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A B S T R A C T   

Efficiently embedding and/or integrating mechanistic information with data-driven models is essential if it is 
desired to simultaneously take advantage of both engineering principles and data-science. The opportunity for 
hybridization occurs in many scenarios, such as the development of a faster model of an accurate high-fidelity 
computer model; the correction of a mechanistic model that does not fully-capture the physical phenomena of 
the system; or the integration of a data-driven component approximating an unknown correlation within a 
mechanistic model. At the same time, different techniques have been proposed and applied in different litera-
tures to achieve this hybridization, such as hybrid modeling, physics-informed Machine Learning (ML) and 
model calibration. In this paper we review the methods, challenges, applications and algorithms of these three 
research areas and discuss them in the context of the different hybridization scenarios. Moreover, we provide a 
comprehensive comparison of the hybridization techniques with respect to their differences and similarities, as 
well as advantages and limitations and future perspectives. Finally, we apply and illustrate hybrid modeling, 
physics-informed ML and model calibration via a chemical reactor case study.   

1. Introduction 

Recent developments in the broad field of data-science have led to a 
series of breakthroughs in Machine Learning (ML) (Qin and Chiang, 
2019; Lee et al., 2018) techniques. The Process Systems Engineering 
(PSE) community is having an important debate on the roles data sci-
ence should have over first-principles, physics-based science (e.g., 
thermodynamics, transport phenomena, kinetics and mass balances) 
(Venkatasubramanian, 2019). The key reasons for doubting the value of 
ML in chemical engineering is their black-box nature, a term generally 
used to acknowledge their poor extrapolating capabilities, lack of 
interpretability. and unbounded uncertainty in predictions that may not 
satisfy physical constraints. “Hybridization” holds the promise that the 
data-dependent models are more reliable because they learn from both 
data and physics (von Stosch et al. 2014b). The concept of 
Hybrid-Modeling is not new to PSE. Indeed, hybrid modeling techniques 
and applications have been growing in number since the early 90′s 
(Psichogios and Ungar, 1992; Rico-Martínez et al., 1992; Thompson and 

Kramer, 1994), especially for modeling dynamic systems common to 
PSE. Following an explosion of advances in purely black-box ML tech-
niques, merging first-principles knowledge and ML is becoming the next 
big trend, since it can increase accuracy and interpretability with less 
data. 

When reviewing all potential ways to merge data-driven with 
physics-based models, a diverse set of approaches have been proposed in 
different literatures, ranging from feature engineering (i.e., careful se-
lection of the inputs/outputs to a model), to simple additive models 
comprised of separate physical and data-driven equations, to advanced 
methods that embed physics within data-driven models using custom-
ized training and numerical techniques. In fact, concepts targeting the 
same fundamental idea are often disguised under different terminology, 
in different literatures and time periods. A helpful resource for dis-
tinguishing the nuances between like-minded ideas is a recent review 
(Sansana et al., 2021), which offers an encyclopedic comparison of HM 
approaches. 

Though techniques for linking mechanistic and data-driven tools are 
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as numerous as the systems they model, some methods shown promise 
across multiple disciplines. In particular, three areas are reviewed in this 
paper are: (a) “Hybrid Submodeling” (HSM), (b) “Physics-Informed ML” 
(PI-ML), and (c) “Model calibration” (MC). Specifically, HSM contribu-
tions focus on identifying unknown or partially-known process mecha-
nisms constrained by known first-principles equations (typically, a 
system of differential equations representing conservation balances) 
(von Stosch et al. 2014b). PI-ML is in many ways a synonym to HSM, but 
typically refers to techniques for constrained training of deep ML models 
(e.g., adding physics-based loss terms, or changing weight parameters or 
the ML model structure) based on prior knowledge (Chen et al., 2018; 
Raissi et al., 2019). PI-ML and HSM techniques aim to maintain the 
advantages inherent to data driven models (low computational cost), 
while making models more generalizable and physically consistent. MC 
is the process of updating the parameters of physics-based models with 
statistical techniques (typically Bayesian methods) to compensate for 
the model-data discrepancy (Kennedy and O’Hagan, 2001b). Although 
these terms are widely used in the PSE, ML, and Statistics and Operations 
Research literatures, respectively, these methods offer many similarities 
and potential synergies that we hope to elucidate. 

In this perspectives paper we first review the basic principles, 
methods, algorithms and applications of HSM, PI-ML and MC. Most 
importantly, we have compiled the similarities and differences in the 
above areas and provide a comprehensive discussion on the challenges 
and limitations of each approach, potential synergies and future per-
spectives. Finally, we present the capabilities of each approach on a 
reactor modeling case study. 

The sections of this paper are structured as follows. In Data-Driven 
Models (Section 2), we discuss purely data-driven approaches for 
modeling input-output data and focus on two popular techniques, 
namely Neural Networks and Gaussian Process Models that will be used 
in this work. Next, in Merging Data-Driven with First-Principles Models 
(Section 3) we define First-Principles models and discuss potential sce-
narios for hybridization, as well as methods in HM, PI-ML and MC. In the 
Applications section (Section 4) we review areas where HM, PI-ML and 
MC have been applied, and in Software Implementations (Section 5) we 
provide a list of algorithms and software available for each of the 
techniques so far. Following this, this paper applies HM, PI-ML and MC 
concepts on a case study for a chemical reactor (Section 6), ending with 
a Perspectives discussion and Conclusions (Sections 7 and 8, 
respectively). 

2. Data-driven models 

Purely data-driven models differ from first principles models in that 
their parameters are fitted based on available data and often their pa-
rameters do not have a physically interpretable meaning. Thus, data- 
driven models are often referred to as “black-box” or empirical models 
and are primarily used for extracting correlations from data. The data 
may come from designed physical experiments, historical databases, or 
designed samples from mechanistic models or simulations, or any 
combination of the above sources. One popular framework involving a 
data-driven model is to replace a mechanistic model with a data-driven 
surrogate (or emulator or metamodel). This surrogate model is trained 
using data simulated from the mechanistic model. Surrogate modeling is 
primarily motivated by the reduced computation time of the surrogate 
model, which can be used to accelerate time-sensitive tasks such as 
optimization, monitoring or control. Multiple reviews have been written 
on this topic within chemical engineering alone (McBride and Sund-
macher, 2019; Bhosekar and Ierapetritou, 2018), and the reader is 
encouraged to consult these for specific examples. Note, however, that 
surrogate modeling is not considered a hybrid or physics-informed 
modeling technique as mechanistic information is not incorporated 
into the model training or simulation. However, as done in Schäfer et al. 
(2019), the surrogate model is free to be merged with mechanistic 
models at the time of application. 

Numerous data-driven models exist and can range in complexity 
from generalized linear regression (e.g., linear and nonlinear terms that 
maintain linearity in parameters) to universal nonlinear approximators 
(e.g., Gaussian process, Neural Networks, Random Forests) and many 
more. A general distinction between “parametric” and “nonparametric” 
models can be found in the literature and will be adopted in this work. A 
data-driven model is characterized as parametric if its parameters 
associated with their accompanying terms, have some type of physical 
interpretation. For example, a generalized linear regression model with 
linear and quadratic terms can be considered as a parametric model 
since the parameters associated with each term signify the importance of 
linear and quadratic effects on the output prediction. On the other hand, 
parameters in nonparametric models are not associated with terms that 
have any physical meaning, such as the weights and biases of the nodes 
of a Neural Network. 

This review focuses on only a subset of nonparametric data-driven 
models, namely Neural Networks (NN) and Gaussian Process (GP) 
models and explores how these can be merged with mechanistic 
knowledge. The selection of these two techniques for this review is based 
on the fact that they are universal approximators, which implies that 
they are flexible and generalizable to be merged with physics in different 
settings and applications. This is supported by the fact that NNs and GPs 
are by far the most popular data-driven models in the areas reviewed in 
this paper. Moreover, it can be argued that parametric models (i.e., 
generalized linear regression models) are in certain cases physics- 
informed, if a-priori knowledge regarding the input-output relation-
ships is used to specify which features to include. However, this type of 
hybridization is outside the scope of this review, and will only be 
mentioned briefly. On the other hand, the non-parametric modeling NNs 
and GPs are less restricted and can be modeled as black-boxes, or purely 
data-driven. For completeness, a brief overview of the NNs and GPs is 
provided below. 

2.1. Gaussian process models 

Gaussian Process (GP) modeling is a powerful tool to model proba-
bility over functions under the Bayesian framework (Rasmussen and 
Williams, 2005). Due to its flexibility, a GP model can approximate an 
arbitrary continuous function (Karniadakis 2020b) and capture 
nonlinear dependencies between inputs (Gorbach et al., 2017). In 
addition, its probabilistic nature enables the incorporation of different 
sources of uncertainty (e.g., parameter uncertainty and experimental 
uncertainty) as part of the model (Higdon et al., 2004). Gaussian Process 
Regression (GPR) models the relationship (f) between the inputs X =
{x(i)}N

i=1 and the outputs Y = (y(1), y(2),…, y(N))T. Here, X is a collection 
of N sampled inputs x(i) and Y is a collection of the corresponding N 
observed responses y(i) where i = 1, 2,…,N. GPR models the mapping 
f : X→Y. Each x(i) is a p-dimensional vector that contains the input 

variables of the system, x(i) = (x(i)
1 , x(i)

2 , …, x(i)
p )

T
, and we assume that 

each observation y(i) is scalar for simplicity. GPR is a generalization of a 
multivariate Gaussian distribution over functions (Rasmussen and Wil-
liams, 2005), where for any finite selection of points x(1), x(2),…, x(N),

the observation vector Y = (Y(x(1)),Y(x(2)),…,Y(x(N)))T =
(y(1), y(2),…, y(N))T follows the multivariate Gaussian distribution 
(MacKay, 2003). For noisy observations Y, independent and identically 
distributed (i.i.d) Gaussian noise ε ∼ N(0, σ2

n) can be introduced to 
capture the measurement noise: Y = f(X) + ε. GPR starts by assuming a 
prior distribution over function f that we wish to learn as follows: 

p(f |X) ∼ N(m(X), Σ(X,X)) (1) 

In Eq. (1), each element of the kernel matrix Σ(X,X) describes the 
covariance between two outputs sampled in X. If the popular squared 
exponential (SE) kernel is used, (i, j)th element of N × N covariance 
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matrix Σ(X,X) is calculated as (Eq. (2)): 

Σi,j(X,X) = cov
(
f
(
x(i)
)
, f
(
x(j)
))

= k
(
x(i), x(j)

)

= τ2exp
(

− 1
2
∑p

q=1
wq

(
x(i)q − x(j)q

)2
)

+ σ2
nδij

(2)  

where δij is a Kronecker delta (δij = 1 iff i = j, otherwise 0). We call ϕ =
[τ2,wq, σ2

n ] as the hyperparameters of the GP. Different types of kernel 
functions (i.e., constant, Matern, periodic and many more) can be used 
to encode specific characteristics (e.g., smoothness, periodicity) of the 
underlying function f . Once the optimal parameters have been identi-
fied, given training measurements Y at sampling locations X, function 
values f∗ at new test points X∗ can be predicted by (Eq. (3)): 
[

Y
f∗

]
∼ N

([
m(X)
m(X∗)

]
,

[
Σ(X,X) + σ2

nI Σ(X,X∗)
Σ(X∗,X) Σ(X∗,X∗)

])
(3) 

To optimize the hyperparameters of a GPR model, the Bayesian 
updating scheme is used. By conditioning the joint Gaussian prior on the 
observed data points (X, Y) (i.e., Bayesian update) (Rasmussen and 
Williams, 2005), we get the conditional distribution (i.e., posterior 
predictive distribution) of f∗. The core step of the methodology, is the 
update of the prior distribution (belief) over function f (i.e., p(f |X)) to 
the posterior distribution p(f |X,Y) based on the given observation data 
(X,Y) (Eq. (4)). 

p(f |X,Y) = p(Y|f ,X)p(f |X)
p(Y|X) = p(Y|f ,X)p(f |X)∫

p(Y|f ,X)p(f |X)df (4) 

In Eq. (4), p(Y|f ,X) is the likelihood function, p(Y|X) is the marginal 
likelihood function, and p(f |X,Y) is the posterior predictive distribution. 
The posterior predictive distribution f∗ at test points X∗ follows a 
Gaussian distribution as shown in Eq. (5): 

f∗|X∗,X, Y ∼ N
(

m(X∗) + Σ(X∗,X)
[
Σ(X,X) + σ2

nI
]−1

(Y − m(X)), Σ(X∗,X∗) − Σ(X∗,X)
(
Σ(X,X) + σ2

nI
)−1Σ(X,X∗)

) (5) 

The hyperparameters ϕ of GPR is often estimated by maximizing 
marginal log-likelihood function (Eq. (6)): 

ϕ∗ = argmax
ϕ

[logp(Y|X)] = argmax
ϕ

[
− 1

2 log
⃒⃒
Σ(X,X) + σ2

nI
⃒⃒
− 1

2 (Y − m

(X))T[Σ(X,X) + σ2
nI
]−1(Y − m(X)) − N

2 log2π
]

(6) 

For the noise-free observations, σ2
n can be fixed to with zero. 

2.2. Neural networks 

Artificial neural networks (NN) (Krogh, 2008) are non-parametric 
regressors that have received significant attention as computational 
resources have grown. These models have excelled in Big-Data appli-
cations such as natural language processing, imaging, and automation 
(Goldberg, 2017; McCann et al., 2017). Due to their feature of being 
universal approximators (Cybenko 1989), NNs are capable of modeling 
complex, nonlinear relationships in high dimensional spaces, provided 
that there is a deterministic relationship between inputs and outputs and 
sufficient/representative training data. The mathematical foundation of 
a NN is based on the multi-layer perceptron model (Grossberg, 1988). 
Fig. 1 provides a visual representation. 

