
Che mica l Engin eering Researc h and Desi gn 1 88 (2 0 22 ) 101 3–10 28

Available online at www.sciencedirect.com

Chemical  Engineering Research and Design

j o u r n a l h o m e p a g e : ww w . e l s e v i e r . c om / l oc a t e / ch e r d

Data-dr iven s imultaneous  process optimization
a n d  adsorbent selection for v a c u u m  pressure
s w i n g  adsorption

Sun Hye Kim, Héctor Octavio Rubiera Landa, Suryateja Ravutla,
Matthew J. Realff, Fani Boukouvala ⁎

School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332–0100, USA

a r t i c l e i n f o

Article history:

Received 27 May 2022

Received in  revised form 3 October

2022

Accepted 4 October 2022

Available online 10 October 2022

a b s t r a c t

Technologies for post-combustion carbon capture are essential for the reduction of

greenhouse gas emissions to the atmosphere. However, they are still  associated with high

costs and energy consumption. Intensified processes for carbon capture have the poten-

tial to overcome these challenges due to their higher efficiency, lower capital cost, and

increased operational flexibility. T h i s  work investigates simultaneous optimization of

process conditions and adsorbent selection for a modular Vacuum Pressure-Swing

Adsorption     system     designed     for     CO2       capture.     Both     surrogate-based     Nonlinear
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Programming and Mixed-Integer Nonlinear Programming approaches are applied and

compared in  terms of computational efficiency and solution accuracy. Moreover, process

performance results are examined by applying several data analytics techniques to gain

insights into the material-process correlations. Data-driven classifiers and neural net-

works can accurately predict whether a material is  l ikely to satisfy purity, recovery, and

energy constraints when operated at optimal process conditions.

© 2022 Institution of Chemical  Engineers. Published by Elsevier Ltd. A l l  rights reserved.

1. Introduction separation efficiency, low energy cost in  comparison to ab-
sorption-based technologies, and its potential for modular-

Emission of CO2  has been recognized as an important en-
vironmental issue and one of the major contributing causes
of climate change (Choi et al. 2009, Bhown and Freeman,
2011, Hasan et al. 2014, Hasan et al. 2015, Ben-Mansour et al.
2016, Bui et al. 2018). In  2017, the amount of CO2  emissions in
the U.S. totaled 6457 mil l ion metric tons ("U.S. EPA's
Inventory of U.S., 2019). Carbon Capture and Storage (CCS)
has been proposed to reduce CO2  emissions but several ex-
isting techniques are currently associated with high cost and
large energy consumption (Yang, X u  et al. 2008, Hasan et al.
2013, Ben-Mansour et al. 2016, Leperi et al. 2019). One pro-
mising technology for post-combustion carbon capture is
adsorption using solid sorbents due to its relatively high
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ization (DeWitt et al. 2019).
During adsorption, separation units  containing solid ad-

sorbent sequester CO2  from flue gas through a dynamic cycl ic
operation (Ruthven, 1984, Ebner and Ritter, 2009). During
each cycle, CO2  is  captured and separated from the rest of the
mixture; the adsorbent is  then regenerated, and the cycle is
repeated (Ruthven, 1984). Depending on how the adsorbent is
regenerated, adsorption-based technology, w h i c h  is  typically
carried out in  packed-bed adsorbers, can be grouped into
three main  operational modes: (1) pressure-swing adsorption
(PSA), (2) vacuum-swing adsorption (VSA), and (3) tempera-
ture-swing adsorption (TSA) (Ruthven, 1984, Ruthven et al.
1994). Significant research efforts have focused on improving
these packed-bed adsorbers by overcoming pressure-drop
limitations, mitigating adsorption enthalpy, and improving
mass  transfer to make the operation more cost- and energy-
efficient (Samanta et al. 2012, Rezaei et al. 2014, DeWitt et al.
2019, Jang et al. 2019, S inha and Realff, 2019). Parallel to these
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efforts, the development of new adsorbents with high oper-
ating capacity and adsorptive selectivity has also been in-
vestigated extensively (Darunte et al. 2019). A  wide spectrum
of sorbents are commercial ly available and under develop-
ment, including activated carbons, zeolites, and metal-or-
ganic frameworks (MOFs) (Yazayd ın et al. 2009, H u c k  et al.
2014, Ben-Mansour et al. 2016, Findley et al. 2018, Darunte et
al. 2019). It has been repeatedly demonstrated that the
choice of an adsorbent is  critical for the successful  design of
an adsorption process that targets low cost and min imal
energy penalty for C C S  (Choi et al. 2009, S inha and
Realff, 2019).

Recent studies have revealed that process performance is
intricately linked to the choice of an adsorbent, implying that
the adsorbent selection and process optimization should be
considered simultaneously (Hasan et al. 2013, Khurana and
Farooq, 2016, Khurana and Farooq, 2017, Subramanian
Balashankar, 2019). T h i s  requires the formulation of a com-
plex simulation-based optimization problem because cycl ic
adsorption processes are typically described by detailed
mathematical models consisting of Partial Differential-Alge-
braic Equations (PDAEs). Conventional equation-based opti-
mization has been used in  (Kikkinides et al. 1993, Ko et al.
2005, Agarwal et al. 2010) but may pose limitations when
model complexity is  high. Hence, the use of stochastic
sampling-based and/or surrogate-based techniques have
been proposed. In  (Fiandaca et al. 2009, Haghpanah et al.
2013, Haghpanah et al. 2013, Khurana and Farooq, 2016; 2017,
Leperi et al. 2019) a stochastic optimization algorithm (e.g.,

2020, S u n  et al. 2020) and was found to have high sampling
costs. T h i s  further encouraged to look for alternatives, such  as
surrogate-based optimization algorithms.

