution of calibration parameters 6. The modular Bayesian
approach is shown in Fig. 6.

If the computer model f(-) is a known mechanistic function with an
explicit functional form, we can directly use the equation given instead
of replacing it with a GP model. A computationally efficient way of
estimating GPR hyperparameters ¢; of the discrepancy function 4,
calibration parameters 6, and experimental noise 62 is to maximize the
joint posterior distribution P(6, ¢|YT) (Joseph and Yan, 2015) (Eq.
(25)).

(6, ¢|Y")xP(Y"|0, ¢)P(0, ¢)

%+, ep( — 07 —1(0) (457 (77 —1(0) ) PO, 9
(25)
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Large Complex Computer Model
4

Y(x) = f(;\f, 0)+6(x)+e¢

4
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Calibrated Model

Fig. 6. Modular Bayesian Approach (Arendt et al., 2012) for model calibration when computer model is replaced with GP.

In Eq. (25), ¢ = [¢h;,02]. Here, P(Y"|6, ¢) is obtained by integrating
out §(x) from the joint posterior.

Fig. 7 summarizes model calibration procedure discussed above.

To balance the objective function, a scale parameter p is often
introduced (i.e., Y(x) = pf(x, )+ 5(x) + €) and it needs to be tuned
together with the remaining hyperparameters. The posterior variance 2,
is an important hyperparameter which controls the interpolating nature
vs. regressive nature of the fitted model. Thus, if a-priori knowledge

exists about the level of noise in the data, an informed prior assumption
regarding this hyperparameter can be imposed, such that the final GPR
model does not overfit the data and smooths out some of the noise. On
the other extreme, if this is set or even fixed to zero, the GPR model will
interpolate all of the data exactly. This will also affect the discrepancy
component in the overall MC model, so it is important to use any prior
information to initialize the MC approach, as well as study the final
solution to identify whether an expected signal-to-noise ratio is captured
in f versus 8. For more mathematical details on MC, please refer to

Y(x)= f(x,0)+6(x) +¢

When f(x, 0) is Complex
Computer Model

}

When f(x, 0) is
simple function

Replace the computer model with a GP model and
set prior for @, ¢, ¢s and e~N (0, 5,%)

Set prior for 8, ¢p5 and e~N (0, 52)

Prior 2
¢ = [¢5, ds, 0] ¢ = [Ps, om]
d=[v,Y]" d=YT
Likelihood P(I6,8) |54 Fexp (_%(d — )" d - m)) P(d16, @) o 55 + . | Zexp (—%(d ~ @) 5 +2:)7H(d - £(0))
Bavesi MCMC
dyestan P(6, p|d) x P(d|6, P)P (6, ) < — Joint Posterior P(6", ¢*|d)
Inference MLE/MAP
1 Modular Bayesian approach 1
Calibrated Y(x) = fop(x, 0% ¢}) + 8p(x; P3) + & Y(x) = f(x,0%) + Sgp(x; P5) + €*
Model e*~N(0,02" e*~N(0,02"

Fig. 7. Model Calibration Procedure. ¢; and ¢; refers to the GP hyperparameters of computer model f and discrepancy function &, respectively. ¢2 is the noise
variance that captures experimental noise.
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Kennedy and O’Hagan (2006).

One of the major advantages of model calibration is its ability to
account for different sources of uncertainty (Arendt et al., 2012), which
exists in almost all problems in science and engineering. Model cali-
bration enables uncertainty quantification from different sources and
helps make a proper decision by checking the degree of confidence and
testing the reliability. The basic model calibration formulation (Eq. (18))
incorporates different kinds of uncertainty, such as the interpolation
uncertainty through the f(x,0) and §(x) terms, the parameter uncer-
tainty through the estimation of the parameter set ¢, and the experi-
mental uncertainty via e. In a similar lens as Physics-Informed ML
methods, incorporation of domain knowledge in MC is done via de-
cisions for the form of prior settings for different parameters and the
discrepancy function. These informative prior settings can help generate
an accurate posterior, and this is similar to the process of pre-training or
transfer learning in NN modeling. A MC structure with GPR models
representing both the expensive computer simulation and the discrep-
ancy have also been used to identify optimal locations for sampling to
update the model parameters (i.e., Informative Experimental Design)
(Chen et al., 2007), and for faster model validation (Chen et al., 2007;
Lee et al., 2019).

Challenges

One of the main challenges in model calibration is that the inclusion
of discrepancy term 5(x) makes the posterior calibration parameter ¢*
hard to interpret. It is difficult to differentiate the effect of calibration
parameters 6* and the discrepancy function §(x) as there can be many
different solutions that produce similar performance of calibrated
model. This is referred to as the “identifiability problem”. Since we do
not know which combination of calibration parameters and the
discrepancy function is true, the system becomes non-identifiable
(Arendt et al., 2012; Kennedy and O’Hagan, 2001a).

Fig. 8 shows different combinations of calibration parameters and
the discrepancy function that explain the same system. The calibrated
model with discrepancy function f(x, 8"; ¢f) + 6(x; ¢5) + €* predicts the
same output Y(x) well but the dynamics of f(x,6"; ¢;) and 5(x; ¢;) are
different. It is shown (Arendt et al., 2012) that adding more simulation
and experimental data for training the model does not solve the iden-
tifiability issue. To improve identifiability, an informative prior (accu-
rate mean and low standard deviation) for the calibration parameter can
be used (Bayarri et al., 2007; Liu et al., 2009). A specific functional form
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for the discrepancy function can also be employed for the discrepancy
function if we have sufficient prior knowledge (Joseph and Melkote,
2009; Xiong et al., 2009). It is shown that identifiability is difficult but
possible for some cases when proper priors for the calibration parame-
ters and discrepancy function are set (Arendt et al., 2012). However,
when the system is complex or not well understood, we may not have
enough knowledge to set the informative prior for the calibration pa-
rameters and the discrepancy function. The identifiability problem often
leads to the lack of interpretability in the model calibration technique.
The physical interpretation of calibration parameters is not recom-
mended since the calibrated value can be far from the true value (Ken-
nedy and O’Hagan, 2001a). As an illustration example, if we set the
molar weight of an unknown chemical as a calibration parameter (6), the
posterior calibration parameter (6*) can be negative, which is not
physically valid.

A desired goal might be to employ MC to identify the cause of a
discrepancy, which would then lead to mechanistic corrections of the
computer simulation, including the addition of terms and parameters in
the computer simulation instead of a discrepancy. This would be the
ideal scenario, and different approaches have been proposed towards
that goal (Lee et al., 2019; Wipf and Nagarajan, 2007; Yi et al., 2011;
Piironen and Vehtari, 2016; Linkletter et al., 2006; Savitsky et al., 2011).
However, this should be done with caution, since it has also been shown
that the interpretation of GP hyperparameters can produce a false
interpretation of the system (Lin and Joseph, 2019).