Here a simple two-layer model is shown that can be used to connect a 
set of inputs to outputs. Input nodes feed the hidden nodes as a sum of 
bias parameters zo and i = 1, …, D inputs xD multiplied by j = 1, …, M, 
corresponding weights wij (represented as lines). The resulting value at 
each hidden node passes through an activation function (h(x)) before 

feeding the output layer, which again has its own activation function 
(σ(x)), and weight and bias parameters corresponding to the number of 
outputs, k = 1, …, K. Thus, the NN output can be mathematically derived 
as a function of input and network parameters, as shown in Eq. (7), for a 
2-layer NN. 

yk(x,w) = σ
(
∑M

j=1
w(2)

kj h
(
∑D

i=1
w(1)

ji xi + z(1)j0

)
+ z(2)k0

)
(7) 

The choice of the activation function can significantly affect the NN’s 
predictive performance. Common activation functions include sigmoids, 
such as the logistic function, softmax function or hyperbolic tangent. 
These are continuous functions that mimic the behavior of biological 
neurons that turn on and off. In large-scale deep NNs, the piecewise 
linear ReLU activation function has been used widely to speed up 
training of network parameters, since sigmoid functions can present 
vanishing gradient problems (Hochreiter, 1998). Eq. (8), which shows 
the explicit form of a NN predictor can be trained by minimizing an 
objective function that captures the error between predictions and data 
(loss function). A single output loss function is shown below, where yn is 
the model prediction, ỹn is the true value with N total data points. 

pMSE = f (w) = 1
N
∑N

n=1
(yn − ỹn)

2 (8) 

The mean-squared error (MSE) is commonly used for regression 
applications, where the goal is to minimize error between model pre-
diction and the true value in the dataset. Cross entropy loss functions are 
often used for classification models with discrete outputs. Using the 
chain rule, the gradients of the objective function with respect to model 
weights are evaluated (∇f(w)). Weights are most commonly optimized 
using the gradient descent method Eq. (9), while high-performing al-
ternatives also include genetic algorithms and quasi-Newton methods. 

wτ+1 = wτ − η∇f (wτ) (9) 

Hyperparameter η denotes the learning rate, which controls the step 
size in the optimization routine. NN evaluation, gradient calculation, 
and parameter updating continues iteratively until a finite set of training 
iterations has been reached or an objective function tolerance is 
satisfied. 

3. Merging data-driven with first-principles models 

There are numerous ways to merge first-principles and data-driven 
tools for modeling, which span the entire gamut of applications in 

Fig. 1. Neural Network structure showing input, hidden, and output variables 
represented by nodes. Weights are represented by connecting lines and biases 
by dark nodes (x0,z0) (Adapted from Bishop-Pattern Recognition and Machine 
Learning (Bishop 2006)). 
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science and engineering where data is available and expert knowledge 
can be communicated in mathematical form. First, let us define the types 
of first-principles models discussed in this contribution. First-principles 
models in this paper refer to models derived from fundamental laws of 
physics, chemistry, thermodynamics, kinetics and transport phenomena, 
such as mass balance and energy balances. The terms “mechanistic”, 
“engineering”, and “physics-based” models are used in the literature to 
describe such models and are used interchangeably in this paper. These 
models come in different forms, such as fundamental algebraic equa-
tions, or a system of Ordinary or Partial Differential Equations (ODE or 
PDE), or a combination of both, to form a general nonlinear algebraic 
partial differential system of equations (NAPDE). Depending on the level 
of the modeling detail, or fidelity, a first-principles model can be in the 
form of a large complex computer simulation, with embedded hundreds 
of different equations and numerical techniques coupled to produce 
outputs, such as a Finite Element Method (FEM) model, a Computational 
Fluid Dynamic (CFD) simulation, or a Discrete Element Method (DEM) 
simulation. While first-principles models are available in different levels 
of fidelity and accuracy, in this work we will refer to any model derived 
based on fundamental knowledge as a first-principles model. Although 
this contribution will focus on methods for systems with continuous 
dynamics, there is no prohibition that such methods could not be 
extended to stochastic systems or systems with discrete or non- 
continuous relationships. 

Broad surveys of hybrid approaches to integrate various types of 
theory and data can be found in Karpatne et al. (2017), Willard et al. 
(2020) and Rüden et al. (2019). Those surveys show that there are 
numerous proposed approaches which are used to inform training of 
data-driven models with physical knowledge, several of which are 
strongly application-dependent, of which only a few are covered in 
detail in subsequent sections. We limit our review to hybridization 
techniques that involve the presence of a spatio-temporal and/or alge-
braic mechanistic model that is used in some way during the training 
process (i.e., in the form of a constraint, or in combination with a 
data-driven component). 

The main reasons for merging mechanistic knowledge with data- 
driven knowledge are ultimately better predictive ability of the final 

hybrid model (especially with reduced data requirements or in the 
presence of noise), and/or improved interpretability of the hybrid 
model. Depending on the structure of the known and unknown parts of 
the system, or the reason for building a hybrid model, there are multiple 
structures of hybrid models found in literature. In the next section we 
attempt to delineate these different structures and discuss them with 
respect to different methodologies. 

3.1. Different structures of combined data-driven and first-principles 
models 

Building models to find correlation or causation between system 
inputs and outputs is known by many names including model fitting, 
training, parameter estimation, statistical inference, supervised 
learning, or regression. Even within the subclass of regression-based 
problems, various methods exist to merge data and physical insights. 
The most prominent of these are categorized in Fig. 2. Each of these 
schemes is reviewed in depth in this article. However, we first briefly 
discuss here different motives for applying these methods. 

Fig. 2 introduces general notation that will be used throughout this 
article for describing hybrid modeling formulas. In Fig. 2, the output of 
each hybrid model Y is considered a function of system inputs x. 
Depending on the framework, the final predictive model may be a data- 
driven model DD(⋅) (if first-principles is only considered during training) 
with parameters ϕ or a data-driven model combined with a first- 
principles model f(⋅) with mechanistic parameters θ. The terms δ and ε 
are unique to the calibration framework and refer to the model 
discrepancy and error function, respectively. 

While no graphic could possibly capture all hybrid approaches and 
some approaches have no consistent literature definition, we list com-
mon hybrid approaches using Fig. 2 as a guide.  

• Scheme 2A: A data-driven surrogate model is used to create offline a 
replacement model for a mechanistic model, which can then be 
simulated faster online than the original mechanistic model. The 
surrogate model is trained only on data and no further considerations 
or constraints are imposed to embed physics. 

Fig. 2. Structure, notation and motivation for six hybrid modeling scenarios addressed in this paper. θ and ϕ represent the parameters of the first principles and the 
data-driven model, respectively. DD refers to Data-Driven Model and MM refers to the Mechanistic Model. Note that multi-fidelity data (Ys : low-fidelity data from 
computer simulation, Y: high-fidelity data from experimental observations) are considered for MC. 
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• Scheme 2B: When a mechanistic model is available, but fails to 
accurately capture system behavior, a correction scheme may be 
applied by modeling the residual between low-fidelity mechanistic 
model and data via a data-driven model. Both the mechanistic model 
and data-driven correction are simulated jointly to produce the 
corrected output. If only the residual information is required, the HM 
scheme follows the scheme in Scheme 2B  

• Scheme 2C: Like the hybrid correction scheme, this approach creates 
a model with data-driven and mechanistic components. However, 
unlike the correction scheme, the output of the data-driven compo-
nent aims to model a specific phenomenological relationship, 
yielding a more interpretable output.  

• Scheme 2D: Similar to the scheme 2A in that a data-driven surrogate 
model replaces a more complex mechanistic model. However, PI-ML 
is more involved in that it accounts for mechanistic constraints 
during training. In recent years, of special interest is when f(x(t), θ)
represents a system of differential equations and methods in deriv-
ative estimation (in particular, automatic differentiation) must be 
used to ensure the data-driven model is a solution of the differential 
form of the mechanistic model.  

• Scheme 2F: The Structuring approach builds known mechanistic 
relationships (i.e., constraints) into an otherwise data-driven model. 
Although applications for this approach are more narrow than other 
hybrid approaches, when appropriate this scheme can improve 
interpretability over a purely data-driven approach while identifying 
both causal and correlative relationships. Depending on the 
embedded structure, scheme 2F may call upon similar methods as the 
PI-ML approach.  

• Scheme 2E: Model Calibration calibrates a low-fidelity mechanistic 
model by utilizing both low-fidelity data (from the mechanistic 
equation) and the high-fidelity data (from the experiment) to 
generate high-fidelity output. It differs from the Correction scheme 
in its use to fit or ‘calibrate’ unknown parameters of the mechanistic 
model. Moreover, it attempts to more explicitly distinguish sources 
of error by separately modeling discrepancies due to data uncer-
tainty and model uncertainty. 

3.2. Hybrid (sub) modeling 

Introduction 
The framework most frequently associated with the keywords hybrid 

modeling in academic literature consists of constructing models that have 
distinct mechanistic and data-driven submodel(s). This framework is 
frequently referred to as hybrid semi-parametric modeling, or simply 
hybrid modeling (HM). To distinguish this method from other methods 
discussed in this review, we refer to this framework as hybrid sub-
modeling (HSM) and the individual models merged to construct the HM 
as submodels (SMs). Hybrid models should not be confused with hybrid 
systems from control theory, which refer to control problems with both 
discrete and continuous decisions (Goebel et al., 2009). HMs may consist 
of multiple data-driven models, mechanistic models, or combinations 
thereof. Methods for combining multiple data-driven models have been 
reviewed extensively elsewhere (Hajirahimi and Khashei, 2020; Tasci-
karaoglu and Uzunoglu, 2014; Deb et al., 2017; Zendehboudi et al., 
2018). Instead, this review focuses on HMs that merge both mechanistic 
and data-driven sub-models. 

Methods 
Applications in model building for process systems engineering (PSE) 

that call for HSM can generally be divided into two categories: mecha-
nism estimation and mechanism correction. In the case of mechanism 
estimation, the modeler has available a mechanistic model (e.g. a series 
of conservation balances) within which one or more physical relation-
ships is unknown or partially-known (e.g., a reaction rate or friction 
term) and estimates the unknown phenomena using a data-driven 
model. Alternatively, if the mechanistic model is available, but there 
exists a substantial discrepancy between observed data and mechanistic 

model predictions, the data-driven model is used to model the discrep-
ancy (Su et al., 1992; Lee et al., 2005; Duarte et al., 2004; Chen et al., 
2004). This latter formulation, sometimes referred to as discrepancy or 
residual modeling, can be viewed as a more general version of mecha-
nism estimation and is herein referred to as mechanism (or model) 
correction. Naturally, formulations that combine mechanism estimation 
and correction have also been proposed (Thompson and Kramer, 1994; 
Wang et al., 2010; Chen and Ierapetritou, 2020). Eqs. (10)–(12) show 
potential formulations of each for the case where the HSMs can be 
modeled by differential equations. 

Mechanism Estimation 
dx
dt = f (x(t), c(t), θ,DD(x(t),ϕ)) (10) 

Mechanism Correction 
dx
dt = f (x(t), c(t), θ) (11)  

xΔt+t = DD(xt,ϕ) (12) 

In the above equations (Eqs. (10)–(12)), the state variables x are 
modeled by mechanistic model f(), which is a function of the external 
forcing (i.e., control or operating) variables c(t), mechanistic parameters 
θ, and data-driven relationships parameterized by ϕ. It is worth noting 
that mechanistic parameters μ can be constant values or represent 
mechanistic relationships with parameters that must also be estimated. 
When using formulas of the form of Eq. (10), the mechanistic and data- 
driven relationships must be evaluated simultaneously as the differential 
equations are integrated. Conversely, in the mechanism correction 
framework (Eqs. (11) and (12)) the mechanistic SM can be simulated 
independently of the data-driven SM; the outputs of the mechanistic 
model at time t are used as inputs to the data-driven SM to predict 
process conditions at time t+ Δt. The data-driven submodel can then 
predict the system state directly or predict the state residual, which are 
added to the mechanistic submodel predictions for the final state pre-
diction. Schematic representations of the above equations are presented 
in Fig. 3. 

While not representative of all HSM arrangement possibilities, HSM 
arrangements depicted in Fig. 3 attempt to portray a general class of 
methods for arranging HSMs for modeling dynamic data. Notably, many 
authors choose to distinguish frameworks in Fig. 3 based on whether 
information is exchanged between SMs “in series” or “in parallel” (von 
Stosch et al., 2014b; van Can et al., 1997). However, as can be seen from 
Fig. 3, this can be an oversimplification since HSM for model estimation 
and model correction often exchange information in ways that are both 
serial and in parallel. This is especially true for differential equation 
models with mechanistic and data-driven terms. For these hybrid DEs, 
relationships between SMs are generally recursive and coupled and thus 
the relationship between data-driven and mechanistic terms are likewise 
recursive rather than serial or parallel. This has been acknowledged by 
other authors, preferring to use ‘integrated hybrid models’ (Quaghebeur 
et al., 2021; Quaghebeur et al., 2022) or ‘universal differential equa-
tions’ (Rackauckas et al., 2020; Bangi et al., 2022) to describe hybrid 
differential equation models. To avoid possible confusion, we use 
mechanism estimation and correction to distinguish the end use of the 
HSM framework. A study by Agarwal et al. exhaustively compared 
possible ways to arrange hybrid submodels for applications in modeling 
and control (Agarwal, 1997). 

Whether used for mechanism estimation or correction, building the 
HSMs follow the general steps of data preprocessing, model formulation, 
model-fitting, validation, and testing/implementation. Preprocessing 
can be further divided into steps for outlier removal, interpolation of 
missing data, and feature selection. Bollas et al. demonstrated an 
approach for identifying significant features when constructing HSMs 
(Bollas et al., 2003). Preprocessing can sometimes include steps to 
correlate measurable observables to unmeasurable quantities of interest, 
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using a combination of data-driven and mechanistic modeling, creating 
the equivalent of a soft sensor. When these correlation models are 
combined with an overall system model, they may be referred to as 
submodels of the HM (Meng et al., 2019; Thompson and Kramer, 1994; 
Gibert et al., 2016; Lopez et al., 2020). 

Challenges 
An important question to ask is what role the mechanistic SM plays 

during training of the data-driven SM. Merging SMs during parameter 
estimation invariably increases the modeling effort and compute time. 
The answer generally depends on whether the features of the data- 
driven model can be measured directly. In the case of mechanism 
correction, the residual often can be computed with a pretrained 
mechanistic SM and measurement data, and the data-driven SM is 
trained separate from the mechanistic SM. However, when large gaps 
exist in measured data, fitting the data-driven correction model together 
with the mechanistic model can lead to improved performance (Wu and 
Movellan, 2012). 

Likewise, parameter estimation of the data-driven SM for mechanism 
estimation can be performed in the presence (Psichogios and Ungar, 
1992; Schubert et al., 1994) or separately from (Fiedler and Schuppert, 
2008) the mechanistic model relationships. However, for systems 
formulated by differential algebraic equations (DAEs) often the 
data-driven SM is used to estimate a rate term which is not directly 
measured. To avoid using the mechanistic SM during training of the 
data-driven SM, early works proposed estimating the rates from state 
data, using for example finite differences (van Can et al., 1997). Yet for 
highly nonlinear, sparse or noisy data the accuracy of these rate esti-
mates can be inadequate. For such situations it has been shown that 
integration of the differential equations during training is essential for 
accurate modeling (van Can et al., 1999) and for enforcing physical 
constraints (Oliveira, 2004). 