Realizing the complexity of dynamic PSA simulations,
many  researchers have employed surrogate modeling to re-
present outputs of interest produced by the simulation for
optimization (Sundaram, 1999, L i  et al. 2016, Sant Anna, et al.
2017, Leperi et al. 2019, Ye, Ma et al. 2019, Xiao, L i  et al. 2020,
Xiao et al. 2021). Several works  studying adsorbent selection
and process optimization also exist in  the literature. Hasan
et al. (Hasan et al. 2013) proposes an adsorbent screening
framework using a combined material characterization and
process optimization procedure for both PSA and V S A  pro-
cesses. A  kriging-based grey-box optimization approach is
used, and the m i n i m u m  cost of capture and compression is
obtained for the final optimal design satisfying purity and
recovery constraints. Khurana and Farooq present a two-
stage adsorbent screening framework for a V S A  process for
carbon capture (Khurana, 2016). They  apply a neural net-
work-based classification model to preliminarily screen ad-
sorbents based on purity-recovery targets; an extensive
optimization study is  then performed to rank adsorbents and
determine the best operating conditions. The same authors
perform a study of integrated material-design optimization,
where material properties are represented as cleverly ex-
tracted features that span the material property space
(Khurana and Farooq, 2017). Leperi et al. (Leperi et al. 2019)
perform a ful l  PSA modeling and optimization using GA and
introduced a general evaluation metric (GEM) for the

Genetic Algorithm (GA)) is  used to determine the optimal screening of MOFs. More recently, Balashankar et al.
process operating conditions. However, stochastic algo-
rithms tend to require man y  simulation evaluations; thus, it
may not be suitable when the computer simulation is  com-
putationally expensive. To overcome this limitation, surro-
gate-based optimization techniques have been proposed
(Forrester, 2009, Boukouvala et al. 2017, Beykal et al. 2020,
Dias and Ierapetritou, 2020). Different terminology has been
used in  the literature such  as ‘meta-model’, ‘Machine-
Learning model’, and ‘Surrogate model’ to refer to approx-
imations of data or higher-order models. To avoid any con-
fusion, we wi l l  use the term ‘Surrogate model’ throughout
the paper. A  surrogate model approximates the input-output
relationship of a high-fidelity simulation with reduced com-

(Subramanian Balashankar and Rajendran, 2019) coupled a
genetic algorithm-based process optimization with a detailed
V S A  model to develop a zeolite screening framework.
Khurana and Farooq (Khurana and Farooq, 2019) extended
their previous work to include a costing framework and
Yancy,  Liperi et al., performed process-level optimization
and economic analysis of 15 MOFs from the literature
(Yancy-Caballero, Leperi et al. 2020). A  screening analysis
using machine learning techniques was performed in  (Burns
et al. 2020) to screen 1632 experimentally characterized MOFs
util izing GA for process optimization. Some of the recent
works such  as (Nogueira et al. 2022) utilize surrogate based
optimization framework using Neural Networks for s i -

plexity     (Boukouvala     and     Floudas,     2017,     Bhosekar     and multaneous material screening and process optimization
Ierapetritou, 2018, K i m  and Boukouvala, 2019, McBride and
Sundmacher, 2019). The surrogate model is  subsequently
used within algorithms that iteratively sample-fit-optimize
surrogates to find optimal solutions and several s u c h  surro-
gate-based optimization techniques exist in  the literature
(Boukouvala et al., 2017; Cozad et al., 2014; Hül len et al., 2019;

and (Pai et al. 2022) use Neural Networks predicting the
performance of adsorbents. Many such  works  involving
performance-based screening have been listed in  (Farmahini,
Kr i shnamurthy  et al. 2021).

Despite these efforts, challenges still remain for the in-
dustrial-scale deployment of adsorptive separations for

Regis, 2020;     Wi l l iams     and     Cremaschi,      2021;     K i m  and carbon capture, namely the cost of adsorbents, pressure-
Boukouvala, 2020; Regis, 2020).

Recent advances in  simulation based optimization have
attracted the attention of many researchers and led to the
development of algorithms that can handle mixed-integer in-
puts in  high-dimensional spaces (K im and Boukouvala, 2020,
Regis, 2020; S u n  et al. 2020, Wil l iams and Cremaschi, 2021).
However, there are some challenges that remain, especially
when the sampling costs are limited and the inputs contains
both discrete and continuous variables (Sun et al. 2020). For
example, the performance of one of the popular direct-search
solvers NOMAD was compared w.r.t. the quality of the solution
and the number of simulation runs  to other surrogate-based
optimization algorithms in  (, K i m  and Boukouvala, 2020, Regis,

drop limitations observed in  conventional industrial-size
beds, and high adsorption enthalpy (DeWitt et al. 2019).
Modular process intensification (PI) offers the opportunity to
effectively overcome these technical challenges (Stankiewicz
and Moulijn, 2000, Baldea et al. 2017, K i m ,  Park et al. 2017).
Energy consumption is  highly  correlated with the size of a
chemical process, implying large-scale processes are poten-
tially more inefficient (Stankiewicz and Moulijn, 2000, Lutze
et al. 2010). By reducing the size, one can enhance mass  and
heat transfer and reduce pressure drop, w h i c h  may  lead to
30% energy savings and 20% lower operating costs (Baldea et
al. 2017). Another major advantage of modularization
concerns module fabrication and deployment. In  contrast to
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centralized facilities that require most of their processes to
be built on-site, modules can be mass-produced, leading up
to 40% less capital expenditure and shorter module con-

2. Background: process model ing a n d
optimization

struction and deployment time (Baldea et al. 2017). These
modules can be added or removed depending on plant ca-
pacity, allowing flexible deployment. However, in  order to

2.1. VPSA cycle modeling

2.1.1. Process description
ful ly  exploit these advantages, modules need to be optimally
designed so that they can be operated at variable process
conditions with the chosen adsorbent. Moreover, the poten-
tial of operating integrated modules each with different
material for adsorption is  a promising approach to process
feeds with varying flowrates, and this is  a problem that
would require simultaneous optimization of operation and
material selection.