Overall, prior settings on model parameters and the discrepancy
function are critical for model performance and interpretability. While
informative prior settings can help improve model performance, inap-
propriate settings of a prior may lead to bad predictions and poor
interpretability. However, specifying an appropriate prior is often
challenging when we do not have enough prior knowledge of the system.
The effect of different priors of hyperparameters on the GPR prediction
performance is investigated in (Chen and Wang, 2017) and the authors
concluded that the initial prior setting affects the convergence of the
posterior hyperparameters to the true value. Selecting appropriate
model discrepancy priors that capture missing physics in the system is
also critical in model calibration. A different form of model discrepancy
prior is compared in Ling et al. (2014) and they concluded that the
calibrated parameters can be physically biased if we set inappropriate
discrepancy priors, and as expected, this also affects the extrapolation
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W. Bradley et al.

capability. In addition, the choice of covariance function is a critical
decision since it affects the model performance (Rasmussen and Wil-
liams 2005; Schulz et al., 2018).

High computational cost is another important issue. In standard GPR,
estimation of the posterior includes inverting the matrix [Z + ¢2I], and
the corresponding computational complexity is O(N®) where N is the
number of observations. Since the computational cost is cubically pro-
portional to the number of observations, the model becomes computa-
tionally expensive for a large dataset. In addition, the amount of data
required for reliable analysis grows exponentially as the dimensionality
of data increases (Jin et al., 2002; Higdon et al., 2004).

Although GPR is often considered a good smoothing interpolator, it
has a limited capability in terms of extrapolation. Different factors
including kernel structures can affect the extrapolation ability of GPR
models. If the kernel is not comprehensive to capture the true underlying
correlations, extrapolation performance would be poor (Wilson et al.,
2013). For example, it has been shown that the squared exponential
kernel fails to capture the non-local structure of data (Bengio et al.,
2005). The extrapolation capability also depends on the extendibility of
the discrepancy function, the confidence in the computer simulation and
potential incorporation of mechanistic knowledge into the discrepancy
function (Higdon et al., 2004). How well the model inadequacy (be-
tween experiment and computer model) is captured by the discrepancy
function on the extrapolated region is an important issue (Bayarri et al.,
2007; Ling et al., 2014).

Different research is conducted to mitigate the drawbacks of model
calibration. To increase interpretability, statistical adjustment methods
(Joseph and Yan, 2015), or empirical Bayes methods (Joseph and Mel-
kote, 2009) have been proposed. Also, different frameworks for incor-
porating the discrepancy function have been introduced. For example,
Plumlee (2017) proposes a discrepancy function prior that is orthogonal
to the gradient of the computer model, which shows improved behavior
of the posterior distribution. Sargsyan et al. (2015) utilize model pa-
rameterizations to capture the discrepancy instead of the additive
discrepancy term.

The development of kernels that better reflect reality is an ongoing
research question. Duvenaud et al. (2011) introduce a Gaussian Process
with additive kernels, which improves interpretability and the extrap-
olation performance, by considering a possible set of input interactions.
Closed-form kernels that involve spectral density with a Gaussian
mixture are derived (Wilson and Adams, 2013) for extrapolation and
pattern discovery. The physics-informed Kriging method (Yang et al.,
2018) is proposed, where different realizations of available data are used
for constructing kernels without assuming a specific form for the kernel
function. Recently, active research is conducted to increase the scal-
ability of GPR by finding the pseudo-inputs for the dataset (Gramacy and
Apley, 2015; L’Heureux et al., 2017; Yan and Qi, 2010; McIntire et al.,
2016; Snelson and Ghahramani, 2005; Liu et al., 2018). Further, the
MapReduce framework (Dean and Ghemawat, 2008) has been proposed
with the aim of accelerating the model calibration framework (Cai and
Mahadevan, 2017) when processing big datasets.

MC as a parameter estimation technique has some similarities and
differences from competing techniques, such as pure black-box or
derivative-free optimization (DFO) (Lunderman et al., 2021; Abbas
et al., 2016), or GP-based Bayesian optimization (BO) (Huang et al.,
2021). One key difference in DFO approaches, is that the computer
simulation is treated like a black-box, and one only wishes to learn what
parameter values minimize the mean squared error between the simu-
lation prediction and the available data. Another difference is that un-
certainty is rarely explicitly handled using DFO methods, and no
discrepancy is considered (i.e., assuming the computer simulation is
accurate). Similarly, even though a similarity between MC and BO is the
use of GP models, BO is a less hybrid approach because it directly op-
timizes the parameter values with respect to an output response, while
in MC the mechanistic model states can be incorporated.
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3.5. Other techniques for merging mechanistic knowledge with data-
driven models

In addition to the techniques discussed in this paper, there are other
approaches that incorporate mechanistic information within data-
driven models. A very common approach is feature engineering,
which involves selecting or identifying (using Machine Learning), the
appropriate features (or inputs) to be used to fit a Machine Learning
model (Dong and Liu, 2018). This approach is particularly influential in
fields such as materials science, where large data sets are available
without a-priori knowledge of the true physical descriptors that should
be used to predict material properties (Butler et al., 2018). In PSE, it is
typically likely that the important, controllable inputs to the models are
already known. Associated with feature engineering, are techniques that
perform subset selection for generalized linear regression, that aim to
build generalizable parametric models with additive features that best
describe the data (Cozad et al., 2014; Wilson and Sahinidis, 2017). These
techniques lead to more interpretable models, when compared to
nonparametric techniques such as NNs and GPs, and can be quite
powerful and scalable when some a-priori knowledge is available to
inform the initial “superset” of potential basis functions.

Another relevant research area to hybrid modeling is multifidelity
modeling. Multifidelity techniques are used when multiple types of data
and/or models are available for the same system (ranging from highly
accurate to low-fidelity) and these and the correlation between them are
jointly used to generate overall more accurate models (Peherstorfer
et al., 2018). This approach is very relevant to hybrid submodeling and
model calibration. The concept of developing models that are trained
with various forms of fidelity has been often used for surrogate-based
optimization, showing that learning from different sources of levels of
fidelity of data can expedite the search for an optimal location. Multi-
fidelity techniques have also been directly incorporated within Gaussian
Process regression, or Kriging, via the co-Kriging algorithm that trains a
GP model using various fidelity sources (Stein and Corsten, 1991; Per-
dikaris et al., 2016; Perdikaris et al., 2015; Meng and Karniadakis, 2020;
Lee et al., 2019).

Finally, there is number of noteworthy contributions that attempt to
fuse the physics-based knowledge into data-driven modeling but could
not be categorized within the methods outlined in this paper. Specif-
ically, active research is conducted to incorporate physics-based
knowledge within Gaussian Process Regression models. For the case
where physics-based knowledge is in the form of linear differential
equations, it has been shown that the GP model can be constructed in a
way to adhere such physics laws. The first approach includes the use of a
specific covariance function that meets physical constraints. (Wahlstrom
et al., 2013) embeds divergence and curl-free properties of the magnetic
field by introducing a divergence-free kernel. The second approach
utilizes the well-known properties of the Gaussian process, such as that
the linear transformation of a Gaussian process is also Gaussian process,
to embed the physics-based knowledge (Raissi et al., 2017b, 2017a).
Sarkka (2011) embeds physics-based knowledge as a prior to GPR, while
Jidling et al. (2017) incorporate the linear operator constraints into the
covariance function by introducing another linear operator that fulfills
known constraints. Lange-Hegermann (2020) incorporates the bound-
ary conditions on a linearly constrained GP. The third approach in-
corporates domain knowledge by generating different realizations of the
physics-based model to construct mean and covariance functions, purely
based on the collection of realizations without assuming any covariance
structure (Yang et al., 2018; Tipireddy and Tartakovsky, 2018).