When combined training of the data-driven SM with the mechanistic 
DAEs cannot be avoided, several strategies are available for managing 
computational costs. One strategy, applicable when multiple formula-
tions of the data-driven model are being considered, is the incremental 
approach. In this approach, the modeler chooses to first fit multiple data- 
driven models separate from other mechanistic relationships and then 
selects the best-performing data-driven SM via cross-validation before 
training data-driven and mechanistic SMs together (Kars and Marquadt 
2008). A similar incremental approach has been proposed when esti-
mating the parameters of both the mechanistic and data-driven SMs 
(Yang et al., 2011) as well as selecting candidate mechanisms from a 
basis set via sparse regression (Willis and von Stosch, 2017). Another 
strategy is to reduce the cost of integrating the DAEs. The integrated 
framework proposed by (Psichogios and Ungar, 1992) relies on forward 
sensitivity analysis for parameter estimation, which is computationally 
expensive since the number of differential equations that must be inte-
grated increases with the number of parameters (Narayanan et al., 
2019). Thus, one way to reduce compute time is to leverage less precise 
numerical methods when finer accuracy is not needed. In (Oliveira, 
2004), researchers compared the computational efficiency of the Euler 
method with a more sophisticated Runge-Kutta-based discretization 

method, showing the latter required an increase in computation time by 
two orders of magnitude. Other works have investigated methods for 
reducing computation with adaptive step sizes (de Azevedo et al., 2015). 
Most recently, strategies for reducing compute costs by avoiding inte-
gration of the sensitivity equations altogether have been investigated. 
This strategy has been made possible by the recent development of 
software integration routines with pervasive automatic differentiation 
(AD) (Rackauckas et al., 2018). In brief, by avoiding the integration of 
the sensitivity equations, there is potential to prevent the explosion in 
computational cost for training DAE models with a large number of 
parameters (Rackauckas et al., 2020; Chen et al., 2018). 

Overall it should be mentioned that HSM structures should be pur-
sued once the modeler is as sure as can be that any errors are not caused 
by local minima of the parameter estimation of the mechanistic model. 
In other words, it is worth applying multi-start local or global optimi-
zation methods, to find the optimal parameters of the mechanistic model 
before deciding to add data-driven corrections. In most cases, HSM 
methods are pursued because it is known a-priori that some simplifying 
assumption has been made, and/or it is very expensive or impractical to 
identify the fully mechanistic model for a certain system. 

As a final consideration, it is often the case that both the mechanistic 
and data-driven SMs have parameters that require identifying (for ex-
amples see Yang et al., 2011). However, works that simultaneously train 
the mechanistic and data-driven submodels predominantly assume that 
the mechanistic model has no parameters or that their parameters are 
fixed at known values. Thus, additional research is needed to weigh the 
merits of schemes that estimate parameters, whether simultaneously or 
sequentially, of multiple SM types. While identifying mechanistic pa-
rameters offers the potential for increased interpretability, a foreseeable 
challenge is the presence of multiple local minima of the data-driven SM, 
which may make finding meaningful values of mechanistic parameters 
difficult (Francis-Xavier et al., 2021). If greater interpretability is needed 
than what can be offered by the HSM paradigm, it may be advantageous 
to use HSM as a data-driven means to a more mechanistic end (Bradley 
and Boukouvala, 2021) rather than as an end in itself. 

If the data available for training the DD components of the HSM 
contain noise, HSM structures are advantageous over pure black-box 
surrogates, especially when the DD component is trained together 
with DE constraints. However, it is important to ensure that in all cases a 
regression-type DD component is employed, and appropriate tuning of 
its parameters is performed using cross-validation procedures, to ensure 
overfitting is avoided. 

3.3. Physics-informed machine learning 

Introduction 
An area that has gained significant attention in recent years is 

Physics-Informed Machine Learning (PIML). It has emerged as a way to 
take advantage of major advances in ML for the purposes of surrogate 
modeling and system identification, while still enforcing physical 
knowledge that is known about the system at hand. This can assuage 
concerns that ML approaches abandon all of the useful information 

Fig. 3. Information flow between submodels for HMs for (a) mechanism estimation and (b) mechanism correction.  
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given from first principles models or that data-driven models may give 
erratic results. While some of the proposed mathematical foundations 
for enforcing differential-equation physical constraints or knowledge (e. 
g. boundary and initial conditions) into ML models have been around for 
decades (Lagaris et al., 1998), increased computational power, major 
break-throughs in ML, and the power of automatic differentiation 
(Baydin et al., 2017) has allowed for PIML models to show promise 
across many disciplines and applications. These models incorporate 
deep-learning architectures such as neural networks or Gaussian pro-
cesses, but also leverage known physical constraints specific to the 
application. This may be particularly useful in applications where the 
underlying physical models are too expensive to solve using traditional 
methods or where first-principles knowledge is helpful yet insufficient in 
predicting relationships between inputs and outputs. Major work has 
been done in the areas of differential equations, physics, power systems, 
and robotics. Many process systems engineering models rely on analo-
gous conservation balances that can also be formulated into a PIML 
model. 

Methods 
Standard deep-learning models take labeled data and map the re-

lationships between inputs and outputs. Labeled data refers to data 
points that have a measured or ground-truth output, which is very useful 
for training, validating and testing against an objective measure of 
model accuracy. Even when input-output relationships are highly- 
nonlinear and not completely understood, ML models have shown 
great success as function approximators with sufficient labeled training 
data. A great insight in the physics-informed ML literature is the ability 
to use unlabeled data points in order to penalize constraint violations 
over the entire input space of the ML model (Raissi et al., 2019). Unla-
beled data refers to points in the input space without available measured 
or ground truth values to compare model predictions to. Though most 
ML training routines would ignore parts of the input space without data, 
physics-informed training structures can instead enforce general phys-
ical knowledge of the system we know to be true. While many variations 
and applications exist, the most common method is to add these 
constraint violations directly to the loss function during ML model 
training (see Fig. 5). The loss function evaluates how well the model is 
performing and is minimized by changing model parameters over the 
training routine. By including knowledge directly in the loss function, 
the resulting model parameters will be biased towards the embedded 
knowledge. This can be thought of as a soft constraint, as there is no 
guarantee that it will be satisfied. Instead, the learning task balances the 
two learning goals simultaneously: improving model agreement with 
data and adjusting model parameters to follow known constraints. This 
is useful if the full engineering model is too computationally expensive 
to simulate repeatedly. For example, say we want to fit a surrogate ML 
model to labeled data with inputs x and t and output y (Eq. (13)) 

y(t, x) = DD(t, x,ϕ) (13) 

Furthermore, in the physical system we are modeling, we know the 
functional form of constraints that depends on input or output variables, 
such as the generic equation and inequality shown in Eqs. (14) and (15). 

f (t, x, y) = 0 (14)  

g(t, x, y) ≤ 0 (15) 

If these constraints apply to the full input domain, this input space 
can be discretized and the constraint can be numerically evaluated at the 
discretized points, what some in the literature refer to as collocation 
points. A loss function with a soft constraint can then be formulated as 
shown in Eq. (16). 
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In Eq. (16), the first term evaluates the mean squared error between a 
set of N labeled data points and the ML model’s prediction and would be 
common to the loss function in any regression task. The second and third 
terms evaluate the known equality and inequality constraints, respec-
tively, at any unlabeled data point of sets Nf and Ng, respectively. 
Hyperparameters (λf ,λg,λy) can be adjusted to control the relative weight 
of these terms. In all deep learning models, finding optimal hyper-
parameters can be expensive and most methods simply consider grid 
search techniques to balance over and underfitting of validation data. In 
this way, the mechanistic terms in Eq. (16) can be treated the same as 
regularization terms used in fully DD models. 

A more rigorous variation of the soft constraint method outlined 
above uses Lagrangian optimization theory and the hyperparameters 
become Lagrangian multipliers (Fioretto et al., 2020). Depending on the 
final values of λ’s, this method can provide some level of guarantee for 
the constraints at the training values. It also may avoid some 
ill-conditioning issues in the simpler penalty approach. A full description 
of this Lagrangian method applied to deep learning models can be found 
in (Fioretto et al., 2020) and the underlying theory in Freund (2004). 

Another common way to embed physical knowledge into ML models 
is to pre-train, or initialize, model parameters. This could be done using 
a subset of data collected from a single larger system or using a separate 
data set from a system known to share physical characteristics with the 
target system. Since many of the ML algorithms depend on stochastic 
gradient descent, a pre-trained model can help to avoid local minima 
that don’t obey physical knowledge. This is especially helpful when 
fitting deep ML models to sparse data and is often called transfer 
learning. A full review of transfer learning can be found in (Pan and 
Yang, 2010). This idea has further been used in chemical engineering 
literature under the term model migration (Lu et al., 2009), where their 
goal is to utilize underlying physical knowledge of an old process model 
to inform their new process model, then use a small data set to calibrate 
new process parameters and conditions using NNs as surrogates. In (Luo 
and Gao, 2015), model migration is explored for Gaussian process 
models used to predict chemical reactor performance. A GP model is 
trained under certain concentrations and temperatures, then model 
migration is used to make predictions at extrapolated points. Further-
more, the authors explain an approach to perform model migration and 
process optimization simultaneously. 

Another area of research under the umbrella of PIML has looked into 
designing the architecture of ML models to confer known physical 
knowledge (Xia et al., 2008). This is the Physics-constrained Structuring 
approach depicted in the HM comparison figure presented earlier 
(Fig. 2, scheme E). By leveraging part of the ML model to impose physics, 
the ML model becomes more interpretable while guaranteeing domain 
knowledge is satisfied. This approach is especially relevant to NN 
models that are highly customizable and modular in structure. A simple 
example of this could include the use of ReLU or softmax activation 
functions, to enforce non-negativity in output or intermediate variables. 
Jia and co-workers (Jia et al., 2020) uses this idea when modeling the 
density of water as a function of lake depth to ensure their prediction 
model monotonically increases in density as a function of depth, as this 
is a well-known fluid property. Similar ideas are used to enforce struc-
ture in chemical flowsheet models (Wu et al., 2020). Monotonicity 
constraints have been systematically applied to other data driven model 
structures, such as decision tree models (Potharst and Feelders, 2002). 
This algorithm has been implemented into Python packages such as 
LightGBM (Hart et al., 2017). 

More complex physical knowledge can be built into ML 
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architectures, such as local mass balances in differential form. In many 
applications, encoder-decoder structures are used to filter out mea-
surement noise and transform data into a lower dimensional, informa-
tion rich space (Vincent et al., 2008; Chen et al., 2018; Kim et al., 2020). 
Work in turbulence modeling has used non-trainable layers that 
compute the continuity equation to provide constraints that are built 
into the model itself (Mohan et al., 2020). A schematic of their approach 
is shown in Fig. 4. 

In the above schematic, V represents input velocity data, which has 
some noise associated with it. V̂ represents the “coarse-grained” repre-
sentation of the velocity after passing through the autoencoder to filter 
out noise. Â represents the vector potential which is explicitly defined in 
the physical fluid dynamics balance equations. Autoencoders are com-
mon when working with black-box models, since it is important to fit 
underlying signal instead of data-set noise. They comprise of two parts: 
an encoder which takes the input data and recasts into a lower dimen-
sional representation and decoder that transforms the low dimensional 
data back into the same dimensional space as the encoder input. Local 
coherence in physical data motivates the use of Convolutional Neural 
Network (CNN) architectures, as high-dimensional data that has spatial 
dependencies on nearby features (e.g. pixels in image processing) use 
CNNs to abstract spatial information from data. The final Convolutional 
Neural Network (CNN) has a kernel defined in a way that acts as the ∇
operator. For a full discussion and explanation of CNNs see (Dhillon and 
Verma, 2020). The overall model structure allows a lower dimensional 
representation to be found, while still enforcing the continuity equation. 
In the same field, researchers have used customized CNNs to incorporate 
various physical knowledge, such as uniform motion, rotation, and 
scaling (Wang et al., 2020). Their results show significant improvements 
in generalizability. 

The area with the most extensive literature in Physics-Informed ML 
deals with the solution of complex differential equation models. ML 
models, including NNs, have long been used in the numerical solution of 
these systems due to their characteristic as universal function approx-
imators (Dissanayake and Phan-Thien, 1994; Cybenko, 1989). Many 
approaches to this are very relevant to the earlier work of Lagaris et al. 
(1998), which formulates a trial solution to a differential equation as 
shown below. 

ψ t(x) = A(x) + F(x,N(x,w)) (17) 

In Eq. (17), A(x) represents initial and boundary condition contri-
butions to the solution, while F represents the functional form of the 
solution that is decoupled from these conditions and N represents the 
output of the neural network model. The trial solution in Eq. (17) can be 
analytically differentiated with respect to the independent variable (x), 

to match the original differential form and from here an unconstrained 
optimization problem is formulated to minimize violation of the dif-
ferential equation with network parameters (w) as the decision variable. 
The authors demonstrate several functional forms of the trial solution 
for first order ODEs, second order ODEs, systems of ODEs and nonlinear 
PDEs. It is important that samples from an analytical solution are 
available and that the candidate solution can be constructed from the 
known differential equation. Subsequent work in this area has increased 
the dimensional size of problems solved through this DL method (>200 
dimensions) (Sirignano and Spiliopoulos, 2018) and various generalized 
algorithms have been developed to automatically generate trial solu-
tions. In (Sirignano and Spiliopoulos, 2018), authors propose a “Deep 
Galerkin Method” algorithm which generates random sample points to 
avoid the need for traditional mesh methods (intractable in high di-
mensions) and utilizes stochastic gradient descent to find parameters 
that minimize squared error between the model prediction and the 
analytical solution. 

Building off the work of Lagaris et al. (1998), Raissi et al. utilized the 
power of automatic differentiation to preclude the need for analytical 
derivatives and applied PDE knowledge to feed-forward neural net-
works, which they call “physics-informed neural networks” (PINNs) 
(Raissi et al., 2019). The PINN formulation is analogous to the Eqs. (14)– 
(16), where f becomes a differential constraint computed via automatic 
differentiation. They show that this is a very powerful technique for 
modeling PDE’s when model outputs are differentiable with respect to 
model inputs. A schematic of the PINN is shown in Fig. 5. 