Responsible for about 30% of electricity production in  the
USA, coal-fired power plants could benefit greatly from
modular PI by exploiting several advantages intrinsic to
modular deployment and production. First, modularization
may allow C C S  to be viable by allowing incremental de-
ployment, reducing the initial capital requirements, and
permitting technological learning, thereby resulting in  an
overall reduction in  r isk  (Yang et al. 2008, Y u  et al. 2012,
Weber et al. 2018). Second, there is  significant variability in
the CO2-content emitted by coal-fired plants across the
United States. Since the modules are mass-produced and are
smaller in  size, they could be transported and operated to
best-match power-plant capacity and seasonal emission
characteristics, offering advantageous operational flexibility.

The purpose of this work is  two-fold. First, we propose a
technique to design modular CO2  capture systems for coal-
fired power plants using VPSA coupled with thermally-

modulated fiber composite adsorbents. Surrogate-based op-
timization is  used to determine the optimal adsorbent and
process conditions simultaneously to meet at least 95%
purity and 90% recovery targets. From a computational as-
pect, in  this work we compare the feasibility and compute-
cost savings of simultaneous optimization of material se-
lection and operation using surrogate-based techniques
versus a brute-force parallel optimization of operation for
each material separately. To the best of our knowledge, this
is  the first attempt to use a surrogate based MINLP algorithm
considering 75 adsorbents and 5 operating conditions for the
simultaneous optimization of adsorbent and process condi-
tions. In  the second part, we present a purely machine
learning-based classification and regression approach to gain
further insight into adsorbent-process performance through
the use of the large amount of data obtained from the si-
mulation-based optimization study. In  this part, we present
useful reduced-order correlations between material and
process operating conditions, that are revealed when ana-

In  this work, we consider a VPSA process for a single module
with a length of 1 m  and a diameter of 1/6 m.  T h i s  fixed-bed
adsorber is  packed with thermally-modulated fiber compo-
sites that consist of a porous polymeric matrix spun as a fiber
embedded with adsorbent particles (ADS) and phase-change
material (PCM). The fraction of the polymer matrix that can
be loaded with solids is  fixed at a m i n i m u m  of 25% to guar-
antee correct fiber manufacturing, whi le allowing suitable
amounts of adsorbent and PCM. In  this way, an optimal
trade-off between A D S  and PCM is  achieved in  the process
design. We present a detailed thermal management study in
(Rubiera et al. 2020) that addresses this type of contactors
based on our recent experimental results (DeWitt et al. 2019).
The application of this kind of fiber composite reduces
pressure drop in  the packed-bed, thus enabling higher gas-
velocity operation and better modulation of the heat gener-
ated by adsorption, rendering productive cycle operation
with optimal adsorbent utilization (DeWitt et al., 2018). Ad-
sorption equilibria are modeled with the extended dual-site
Langmuir  equation (eDSL) as required by the selection of
adsorbents applied in  the optimization (see Section 2.3). The
heats of adsorption for N 2      and CO2      required for process
modeling are estimated for each adsorbent from the corre-
sponding eDSL  equation parameter values. The isosteric
heats of adsorption were calculated using Clausius-Cla-
peyron equation. We have assumed that the heats of ad-
sorption were constant throughout the loading range. We
utilize a thermally modulated fiber bed, and therefore ne-
glect the dependence of heats of adsorption on temperature
(see Supporting Information). The VPSA cycle consists of the
following four steps: counter-current pressurization (ccPr),
high-pressure adsorption (Ad), co-current blow-down (coBd),
and counter-current evacuation (ccEv). Fig. 1 illustrates this
cycle, w h i c h  allows recovering CO2  during the evacuation
step at high purity. T h i s  is  enhanced by pressurization with
the light-product (LPP) stream, w h i c h  is  r ich in  N2.

Extensive studies have been performed on the adequacy
of this kind of cycle configuration for CO2  capture applica-
tions – see e.g. (Haghpanah et al. 2013) and references listed
therein. Other cycle designs that consider mult i -co lumn op-
eration and column-interaction through pressure equaliza-
tion steps are also available for this kind of separation but are
outside of the scope of this work (Xiao et al. 2008).

lyz ing the large amount of locally optimal solutions obtained 2.1.2. Mathematical Modeling and Numerical Solution
by our optimization algorithm.

The paper is  organized as follows. Section 2 provides a
background on VPSA cycle modeling as well  as an overview
of the surrogate-based optimization algorithm with a specific
focus on a neural network surrogate model. In  Section 3,
adsorbent selection and process optimization are performed
using surrogate-based NLP and MINLP algorithms, and a
comparison between the two proposed methodologies is
presented. Using the optimal process data for adsorbents,
Section 4 presents the use of dimensionality reduction,
classification, and regression techniques to gain further in-
sight into adsorbent-process performance and trade-offs. We
end with conclusions and future outlook.

The detailed full-order dynamic adsorber model for non-
isothermal operation consists of a set of partial differential-
algebraic equations (PDAEs) in  one spatial dimension, w h i c h
is  transformed to an ordinary differential equation (ODE)
system in  time by application of the first-order upwind dis-
cretization scheme (UDS), a finite-volume discretization that
is  suitable due to its numerical  robustness—method of l ines
(MOL) approach (Schiesser, 1991). The time integration of this
ODE system proceeds by applying the Backward Differ-
entiation Formulae of Gear (Gear and Gear, 1971). T h i s  model
is  coded and solved entirely in  MATLAB (MATLAB, 2018),
applying the ‘ode15s’ numerical  integration function at de-
fault tolerances. We apply suitable boundary conditions (BCs)
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Fig.  1 – Schematic representation of the 4-step V P S A  cycle
wit h  l ight-product pressurizat ion (LPP).

Fig.  2 – I l lustration of a  neural  network w i t h  a n  input, one

in  the composites establishes the extent to w h i c h  the heat
generated by adsorption is  modulated. The adsorption en-
thalpy varies between the adsorbents considered, leading to
values of PCM content that are specific to each adsorbent and
the optimal VPSA operation conditions. The blow-down step
pressure is  fixed at 1 atm, therefore avoiding the application
of two different evacuation pressure levels, w h i c h  in  practice
would increase the technical complexity of the applied eva-
cuation system. We select values of the valve-coefficients for
the pressure-changing steps (ccPr, coBd & ccEv) that min i -
mize  total cycle time. The five decision variables described
above are critical in  determining the cycle operation and are
essential for its optimization, as we discuss below.