4. Applications
4.1. Applications of hybrid sub-modeling

HSMs have been a been applied to a large and growing number of
applications within chemical engineering, including modeling,
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monitoring, optimization, scale-up and control (von Stosch et al.
2014b). Applications also span most industries that fall under the um-
brella of (bio)chemical engineering, including petrochemicals, metal-
lurgy, wastewater treatment, papermaking and pharmaceuticals.
Applications in these areas have led to a number of general proposed
frameworks (Oliveira, 2004; von Stosch et al., 2012; Abonyi et al., 2002;
Sun et al., 2020) for HSMs, again many based on the original work of
(Psichogios and Ungar, 1992). For a summary of HSM implementations
across different industrial sectors and applications, the reader should
consult pertinent reviews (Zendehboudi et al., 2018; von Stosch et al.
2014b; McBride et al., 2020; von Stosch et al. 2014a; Bangi and Kwon,
2020) as well as a recently published book (Glassey and Von Stosch,
2018).

4.2. Applications of physics-informed machine learning

PI-ML models have been formulated to solve the forward and inverse
problems in physics. In the inverse problem, data from the solution is
given and the model estimates parameter values or conditions. In the
forward problem, the model is given all parameters, initial conditions,
and boundary conditions and it outputs the solution to the differential
equation. Raissi et al. demonstrate their method with case studies such
as the Burgers equation, Schrodinger equation and Navier-Stokes
equation for fluid flow. The authors extend the PINN approach, to
solve fractional advection-diffusion equations (Pang et al., 2019). In
their work, finite elements must be combined with the PINN approach
relying on automatic differentiation, since the chain rule from integer
calculus cannot be applied to fractional calculus. In (Pakravan et al.,
2020), a feed forward NN finds PDE parameters which are fed to a
custom layer that functions as a PDE solver using finite element
methods. This layer is added to the overall NN, allowing for the model to
be trained with the PDE solver embedded. In (Yang and Perdikaris,
2018), deep probabilistic models are used to quantify uncertainty in the
output of a PINN. This method can be used for verification analysis.

In robotics, physics-informed ML models have been applied to sys-
tem control. In (Lutter et al., 2019), neural networks are used to estimate
inertial and force matrices of mechanical systems and the outputs of the
neural network are combined into the physical equations of conserva-
tion (Lagrangian Mechanics). The output is automatically differentiated
with a PID controller to give a control response. In power flow modeling,
Fioretto et al. (2020) use the Lagrangian dual formulation to enforce
Kirchoff’s Current Law in NN models that act as surrogates for the AC
optimal power flow problem. Misyris et al. (2019) use the PINN
formulation to simulate simple power system dynamics. The same
methodology has applied to problems in geophysics (He et al., 2020;
Kadeethum et al., 2020) and cardiovascular modeling (Kissas et al.,
2020). A preliminary study has shown PINNs to be competitive with
adjoint methods for PDE based optimal control (Mowlavi and Nabi
2021).

4.3. Applications of model calibration

The model calibration framework and the Bayesian inference is a
very flexible and powerful tool, and it is widely used in various fields
including energy simulation (Fabrizio and Monetti, 2015; Kim and Park,
2016; Manfren et al., 2013), optical lithography-based manufacturing
process (Matsunawa et al., 2015), composite fuselage simulation (Wang
et al., 2019), methane air chemistry (Sargsyan et al., 2015), CO, capture
(Bhat et al., 2017; Kalyanaraman et al., 2015; Kalyanaraman et al.,
20165 Li et al., 2017), fluid dynamics (Tagade et al., 2013), and Li-ion
cell operation (Tagade et al., 2016).

5. Computational algorithms and software implementations

Due to the large range of potential HSM structures that are depen-
dent on the scenario and the characteristics of the mechanistic SM,
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automated off-the shelf algorithms for HSM are not available. However,
there are many recent developments in computational packages that
significantly expedite the training of HSMs. Specifically, to fit a surro-
gate model (NN or GP) within a differential equation, any DE solver that
tracks parameter sensitivities (i.e., gradients) can be used. However,
parameter estimation of DEs using the sensitivity equations tends to
become inefficient when the number of parameters is large (>100)
(Rackauckas et al., 2018). Thus, recent software that calculates
parameter sensitivities using automatic differentiation and
adjoint-tracking are promising. Software with these capabilities are
limited with notable implementation in Python, TensorFlow and
PyTorch, and Julia via SciML. For more complex differential equation
systems (i.e., PDEs) finite element software with ML extensions are
gaining momentum (Berg and Nystrom, 2017; Mitusch et al., 2021). As
the computational gains of these AD-based schemes are demonstrated,
implementations in other scientific programming languages are antici-
pated to become available.

Several of the most notable algorithmic implementations are shown
in Table 1 in the area of PI-ML. PINNs and PIGPs are typically trained
with software that has native ML models and supports automatic dif-
ferentiation, such as Tensorflow and Pytorch (Paszke et al., 2019; Abadi
et al., 2016). Recently, packages have also been developed in Python
(Haghighat and Juanes, 2020a) and Julia (Rackauckas et al., 2020) to
create PINN models. In training, gradient-based optimization algorithms
are used such as Newton’s Method, stochastic gradient decent, Adam,
and L-BFGS. Notably, the same software packages enabling PI-ML
implementations are envisioned to automate the building HSMs.

For Model Calibration, multiple software packages are available and
those are listed in Table 2. These can be used to generate posterior
distributions for model parameters based on experiment and simulation
data and to make final predictions following a MC structure.

It is worth observing here that many of the software implementations
listed in the previous two tables are rely on open-source libraries that are
supplemented with full-implementations of reproducible code. The past
decade has seen the chemical engineering profession increasingly
embrace the use of open-source code as a means of making software
implementations more widely available and reproducible. It is likely
that continued collaboration between engineers and colleagues in the
computer science and machine learning communities will help perpet-
uate this mutually beneficial trend, accelerating the pace at which
flexible, robust code becomes available to those who could benefit from
its use. Echoing remarks in Schafer et al. (2020) a key goal of these
collaborations should be to streamline the HM workflow such that not
only the model training but also the data processing, model simulation
and optimization can be performed in a single software environment.
Such simplifications will naturally encourage more widespread indus-
trial adoption of HMs.