The authors use sampled points across the problem domain or 
“collocation points” to calculate coherence to PDE and BC knowledge, 
while using analytical solutions for data. This work uses primarily 
Dirichlet boundary conditions. Despite the heavy focus of PI-ML 
methods on NN models, Gaussian Process models have also been 
employed. In (Raissi and Karniadakis (2017b) Raissi, Perdikaris, and 
Karniadakis 2017b), the authors present how numerical Gaussian Pro-
cess regression models can be used to solve PDEs from noisy data. They 
use a backwards Euler approximation of the PDE to express each solu-
tion point as a function of previous Gaussian Process prior. Hyper-
parameters in the kernel model are optimized at each step with the 
resulting Gaussian Process model able to predict data for the next step. 
By linking each time step in this way, PDE knowledge is incorporated 
into the DL model. Their results show that for classic physics-based PDEs 
accurate solutions can be found with sparse training data. This method 
did not perform as well with non-linear operators, since linear approx-
imations must be used. Since then, an inference procedure usually 
nonlinear Gaussian Processes has been developed that can be considered 
a Bayesian version of PINNs (Yang et al., 2021). One major advantage of 
the physics-informed Gaussian process models (PIGPs) is the estimate of 

Fig. 4. Example of enforcing physical knowledge within NN architectures via constraint layers and encoder-decoder layers.  
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uncertainty which is absent in analogous PINN models. A full review on 
the comparison between PINNs and PIGPs can be found in Kevrekidis 
et al. (2020). Another methodologically related topic is Sobolev training 
of NNs (Czarnecki et al., 2017), where the model is trained on not just 
state data but also derivative data if available. This may be useful in the 
area of network compression, where one wants a smaller network that 
best approximates the large model or when computing derivatives of 
high fidelity models isn’t computationally prohibitive (Tsay, 2021). 

Challenges 
Overall, the methods and applications outlined show many current 

strengths, along with limitations and areas for future work. Physics- 
informed ML show great potential in the field of PSE and can be 
directly applied to many already existing research directions. A direct 
application includes improving the robustness of PSE surrogate models 
which are commonly used to approximate complex unit operations with 
the ultimate goal of optimization or control. To be suitable for control, a 
model must define the relationship between system states and control-
lable variables. However, PINNs designed for the solution and fitting of 
differential equations do not use states but rather independent variables 
such as time and spatial coordinates as inputs to enable derivative 
calculation. Recent work has sought to extend PINNs to state-space 
modeling for control (Arnold and King, 2021), though a comparison 
with standard data-driven approaches is lacking. Other PIML ap-
proaches formulate the PINNs as a purely state-space model. These ap-
proaches owe their success to taking advantage of the stationary nature 
of the problem (Fioretto et al., 2020) or system symmetry (Lutter et al., 
2019). An issue with these approaches is their complex integration be-
tween the physics and data-driven model may not be extensible to other 
systems. Assuming these barriers can be overcome, PIML may enable 
PSE surrogates to find optimal values that are more consistent with the 
ground truth physics. Model Predictive Control (MPC) is an area where 
hybrid model structures can thrive due to their quick computation and 
on-line ‘learning’. Analogous to how NN models in robotics control can 
be embedded with Newtonian physics balances to achieve 
physics-informed online learning, one may imagine incorporating an 
energy balance into an ML based MPC model for process temperature 
regulation. 

On the other hand, PINNs still share many of the weaknesses of 
traditional NNs: lack of interpretability, heavy initial training cost, 
challenges with extrapolation, and the requirement of many represen-
tative data or collocation points. Though they can mitigate some of the 
previously listed concerns, it is doubtful that they can displace many of 
the heavier first-principles models that have long been accepted 
academically and in industry. While PINNs have a great number of 
studies for systems well-posited physical relationships, there is sparsity 
of studies in areas relevant to chemical process systems, such as opti-
mization of systems with time-varying control actions, disturbances, and 
poorly understood physics. Initial studies comparing PINNs with HSMs 

employing numerical methods have shown PINNs to be less flexible and 
less accurate (Mitusch et al., 2021). Another study explored the forward 
and inverse solution of a reaction system using a modified PINNs 
framework and illustrated how unmeasured state data could limit the 
identifiability of the fitted reaction parameters (Gusmão et al., 2020). A 
more general treatment of challenges associated with PINNs can be 
found in (Karniadakis et al., 2021). 

However, there has also been some work to overcome these weak-
nesses for specific applications. Addressing the issue of lengthy training 
times, conservative PINNS (cPINNs) (Jagtap et al., 2020) and extended 
PINNs (XPINNs) (Karniadakis 2020a) are frameworks for sub-dividing 
the spatio-temporal domain into intervals regressed by separate NNs. 
Although not demonstrated, this approach lends itself to high paral-
lelizability. More difficult to quantify, however, is the added time 
required to train hyperparameters of multiple NNs and decide how to 
properly decompose the spatio-temporal domain into an appropriate 
number of sub-intervals. Previously discussed Langrangian Dual tech-
niques can improve and automate hyperparameter training. Further 
speed-ups in training and prediction accuracy have been achieved by 
employing adaptive activation functions (Jagtap et al., 2020) and 
modifying gradient contributions (Wang et al., 2020). 

In all these examples, the authors demonstrate that the PINN 
framework supersedes the accuracy of purely data-driven approaches 
and requires less data. They also simulate faster than and are competi-
tive in accuracy to the analytical model, at least for most interpolation 
tasks and certain extrapolation tasks (discussed later in Section 7). 
Moreover, in certain circumstances the PINN can predict more accu-
rately than the analytical model. For example, in a robotics control study 
the PINN was shown to outperform the control actions of an analytical 
model since the PINN was able to be updated online (Lutter et al., 2019). 
Work on power systems have shown PINNs to generate far more accu-
rate solutions than other reduced order modeling methods (Fioretto 
et al., 2020). In many ways, physics-informed ML represents a bridge 
between two major areas of scientific computing which may enable 
tackling real-world problems requiring both theoretical and empirical 
resources. 

3.4. Model calibration 

Introduction 
In Model Calibration (MC), the typical scenario includes three 

components (a) a complex computer simulation that contains many 
equations and unknown parameters (e.g., Finite Element Model, 
Computational Fluid Dynamics model, system of Partial Differential 
Equations, etc.), (b) observed or experimental data (considered high- 
fidelity data), and (c) surrogate model(s) (typically GPR model(s)) to 
calibrate the computer simulation and capture the discrepancy between 
the computer simulation and the observed data. Computer simulations 

Fig. 5. Schematic representation of Physics-Informed NNs Used for PDE’s.  
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are essential to understand and predict complex systems (Santner et al., 
2003), however, simplifying assumptions often used in computer sim-
ulations cause a discrepancy between the simulation output and the 
experimental data. Moreover, the parameters of the computer simula-
tion are often unknown. In this scenario, a GPR model can be trained 
using the low-fidelity simulation output and high-fidelity experimental 
data, by adjusting the parameters (i.e., calibration parameters (θ), GPR 
hyperparameters (ϕ)), with the ultimate goal of calibrating the simula-
tion model to predict the high-fidelity experimental data. MC can be 
viewed as an example of multifidelity modeling in the sense that it 
considers both high-fidelity and low-fidelity data. 

Methods 
Variable inputs (x) and the calibration parameters (θ) are two kinds 

of inputs that are required to run a computer model. Variable inputs (x) 
are the inputs that can be observed or often controlled when conducting 
physical experiments. Calibration parameters (θ) refer to any physical or 
tuning parameters that are unknown or not measurable from the ex-
periments but are used/required to run the computer simulation. As an 
illustrative example, when designing a distillation column for the sep-
aration of two unknown chemicals, let us assume that the number of 
stages, the reflux ratio, and the enthalpy of chemicals are needed to run 
the simulation. The number of stages and the reflux ratio are examples of 
variable inputs, while the enthalpy of chemicals are example of cali-
bration parameters since true values are unknown to the modeler but are 
required to run a simulation. Since the true values of the calibration 
parameters are unknown, there is no way to observe the computer 
simulation output without specifying them (Kennedy and O’Hagan, 
2001a). To run the simulation, researchers may try a brute force 
approach wherein they choose multiple values of the calibration pa-
rameters and settle for the value that minimizes the error between the 
computer simulation output f(x, θ) and the real data Y(x). However, this 
approach is challenging when the dimension of calibration parameter 
space (θ) becomes large, or each computer simulation run is expensive. 
To overcome this issue, Kennedy and O’Hagan (Kennedy and O’Hagan, 
2001a) proposed a combined framework to calibrate the computer 
model using the observed data (Eq. (18)): 

Y(x) = f (x, θ) + δ(x) + ε (18)  

where Y(x) is the true output of the system, f(x, θ) is the computer 
model output, δ(x) is a discrepancy function to capture errors between 
the model and the true output, and ε is the measurement error which 
captures the effect of noise or failed-to-include variables in the system 
(Joseph and Yan, 2015). In the case where f(x, θ) is an analytical 
equation, this can be directly embedded within Eq. (18). However, the 
most common scenario, which we also assume here, is the situation 
where f(x, θ) is expensive or complex computer model, which is repre-
sented by a GPR surrogate. The discrepancy function δ(x) is also typi-
cally represented by another GP surrogate. 

We assume computer simulations Ys are observed at set of points S1 

= [(x∗
1, θ̂1), (x∗

2, θ̂2)…, (x∗
N, θ̂N)]and experimental observations Y are 

observed at S2(θ) = [(x1, θ), (x2, θ)…, (xM, θ)] with some unknown cali-
bration parameters θ. Note that θ are generally assumed to be constant 
over the experiment. For each trial of computer experiments, computer 
simulation output yi in Y = [y1, y2,…, yN] is observed for (x∗

i , θ̂ i) when i 
= 1,2,…,N. When we construct joint data vector d with simulation data 
Ys and the observed data Y, d = [Ys, Y]T, the likelihood for the vector d 
follows the distribution in Eq. (19). 

P(d|θ, ϕ)∝ |Σd|−
1
2exp

(
− 1

2(d − μd)
T Σ−1

d (d − μd)
)

(19) 

Note that we have two sets of parameters (θ: calibration parameters, 
ϕ: GP hyperparameters) in the model. The mean and variance of the 
likelihood for the vector d are shown in (Eqs. (20) and (21)). 

E(d|θ, ϕ) = μd =
[

mf (S1)
mf (S2(θ))

]
+
[

0
mδ(S2)

]
(20)  

var(d|θ, ϕ) =
[

Σf (S1, S1) Σf (S2(θ), S1)
Σf (S1, S2(θ)) Σf (S2(θ), S2(θ)) + Σδ(S2, S2) + σ2

mIM

]

(21)  

where mf (⋅) and mδ(⋅) denotes the mean function of computer simulation 
and discrepancy function, respectively; Σf (S1, S1) is the covariance 
matrix between set of points in S1; Σf (S1, S2(θ)) is the covariance matrix 
between set of simulation points in S1 and experimental observations in 
S2(θ); Σδ(S2, S2) is the covariance matrix between set of points in S2. 
Note that θ is not included in covariance matrix Σδ(S2, S2) because 
discrepancy function δ is not a function of θ. σ2

m is the noise variance 
where ε ∼ N(0,σ2

m), and IM is the M × M identity matrix. 
If we use a squared-exponential kernel (See Eq. (2)) for the two GPR 

models (f and δ) and assume noise-free computer simulation data, 
kf ((⋅, ⋅), (⋅, ⋅)) and kδ(⋅, ⋅) become: 

kf
((

x∗i , θ̂ i
)
,
(
xj, θ

))
= τ2

f exp
(
− 1

2
[
wf ,1
(
x∗i − xj

)2 +wf , 2(θ̂ i − θ)2
])

(22)  

kδ
(
xi, xj

)
= τ2

δexp
(
− 1

2wδ
(
xi − xj

)2
)

(23)  

where the hyperparameters of each kernel are ϕf = [τ2
f ,wf ,1,wf , 2] and 

ϕδ = [τ2
δ ,wδ]. From the joint distribution of the computer simulation Ys 

and experimental observations Y, the joint posterior distribution of the 
GPR hyperparameters ϕ = [ϕf ,ϕδ, σ2

m] and calibration parameters θ is 
obtained (Eq. (24)). 

P(θ, ϕ|d)∝P(d|θ, ϕ)P(θ, ϕ) = P(d|θ, ϕ)P(θ)P(ϕ) (24) 

In Eq. (24), an independent assumption between priors (e.g., P(θ, ϕ)
= P(θ)P(ϕ)) is often used to facilitate the calculation for the posterior 
distribution (Higdon et al., 2004; Kennedy and O’Hagan, 2001a) 

While an analytical expression for P(θ, ϕ|d) can be obtained from full 
joint posterior distribution of ϕ and θ, it is an intractable function of ϕ 
(Kennedy and O’Hagan, 2001a). Therefore, full Bayesian analysis is 
difficult to obtain posterior calibration parameters P(θ|d) since it re-
quires multidimensional integration (Bayarri et al., 2007; Higdon et al., 
2004). As a substitite, the Markov chain Monte Carlo (MCMC) sampling 
method is often used to estimate a posterior (Diaconis, 2009); however, 
it requires expert knowledge and careful tuning of MCMC parameters to 
obtain proper posterior distributions (Bayarri et al., 2007; Liu et al., 
2009). One of the popular methods that tackles this issue is called the 
modular Bayesian approach (Arendt et al., 2012), which separately es-
timates the GPR hyperparameters ϕf and [ϕδ,σ2

m], and uses the obtained 
posterior hyperparameters ϕ∗ = [ϕ∗

f , ϕ∗
δ , σ2∗

m ] to calculate the posterior 
distribution of calibration parameters θ. The modular Bayesian 
approach is shown in Fig. 6. 

If the computer model f(⋅) is a known mechanistic function with an 
explicit functional form, we can directly use the equation given instead 
of replacing it with a GP model. A computationally efficient way of 
estimating GPR hyperparameters ϕδ of the discrepancy function δ, 
calibration parameters θ, and experimental noise σ2

m is to maximize the 
joint posterior distribution P(θ, ϕ

⃒⃒
YT) (Joseph and Yan, 2015) (Eq. 