In  contrast to the conventional fixed bed packed with
particles and without any thermal modulation, we explore
the process operation at higher adsorption pressures for a
few reasons: (1) one of the intr insic  advantages of thermally
modulated fiber composite packed beds includes min imal
pressure drop, w h i c h  allows operating at higher gas flow
rates; and (2) the heat generated by the adsorption process is
managed by the phase-change material, therefore avoiding
large excursions in  temperature along the bed. We have
verified recently in  the work of DeWitt et al. that this thermal
management strategy is  attainable experimentally (DeWitt
et al. 2019). We set the lower bound for the operating pres-
sure as (0.01 atm) for this application of flue gas carbon
capture, because it has been found to be challenging to
achieve vacuum pressures with the state-of-the-art evacua-
tion systems below this value (Pai et al. 2021). Undoubtedly,
one disadvantage of operating in  elevated pressures is  higher
energy consumption, for w h i c h  we only impose an upper
bound constraint. To explore the potential of this technology,
in  this work we provide the optimizer with a larger range of
pressures and allow the solver to identify optimal pressures
and PCM content in  the fiber blend that maximize  pro-
ductivity.

In  order to evaluate process performance, we use four
standard metrics for separation processes: productivity

hidden,  a n d  a n  output layer. mol CO2 in product stream
kg adsorbent     s product     purity mol CO2 in product stream

total mol in product stream

and initial conditions (ICs) to represent the cycl ic  operation
displayed in  Fig. 1. The complete mathematical model is
documented in  the Supporting Information.

product recovery,     mol CO2 in product stream , and specific energy
2

consumption     
tonne CO2     

. Additional complexity in  the simu-

lation and optimization of VPSA processes results from
having to evaluate these metrics at CSS.  The transient period
before this condition is  attained can take several hundreds or

2.1.3. Process Optimization even thousands of cycles in  some cases, with the associated
Several degrees of freedom are available to optimize the
4-step VPSA cycle. We select a subset of these decision

computational burden. Moreover, a challenging feature en-
countered by process optimization of cycl ic  adsorption pro-

variables, w h i c h  have the strongest impact on VPSA cesses lies in  the fact that there exists an inherent trade-off
process performance. Specifically, these are (1) Adsorption between performance objectives. T h i s  is  traditionally ad-
step     pressure (2.5   Phigh        20[atm]),     (2)     Evacuation     step dressed by applying multi-objective optimization techniques
pressure (0.01   P vac        0.5[atm]),     (3)     Feed     gas     flow     rate (Rangaiah and Bonilla-Petriciolet, 2013). The alternative ap-

0.001   Qfeed        0.0075 m3
, (4) Weight-fraction of adsorbent

in  fiber 0.15       ads        0.5 
kg solid fiber

and (5) Adsorption time

(15   tads        120[sec]).
The adsorption and evacuation pressures determine the

magnitude of the pressure-swing applied to the process. Feed
gas flow rate and adsorption step time control the feed
throughput and are therefore critical in  the positioning of
concentration and temperature fronts along the axial flow
direction of the adsorber, once cycl ic  steady-state (CSS) op-
eration has been attained. Lastly, the weight fraction of PCM

proach we present herein formulates a constrained single-
objective optimization task that maximizes  the CO2      pro-
ductivity of the VPSA cycle, whi le introducing purity, re-
covery, and specific energy consumption as constraints to
the problem. T h i s  is  a suitable approach, since there exist
well-established specifications adopted worldwide by gov-
ernment agencies that a separation technology for CO2  cap-
ture should fulfill: CO2  purity of at least 95% and CO2  recovery
of 90%. The energy constraint is  needed since the specific
energy consumption is  directly correlated to the operating
cost of the process.
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Fig. 3 – Overview of surrogate-based optimization for V P S A  process optimization. These steps are repeated unt i l  one of the
convergence criteria i s  met.

2.2.         Overview of surrogate-based optimization                               initial sampling, (2) surrogate model construction, (3) opti-
mization, and (4) adaptive sampling to locate promising so-

Due to the complexity of the VPSA-cycle simulation, surro-
gate-based optimization is  an attractive alternative to equa-
tion-based optimization. We briefly introduce the general
surrogate-based optimization framework and later illustrate
in  detail how it i s  adapted for the investigated VPSA system.
We start by formulating the general optimization problem as
follows (P1):

(P1) min f (x , y )

lutions and update the surrogate model. When  binary
variables are present in  addition to continuous variables, a
black-box MINLP (bb-MINLP) algorithm described in  ( K i m  and
Boukouvala, 2020) can be used. The algorithm follows a de-
composition approach: first, surrogate-based optimization is
performed to locate the optimal binary solution     y *; the
binary variables are then fixed at y * to proceed with a NLP
surrogate-based optimization search with respect to con-
tinuous variables x . We have previously shown in  ( K i m  and

s. t. gc (x , y )   0, c =  1, …, C Boukouvala, 2020) that this approach is  capable of locating
the global solutions of MINLP benchmark problems with up

xi x i         x i  , x i , y {0, 1}, i =  1, ..,I, j =  1, …, J

where xi  represents a continuous variable, x l  and x u are lower
and upper bounds of xi , respectively; j represents a binary

variable;     f (x , y ) represents the objective function, and gc (x

, y ) represents each u n k n ow n  constraint. Using surrogate
modeling, we seek to obtain f (x , y ) and gc (x , y ) that ap-
proximate f (x , y ) and gc (x , y ). If only continuous variables
exist (i.e., J =      ), P1 is  a constrained nonlinear programming
(NLP) problem; otherwise, P1 is  a constrained mixed-integer
(binary) nonlinear programming (MINLP) problem.