Table 1
Algorithmic implementation of PI-ML algorithms.
Name Algorithm Language  Ref.
PINNs Physics-Informed Neural Python Raissi (2019)
Networks
SciML Physics-Informed NN for Julia Rackauckas et al.
PDEs (2020)
Lagrangian Training PI-NNs using Python Freund (2004)
Dual Lagrangian Duality
SciANN Physics-Informed NNs for Python Haghighat and
PDEs in Python Juanes (2020a)
torchdiffeq Neural Ordinary Python Chen et al. (2018)

Differential Equations
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Table 2
Model calibration packages.
Name Algorithm Language  Reference
BACCO Bayesian Calibration of R Hankin (2005)
Computer Codes
SAVE Statistical Analysis of R Palomo et al.
Computer Models (2015)
PyMC3 Probabilistic Programming Python Salvatier et al.
Library (2016)
GPM/SA Gaussian Process Models for Matlab Gattiker et al.
Simulation Analysis (2015)
CaliCo Bayesian Calibration R Carmassi et al.
(2018)
RobustCalibration Full Bayesian Analysis for R GU (2018)

Model Calibration

6. Motivating example
6.1. Case study description

In order to further elucidate how different formulations of hybrid
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These rate laws can then be reformulated to mole balances on all the
species in the system, and combined with an energy balance to form the
system of coupled differential equations shown below:

AV~ FegCpes + Fs.Cpsi + Fru,Cpr, + Fs.CPse + FiCPi: + FroiCorot + Fuie CPutesn + Fsieam CPsieam

models can be applied to systems familiar to the PSE community, we use
a classic example in chemical engineering: an adiabatic plug flow
reactor (PFR) (Snyder and Subramaniam, 1994; Fogler, 1999). In
addition to being a fundamental unit operation in numerous chemical
processes, the reactor system is associated with several modeling tasks
that may be approached through a hybrid modeling lens. In the context
of model calibration, kinetic and thermodynamic parameters inherent to
the first-principles model must frequently be calibrated to reflect real
data gathered from the reactor concentrations and temperatures. Simi-
larly, data-driven models can be used to approximate certain parts of the
model that may be not well described from physics, such as an equi-
librium constant. Finally, the underlying differential equation model
provides a basis for a PINN formulation, resulting in a full surrogate
model that better generalizes to new points.

Specifically, we will look at the production of styrene from ethyl-
benzene (EB) with two side reactions (Rxns. (1)-(3)).

Ethylbenzene < Styrene + H, (Rxn 1)
Ethylbenzene— Benzene + Ethylene (Rxn 2)
Ethylbenzene + H,— Toluene + Methane (Rxn 3)

The reversible rate law for Rxn 1, as well as the irreversible side
reaction rate laws Rxn (2)-(3) are given below with corresponding units

(kmol/ m3/s):

ri =p(1 —p)exp (—0408539 _1o 925> (Pm - M) (26)
T K
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In Egs. (29)-(34), F; and P; represent the flow rate and partial pres-
sure of each chemical species i, respectively. T is the temperature and r
the reaction rates. The independent variable V represents an increment
of reactor volume and increases linearly with axial distance down the
reactor unit. For an explanation of all other parameters in the model and
their values, the reader is referred to the Appendix. Data for each
framework is collected by simulating the mechanistic equations above
for 6 separate runs, which vary using initial temperatures in the range T
€ [850,950] K and flow rates of the reacting species in the range F €
[0,5] mol/m®. In addition, an inert mixture of steam enters the reactor at
a flow rate of 48 mol/m?, acting as a heat sink. The reactor is assumed to
operate at a total pressure Py = 2.4 atm with negligible pressure drop.
Thus partial pressures can be calculated as P; = (F;/Fy)Py where Fris the
sum of flow rates of all chemical species. We will use this PFR system to
demonstrate three methods: 1) Semi-parametric hybrid modeling, 2)
Physics-Informed Machine Learning, 3) Model Calibration below.

6.2. Hybrid modeling

To illustrate the difference in HSM approaches, we visit the ethyl-
benzene reactor example when insufficient mechanistic knowledge
limits model performance. The data-driven model used for illustrating
each of the HSM approaches is a feed-forward neural network with one
hidden layer and 10 hidden nodes. However, other nonlinear models
could be used. To explore the nuances between mechanism correction
and estimation, we consider scenarios wherein missing thermodynamic
or kinetic information prohibit a fully mechanistic modeling approach.

Unknown Energy Balance

First, we consider the scenario where a model for ethylbenzene
conversion is available but fails to accurately capture system
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Isothermal Reactor Predictions
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Fig. 9. True (Left) vs low-fidelity (Right) simulation of ethylbenzene conversion to styrene.

performance.

Fig. 9A shows the true progression of EB conversion in a tubular
reactor assumed to be operating in plug-flow. The true temperature and
flow rate profiles can be generated using the full set of equations found
in the Case Study Description. In contrast, a low-fidelity mechanistic
model which assumes isothermal conditions predicts the conversion
profile in Fig. 9B. The low-fidelity predictions are simulated using the
same mechanistic equations as in the true model, except Eq. (33) is
replaced with dT/dt = 0. The task of this illustrative example is to
improve the predictions of the low-fidelity mechanistic model.

A mechanism-estimation approach to model the unknown thermo-
dynamics is to model the energy balance with a data-driven SM. This
data-driven SM can be formulated as follows:

&~ (1, £, ) 35)

Here the data-driven SM DD() represents a neural network (NN) with
6 inputs, which include temperature T and the K=>5 flow rates Fy of
different chemical species in the reactor, where k = 1,...,K. The NN has
a single output dT/dt. The NN parameters are fitted by repeatedly
integrating Eq. (35) with other mechanistic equations of the model,
calculating the error in temperature predictions and updating the pa-
rameters of the NN using the error gradients until convergence. Note
that this approach is feasible only by knowing the energy balance is the

improperly formulated relationship.

5_
e Ethylbenzene
Styrene

44 e Hydrogen
v Benzene/Ethylene
© e Toluene/Methane
E 3]
3
o
2
9 2
w
®
©°
= 14

0 4

Volume [m3]

5 q
—— Ethylbenzene
—— Styrene
—— Hydrogen
4+ Benzene/Ethylene
o —— Toluene/Methane
=
£
— 3 4
(]
o
©
o
=
9 2
[T
—_
o
[9)
= 11
O 4

An HSM for mechanism correction offers another approach to cor-
recting the mechanistic model (Egs. (11) and (12)). The data-driven SM
is trained and simulated separately from the mechanistic model. The
correction framework indexed for the EB system is outlined below.

dx,
7; = f(x, (1), ©) (36)
Xamrx = DD (xr.ks Crs ¢) 37

Here x,, represents each state variable k at time t, ¢ the parameters
of the data-driven SM (i.e., the weights of a neural network) and ®
mechanistic parameters (i.e., activation energy). c(t) could potentially
represent a forcing variable such as a heating or cooling term, but these
were not considered in this simple example. Training of the data-driven
model is done using the flow rate and temperature predictions from the
mechanistic model at position t as the inputs and the true concentra-
tions/temperatures at position t+ dt as the outputs. In total, the data-
driven SM therefore has 6 inputs and 6 outputs.