(25)). 
(
θ, ϕ

⃒⃒
YT)∝P

(
YT ⃒⃒θ, ϕ

)
P(θ, ϕ)

∝|Σδ + Σε |−
1
2exp

(
− 1

2
(
YT − f (θ)

)T(Σδ + Σε )−1(YT − f (θ)
))

P(θ, ϕ)

(25) 
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In Eq. (25), ϕ = [ϕδ,σ2
m]. Here, P(YT

⃒⃒
θ, ϕ) is obtained by integrating 

out δ(x) from the joint posterior. 
Fig. 7 summarizes model calibration procedure discussed above. 
To balance the objective function, a scale parameter ρ is often 

introduced (i.e., Y(x) = ρf(x, θ)+ δ(x)+ ε) and it needs to be tuned 
together with the remaining hyperparameters. The posterior variance σ2

m 
is an important hyperparameter which controls the interpolating nature 
vs. regressive nature of the fitted model. Thus, if a-priori knowledge 

exists about the level of noise in the data, an informed prior assumption 
regarding this hyperparameter can be imposed, such that the final GPR 
model does not overfit the data and smooths out some of the noise. On 
the other extreme, if this is set or even fixed to zero, the GPR model will 
interpolate all of the data exactly. This will also affect the discrepancy 
component in the overall MC model, so it is important to use any prior 
information to initialize the MC approach, as well as study the final 
solution to identify whether an expected signal-to-noise ratio is captured 
in f versus δ. For more mathematical details on MC, please refer to 

Fig. 6. Modular Bayesian Approach (Arendt et al., 2012) for model calibration when computer model is replaced with GP.  

Fig. 7. Model Calibration Procedure. ϕf and ϕδ refers to the GP hyperparameters of computer model f and discrepancy function δ, respectively. σ2
m is the noise 

variance that captures experimental noise. 
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Kennedy and O’Hagan (2006). 
One of the major advantages of model calibration is its ability to 

account for different sources of uncertainty (Arendt et al., 2012), which 
exists in almost all problems in science and engineering. Model cali-
bration enables uncertainty quantification from different sources and 
helps make a proper decision by checking the degree of confidence and 
testing the reliability. The basic model calibration formulation (Eq. (18)) 
incorporates different kinds of uncertainty, such as the interpolation 
uncertainty through the f(x, θ) and δ(x) terms, the parameter uncer-
tainty through the estimation of the parameter set θ, and the experi-
mental uncertainty via ε. In a similar lens as Physics-Informed ML 
methods, incorporation of domain knowledge in MC is done via de-
cisions for the form of prior settings for different parameters and the 
discrepancy function. These informative prior settings can help generate 
an accurate posterior, and this is similar to the process of pre-training or 
transfer learning in NN modeling. A MC structure with GPR models 
representing both the expensive computer simulation and the discrep-
ancy have also been used to identify optimal locations for sampling to 
update the model parameters (i.e., Informative Experimental Design) 
(Chen et al., 2007), and for faster model validation (Chen et al., 2007; 
Lee et al., 2019). 

Challenges 
One of the main challenges in model calibration is that the inclusion 

of discrepancy term δ(x) makes the posterior calibration parameter θ∗
hard to interpret. It is difficult to differentiate the effect of calibration 
parameters θ∗ and the discrepancy function δ(x) as there can be many 
different solutions that produce similar performance of calibrated 
model. This is referred to as the “identifiability problem”. Since we do 
not know which combination of calibration parameters and the 
discrepancy function is true, the system becomes non-identifiable 
(Arendt et al., 2012; Kennedy and O’Hagan, 2001a). 

Fig. 8 shows different combinations of calibration parameters and 
the discrepancy function that explain the same system. The calibrated 
model with discrepancy function f(x, θ∗;ϕ∗

f ) + δ(x;ϕ∗
δ) + ε∗ predicts the 

same output Y(x) well but the dynamics of f(x, θ∗;ϕ∗
f ) and δ(x;ϕ∗

δ) are 
different. It is shown (Arendt et al., 2012) that adding more simulation 
and experimental data for training the model does not solve the iden-
tifiability issue. To improve identifiability, an informative prior (accu-
rate mean and low standard deviation) for the calibration parameter can 
be used (Bayarri et al., 2007; Liu et al., 2009). A specific functional form 

for the discrepancy function can also be employed for the discrepancy 
function if we have sufficient prior knowledge (Joseph and Melkote, 
2009; Xiong et al., 2009). It is shown that identifiability is difficult but 
possible for some cases when proper priors for the calibration parame-
ters and discrepancy function are set (Arendt et al., 2012). However, 
when the system is complex or not well understood, we may not have 
enough knowledge to set the informative prior for the calibration pa-
rameters and the discrepancy function. The identifiability problem often 
leads to the lack of interpretability in the model calibration technique. 
The physical interpretation of calibration parameters is not recom-
mended since the calibrated value can be far from the true value (Ken-
nedy and O’Hagan, 2001a). As an illustration example, if we set the 
molar weight of an unknown chemical as a calibration parameter (θ), the 
posterior calibration parameter (θ∗) can be negative, which is not 
physically valid. 

A desired goal might be to employ MC to identify the cause of a 
discrepancy, which would then lead to mechanistic corrections of the 
computer simulation, including the addition of terms and parameters in 
the computer simulation instead of a discrepancy. This would be the 
ideal scenario, and different approaches have been proposed towards 
that goal (Lee et al., 2019; Wipf and Nagarajan, 2007; Yi et al., 2011; 
Piironen and Vehtari, 2016; Linkletter et al., 2006; Savitsky et al., 2011). 
However, this should be done with caution, since it has also been shown 
that the interpretation of GP hyperparameters can produce a false 
interpretation of the system (Lin and Joseph, 2019). 

Overall, prior settings on model parameters and the discrepancy 
function are critical for model performance and interpretability. While 
informative prior settings can help improve model performance, inap-
propriate settings of a prior may lead to bad predictions and poor 
interpretability. However, specifying an appropriate prior is often 
challenging when we do not have enough prior knowledge of the system. 
The effect of different priors of hyperparameters on the GPR prediction 
performance is investigated in (Chen and Wang, 2017) and the authors 
concluded that the initial prior setting affects the convergence of the 
posterior hyperparameters to the true value. Selecting appropriate 
model discrepancy priors that capture missing physics in the system is 
also critical in model calibration. A different form of model discrepancy 
prior is compared in Ling et al. (2014) and they concluded that the 
calibrated parameters can be physically biased if we set inappropriate 
discrepancy priors, and as expected, this also affects the extrapolation 

Fig. 8. Identifiability issue in model calibration. (a), (b), and (c) predict the same experimental data with different combinations of posterior calibration parameters 
θ∗ and the discrepancy function δ(x;ϕ∗

δ).
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capability. In addition, the choice of covariance function is a critical 
decision since it affects the model performance (Rasmussen and Wil-
liams 2005; Schulz et al., 2018). 

High computational cost is another important issue. In standard GPR, 
estimation of the posterior includes inverting the matrix [Σ + σ2

nI], and 
the corresponding computational complexity is O(N3) where N is the 
number of observations. Since the computational cost is cubically pro-
portional to the number of observations, the model becomes computa-
tionally expensive for a large dataset. In addition, the amount of data 
required for reliable analysis grows exponentially as the dimensionality 
of data increases (Jin et al., 2002; Higdon et al., 2004). 

Although GPR is often considered a good smoothing interpolator, it 
has a limited capability in terms of extrapolation. Different factors 
including kernel structures can affect the extrapolation ability of GPR 
models. If the kernel is not comprehensive to capture the true underlying 
correlations, extrapolation performance would be poor (Wilson et al., 
2013). For example, it has been shown that the squared exponential 
kernel fails to capture the non-local structure of data (Bengio et al., 
2005). The extrapolation capability also depends on the extendibility of 
the discrepancy function, the confidence in the computer simulation and 
potential incorporation of mechanistic knowledge into the discrepancy 
function (Higdon et al., 2004). How well the model inadequacy (be-
tween experiment and computer model) is captured by the discrepancy 
function on the extrapolated region is an important issue (Bayarri et al., 
2007; Ling et al., 2014). 

Different research is conducted to mitigate the drawbacks of model 
calibration. To increase interpretability, statistical adjustment methods 
(Joseph and Yan, 2015), or empirical Bayes methods (Joseph and Mel-
kote, 2009) have been proposed. Also, different frameworks for incor-
porating the discrepancy function have been introduced. For example, 
Plumlee (2017) proposes a discrepancy function prior that is orthogonal 
to the gradient of the computer model, which shows improved behavior 
of the posterior distribution. Sargsyan et al. (2015) utilize model pa-
rameterizations to capture the discrepancy instead of the additive 
discrepancy term. 

The development of kernels that better reflect reality is an ongoing 
research question. Duvenaud et al. (2011) introduce a Gaussian Process 
with additive kernels, which improves interpretability and the extrap-
olation performance, by considering a possible set of input interactions. 
Closed-form kernels that involve spectral density with a Gaussian 
mixture are derived (Wilson and Adams, 2013) for extrapolation and 
pattern discovery. The physics-informed Kriging method (Yang et al., 
2018) is proposed, where different realizations of available data are used 
for constructing kernels without assuming a specific form for the kernel 
function. Recently, active research is conducted to increase the scal-
ability of GPR by finding the pseudo-inputs for the dataset (Gramacy and 
Apley, 2015; L’Heureux et al., 2017; Yan and Qi, 2010; McIntire et al., 
2016; Snelson and Ghahramani, 2005; Liu et al., 2018). Further, the 
MapReduce framework (Dean and Ghemawat, 2008) has been proposed 
with the aim of accelerating the model calibration framework (Cai and 
Mahadevan, 2017) when processing big datasets. 

MC as a parameter estimation technique has some similarities and 
differences from competing techniques, such as pure black-box or 
derivative-free optimization (DFO) (Lunderman et al., 2021; Abbas 
et al., 2016), or GP-based Bayesian optimization (BO) (Huang et al., 
2021). One key difference in DFO approaches, is that the computer 
simulation is treated like a black-box, and one only wishes to learn what 
parameter values minimize the mean squared error between the simu-
lation prediction and the available data. Another difference is that un-
certainty is rarely explicitly handled using DFO methods, and no 
discrepancy is considered (i.e., assuming the computer simulation is 
accurate). Similarly, even though a similarity between MC and BO is the 
use of GP models, BO is a less hybrid approach because it directly op-
timizes the parameter values with respect to an output response, while 
in MC the mechanistic model states can be incorporated. 

3.5. Other techniques for merging mechanistic knowledge with data- 
driven models 

In addition to the techniques discussed in this paper, there are other 
approaches that incorporate mechanistic information within data- 
driven models. A very common approach is feature engineering, 
which involves selecting or identifying (using Machine Learning), the 
appropriate features (or inputs) to be used to fit a Machine Learning 
model (Dong and Liu, 2018). This approach is particularly influential in 
fields such as materials science, where large data sets are available 
without a-priori knowledge of the true physical descriptors that should 
be used to predict material properties (Butler et al., 2018). In PSE, it is 
typically likely that the important, controllable inputs to the models are 
already known. Associated with feature engineering, are techniques that 
perform subset selection for generalized linear regression, that aim to 
build generalizable parametric models with additive features that best 
describe the data (Cozad et al., 2014; Wilson and Sahinidis, 2017). These 
techniques lead to more interpretable models, when compared to 
nonparametric techniques such as NNs and GPs, and can be quite 
powerful and scalable when some a-priori knowledge is available to 
inform the initial “superset” of potential basis functions. 

Another relevant research area to hybrid modeling is multifidelity 
modeling. Multifidelity techniques are used when multiple types of data 
and/or models are available for the same system (ranging from highly 
accurate to low-fidelity) and these and the correlation between them are 
jointly used to generate overall more accurate models (Peherstorfer 
et al., 2018). This approach is very relevant to hybrid submodeling and 
model calibration. The concept of developing models that are trained 
with various forms of fidelity has been often used for surrogate-based 
optimization, showing that learning from different sources of levels of 
fidelity of data can expedite the search for an optimal location. Multi-
fidelity techniques have also been directly incorporated within Gaussian 
Process regression, or Kriging, via the co-Kriging algorithm that trains a 
GP model using various fidelity sources (Stein and Corsten, 1991; Per-
dikaris et al., 2016; Perdikaris et al., 2015; Meng and Karniadakis, 2020; 
Lee et al., 2019). 

Finally, there is number of noteworthy contributions that attempt to 
fuse the physics-based knowledge into data-driven modeling but could 
not be categorized within the methods outlined in this paper. Specif-
ically, active research is conducted to incorporate physics-based 
knowledge within Gaussian Process Regression models. For the case 
where physics-based knowledge is in the form of linear differential 
equations, it has been shown that the GP model can be constructed in a 
way to adhere such physics laws. The first approach includes the use of a 
specific covariance function that meets physical constraints. (Wahlström 
et al., 2013) embeds divergence and curl-free properties of the magnetic 
field by introducing a divergence-free kernel. The second approach 
utilizes the well-known properties of the Gaussian process, such as that 
the linear transformation of a Gaussian process is also Gaussian process, 
to embed the physics-based knowledge (Raissi et al., 2017b, 2017a). 
Särkkä (2011) embeds physics-based knowledge as a prior to GPR, while 
Jidling et al. (2017) incorporate the linear operator constraints into the 
covariance function by introducing another linear operator that fulfills 
known constraints. Lange-Hegermann (2020) incorporates the bound-
ary conditions on a linearly constrained GP. The third approach in-
corporates domain knowledge by generating different realizations of the 
physics-based model to construct mean and covariance functions, purely 
based on the collection of realizations without assuming any covariance 
structure (Yang et al., 2018; Tipireddy and Tartakovsky, 2018). 

4. Applications 

4.1. Applications of hybrid sub-modeling 

HSMs have been a been applied to a large and growing number of 
applications within chemical engineering, including modeling, 
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monitoring, optimization, scale-up and control (von Stosch et al. 
2014b). Applications also span most industries that fall under the um-
brella of (bio)chemical engineering, including petrochemicals, metal-
lurgy, wastewater treatment, papermaking and pharmaceuticals. 
Applications in these areas have led to a number of general proposed 
frameworks (Oliveira, 2004; von Stosch et al., 2012; Abonyi et al., 2002; 
Sun et al., 2020) for HSMs, again many based on the original work of 
(Psichogios and Ungar, 1992). For a summary of HSM implementations 
across different industrial sectors and applications, the reader should 
consult pertinent reviews (Zendehboudi et al., 2018; von Stosch et al. 
2014b; McBride et al., 2020; von Stosch et al. 2014a; Bangi and Kwon, 
2020) as well as a recently published book (Glassey and Von Stosch, 
2018). 

4.2. Applications of physics-informed machine learning 

PI-ML models have been formulated to solve the forward and inverse 
problems in physics. In the inverse problem, data from the solution is 
given and the model estimates parameter values or conditions. In the 
forward problem, the model is given all parameters, initial conditions, 
and boundary conditions and it outputs the solution to the differential 
equation. Raissi et al. demonstrate their method with case studies such 
as the Burgers equation, Schrödinger equation and Navier-Stokes 
equation for fluid flow. The authors extend the PINN approach, to 
solve fractional advection-diffusion equations (Pang et al., 2019). In 
their work, finite elements must be combined with the PINN approach 
relying on automatic differentiation, since the chain rule from integer 
calculus cannot be applied to fractional calculus. In (Pakravan et al., 
2020), a feed forward NN finds PDE parameters which are fed to a 
custom layer that functions as a PDE solver using finite element 
methods. This layer is added to the overall NN, allowing for the model to 
be trained with the PDE solver embedded. In (Yang and Perdikaris, 
2018), deep probabilistic models are used to quantify uncertainty in the 
output of a PINN. This method can be used for verification analysis. 