Surrogate-based     optimization     has     been     studied     ex-
tensively for NLPs and several algorithms currently exist
(Forrester and Keane, 2009, Hasan et al. 2013, Cozad et al.
2014, Boukouvala et al. 2017, Bhosekar and Ierapetritou, 2018,
Hül len et al. 2019, K i m  and Boukouvala, 2019). Unlike surro-
gate-based optimization for NLP, only a few works  currently
exist on surrogate-based optimization for MINLP (Holmström
et al. 2008, Mülle et al. 2013, Rashid et al. 2013, Müller 2016,
K i m  and Boukouvala, 2020). Existing surrogate-based opti-
mization algorithms generally consist of four main  steps: (1)

to 12 continuous and 8 binary variables, and some of its key
features are briefly described below.

First, an efficient sampling strategy mus t  be used to
construct an initial design of experiment (DOE). A  good
space-filling design should satisfy two conditions: 1) sam-
ples should be uni formly,  but not regularly, distributed i n
the search space, and 2) w h en sample points are projected
onto     each     variable     axis,     the     projections     should     not
overlap (Forrester and Keane, 2009). Several DOE techniques
currently exist, s u c h  as Latin Hypercube Design (McKay,
Beckman et al. 1979), and Sobol Sequences. I n  this work, we
fix our initial design to L H D  because it has been validated i n
previous works  as a good starting point (Forrester and
Keane, 2009). Whi le  different DOE techniques could have
minor impacts on the overall result, this i s  outside the scope
of this work. For bb-MINLP, we have previously sho w n that
creating a balanced L H D  for each discrete level i s  the best
sampling strategy, and we have proposed heurist ics on the
size of the initial L H D  for each discrete level s u c h  that we
m i n i m i z e  the overall sampling requirements ( K i m  and
Boukouvala, 2020).
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Second, a surrogate model is  constructed for the objective
and all constraints. There currently exist several types of
surrogate models, ranging from simpler models, such  as

function, W(n) and     (n) are the weights and bias values for
input-hidden (W(0) and (0)) and hidden-output (W(1) and (1))
layers.

linear     and     quadratic     regression,     to     more     complicated After neural network surrogate models are constructed,
models, such  as Gaussian Process (GP), Neural Network (NN),
and Support Vector Regression (SVR) models (Jones et al.
1998, Smola and Schölkopf 2004, Heaton, 2008, Forrester and
Keane, 2009). The surrogate models, f (x , y ) and gc (x , y ), are
low-fidelity representations of an actual high-fidelity s i m u -
lation f (x , y ) and gc (x , y ), thereby reducing the complexity of
the optimization model. When  binary variables are present,
the surrogate model can be constructed either using a re-
laxed approach or a mixed-integer approach ( K i m  and
Boukouvala, 2020). A  relaxed surrogate model assumes all
model inputs are continuous; a mixed-integer surrogate
model uses a data preprocessing technique called “one-hot
encoding” to explicitly handle the discrete search space. The
details of relaxed and mixed-integer surrogate models have
been published in  (K i m  and Boukouvala, 2020). In  this work,
we use a relaxed N N  surrogate model to achieve a balance
between model accuracy and complexity. While  a mixed-
integer surrogate model is  more accurate than a relaxed
model, the use of one-hot encoding increases the dimension
of the problem by two as each binary variable is  converted to
two d u m m y  variables. For this work, we expect that the cost
of doubling the dimension would be more significant than
the slight loss of model accuracy when relaxing the discrete
inputs. Due to the large dimensionality of the binary space,
the mixed-integer sampling and surrogate fitting approach
would be intractable, therefore, the relaxed approach was
chosen. T h i s  is  a limitation of the current implementation of
our method, and the general recommendation is  to apply a
“relaxed-surrogate” option for any problem with more than
�15–20 binary variables.

With in  a neural network, the input layer represents input
variables, the output layer represents the objective and all
constraints, and these two layers are connected by a hidden
layer. The number of hidden layers plays an important role
in  the overall N N  architecture and the number of neurons in
the hidden layer affect the fitting. If too few neurons are used
in  the hidden layers, it might result in  underfitting and si -
milarly  using too many  neurons in  the hidden layers might
result in  overfitting. Most of the conventional problems re-
quire no more than two hidden layers (Hush and Horne, 1993,
Xiao et al. 2020). It should be noted that determining the
number of hidden layers and the neurons in  the hidden
layers is  subject to the availability of the data. Although very
extensive grid search or optimization can be performed to
identify the optimized hyperparameters given the training
data, here we utilize the heuristic rule (Heaton, 2008), where
the number of nodes is  2/3 of the number of input nodes plus
the number of output nodes. A  hyperbolic tangent function (
(x) =  tanh (x)) is  used as activation function for the input-
hidden layer. For the final layer, the identity activation
function ( (x) =  x) is  used (Schweidtmann and Mitsos, 2018).
These decisions reduce the computational cost of the overall
algorithm, since surrogates are used as approximate models
to guide further sampling. The final functional form of a
neural network with a single hidden layer is:

f N  (x) =      l ( l W
(1)     

h ( h W
(0)x +  b(0)) +  b(1) )

where h and l represent the number of nodes in  hidden and
output layers, respectively, represents an activation

these models are then optimized using deterministic local
and global optimization solvers, and the accuracy of the ob-
tained solutions (x *, y *) are validated. Adaptive sampling is
used to update the surrogate models and further refine the
optimal solution. Steps 2–4 are repeated unti l  we find a so-
lution that meets one of the termination criteria: (1) con-
straint violation is  less than 10 5, (2) no improvement in  the
objective value over ten consecutive iterations, and (3) the
m a x i m u m  number of sample evaluation is  reached. In  the
case where inputs are mixed-integer (bb-MINLP), a MINLP
search is  first performed and a binary optimal solution is
identified; with the binary solution fixed, the NLP stage is
then performed to refine the solution with respect to the
continuous variables. On the other hand, when all inputs are
continuous (bb-NLP), a single search procedure is  required.
Details of the algorithm have been published in  (Boukouvala
and Floudas, 2017, K i m  and Boukouvala, 2019, K i m  and
Boukouvala, 2020).