The performance of the two methods is depicted in Fig. 10. The
predictions of both modeling methods are nearly identical and clearly
improve the accuracy of the incomplete mechanistic model. The final
mean squared error (MSE) between model predictions is slightly higher
for the mechanism estimation approach than the mechanism hybrid
correction approach: MSE =3.396mol/s vs MSE =0.0775 mol/s,
respectively. However, this should not be interpreted that the

T T T T T T T

6 10 12
Volume [m?3]

Fig. 10. Regression of hybrid correction model (left) and hybrid estimation model (right). HM predictions represented by solid lines. Data used for regression

represented by points.
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Fig. 11. Predictions of the hybrid correction (top) and hybrid estimation (bottom) of unknown energy balance for extrapolating conditions. HM predictions rep-

resented by solid lines. True data represented by points.

mechanism correction framework offers more accurate predictions in
the general case. Rather than accuracy, in this case the advantage of the
estimation approach over the correction scheme is the clearly defined
phenomenological relationship the data-driven model is predicting. This
model structure may be useful if it is later desired to propose a mecha-
nistic formula for correcting the low-fidelity model. The data-driven
model predictions could be used to regress parameters of the mecha-
nistic model separately from the other equations in the model (Bradley
and Boukouvala, 2021) enabling computationally tractable parameter
estimation. A possible advantage of the correction framework is that
there is no need for simulating the mechanistic model during estimation
of the data-driven model parameters, which may be computationally
demanding. While the differential formula for this model was simple,
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estimating data-driven parameters in a more complex PDE may not be
tractable.

However, while the two methods offer accurate estimates for inter-
polating conditions, the same accuracy should not be expected for
extrapolating conditions. Shown in Fig. 11 is the attempt to use either
method for prediction when the inlet reactor is at a higher temperature
of 1050 K. As seen in Fig. 11, since the data-driven component of the
HMs rely strongly on temperature, neither method captures the true
profile. Additional data would be required to train the HMs in the hotter
reactor conditions prior to reliably using the HMs for predicting reactor
performance.

Rate estimation

We also consider the scenario where one of the mechanistic model’s
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Fig. 12. HM predictions vs training data (left) and extrapolation data (right). DD model estimates Reaction 1. HM predictions represented by solid lines. True data

represented by points.
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kinetic rates (i.e., Egs. (26)-(28)) are unknown. Such situations may
arise when a reaction mechanism is too complex to model via first
principles knowledge or the kinetics have shifted due to catalyst deac-
tivation or equipment degradation. Without a formulation for the kinetic
rates, simulation of the remaining mechanistic equations yields no
useful information, so a mechanism correction formulation is not viable.
Nevertheless, using a mechanism estimation formulation, the rate re-
lationships can be modeled with a data-driven model, which here again
is a Neural Network.

r=DD(T,F,¢) (38)

To keep this illustration simple, the data-driven part of the hybrid DE
estimates either Rxn 1 or Rxn 3, assuming the kinetics are unknown. The
Neural Network receives the 6 state variables as inputs and estimates a
single unknown reaction, whereas the remaining two reactions are
assumed known and follow the rate laws of Egs. (26)-(28).

The fit of the HM when Reaction 1 is unknown is depicted in Fig. 12.
As when the NN predicted the energy balance, the HM offers a satis-
factory estimate of the training data and can be relied on to estimate
conditions that are an interpolation of the training data. However, also
depicted in Fig. 12 are the HM estimates for the case where in inlet
temperature is higher (T = 1050 K) than during training. Once again, the
HM fails to capture the faster kinetic profiles, predicting spurious re-
lationships. Undoubtedly, the poor extrapolation of this HM is due to the
strongly coupled nature of the differential equations. Since Reaction 1
strongly depends on temperature and the other reaction depend on the
reactants of Reaction 1, poor prediction of this reaction results in bad
estimation of all chemical species.

So far accuracy of the HMs have been similar to what would be ex-
pected of a purely data-driven model. The fitted model predicts well
within the range of training data but not well outside this range. To offer
a counter-example to this trend, the last case considers the situation
where only Reaction 3 is unknown. Fig. 13 shows the fit of the HM when
the Neural Network estimates the production of toluene and methane.
Again, the HM fits the data well within the range of training data. More
interestingly, the HM also predicts well the species concentration for a
higher inlet temperature. This result is explained by the smaller role of
the data-driven model in the HM. Although Reaction 3 is temperature
dependent, it is a side reaction whose product concentrations do not play
a role in other system reactions. Instead, the HM relies primarily on the
correctly formulated mechanistic part of the model when extrapolating.
While not always possible, limiting the role of the data-driven model
increases the likelihood the HM will be reliable for unseen system con-
ditions, which is the golden standard for modeling and perhaps the
truest measure of model generalizability.

Computers and Chemical Engineering 166 (2022) 107898
6.3. Physics-informed neural network

In this Section, we illustrate the merits of using a PINN surrogate in
lieu of a standard black-box NN model. Here we can use the underlying
mechanistic knowledge of the system to improve ML predictions outside
of training points for cases where interpolation or extrapolation is
necessary. Using the PINN structure described in Section 4.3, we can
train our model using sparse data as well as adherence to the underlying
mechanistic equations given by the ODE system. Fig. 14 below sum-
marizes the inputs, outputs, and relevant physics relationships.

Importantly, the NN outputs are differentiated with respect to the
input reactor coordinate (V). Using automatic differentiation, the
resulting derivative values can be compared to Egs. (29)-(34). Critically,
this can be done at unlabeled data points, allowing for good surrogates
with very few labeled data points. This is shown in the loss function
below, where labeled and unlabeled data are denoted Nygmpie and Neojoc,
respectively. Model predictions are given by y; and ground truth by ;.

o —w e (dy aw?
S v av

Nsamples

(39

Loss =

samples 4= o

For the sake of comparison, a classic NN model is fit to the same data
under identical training conditions. Some results are given below to
illustrate the effect of the physics-based loss term. First, the two models
are tested under very sparse data conditions, where we only have
training points for inlet, outlet and midway concentrations (y(V = 0,6,
12)). For the PINN, we also select 100 collocation points randomly
throughout the V domain. In Fig. 15, the results for ethylbenzene con-
centration profiles for each model are depicted (Fig. 16).

While both models are able to fit the training data exactly, the PI-NN
model has improved interpolating behavior than the black-box NN,
especially in the more non-linear region (V = [0, 6]). This is due to the
physics constraint applied at collocation points throughout the domain.
We can also design an experiment for extrapolation. Here we provide
training data at V = 2,6, 10 and predict over V = [0,12].

Again, both models are able to predict points where training data is
present, but only the PI-NN can extrapolate outside that region because
it has mechanistic knowledge applied at collocation points during
training. From the above results, it is clear that the PINN approach offers
advantages over the purely black-box approach, however, it requires
that accurate physics-based information is available. In this example, we
have assumed a fully-mechanistic model is available and have built a NN
surrogate that is trained with embedded mechanistic knowledge. A
similar approach can be applied even if the mechanistic knowledge is
partially available. For example, the physics-constraint violation term
could include violation from a mass-balance constraint, or an energy
balance constraint, if those are the only mechanistic equations that are
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Fig. 14. PINN Representation of Ethylbenzene Reactor with Loss Function Formulation.
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(NN), and Physics-Informed NN (PINN) predictions for Extrapolation from
training points.

available. The difference between PINN and NN predictions would be
further pronounced in applications with noisy data, as the differential
constrain is essentially a regularization term that penalizes the objective
function and reduces over-fitting and noise-fitting.