In robotics, physics-informed ML models have been applied to sys-
tem control. In (Lutter et al., 2019), neural networks are used to estimate 
inertial and force matrices of mechanical systems and the outputs of the 
neural network are combined into the physical equations of conserva-
tion (Lagrangian Mechanics). The output is automatically differentiated 
with a PID controller to give a control response. In power flow modeling, 
Fioretto et al. (2020) use the Lagrangian dual formulation to enforce 
Kirchoff’s Current Law in NN models that act as surrogates for the AC 
optimal power flow problem. Misyris et al. (2019) use the PINN 
formulation to simulate simple power system dynamics. The same 
methodology has applied to problems in geophysics (He et al., 2020; 
Kadeethum et al., 2020) and cardiovascular modeling (Kissas et al., 
2020). A preliminary study has shown PINNs to be competitive with 
adjoint methods for PDE based optimal control (Mowlavi and Nabi 
2021). 

4.3. Applications of model calibration 

The model calibration framework and the Bayesian inference is a 
very flexible and powerful tool, and it is widely used in various fields 
including energy simulation (Fabrizio and Monetti, 2015; Kim and Park, 
2016; Manfren et al., 2013), optical lithography-based manufacturing 
process (Matsunawa et al., 2015), composite fuselage simulation (Wang 
et al., 2019), methane air chemistry (Sargsyan et al., 2015), CO2 capture 
(Bhat et al., 2017; Kalyanaraman et al., 2015; Kalyanaraman et al., 
2016; Li et al., 2017), fluid dynamics (Tagade et al., 2013), and Li-ion 
cell operation (Tagade et al., 2016). 

5. Computational algorithms and software implementations 

Due to the large range of potential HSM structures that are depen-
dent on the scenario and the characteristics of the mechanistic SM, 

automated off-the shelf algorithms for HSM are not available. However, 
there are many recent developments in computational packages that 
significantly expedite the training of HSMs. Specifically, to fit a surro-
gate model (NN or GP) within a differential equation, any DE solver that 
tracks parameter sensitivities (i.e., gradients) can be used. However, 
parameter estimation of DEs using the sensitivity equations tends to 
become inefficient when the number of parameters is large (>100) 
(Rackauckas et al., 2018). Thus, recent software that calculates 
parameter sensitivities using automatic differentiation and 
adjoint-tracking are promising. Software with these capabilities are 
limited with notable implementation in Python, TensorFlow and 
PyTorch, and Julia via SciML. For more complex differential equation 
systems (i.e., PDEs) finite element software with ML extensions are 
gaining momentum (Berg and Nystrom, 2017; Mitusch et al., 2021). As 
the computational gains of these AD-based schemes are demonstrated, 
implementations in other scientific programming languages are antici-
pated to become available. 

Several of the most notable algorithmic implementations are shown 
in Table 1 in the area of PI-ML. PINNs and PIGPs are typically trained 
with software that has native ML models and supports automatic dif-
ferentiation, such as Tensorflow and Pytorch (Paszke et al., 2019; Abadi 
et al., 2016). Recently, packages have also been developed in Python 
(Haghighat and Juanes, 2020a) and Julia (Rackauckas et al., 2020) to 
create PINN models. In training, gradient-based optimization algorithms 
are used such as Newton’s Method, stochastic gradient decent, Adam, 
and L-BFGS. Notably, the same software packages enabling PI-ML 
implementations are envisioned to automate the building HSMs. 

For Model Calibration, multiple software packages are available and 
those are listed in Table 2. These can be used to generate posterior 
distributions for model parameters based on experiment and simulation 
data and to make final predictions following a MC structure. 

It is worth observing here that many of the software implementations 
listed in the previous two tables are rely on open-source libraries that are 
supplemented with full-implementations of reproducible code. The past 
decade has seen the chemical engineering profession increasingly 
embrace the use of open-source code as a means of making software 
implementations more widely available and reproducible. It is likely 
that continued collaboration between engineers and colleagues in the 
computer science and machine learning communities will help perpet-
uate this mutually beneficial trend, accelerating the pace at which 
flexible, robust code becomes available to those who could benefit from 
its use. Echoing remarks in Schäfer et al. (2020) a key goal of these 
collaborations should be to streamline the HM workflow such that not 
only the model training but also the data processing, model simulation 
and optimization can be performed in a single software environment. 
Such simplifications will naturally encourage more widespread indus-
trial adoption of HMs. 

Table 1 
Algorithmic implementation of PI-ML algorithms.  

Name Algorithm Language Ref. 

PINNs Physics-Informed Neural 
Networks 

Python Raissi (2019) 

SciML Physics-Informed NN for 
PDEs 

Julia Rackauckas et al. 
(2020) 

Lagrangian 
Dual 

Training PI-NNs using 
Lagrangian Duality 

Python Freund (2004) 

SciANN Physics-Informed NNs for 
PDEs in Python 

Python Haghighat and 
Juanes (2020a) 

torchdiffeq Neural Ordinary 
Differential Equations 

Python Chen et al. (2018)  
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6. Motivating example 

6.1. Case study description 

In order to further elucidate how different formulations of hybrid 

models can be applied to systems familiar to the PSE community, we use 
a classic example in chemical engineering: an adiabatic plug flow 
reactor (PFR) (Snyder and Subramaniam, 1994; Fogler, 1999). In 
addition to being a fundamental unit operation in numerous chemical 
processes, the reactor system is associated with several modeling tasks 
that may be approached through a hybrid modeling lens. In the context 
of model calibration, kinetic and thermodynamic parameters inherent to 
the first-principles model must frequently be calibrated to reflect real 
data gathered from the reactor concentrations and temperatures. Simi-
larly, data-driven models can be used to approximate certain parts of the 
model that may be not well described from physics, such as an equi-
librium constant. Finally, the underlying differential equation model 
provides a basis for a PINN formulation, resulting in a full surrogate 
model that better generalizes to new points. 

Specifically, we will look at the production of styrene from ethyl-
benzene (EB) with two side reactions (Rxns. (1)–(3)). 

Ethylbenzene ↔ Styrene + H2 (Rxn 1)  

Ethylbenzene→Benzene + Ethylene (Rxn 2)  

Ethylbenzene + H2→Toluene + Methane (Rxn 3) 

The reversible rate law for Rxn 1, as well as the irreversible side 
reaction rate laws Rxn (2)–(3) are given below with corresponding units 
(kmol/ m3/s): 

r1 = ρ(1−ϕ)exp
(
−0.08539− 10, 925

T

)(
PEB −

PStPH2

Kp1

)
(26)  

r2 = ρ(1−ϕ)exp
(

13.2392− 25, 000
T

)
(PEB) (27)  

r3 = ρ(1−ϕ)exp
(

0.2961− 11, 000
T

)
(PEBPH2 ) (28) 

These rate laws can then be reformulated to mole balances on all the 
species in the system, and combined with an energy balance to form the 
system of coupled differential equations shown below: 

dFEB

dV = −r1 − r2 − r3 (29)  

dFSt

dV = r1 (30)  

dFH2

dV = r1 − r3 (31)  

dFBe

dV = dFEt

dV = r2 (32)  

dFTol

dV = dFMeth

dV = r3 (33)   

In Eqs. (29)–(34), Fi and Pi represent the flow rate and partial pres-
sure of each chemical species i, respectively. T is the temperature and r 
the reaction rates. The independent variable V represents an increment 
of reactor volume and increases linearly with axial distance down the 
reactor unit. For an explanation of all other parameters in the model and 
their values, the reader is referred to the Appendix. Data for each 
framework is collected by simulating the mechanistic equations above 
for 6 separate runs, which vary using initial temperatures in the range T 
∈ [850,950] K and flow rates of the reacting species in the range F ∈
[0,5] mol/m3. In addition, an inert mixture of steam enters the reactor at 
a flow rate of 48 mol/m3, acting as a heat sink. The reactor is assumed to 
operate at a total pressure PT = 2.4 atm with negligible pressure drop. 
Thus partial pressures can be calculated as Pi = (Fi/FT)PT where FT is the 
sum of flow rates of all chemical species. We will use this PFR system to 
demonstrate three methods: 1) Semi-parametric hybrid modeling, 2) 
Physics-Informed Machine Learning, 3) Model Calibration below. 

6.2. Hybrid modeling 

To illustrate the difference in HSM approaches, we visit the ethyl-
benzene reactor example when insufficient mechanistic knowledge 
limits model performance. The data-driven model used for illustrating 
each of the HSM approaches is a feed-forward neural network with one 
hidden layer and 10 hidden nodes. However, other nonlinear models 
could be used. To explore the nuances between mechanism correction 
and estimation, we consider scenarios wherein missing thermodynamic 
or kinetic information prohibit a fully mechanistic modeling approach. 

Unknown Energy Balance 
First, we consider the scenario where a model for ethylbenzene 

conversion is available but fails to accurately capture system 

Table 2 
Model calibration packages.  

Name Algorithm Language Reference 

BACCO Bayesian Calibration of 
Computer Codes 

R Hankin (2005) 

SAVE Statistical Analysis of 
Computer Models 

R Palomo et al. 
(2015) 

PyMC3 Probabilistic Programming 
Library 

Python Salvatier et al. 
(2016) 

GPM/SA Gaussian Process Models for 
Simulation Analysis 

Matlab Gattiker et al. 
(2015) 

CaliCo Bayesian Calibration R Carmassi et al. 
(2018) 

RobustCalibration Full Bayesian Analysis for 
Model Calibration 

R GU (2018)  

dT
dV = −r1ΔHrxn1 − r2ΔHrxn2 − r3ΔHrxn3

FEBCpEB + FStCpSt + FH2 CpH2 + FBeCpBe + FEtCpEt + FTolCpTol + FMethCpMeth + FSteamCpSteam
(34)   
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performance. 
Fig. 9A shows the true progression of EB conversion in a tubular 

reactor assumed to be operating in plug-flow. The true temperature and 
flow rate profiles can be generated using the full set of equations found 
in the Case Study Description. In contrast, a low-fidelity mechanistic 
model which assumes isothermal conditions predicts the conversion 
profile in Fig. 9B. The low-fidelity predictions are simulated using the 
same mechanistic equations as in the true model, except Eq. (33) is 
replaced with dT/dt = 0. The task of this illustrative example is to 
improve the predictions of the low-fidelity mechanistic model. 

A mechanism-estimation approach to model the unknown thermo-
dynamics is to model the energy balance with a data-driven SM. This 
data-driven SM can be formulated as follows: 

dT
dt = DD(T,Fk,ϕ) (35) 

Here the data-driven SM DD() represents a neural network (NN) with 
6 inputs, which include temperature T and the K = 5 flow rates Fk of 
different chemical species in the reactor, where k = 1,…,K. The NN has 
a single output dT/dt. The NN parameters are fitted by repeatedly 
integrating Eq. (35) with other mechanistic equations of the model, 
calculating the error in temperature predictions and updating the pa-
rameters of the NN using the error gradients until convergence. Note 
that this approach is feasible only by knowing the energy balance is the 
improperly formulated relationship. 

An HSM for mechanism correction offers another approach to cor-
recting the mechanistic model (Eqs. (11) and (12)). The data-driven SM 
is trained and simulated separately from the mechanistic model. The 
correction framework indexed for the EB system is outlined below. 

dxk

dt = f (xk, c(t),Θ) (36)  

xΔt+t,k = DD
(
xt,k , ct,ϕ

)
(37) 

Here xt,k represents each state variable k at time t, ϕ the parameters 
of the data-driven SM (i.e., the weights of a neural network) and Θ 
mechanistic parameters (i.e., activation energy). c(t) could potentially 
represent a forcing variable such as a heating or cooling term, but these 
were not considered in this simple example. Training of the data-driven 
model is done using the flow rate and temperature predictions from the 
mechanistic model at position t as the inputs and the true concentra-
tions/temperatures at position t + dt as the outputs. In total, the data- 
driven SM therefore has 6 inputs and 6 outputs. 

The performance of the two methods is depicted in Fig. 10. The 
predictions of both modeling methods are nearly identical and clearly 
improve the accuracy of the incomplete mechanistic model. The final 
mean squared error (MSE) between model predictions is slightly higher 
for the mechanism estimation approach than the mechanism hybrid 
correction approach: MSE = 3.396 mol/s vs MSE = 0.0775 mol/s, 
respectively. However, this should not be interpreted that the 

Fig. 9. True (Left) vs low-fidelity (Right) simulation of ethylbenzene conversion to styrene.  

Fig. 10. Regression of hybrid correction model (left) and hybrid estimation model (right). HM predictions represented by solid lines. Data used for regression 
represented by points. 
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mechanism correction framework offers more accurate predictions in 
the general case. Rather than accuracy, in this case the advantage of the 
estimation approach over the correction scheme is the clearly defined 
phenomenological relationship the data-driven model is predicting. This 
model structure may be useful if it is later desired to propose a mecha-
nistic formula for correcting the low-fidelity model. The data-driven 
model predictions could be used to regress parameters of the mecha-
nistic model separately from the other equations in the model (Bradley 
and Boukouvala, 2021) enabling computationally tractable parameter 
estimation. A possible advantage of the correction framework is that 
there is no need for simulating the mechanistic model during estimation 
of the data-driven model parameters, which may be computationally 
demanding. While the differential formula for this model was simple, 

estimating data-driven parameters in a more complex PDE may not be 
tractable. 

However, while the two methods offer accurate estimates for inter-
polating conditions, the same accuracy should not be expected for 
extrapolating conditions. Shown in Fig. 11 is the attempt to use either 
method for prediction when the inlet reactor is at a higher temperature 
of 1050 K. As seen in Fig. 11, since the data-driven component of the 
HMs rely strongly on temperature, neither method captures the true 
profile. Additional data would be required to train the HMs in the hotter 
reactor conditions prior to reliably using the HMs for predicting reactor 
performance. 

Rate estimation 
We also consider the scenario where one of the mechanistic model’s 

Fig. 11. Predictions of the hybrid correction (top) and hybrid estimation (bottom) of unknown energy balance for extrapolating conditions. HM predictions rep-
resented by solid lines. True data represented by points. 