2.3. Problem Formulation and Surrogate-Based
Optimization for MINLP and NLP

In  this section, we provide an in-depth explanation on sur-
rogate modeling and optimization specific to the VPSA pro-
cess. We consider 75 adsorbents investigated by Khurana &
Farooq (Khurana and Farooq, 2016) and originally addressed
by H u c k  et al. (Huck et al. 2014) for post-combustion CO2

capture. The applied extended dual-site Langmuir  adsorp-
tion isotherm model in  their work (Khurana and Farooq,
2016) consists of 15 parameters specific to each adsorbent.

One main  contribution of this work is  the use of black-box
MINLP algorithm for efficient process optimization and ad-
sorbent selection. Unlike the brute-force approach, where
each adsorbent is  optimized separately using black-box NLP
algorithm, binary variables are used to represent an ad-
sorbent s u c h  that simultaneous process optimization and
adsorbent selection can occur. Even though the bb-MINLP
solver initially requires a set of L H D  for each adsorbent,
further exploration of the material (i.e., binary space) is
limited to adsorbents (i.e., nodes) that have promising be-
havior. Thus,  the hypothesis is  that this simultaneous opti-
mization approach wi l l  overall exploit process-material
relationships and find optimal solutions with fewer samples
by avoiding to sample for non-promising adsorbents. At the
end of the MINLP stage of the algorithm, all materials are
ranked based on a heuristic that incorporates both average
feasibility and objective function values. The algorithm then
automatically selects w h i c h  of the materials (i.e., binary
combinations) to further refine in  the NLP stage. Although we
do not make any c laims about global guarantees of optim-
ality using our approach, in  this case the algorithm was able
to identify the optimal material option. More details about
the algorithmic heuristics can be found in  (K i m  and
Boukouvala, 2020). In  order to test the performance of the bb-
MINLP algorithm with respect to solution accuracy and
computational efficiency, we solve this problem using both
the bb-MINLP and brute-force NLP approaches. The following
optimization formulation (P2) is  used to identify the optimal
VPSA design that maximizes  productivity subject to 95%
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purity and 90% recovery constraints with an upper bound on
the specific energy consumption of 2000 kWh/tonne CO2:

accurate surrogate, w h i c h  can later be used for optimization
with deterministic solvers. But it should be noted that gen-

(P2)maxProductivity =  f (Phigh, evac, tads, ads,

Qfeed, yads       )

erating an accurate surrogate is  itself associated with com-
putationally expensive hyperparameter tuning and requires
large amount of data. The requirement on large amount of
data can be mitigated to a certain extent if the know n  phy-

s. t. Purity =  g1 (Phigh, evac, tads, ads, Qfeed, yk
ds)   0.95 sics  about the system is  used in  training the surrogate model.

Recovery =  g2 (Phigh, P vac, tads, ads, Qfeed, yk
ds)   0.9

Specific Energy Consumption = g3 (Phigh, evac, tads,     ads, Qfeed, yads)

  2000

2.5   Phigh        20, 0.01   P vac        0.5, 15   tads        120,

T h i s  approach is  usual ly  referred to as Hybrid Modeling and
Physics-Informed Machine Learning and has attracted a lot
of attention over the past few years (Bradley et al. 2022).
However, in  the present study we focus more on surrogate-
based MINLP approach and leave Hybrid Modeling as a pos-
sibility for improvement and future work.

0.15       ads        0.5, 0.001   Qfeed        0.0075
Table 1 summarizes  the main  difference between MINLP

and NLP strategies. It should be noted that each NLP problem

yk {0, 1}, yk       =  1, k =  1, …, K
k adsorbents

Binary variables ads represent an adsorbent k, where k

set of 75 adsorbents (i.e., K  =  75). If yads =  1, then adsorbent k′
is  selected. A n  additional constraint     k yads =  1 is  needed to
allow the selection of a single adsorbent. For the brute-force

approach, k =      ; hence, the problem reduces to NLP.

3. Results a n d  discuss ion:  adsorbent selection
a n d  process optimization

In  this section, we present the optimization results for ad-
sorbent selection and process optimization using both bb-
NLP and bb-MINLP approaches. The bb-NLP approach per-
forms a separate optimization for each adsorbent. The bb-
MINLP approach, on the other hand, conducts a single opti-
mization for simultaneous adsorbent selection and process
optimization. These results are compared with respect to
computational efficiency and solution accuracy.

The optimization framework is  written in  Python. The
VPSA simulation is  coded in  Matlab version 2018b (MATLAB,
2018), and a Python-Matlab interface is  applied. Since the
simulation is  computationally expensive, 5 processors are
used. A  neural network surrogate model is  constructed with
the Python module ‘scikit-learn’, and the optimization is
performed using GAMS. At each iteration, all local and global
optimal solutions are collected using DICOPT (Drud, 1994) (or
CONOPT (Drud, 1994) for NLP) and BARON (Tawarmalani and
Sahinidis, 2005) solvers, respectively. The m a x i m u m  allowed
computation time is  50 h. The optimization is  repeated 3
times, and the best result is  reported. Because the surrogate
model we use is  non-convex, this repetition was done to
choose the best possible solution out of the three runs.  Al-
though we cannot guarantee the global solution wi l l  be
identified, multistart techniques increase the chance of lo-
cating a better local solution. We have observed that in  cer-
tain cases, different local solutions are very similar, whi le in
others there is  significant variation especially in  the input
space (up to �90% relative error), often without significantly
affecting the optimal objective function. T h i s  variation is  an
indication that the landscape is  nonconvex, and/or that there
may be multiple combinations of inputs that provide similar
objective function values. T h i s  dependence on initialization
is  a challenge for many  local sampling-based methods, and
as a result, multi-start techniques are advised when com-
putational resources allow it. A l l  results and analysis of their
variation are provided in  the Supplementary File–Jupyter

has a dimensionality of 5 and is  provided with 51 initial
samples, whi le the MINLP formulation has a dimensionality
of 80 and is  provided with 3875 samples (51 for each mate-
rial). T h i s  implies that the two approaches are given an
“equivalent” number of initial samples, if normalized by the
dimensionality. T h i s  allows us  to compare the performance
of the methods.