6.4. Model calibration

Model calibration requires two datasets: high-fidelity experimental
data from a physical experiment and low-fidelity simulation data from a
computer experiment. Since experimental data is not available for this
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case study, we generated a high-fidelity dataset from the full Ethyl-
benzene reactor model. In addition, we applied the simplifying
assumption: g—‘T, = 0 to the Ethylbenzene reactor model and generated a
low-fidelity simulation dataset. Since model calibration is widely used
for the system where collecting data is expensive, we used a small
dataset (9 low-fidelity simulation data Y, and 8 high-fidelity observation
data Y) for calibrating the model. Zero-mean Gaussian noise is added to
the high-fidelity experimental data Y to see how the model calibration
handles this scenario. We consider a single variable input (V: reactor
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Fig. 18. Prediction performance of the calibrated model.
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volume) — single output (Fgyibenzene: molar flow rate of ethylbenzene)
system with two calibration parameters (p and b, ). Note that calibration
parameters can be a physically interpretable parameter (p) or a tuning
parameter (b;) which has little to no physical meaning. We assume that
domain knowledge is available for calibration parameters and that we
know that there is a 95% chance of p be in a range of [1700, 2100] and
b, be in a range of [—50,50]. By utilizing this domain knowledge, we
sample calibration parameters (p, b;) from the prior distribution p ~
N(1900, 100%) and b; ~ N(0, 252). Fig. 17 shows different runs of
low-fidelity simulation data for different values of calibration parame-
ters and the high-fidelity experimental data sampled for training the
model. Note that the true value of calibration parameters is 6* = (p, b1)
= (2137, —17.34) (listed in Appendix).

The modular Bayesian approach (Arendt et al., 2012) (Fig. 6) is
applied for model calibration and the MCMC algorithm is used to sample
the posterior predictive distribution of GP posterior hyperparameters
(¢") and calibration parameters (6°). During the model calibration
process, the variable input space and the calibration parameter space are
scaled between [0,1] for numerical stability (Hinton and Rasmussen,
1997).

Fig. 18 shows that the low-fidelity computer model is calibrated to
predict the high-fidelity experimental data with high accuracy, and all
experimental observations lie within the 95% confidence interval of the
calibrated model. Note that uncertainty is larger in the region where we
have sparse observations, and one may perform additional experiments
around the high uncertainty region. Likewise, investigation of uncer-
tainty can help modelers to do informative experimental design.

Fig. 19 shows how each term in the calibrated model behaves in
predicting high-fidelity experimental observations. It is observed that
the f(x,0"; ¢7) term (i.e., computer model replaced with GP) alone does
not predict high-fidelity experimental observations well, while the
discrepancy is mostly captured by the discrepancy function. The perfect
agreement between the low-fidelity computer model and the high-
fidelity experimental data is not guaranteed even when true calibra-
tion parameters are found, because the computer model itself f(-) is an
approximation with simplifying assumptions (e.g., %‘T, =0).

In this case study, the posterior mean values of calibrated parameters
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are estimated as (p,giprateds D1. catibrated) = (1846, 8.6), which do not
converge to the true value (p,., b1mue) = (2137, — 17.34). In fact,
different combinations of calibration parameters 8 = (p, b;) and the
hyperparameters of GP ¢ = [¢;, ¢, 6%] are possible for explaining the
same system accurately. It thus becomes important to incorporate any
prior knowledge (e.g., parameter priors, level of noise), into the training
process as it is not guaranteed that the distinction between true
response, true discrepancy and noise will be identifiable.

7. Perspectives and future outlook
7.1. Comparison between HSM and model calibration

Having reviewed the current state of HSM and model calibration, this
perspectives piece now offers us the unique opportunity to weigh the
relative merits of the two. In certain respects, model calibration can be
summarized as the non-deterministic equivalent of hybrid models aimed
at mechanism correction. They both seek to improve the performance of
underperforming engineering model, generally by modeling the
discrepancy between the engineering model and experimental data. Yet
despite their parallel development and similar goals little attention has
been given to juxtaposing the utility of the two options.

The model calibration formulation differs from hybrid mechanism
correction in that it explicitly incorporates the effect of measurement
noise. Moreover, in model calibration, the parameters in the mechanistic
model can be seen as updated (from prior to posterior) conditioning on
the multi-fidelity data, based on the Bayesian scheme. The parameters of
the mechanistic model could be updated in a mechanism correction
framework, but such cases are less frequent.

The obvious advantage of the Bayesian scheme is the straightforward
interpretation of uncertainty information, streamlining conclusions that
are based on variable sensitivity and prediction intervals. In contrast,
the deterministic correction scheme has been favored in engineering
circles largely for its lower-bar in terms of technical know-how—there
being no requirement to specify prior distributions, sampling schemes,
or interpreting posterior probabilities. In addition, by avoiding Gaussian
Processes, the deterministic mechanism correction scheme avoids the
cubically-increasing compute cost frequently cited to be a problem when
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Fig. 19. The behavior of each term in Model Calibration. (Left): Computer model replaced with GP f(x,¢"; ¢;) (Right): Discrepancy function 5(x; ¢5). Here, 6" is the

posterior calibration parameters and ¢; and ¢; are the GP posterior hyperparameters to the computer model f and the discrepancy function &, respectively.
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calibrating models with large amounts of data.

Model Correction HSM methods and MC approaches both include the
incorporation and training of an “error” or “discrepancy” function. An
important debate can be made on how adding the correction model
compares to finding an improved or augmented mechanistic model, by
adding more parameters within the mechanistic model. Of course, if the
available knowledge and resources exist to improve the mechanistic
model to mimic reality, this should be preferred. Often this could be
done in a manual trial-and-error approach, or via automated methods
for model discrimination (e.g., see Olofsson et al., 2018) . However, the
hybrid structures discussed in this paper are most appropriate for cases
where this is either impossible (e.g., when a high-fidelity model is a
black-box simulation that cannot be accessed or edited), or impractical
at the given time (e.g., fully mechanistic model development is not
possible due to missing knowledge, lack of time and computational re-
sources).When modeling the discrepancy, both methods suffer from the
same limitations on interpretability of the discrepancy model and low
extrapolation accuracy. When these are demanded, the modeler may
ultimately be required to revert to mechanistic approaches that modify
the engineering model in ways that yield additional fundamental
knowledge about the system (Joseph and Melkote, 2009).

7.2. Extrapolation, identifiability and interpretability

For a model to be useful, it must predict with reasonable accuracy
system conditions different from those considered during model
training. These predictions may fall within the range of data used during
training (i.e. interpolation) beyond the range of training data (i.e.
extrapolation). Each of the hybrid frameworks have been demonstrated
to offer superior predictions than a purely data-driven model, (Lee et al.,
2002; Van Can et al., 1996; Kennedy and O’Hagan, 2001b) at least for
interpolation tasks. In addition, in cases where the mechanistic model is
incomplete or poorly formulated, simply refitting the mechanistic model
has been shown to underperform a hybrid model based on model cali-
bration (Kennedy and O’Hagan, 2001b), correction (Aguiar and Filho,
2001; Sun et al., 2020; Keskitalo and Leiviska, 2015), or estimation (Van
Can et al., 1998; Georgieva et al., 2003). However, the improved
generalizability of hybrid approaches over a purely data-driven
approach should not be confused with the extrapolation potential of
purely mechanistic models. When a mechanistic model is
well-formulated, the physical meaning (i.e., interpretability) of its
parameter values can be leveraged to hypothesize how the mechanistic
model will perform on an entirely new set of conditions. For the majority
of the hybrid frameworks in this survey, the final output model is a
data-driven model. Thus, their generalizability is likewise confined to
the conditions covered by the training data. For example, hybrid
correction models are known to have the same limited generalizability
as a purely data-driven model (Van Can et al., 1996; van Can et al.,
1997) and are thus rarely applied when good model extrapolation is
required, such as in system optimization (Yang et al., 2020). Improving
their generalizability requires either enlarging the range of conditions
used to sample data for model-building or more efficient coverage of the
conditions used for training—for example, through careful design of
experiments.