Fig. 12. HM predictions vs training data (left) and extrapolation data (right). DD model estimates Reaction 1. HM predictions represented by solid lines. True data 
represented by points. 
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kinetic rates (i.e., Eqs. (26)–(28)) are unknown. Such situations may 
arise when a reaction mechanism is too complex to model via first 
principles knowledge or the kinetics have shifted due to catalyst deac-
tivation or equipment degradation. Without a formulation for the kinetic 
rates, simulation of the remaining mechanistic equations yields no 
useful information, so a mechanism correction formulation is not viable. 
Nevertheless, using a mechanism estimation formulation, the rate re-
lationships can be modeled with a data-driven model, which here again 
is a Neural Network. 

r = DD(T,F,ϕ) (38) 

To keep this illustration simple, the data-driven part of the hybrid DE 
estimates either Rxn 1 or Rxn 3, assuming the kinetics are unknown. The 
Neural Network receives the 6 state variables as inputs and estimates a 
single unknown reaction, whereas the remaining two reactions are 
assumed known and follow the rate laws of Eqs. (26)–(28). 

The fit of the HM when Reaction 1 is unknown is depicted in Fig. 12. 
As when the NN predicted the energy balance, the HM offers a satis-
factory estimate of the training data and can be relied on to estimate 
conditions that are an interpolation of the training data. However, also 
depicted in Fig. 12 are the HM estimates for the case where in inlet 
temperature is higher (T = 1050 K) than during training. Once again, the 
HM fails to capture the faster kinetic profiles, predicting spurious re-
lationships. Undoubtedly, the poor extrapolation of this HM is due to the 
strongly coupled nature of the differential equations. Since Reaction 1 
strongly depends on temperature and the other reaction depend on the 
reactants of Reaction 1, poor prediction of this reaction results in bad 
estimation of all chemical species. 

So far accuracy of the HMs have been similar to what would be ex-
pected of a purely data-driven model. The fitted model predicts well 
within the range of training data but not well outside this range. To offer 
a counter-example to this trend, the last case considers the situation 
where only Reaction 3 is unknown. Fig. 13 shows the fit of the HM when 
the Neural Network estimates the production of toluene and methane. 
Again, the HM fits the data well within the range of training data. More 
interestingly, the HM also predicts well the species concentration for a 
higher inlet temperature. This result is explained by the smaller role of 
the data-driven model in the HM. Although Reaction 3 is temperature 
dependent, it is a side reaction whose product concentrations do not play 
a role in other system reactions. Instead, the HM relies primarily on the 
correctly formulated mechanistic part of the model when extrapolating. 
While not always possible, limiting the role of the data-driven model 
increases the likelihood the HM will be reliable for unseen system con-
ditions, which is the golden standard for modeling and perhaps the 
truest measure of model generalizability. 

6.3. Physics-informed neural network 

In this Section, we illustrate the merits of using a PINN surrogate in 
lieu of a standard black-box NN model. Here we can use the underlying 
mechanistic knowledge of the system to improve ML predictions outside 
of training points for cases where interpolation or extrapolation is 
necessary. Using the PINN structure described in Section 4.3, we can 
train our model using sparse data as well as adherence to the underlying 
mechanistic equations given by the ODE system. Fig. 14 below sum-
marizes the inputs, outputs, and relevant physics relationships. 

Importantly, the NN outputs are differentiated with respect to the 
input reactor coordinate (V). Using automatic differentiation, the 
resulting derivative values can be compared to Eqs. (29)–(34). Critically, 
this can be done at unlabeled data points, allowing for good surrogates 
with very few labeled data points. This is shown in the loss function 
below, where labeled and unlabeled data are denoted Nsample and Ncolloc, 
respectively. Model predictions are given by yi and ground truth by ỹi. 

Loss = μ
Nsamples

∑Nsamples

i=1
(yi − ỹi)

2 + (1 − μ)
Ncolloc

∑Ncolloc

i=1

(
dyi

dV − dỹi

dV

)2
(39) 

For the sake of comparison, a classic NN model is fit to the same data 
under identical training conditions. Some results are given below to 
illustrate the effect of the physics-based loss term. First, the two models 
are tested under very sparse data conditions, where we only have 
training points for inlet, outlet and midway concentrations (y(V = 0,6,
12)). For the PINN, we also select 100 collocation points randomly 
throughout the V domain. In Fig. 15, the results for ethylbenzene con-
centration profiles for each model are depicted (Fig. 16). 

While both models are able to fit the training data exactly, the PI-NN 
model has improved interpolating behavior than the black-box NN, 
especially in the more non-linear region (V = [0,6]). This is due to the 
physics constraint applied at collocation points throughout the domain. 
We can also design an experiment for extrapolation. Here we provide 
training data at V = 2, 6,10 and predict over V = [0,12]. 

Again, both models are able to predict points where training data is 
present, but only the PI-NN can extrapolate outside that region because 
it has mechanistic knowledge applied at collocation points during 
training. From the above results, it is clear that the PINN approach offers 
advantages over the purely black-box approach, however, it requires 
that accurate physics-based information is available. In this example, we 
have assumed a fully-mechanistic model is available and have built a NN 
surrogate that is trained with embedded mechanistic knowledge. A 
similar approach can be applied even if the mechanistic knowledge is 
partially available. For example, the physics-constraint violation term 
could include violation from a mass-balance constraint, or an energy 
balance constraint, if those are the only mechanistic equations that are 

Fig. 13. HM predictions vs training data (left) and extrapolation data (right). DD model estimates Reaction 3. HM predictions represented by solid lines. True data 
represented by points. 
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available. The difference between PINN and NN predictions would be 
further pronounced in applications with noisy data, as the differential 
constrain is essentially a regularization term that penalizes the objective 
function and reduces over-fitting and noise-fitting. 

6.4. Model calibration 

Model calibration requires two datasets: high-fidelity experimental 
data from a physical experiment and low-fidelity simulation data from a 
computer experiment. Since experimental data is not available for this 

case study, we generated a high-fidelity dataset from the full Ethyl-
benzene reactor model. In addition, we applied the simplifying 
assumption: dT

dV = 0 to the Ethylbenzene reactor model and generated a 
low-fidelity simulation dataset. Since model calibration is widely used 
for the system where collecting data is expensive, we used a small 
dataset (9 low-fidelity simulation data Ys and 8 high-fidelity observation 
data Y) for calibrating the model. Zero-mean Gaussian noise is added to 
the high-fidelity experimental data Y to see how the model calibration 
handles this scenario. We consider a single variable input (V: reactor 

Fig. 14. PINN Representation of Ethylbenzene Reactor with Loss Function Formulation.  

Fig. 15. Comparison of true simulation prediction (data) with black-box NN 
(NN), and Physics-Informed NN (PINN) predictions for Interpolation between 
training points. 

Fig. 16. Comparison of true simulation prediction (data) with black-box NN 
(NN), and Physics-Informed NN (PINN) predictions for Extrapolation from 
training points. 

Fig. 17. Different guesses of calibration parameters to run com-
puter simulation. 

Fig. 18. Prediction performance of the calibrated model.  
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volume) – single output (FEthylbenzene: molar flow rate of ethylbenzene) 
system with two calibration parameters (ρ and b1). Note that calibration 
parameters can be a physically interpretable parameter (ρ) or a tuning 
parameter (b1) which has little to no physical meaning. We assume that 
domain knowledge is available for calibration parameters and that we 
know that there is a 95% chance of ρ be in a range of [1700, 2100] and 
b1 be in a range of [−50,50]. By utilizing this domain knowledge, we 
sample calibration parameters (ρ, b1) from the prior distribution ρ ∼
N(1900, 1002) and b1 ∼ N(0, 252). Fig. 17 shows different runs of 
low-fidelity simulation data for different values of calibration parame-
ters and the high-fidelity experimental data sampled for training the 
model. Note that the true value of calibration parameters is θ∗ = (ρ, b1)
= (2137, −17.34) (listed in Appendix). 

The modular Bayesian approach (Arendt et al., 2012) (Fig. 6) is 
applied for model calibration and the MCMC algorithm is used to sample 
the posterior predictive distribution of GP posterior hyperparameters 
(ϕ∗) and calibration parameters (θ∗). During the model calibration 
process, the variable input space and the calibration parameter space are 
scaled between [0,1] for numerical stability (Hinton and Rasmussen, 
1997). 

Fig. 18 shows that the low-fidelity computer model is calibrated to 
predict the high-fidelity experimental data with high accuracy, and all 
experimental observations lie within the 95% confidence interval of the 
calibrated model. Note that uncertainty is larger in the region where we 
have sparse observations, and one may perform additional experiments 
around the high uncertainty region. Likewise, investigation of uncer-
tainty can help modelers to do informative experimental design. 

Fig. 19 shows how each term in the calibrated model behaves in 
predicting high-fidelity experimental observations. It is observed that 
the f(x, θ∗;ϕ∗

f ) term (i.e., computer model replaced with GP) alone does 
not predict high-fidelity experimental observations well, while the 
discrepancy is mostly captured by the discrepancy function. The perfect 
agreement between the low-fidelity computer model and the high- 
fidelity experimental data is not guaranteed even when true calibra-
tion parameters are found, because the computer model itself f(⋅) is an 
approximation with simplifying assumptions (e.g., dT

dV = 0). 
In this case study, the posterior mean values of calibrated parameters 

are estimated as (ρcalibrated, b1, calibrated) = (1846, 8.6), which do not 
converge to the true value (ρtrue, b1,true) = (2137, − 17.34). In fact, 
different combinations of calibration parameters θ∗ = (ρ, b1) and the 
hyperparameters of GP ϕ∗ = [ϕ∗

f ,ϕ
∗
δ , σ2∗

m ] are possible for explaining the 
same system accurately. It thus becomes important to incorporate any 
prior knowledge (e.g., parameter priors, level of noise), into the training 
process as it is not guaranteed that the distinction between true 
response, true discrepancy and noise will be identifiable. 

7. Perspectives and future outlook 

7.1. Comparison between HSM and model calibration 

Having reviewed the current state of HSM and model calibration, this 
perspectives piece now offers us the unique opportunity to weigh the 
relative merits of the two. In certain respects, model calibration can be 
summarized as the non-deterministic equivalent of hybrid models aimed 
at mechanism correction. They both seek to improve the performance of 
underperforming engineering model, generally by modeling the 
discrepancy between the engineering model and experimental data. Yet 
despite their parallel development and similar goals little attention has 
been given to juxtaposing the utility of the two options. 

The model calibration formulation differs from hybrid mechanism 
correction in that it explicitly incorporates the effect of measurement 
noise. Moreover, in model calibration, the parameters in the mechanistic 
model can be seen as updated (from prior to posterior) conditioning on 
the multi-fidelity data, based on the Bayesian scheme. The parameters of 
the mechanistic model could be updated in a mechanism correction 
framework, but such cases are less frequent. 

The obvious advantage of the Bayesian scheme is the straightforward 
interpretation of uncertainty information, streamlining conclusions that 
are based on variable sensitivity and prediction intervals. In contrast, 
the deterministic correction scheme has been favored in engineering 
circles largely for its lower-bar in terms of technical know-how—there 
being no requirement to specify prior distributions, sampling schemes, 
or interpreting posterior probabilities. In addition, by avoiding Gaussian 
Processes, the deterministic mechanism correction scheme avoids the 
cubically-increasing compute cost frequently cited to be a problem when 

Fig. 19. The behavior of each term in Model Calibration. (Left): Computer model replaced with GP f(x, θ∗;ϕ∗
f ) (Right): Discrepancy function δ(x;ϕ∗

δ). Here, θ∗ is the 
posterior calibration parameters and ϕ∗

f and ϕ∗
δ are the GP posterior hyperparameters to the computer model f and the discrepancy function δ, respectively. 
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calibrating models with large amounts of data. 
Model Correction HSM methods and MC approaches both include the 

incorporation and training of an “error” or “discrepancy” function. An 
important debate can be made on how adding the correction model 
compares to finding an improved or augmented mechanistic model, by 
adding more parameters within the mechanistic model. Of course, if the 
available knowledge and resources exist to improve the mechanistic 
model to mimic reality, this should be preferred. Often this could be 
done in a manual trial-and-error approach, or via automated methods 
for model discrimination (e.g., see Olofsson et al., 2018) . However, the 
hybrid structures discussed in this paper are most appropriate for cases 
where this is either impossible (e.g., when a high-fidelity model is a 
black-box simulation that cannot be accessed or edited), or impractical 
at the given time (e.g., fully mechanistic model development is not 
possible due to missing knowledge, lack of time and computational re-
sources).When modeling the discrepancy, both methods suffer from the 
same limitations on interpretability of the discrepancy model and low 
extrapolation accuracy. When these are demanded, the modeler may 
ultimately be required to revert to mechanistic approaches that modify 
the engineering model in ways that yield additional fundamental 
knowledge about the system (Joseph and Melkote, 2009). 

7.2. Extrapolation, identifiability and interpretability 

For a model to be useful, it must predict with reasonable accuracy 
system conditions different from those considered during model 
training. These predictions may fall within the range of data used during 
training (i.e. interpolation) beyond the range of training data (i.e. 
extrapolation). Each of the hybrid frameworks have been demonstrated 
to offer superior predictions than a purely data-driven model, (Lee et al., 
2002; Van Can et al., 1996; Kennedy and O’Hagan, 2001b) at least for 
interpolation tasks. In addition, in cases where the mechanistic model is 
incomplete or poorly formulated, simply refitting the mechanistic model 
has been shown to underperform a hybrid model based on model cali-
bration (Kennedy and O’Hagan, 2001b), correction (Aguiar and Filho, 
2001; Sun et al., 2020; Keskitalo and Leiviskä, 2015), or estimation (Van 
Can et al., 1998; Georgieva et al., 2003). However, the improved 
generalizability of hybrid approaches over a purely data-driven 
approach should not be confused with the extrapolation potential of 
purely mechanistic models. When a mechanistic model is 
well-formulated, the physical meaning (i.e., interpretability) of its 
parameter values can be leveraged to hypothesize how the mechanistic 
model will perform on an entirely new set of conditions. For the majority 
of the hybrid frameworks in this survey, the final output model is a 
data-driven model. Thus, their generalizability is likewise confined to 
the conditions covered by the training data. For example, hybrid 
correction models are known to have the same limited generalizability 
as a purely data-driven model (Van Can et al., 1996; van Can et al., 
1997) and are thus rarely applied when good model extrapolation is 
required, such as in system optimization (Yang et al., 2020). Improving 
their generalizability requires either enlarging the range of conditions 
used to sample data for model-building or more efficient coverage of the 
conditions used for training—for example, through careful design of 
experiments. 