3.1. bb-NLP Optimization: Brute-Force Approach

Process optimization is  performed separately for all 75 ad-
sorbents using a brute-force NLP approach. For each ad-
sorbent, an initial L H D  of size 51 (10I +  1, where I =  5) is
created. A  single layer neural network is  constructed with 5
input, 8 hidden, and 4 output nodes using the same heuristic
(Heaton, 2008) to predict 4 process performance metrics (i.e.,
productivity, purity, recovery, and specific energy consump-
tion). Latin Hypercube sampling was selected to ensure the
space was maximal ly  covered with our initial sampling
budget. We also observe that a smal l  fraction of our initial
samples are feasible with respect to all constraints of P2,
w h i c h  implies that the feasible region of the search space is
very smal l  and finding a feasible optimal solution is  chal-
lenging.

Table 2 shows the optimal process conditions and the
performance of all feasible adsorbents ranked in  the order of
decreasing productivity. Fig. 4 shows scatterplots of optimal
productivity vs. 5 process inputs of all 75 adsorbents. From
the optimization result of 75 adsorbents (Table 2. Supporting
Information and Fig. 4), we can notice a few trends. In  terms of
the operating pressure, feasible adsorbents tend to cluster at
high Phigh and low evac. Operating the VPSA cycle at a
higher Phigh allows increased adsorption of CO2  during the
pressurization step; operating at a lower evac improves the
recovery of CO2      and adsorbent regeneration, whi le sus-
taining the CO2  product purity target. For the feed gas flow
rate, feasible adsorbents tend to cluster at lower Qfeed, s ince
Qfeed should allow sufficient contact time for the gas uptake
to occur. In  the case of the adsorption time, tads, the trend is
less obvious, s ince both feasible and infeasible adsorbents
tend to converge to the lower bound of tads, enabling shorter
cycle times and therefore better productivity results. While
the overall trend is  also less obvious for the content of ad-
sorbent in  the fiber composite ads when all 75 adsorbents are
considered, we found an interesting trend among only the
feasible adsorbents. A s  shown in  Table 2, Supporting
Information the productivity of an adsorbent is  inversely

notebook. One way to reduce the variation is  to generate an proportional to ads. In  fact, two adsorbents that significantly
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Table 1 – Compar ison  of MINLP a n d  NLP strategies.

Approach

bb-MINLP
bb-NLP

# Problems

1
75

Dimension

80
5

L H D  size

3825
51

A N N  structure

80–58–4
5–8–4

Optimization solvers

Baron, Dicopt
Baron, Conopt

Table 2 – Optimal process conditions for 26 feasible adsorbents that meet 95% Purity -  90% Recovery constraints. T he
adsorbents are listed i n  the order of decreasing productivity. Detailed cyclic-steady state profiles for the Top 3 adsorbents
i n  this  l ist  can be consulted i n  Support ing Information along wi t h  the profiles for zeolite 13X a n d  Cu-BTC,  both
commercial ly available adsorbents a n d  also listed below. I n  the last row, the optimal  result of the s imultaneous  MINLP
approach i s  l isted for the optimal material  identified by the solver.

Optimal material and solution identified by bb-NLP solver:

Optimal Process Conditions Performance Measurements

Phig h evac

(atm)              (atm)

Zn-MOF-74 20 0.069
UTSA-16 19.92 0.088
MgX 20 0.036
Co-MOF-74 20 0.029
ZIF-39-DIA 19.83 0.072
NAB 20 0.052
h8155527 20 0.074
ZIF-82 20 0.033
13x 13.46 0.054
HMOF-992 20 0.031
ZIF-69 20 0.035
ZIF-116-MER 20 0.035
ZIF-78 20 0.042
C a X 20 0.025
N a A 20 0.078
A l - X 20 0.035
CuBTTri 20 0.040
ZIF-36-FRL 18.46 0.047
C u B T C 20 0.010
N a - X 19.88 0.035
Mg-X 15.82 0.051
h8124767                      8.89 0.032
ZIF-68 18.62 0.017
ZIF-81 19.24 0.018
h8291835 19.83 0.015
N a X 13.68 0.029

Q f eed

(1e-3 m3/s)

1.78
1.05
1.03
1.05
1.38
1.02
1.22
1.00
1.20
1.00
1.06
1.00
1.00
1.00
1.00
1.00
1.02
1.00
1.00
1.06
1.00
2.20
1.00
1.00
1.13
1.00

ad s  (s) ad s

17.85 0.150
25.29 0.150
24.88 0.150
38.16 0.150
15.42 0.331
15.00 0.280
15.00 0.348
30.01 0.291
29.17 0.293
26.74 0.298
27.25 0.341
42.49 0.360
34.69 0.362
36.01 0.226
32.90 0.478
31.58 0.313
68.39 0.470
26.47 0.365
42.32 0.231
36.51 0.408
51.58 0.500
39.71 0.400
36.24 0.445
40.50 0.500
18.12 0.500
71.78 0.500

Productivity
(1e-2 mol/kg s)

4.91
4.25
2.66
2.43
1.96
1.85
1.74
1.59
1.56
1.56
1.44
1.38
1.31
1.25
1.25
1.22
1.21
1.16
1.15
0.96
0.88
0.82
0.79
0.66
0.65
0.57

Purity (%)

95.10
95.57
95.11
95.11
95.61
95.17
95.05
95.06
95.13
95.16
95.05
95.40
95.00
95.05
95.52
95.03
95.76
95.01
95.06
95.40
95.39
95.18
95.03
95.23
95.10
95.02

Recovery (%)

90.06
90.22
91.18
90.06
90.06
90.04
92.51
90.09
90.39
90.12
90.24
90.01
90.20
90.00
91.08
91.01
90.35
90.09
95.08
90.11
90.04
91.45
92.54
90.02
90.21
92.72

Energy
kW h

to n n e C  O

860
828
857
876
881
904
833
909
708
950
921
929
875
877
829
854
909
820
995
865
763
572
932
936
996
710