A notable exception to the general view above is the hybrid esti-
mation framework. The HM estimation scheme aims to limit the appli-
cation of the data-driven model to only the data regions and model
functions that require adjustment or mechanistic knowledge is missing.
As a consequence, HSMs based on mechanism estimation have been
shown to have some ability to predict accurately beyond observed data
(i.e., extrapolation). This makes this formulation far more attractive to
applications in optimization. However, this extrapolation potential is
contingent upon HM predictions relying on the accurately specified
mechanistic relationships when extrapolating (Braake et al., 1998; Van
Can et al., 1998). An excellent illustration of this principle can be found
in (Yang et al., 2011). These authors modeled an unknown kinetic rate in
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the toluene nitration process via a data-driven SM while assuming a
mechanistic SM for mass transfer is known. Since the kinetic rate was not
dependent on the concentration or volume ratio of toluene these process
variables could be changed without a significant decrease in the HM
accuracy. Nevertheless, there are cases where the extrapolation accu-
racy of the hybrid estimation model may resemble that of a purely
data-driven approach. For example, if a process model consists of highly
coupled nonlinear conservation balance equations, separating the ef-
fects of data-driven and mechanistic SMs is not always obvious or
possible (Quaghebeur et al., 2021). For such scenarios, mechanistic
correction and estimation frameworks may be indistinguishable and
perform equally well (see Section 7.1 of the Motivating Example in this
work, for example). More work is needed to delineate how or even when
SMs may be merged to preserve interpretability, such as a recent
graphical framework proposed in Lee et al. (2020).

In the case of Physics-Informed ML, while embedded physical
knowledge cannot eliminate these challenges, several literature studies
(Raissi et al., 2019; Kim et al., 2020; Fraces et al., 2020) demonstrate
appreciable improvements for the extrapolation ability of the PI-ML
models by acting as a regularization term. In (Haghighat and Juanes,
2020Db), a simple PDE model example clearly illustrates this fundamental
trade-off. Here we use a NN to fit an “unknown” function: f(x,y) =
sin(x)sin(y). We know the data should follow this underlying PDE: f,, +
fyy + 2f =0, therefore, we can formulate a NN that learns the function
solely from data points and a PINN which embeds the PDE knowledge.
We only have data for the domain x,y = [-n,n] but want to make pre-
dictions over [—2x,2x]. Using identical NN structures, data, and training
epochs, the performance of both methods is compared in Fig. 20.

In both, the functional representation is distorted the farther away
from the training domain (shown as inner four squares above). However,
the PINN clearly better represents the pattern outside of the domain
compared to the NN. A less obvious point is that the NN does better
within the training regime because it is overfitting. Another observation
frequently absent in the literature is that not all modes of extrapolation
are equivalent. While in the above example, PINNs show good gener-
alization beyond the range of spatial coordinates used during training, in
general their ability to rigorously extrapolate to new situations, say with
different initial or boundary conditions, is limited. This observation can
be explained by the use of independent variables (often spatial and time
coordinates), which confines its validity to a particular spatio-temporal
trajectory. Further research is needed to systematically explore which
mathematical functions are most helpful for regularization/extrapola-
tion and if non-differential functions can provide similar benefits.

7.3. Uncertainty quantification

Developing standard methods for quantifying the uncertainty of the
assumptions in hybrid frameworks remains an open problem. Studies
that characterize the reliability, identifiability, and sensitivity of HSMs
would be a useful step in this direction. Optimization of hybrid models
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using uncertainty information was tackled in (Kahrs and Marquardt,
2007) for algebraic systems and recently extended to dynamic systems
by Bae et al. (2020). They established two criteria to measure the val-
idity space: 1) a convex-hull criteria created a region around the
measured data to define a space of trusted inputs to the hybrid model
and 2) a confidence interval criteria constrained the HM’s final pre-
dictions. Both could be added to the optimization formulation, either as
constraints or as part of the objective function, to limit the predictions of
the data-driven model in regions where the data-driven model was
required to extrapolate. However, as noted by the authors in Kahrs and
Marquardt (2007), the convex-hull fails to be informative when data is
sparse. A more nonlinear characterization of the data range used for
training was demonstrated through a clustering technique (Simutis
et al., 1995; Teixeira et al., 2005). By assuming a Gaussian distribution
of cluster points, Simutis et al. were able define a criterion for the
extrapolation of both the input and output space. More recently, Pinto
et al. (2019) used a bagging technique to fit an ensemble of NNs, which
enabled construction of a confidence interval for the final HM. Another
promising approach is to use topological data analysis along with a
nonlinear classifier to construct validity regions. In (Schweidtmann
et al., 2021), Schweidtmann’s group showed how these validity regions
could constrain data-driven models during optimization, suggesting that
the method would be similar for hybrid models. Finally, recent work
applied global sensitivity analysis to diagnose the uncertainty of the HM
with the notable result that the true sensitivities of the mechanistic
model could not be recovered when the data-driven Neural Network was
integrated with the differential equations (Francis-Xavier et al., 2021).
Additional research is needed to understand how to apply these UQ
techniques for model adaption and optimization for models with mul-
tiple SMs. Further progress in characterizing uncertainty for hybrid
submodeling frameworks will likely result from employing statistical
techniques previously developed from the Bayesian perspective of the
model calibration framework.

In fact, the model calibration scheme may offer the most compre-
hensive treatment of uncertainty. This may be useful in, for example, an
experimental design program, especially when the simulation or
experiment is expensive. By using a Bayesian-based approach with
design validation metrics (Chen et al., 2007), the modeler may deter-
mine what system conditions will yield the most informative design
under a framework similar to model calibration. Recently, the model
calibration with the emphasis on the uncertainty is discussed under
three problems the forward, inverse, and the validation problem (Lee
et al., 2019). Another use case where the calibration emphasis on dis-
tribution can be advantageous is when we can take domain knowledge
into account as a form of prior settings for different parameters and
discrepancy function. This offers a more straightforward interpretation
of the discrepancy model and hyperparameters based on original con-
fidence in the mechanistic model parameters. However, as previously
stated, when little information is known a priori, setting prior distribu-
tions can be difficult. If little prior information is available, many
modelers may choose a simple prior distribution (e.g., uniform distri-
bution) (Chen and Wang, 2017).