A notable exception to the general view above is the hybrid esti-
mation framework. The HM estimation scheme aims to limit the appli-
cation of the data-driven model to only the data regions and model 
functions that require adjustment or mechanistic knowledge is missing. 
As a consequence, HSMs based on mechanism estimation have been 
shown to have some ability to predict accurately beyond observed data 
(i.e., extrapolation). This makes this formulation far more attractive to 
applications in optimization. However, this extrapolation potential is 
contingent upon HM predictions relying on the accurately specified 
mechanistic relationships when extrapolating (Braake et al., 1998; Van 
Can et al., 1998). An excellent illustration of this principle can be found 
in (Yang et al., 2011). These authors modeled an unknown kinetic rate in 

the toluene nitration process via a data-driven SM while assuming a 
mechanistic SM for mass transfer is known. Since the kinetic rate was not 
dependent on the concentration or volume ratio of toluene these process 
variables could be changed without a significant decrease in the HM 
accuracy. Nevertheless, there are cases where the extrapolation accu-
racy of the hybrid estimation model may resemble that of a purely 
data-driven approach. For example, if a process model consists of highly 
coupled nonlinear conservation balance equations, separating the ef-
fects of data-driven and mechanistic SMs is not always obvious or 
possible (Quaghebeur et al., 2021). For such scenarios, mechanistic 
correction and estimation frameworks may be indistinguishable and 
perform equally well (see Section 7.1 of the Motivating Example in this 
work, for example). More work is needed to delineate how or even when 
SMs may be merged to preserve interpretability, such as a recent 
graphical framework proposed in Lee et al. (2020). 

In the case of Physics-Informed ML, while embedded physical 
knowledge cannot eliminate these challenges, several literature studies 
(Raissi et al., 2019; Kim et al., 2020; Fraces et al., 2020) demonstrate 
appreciable improvements for the extrapolation ability of the PI-ML 
models by acting as a regularization term. In (Haghighat and Juanes, 
2020b), a simple PDE model example clearly illustrates this fundamental 
trade-off. Here we use a NN to fit an “unknown” function: f(x, y) =
sin(x)sin(y). We know the data should follow this underlying PDE: fxx +
fyy + 2f = 0, therefore, we can formulate a NN that learns the function 
solely from data points and a PINN which embeds the PDE knowledge. 
We only have data for the domain x,y = [-π,π] but want to make pre-
dictions over [−2π,2π]. Using identical NN structures, data, and training 
epochs, the performance of both methods is compared in Fig. 20. 

In both, the functional representation is distorted the farther away 
from the training domain (shown as inner four squares above). However, 
the PINN clearly better represents the pattern outside of the domain 
compared to the NN. A less obvious point is that the NN does better 
within the training regime because it is overfitting. Another observation 
frequently absent in the literature is that not all modes of extrapolation 
are equivalent. While in the above example, PINNs show good gener-
alization beyond the range of spatial coordinates used during training, in 
general their ability to rigorously extrapolate to new situations, say with 
different initial or boundary conditions, is limited. This observation can 
be explained by the use of independent variables (often spatial and time 
coordinates), which confines its validity to a particular spatio-temporal 
trajectory. Further research is needed to systematically explore which 
mathematical functions are most helpful for regularization/extrapola-
tion and if non-differential functions can provide similar benefits. 

7.3. Uncertainty quantification 

Developing standard methods for quantifying the uncertainty of the 
assumptions in hybrid frameworks remains an open problem. Studies 
that characterize the reliability, identifiability, and sensitivity of HSMs 
would be a useful step in this direction. Optimization of hybrid models 

Fig. 20. Extrapolation Ability of PINNs (Haghighat and Juanes 2020a).  
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using uncertainty information was tackled in (Kahrs and Marquardt, 
2007) for algebraic systems and recently extended to dynamic systems 
by Bae et al. (2020). They established two criteria to measure the val-
idity space: 1) a convex-hull criteria created a region around the 
measured data to define a space of trusted inputs to the hybrid model 
and 2) a confidence interval criteria constrained the HM’s final pre-
dictions. Both could be added to the optimization formulation, either as 
constraints or as part of the objective function, to limit the predictions of 
the data-driven model in regions where the data-driven model was 
required to extrapolate. However, as noted by the authors in Kahrs and 
Marquardt (2007), the convex-hull fails to be informative when data is 
sparse. A more nonlinear characterization of the data range used for 
training was demonstrated through a clustering technique (Simutis 
et al., 1995; Teixeira et al., 2005). By assuming a Gaussian distribution 
of cluster points, Simutis et al. were able define a criterion for the 
extrapolation of both the input and output space. More recently, Pinto 
et al. (2019) used a bagging technique to fit an ensemble of NNs, which 
enabled construction of a confidence interval for the final HM. Another 
promising approach is to use topological data analysis along with a 
nonlinear classifier to construct validity regions. In (Schweidtmann 
et al., 2021), Schweidtmann’s group showed how these validity regions 
could constrain data-driven models during optimization, suggesting that 
the method would be similar for hybrid models. Finally, recent work 
applied global sensitivity analysis to diagnose the uncertainty of the HM 
with the notable result that the true sensitivities of the mechanistic 
model could not be recovered when the data-driven Neural Network was 
integrated with the differential equations (Francis-Xavier et al., 2021). 
Additional research is needed to understand how to apply these UQ 
techniques for model adaption and optimization for models with mul-
tiple SMs. Further progress in characterizing uncertainty for hybrid 
submodeling frameworks will likely result from employing statistical 
techniques previously developed from the Bayesian perspective of the 
model calibration framework. 

In fact, the model calibration scheme may offer the most compre-
hensive treatment of uncertainty. This may be useful in, for example, an 
experimental design program, especially when the simulation or 
experiment is expensive. By using a Bayesian-based approach with 
design validation metrics (Chen et al., 2007), the modeler may deter-
mine what system conditions will yield the most informative design 
under a framework similar to model calibration. Recently, the model 
calibration with the emphasis on the uncertainty is discussed under 
three problems the forward, inverse, and the validation problem (Lee 
et al., 2019). Another use case where the calibration emphasis on dis-
tribution can be advantageous is when we can take domain knowledge 
into account as a form of prior settings for different parameters and 
discrepancy function. This offers a more straightforward interpretation 
of the discrepancy model and hyperparameters based on original con-
fidence in the mechanistic model parameters. However, as previously 
stated, when little information is known a priori, setting prior distribu-
tions can be difficult. If little prior information is available, many 
modelers may choose a simple prior distribution (e.g., uniform distri-
bution) (Chen and Wang, 2017). 

7.4. Hard constraints, soft constraints, gradient pathologies in PI-ML 

One important distinction to draw from existing literature in PI-ML 
and for future work in this area is that of soft and hard constraints. 
Simply stated, a soft constraint is one that is penalized in the optimi-
zation algorithm but does not need to be satisfied in order to converge to 
an optimal solution. Hard constraints restrict the feasible space of the 
objective function and must be fully satisfied for the algorithm to 
converge. Strengths of the soft constraint include simple implementa-
tion, compatibility with ML training algorithms, robustness to noise in 
training data, and the ability to enforce physical knowledge that may not 
be fully accurate but still improves model performance. Soft constraints 
fit naturally within the ML field as a regularization technique for deep 

models. Their weakness in a traditional context is a lack of constraint 
guarantees and fuzziness about their full contribution to a model. Recent 
works have contributed some clarification and novel methodologies for 
dealing with the hyperparameters in these models in a more generaliz-
able way to improve PINN convergence even with gradient pathologies 
present (Wang et al., 2022; Maddu et al., 2021). 

A PI-ML model with hard constraints could provide formal guaran-
tees which may be attractive in many applications, but it is much less 
clear how to formulate these problems without losing the advantages of 
ML models. The Lagrangian-dual method referenced (Fioretto et al., 
2020; Fioretto et al., 2020) in Section 5.3 is one way to enforce hard 
constraints, if the Karush-Kuhn-Tucker (KKT) conditions can be satis-
fied. However, it is not guaranteed that a feasible solution will be found 
and the constraints are applied to discrete input points rather than a 
continuous domain. Using a fine input grid to approximate continuous 
constraint results in a very large problem that may be overly constrained 
to find the optimum. While some studies (Mohan et al., 2020; Fioretto 
et al., 2020; Zhang et al., 2018) have shown how this may work in 
practice, much work still needs to be done to clarify where hard con-
straints fit within this field. 

7.5. Future outlook 

In addition to big picture open questions reviewed in these per-
spectives, there are many topics that could use further investigation, a 
few of which are summarized below.  

• Further investigation on the discrepancy function is needed in HSM 
and MC to improve interpretability and extrapolation performance. 
Constraining a discrepancy function in a way of following physics- 
based knowledge will be an interesting topic.  

• Systematic and robust methods for regularization of multiple 
physics-based terms in PI-ML methods are needed, such that better 
guarantees of physics-violations are provided and less ad-hoc tuning 
is required.  

• Incorporation of probabilistic knowledge into a parametric hybrid 
modeling framework is a promising topic. Non-parametric surro-
gates can give flexibility and uncertainty information to the para-
metric hybrid modeling framework, while the parametric functional 
form helps to constrain the exploration space that is physically valid 
that the non-parametric function fails to capture.  

• Constraining the training of machine learning models with physics- 
based knowledge is a popular approach in hybrid modeling. How-
ever, limited study is present on discussion between soft constraints 
versus hard constraints. Systematic research on this topic will help 
researchers choose an appropriate hybrid model in practical 
applications. 

8. Conclusion 

This perspective piece has reviewed historical trends and recent 
contributions towards developing frameworks that merges physics- 
based and data-driven knowledge for modeling tasks, especially for 
processes generating dynamic data. We reviewed three different areas, 
Physics-Informed Machine Learning, Hybrid Submodeling and Model 
Calibration, attempting to highlight the major efforts, capabilities, 
similarities and pros/cons of each area. In reality, all areas are so diverse 
and rapidly growing, that it is hard to make concrete conclusions over 
the superiority of one approach over the other. This was never our goal, 
as we believe that in all areas tremendous achievements have been 
made, and these are all areas that deserve further attention. In Table 3, 
we summarize some of the key components, methods and advantages 
and limitations of the majority of methods belonging into each category, 
as defined in this review paper. 

From the above summary, we make the following observations: 

W. Bradley et al.                                                                                                                                                                                                                                



Computers and Chemical Engineering 166 (2022) 107898

23

• While not a panacea for all modeling tasks, hybrid methods may be 
key to reliable, fast process characterization when either first- 
principles alone or data alone cannot offer robust predictive power.  

• In recent years software for implementing HMs has in many ways 
matured enough for user-friendly implementation of HMs.  

• While HMs outperform purely data-driven approaches, they are 
more limited in their ability to reveal additional mechanistic insight 
about a system than a purely first-principles approach. Modelers 
should take care when extrapolating that the data-driven component 
does not overly influence the output of the model. Notwithstanding, 
HM approaches that yield mechanistic insights are certainly 
welcome.  

• Separating mechanisms into different submodels was envisioned 
early, but no general framework for quantifying the contributions of 
each SM is available. Efficient, general frameworks for quantifying 
the validity (i.e., uncertainty) of models with multiple SMs would 
help define which and how many SMs to use for a given system.  

• The Bayesian component of model calibration can be a useful tool for 
exploring the multi-fidelity data space. Probabilistic info can be 
leveraged to reduce the number of experiments and qualify the val-
idity of the calibrated model. However, less work has been done on 
Bayesian analysis of dynamic systems. Studies that streamline this 
analysis would certainly encourage the calibration framework’s 
regular use in the chemical processes field, where dynamic, and often 
unexpected, changes in the system are commonplace. 
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Appendix 

Case Study Parameters 
The parameter values for base case ethylbenzene reaction and their meaning are listed below: 
Catalyst Bed 
ρ = 2137[kg/m3 pellet] 
ϕ = 0.4 
Equilibrium Constant 
Kp1 = exp

{
b1 + b2

T + b3ln(T) + [(b4T + b5)T + b6]T
}
[atm]   

b1 −17.34 b4 −2.314×10–10 

b2 −1.302×104 b5 1.302×10–6 

b3 5.051 b6 −4.931×10–3  

Table 3 
Summary of three areas reviewed in this paper (PIML, HSM, MC) with respect to 
Knowledge Availability, Purpose/methodology and Advantages and Limitations.   

Physics-Informed 
Machine-Learning 

Hybrid 
SubModeling 

Model Calibration 

Knowledge 
Availability 

Differential/ 
Algebraic Model 
and 
(Optional) data 

Incomplete 
Differential/ 
Algebraic Model 
and 
(Optional) data 

Incomplete 
Differential/ 
Algebraic model 
(Low-fidelity 
data) and 
High-fidelity data 

Purpose/ 
methodology 

Use ML model as a 
basis function, 
optimize ML 
parameters to fit 
underlying DE 
model 

Train DD model to 
estimate unknown 
relationships 
constrained by a 
first-principles 
model 

Predict the true 
system response 
and parameters 
by introducing a 
discrepancy term 
to the low-fidelity 
model, using 
Bayesian-guided 
updating. 

Advantage (+) 
Limitation (-) 

(+) Compatibility 
with efficient ML 
computational 
libraries 
(+) Simple 
construction of 
inverse/forward 
problem structures 
(+) Final model is a 
computationally 
cheap surrogate 
(-) Poor 
generalization to 
new conditions 
(-) No guarantee of 
exact constraint 
satisfaction 

(+) Improved 
prediction 
accuracy (over a 
low-fidelity 
model) 
(+) Accurate 
extrapolation for 
physics-dependent 
part of the model 
(-) Separability of 
data-driven and 
mechanistic part of 
model not always 
feasible 
(-) Interpretability 
and extrapolation 
limited by data- 
driven component 

(+) Embedded 
uncertainty 
quantification 
(+) Ability to 
incorporate 
domain 
knowledge as a 
form of a prior 
(-) Multiple 
optimal solutions, 
so calibration 
parameters values 
not always 
physically 
interpretable 
(-) High 
computational 
cost when dataset 
becomes large  
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Heats of Reaction 
ΔHrxn1 = 118    [kJ/mol ethylbenzene] 
ΔHrxn2 = 105.2     [kJ/mol ethylbenzene] 
ΔHrxn3 = − 53.9    [kJ/mol ethylbenzene] 
Heat Capacities [J/mol/K]  

Methane 68 Styrene 27 
Ethylene 90 Ethylbenzene 299 
Benzene 201 Hydrogen 30 
Toluene 249 Steam 40  
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