7.4. Hard constraints, soft constraints, gradient pathologies in PI-ML

One important distinction to draw from existing literature in PI-ML
and for future work in this area is that of soft and hard constraints.
Simply stated, a soft constraint is one that is penalized in the optimi-
zation algorithm but does not need to be satisfied in order to converge to
an optimal solution. Hard constraints restrict the feasible space of the
objective function and must be fully satisfied for the algorithm to
converge. Strengths of the soft constraint include simple implementa-
tion, compatibility with ML training algorithms, robustness to noise in
training data, and the ability to enforce physical knowledge that may not
be fully accurate but still improves model performance. Soft constraints
fit naturally within the ML field as a regularization technique for deep
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models. Their weakness in a traditional context is a lack of constraint
guarantees and fuzziness about their full contribution to a model. Recent
works have contributed some clarification and novel methodologies for
dealing with the hyperparameters in these models in a more generaliz-
able way to improve PINN convergence even with gradient pathologies
present (Wang et al., 2022; Maddu et al., 2021).

A PI-ML model with hard constraints could provide formal guaran-
tees which may be attractive in many applications, but it is much less
clear how to formulate these problems without losing the advantages of
ML models. The Lagrangian-dual method referenced (Fioretto et al.,
2020; Fioretto et al., 2020) in Section 5.3 is one way to enforce hard
constraints, if the Karush-Kuhn-Tucker (KKT) conditions can be satis-
fied. However, it is not guaranteed that a feasible solution will be found
and the constraints are applied to discrete input points rather than a
continuous domain. Using a fine input grid to approximate continuous
constraint results in a very large problem that may be overly constrained
to find the optimum. While some studies (Mohan et al., 2020; Fioretto
et al., 2020; Zhang et al., 2018) have shown how this may work in
practice, much work still needs to be done to clarify where hard con-
straints fit within this field.

7.5. Future outlook

In addition to big picture open questions reviewed in these per-
spectives, there are many topics that could use further investigation, a
few of which are summarized below.

e Further investigation on the discrepancy function is needed in HSM
and MC to improve interpretability and extrapolation performance.
Constraining a discrepancy function in a way of following physics-
based knowledge will be an interesting topic.

Systematic and robust methods for regularization of multiple
physics-based terms in PI-ML methods are needed, such that better
guarantees of physics-violations are provided and less ad-hoc tuning
is required.

Incorporation of probabilistic knowledge into a parametric hybrid
modeling framework is a promising topic. Non-parametric surro-
gates can give flexibility and uncertainty information to the para-
metric hybrid modeling framework, while the parametric functional
form helps to constrain the exploration space that is physically valid
that the non-parametric function fails to capture.

Constraining the training of machine learning models with physics-
based knowledge is a popular approach in hybrid modeling. How-
ever, limited study is present on discussion between soft constraints
versus hard constraints. Systematic research on this topic will help
researchers choose an appropriate hybrid model in practical
applications.

8. Conclusion

This perspective piece has reviewed historical trends and recent
contributions towards developing frameworks that merges physics-
based and data-driven knowledge for modeling tasks, especially for
processes generating dynamic data. We reviewed three different areas,
Physics-Informed Machine Learning, Hybrid Submodeling and Model
Calibration, attempting to highlight the major efforts, capabilities,
similarities and pros/cons of each area. In reality, all areas are so diverse
and rapidly growing, that it is hard to make concrete conclusions over
the superiority of one approach over the other. This was never our goal,
as we believe that in all areas tremendous achievements have been
made, and these are all areas that deserve further attention. In Table 3,
we summarize some of the key components, methods and advantages
and limitations of the majority of methods belonging into each category,
as defined in this review paper.

From the above summary, we make the following observations:
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Table 3

Summary of three areas reviewed in this paper (PIML, HSM, MC) with respect to
Knowledge Availability, Purpose/methodology and Advantages and Limitations.

Physics-Informed Hybrid Model Calibration
Machine-Learning SubModeling
Knowledge Differential/ Incomplete Incomplete
Availability Algebraic Model Differential/ Differential/
and Algebraic Model Algebraic model
(Optional) data and (Low-fidelity
(Optional) data data) and
High-fidelity data
Purpose/ Use ML model as a Train DD model to  Predict the true
methodology basis function, estimate unknown system response

Advantage (+)
Limitation (-)

optimize ML
parameters to fit
underlying DE
model

(+) Compatibility
with efficient ML
computational
libraries

(+) Simple
construction of
inverse/forward
problem structures
(+) Final model is a
computationally
cheap surrogate

(-) Poor
generalization to
new conditions

(-) No guarantee of
exact constraint
satisfaction

relationships
constrained by a
first-principles
model

(+) Improved
prediction
accuracy (over a
low-fidelity
model)

(+) Accurate
extrapolation for
physics-dependent
part of the model
(-) Separability of
data-driven and
mechanistic part of
model not always
feasible

() Interpretability
and extrapolation
limited by data-
driven component

and parameters
by introducing a
discrepancy term
to the low-fidelity
model, using
Bayesian-guided
updating.

(+) Embedded
uncertainty
quantification
(+) Ability to
incorporate
domain
knowledge as a
form of a prior

(-) Multiple
optimal solutions,
so calibration
parameters values
not always
physically
interpretable

(-) High
computational
cost when dataset
becomes large

e While not a panacea for all modeling tasks, hybrid methods may be
key to reliable, fast process characterization when either first-
principles alone or data alone cannot offer robust predictive power.

e In recent years software for implementing HMs has in many ways
matured enough for user-friendly implementation of HMs.

e While HMs outperform purely data-driven approaches, they are
more limited in their ability to reveal additional mechanistic insight
about a system than a purely first-principles approach. Modelers
should take care when extrapolating that the data-driven component
does not overly influence the output of the model. Notwithstanding,
HM approaches that yield mechanistic insights are certainly
welcome.

Appendix

Case Study Parameters
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e Separating mechanisms into different submodels was envisioned
early, but no general framework for quantifying the contributions of
each SM is available. Efficient, general frameworks for quantifying
the validity (i.e., uncertainty) of models with multiple SMs would
help define which and how many SMs to use for a given system.

e The Bayesian component of model calibration can be a useful tool for
exploring the multi-fidelity data space. Probabilistic info can be
leveraged to reduce the number of experiments and qualify the val-
idity of the calibrated model. However, less work has been done on
Bayesian analysis of dynamic systems. Studies that streamline this
analysis would certainly encourage the calibration framework’s
regular use in the chemical processes field, where dynamic, and often
unexpected, changes in the system are commonplace.
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The parameter values for base case ethylbenzene reaction and their meaning are listed below:

Catalyst Bed
p = 2137[kg/m° pellet]
¢ =04

Equilibrium Constant
Kp1 = exp{b1 + % + b3In(T) + [(baT + bs)T + bsT} [atm]

by -17.34
by -1.302x10*
bs 5.051

ba —2.314x1071°
bs 1.302x107°
be —4.931x107°
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Heats of Reaction

AHpm =118  [kJ/mol ethylbenzene]
AHpme =105.2  [kJ/mol ethylbenzene]
AHpms = — 53.9  [kJ/mol ethylbenzene]
Heat Capacities [J/mol/K]
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Methane 68
Ethylene 90
Benzene 201
Toluene 249

Styrene 27
Ethylbenzene 299
Hydrogen 30
Steam 40
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