Optimal material and solution identified by bb-MINLP solver:
Zn-MOF-74 19.83 0.064 1.23 24.73 0.15 4.81 95.97 90.33 853

outperform the rest of the adsorbents – Zn-MOF-74 and 3.2. Bb-MINLP Optimization: Simultaneous Approach
UTSA-16 – converge to the lower range of     ads, and as the
optimal productivity decreases, ads increases. Since the fiber Previously, we used a surrogate-based NLP algorithm to
loading factor is  fixed, decreasing adsorbent content in  the
fiber composite is  equivalent to increasing its PCM content.
T h i s  achieves better temperature modulation (Rubiera Landa
et al. 2020). Hence, for adsorbents capable of high CO2  up-
take, the presence of PCM in  the fiber composites can further
enhance adsorption by effectively managing the heat gen-
erated. The optimum P h i g h  values reported by the algorithm
for all the materials vary from � 2.5 – 20 atm. But a closer look
shows that for most of the feasible adsorbent materials the
optimum P h i g h  found is  near to 20 atm. T h i s  is  because high
adsorption pressure helps improve the recovery and pro-
ductivity. But it should be noted that there is  also a tradeoff
because, high adsorption pressures might result in  high en-
ergy consumption and hence higher cost.

conduct process optimization of 75 adsorbents separately.
T h i s  optimal set of results provides a valuable insight into
adsorbent performance when coupled with data analytics
techniques, w h i c h  we explore in  Section 4. However, re-
quiring K  =  75 optimization problems to be solved to con-
vergence, this brute-force approach is  computationally
expensive. However, if we treat this as a bb-MINLP problem,
binary variables,     ad

s, are used to represent 75 adsorbents,
and (P2) is  solved as a single problem. To create a balanced
initial sample set, an initial L H D  design with a size of 10I +  1 is
constructed for each adsorbent k. These L H D  sets are then
combined to construct a final sample set with K (10I +  1)
points. With  ads, the neural network now has K  +  5     input
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Fig. 4 – Optimal productivity i s  plotted w i t h  5 process inputs  (Phigh, evac, Qfeed, tads, a n d  ads). Feasible adsorbents (green) sat isfy

the required purity-recovery-energy constraints.

nodes, 4 output nodes, and one hidden layer. The MINLP
search step preliminarily determines the most promising
adsorbent ads, whi le the NLP search is  then performed for
the most promising adsorbent to further refine the solution
with respect to process conditions: Phigh, evac, tads, Qfeed,     ads. In
the last row of Table 2. Supporting Information, the opti-
mization result of the simultaneous MINLP approach is
shown. The optimal adsorbent is  Zn-MOF-74 with the op-
timal productivity of 0.0481 mol/kg s. Note that for all the bb-
NLP and bb-MINLP solutions, the final purity and recovery
values converged slightly above 95% and 90%, respectively.
T h i s  is  potentially due to smal l  approximation errors of re-
gression models that lead to solutions that are not exactly on
the feasible boundary.

3.3. Comparison between bb- NLP and bb-MINLP
Approaches

A  comprehensive comparison of bb-NLP and bb-MINLP ap-
proaches with respect to sampling and computational re-
quirements     is      presented     in      this     section.     The     bb-NLP

approach is  computationally expensive, solving 75 individual
surrogate-based optimization tasks. Whi le  this computa-
tional cost can be alleviated to some extent by using parallel
computing, this computational resource may  not always be
available. The bb-MINLP approach is  computationally more
efficient since it only requires a single surrogate-based opti-
mization to be performed and exploits the material-process
search space efficiently by avoiding re-sampling of non-
promising materials.

Table 3 shows the comparison of the sampling require-
ment and computation time between bb-NLP and bb-MINLP
approaches. For the bb-NLP approach, we first report the
total computation time for the all 75 adsorbents, assuming
that the optimization is  performed sequentially. The com-
putation times of each stage of this optimization strategy —
sampling, model fitting, and optimization — are shown. A s
expected, the bb-MINLP approach requires about 30 times
less computation time than the bb-NLP approach. When  the
computation time of the three stages is  compared, the most
computationally expensive stage consists of collecting sam-
ples from the VPSA simulation. In  fact, most of the
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Table 3 – Compar ison  of computational cost between bb-NLP a n d  bb-MINLP approaches. For bb-NLP, both the total a n d
average computation time are reported to sequential ly  optimize al l  75 adsorbents a n d  a  s ingle  adsorbent, respectively.

bb-NLP (total)
bb-NLP (average)
bb-MINLP

# samples

29335
391

5447

Sampling (hr)

893.76
11.92
13.41

Modeling (hr)

9.53
0.13
1.72

Optimization (hr) Total

5.76                                        909.04
0.08                                           12.12

11.46 26.59

computation time is  spent during the sample collection 4.1. Correlation Matrix of Isotherm and Process Features
stage, and the model fitting and optimization stages are
significantly faster.

In  Table 3, the average computation time per adsorbent is
also reported for bb-NLP. Looking at the average allows us  to
compare the computational efficiency of the algorithm for a
single optimization. On average, the bb-NLP approach re-
quires less number of samples and computation time for a
single adsorbent. T h i s  is  expected since the bb-NLP approach
constitutes a simpler problem with 5 input variables only.
The bb-MINLP approach requires more samples and com-
putation time because it is  a more challenging problem with
80 input variables. In  particular, the optimization stage
contributes to about 43% of the total computation time, while
that of the brute-force approach is  less than 1%. T h i s  is  also
expected since the deterministic optimization of a MINLP
problem is  more difficult than that of the NLP problem.
Nevertheless, when the total computation requirement is
considered, we can conclude that the bb-MINLP approach is
computationally more efficient overall.

It must  be noted that if high-performance computing
capabilities are available, the brute-force approach can be
parallelized, w h i c h  would lead to significant compute cost
savings. However, what we think is  interesting in  the si-
multaneous approach is  the fact that the optimizer is  able to
screen through infeasible adsorbents in  an automated way

A  correlation matrix is  constructed to observe how the input
variables are correlated. Both the isotherm features (i.e., 12
extended Dual-Site Langmuir  equation parameters; ad-
sorbent density; & isosteric heats of adsorption) and process
features (i.e., optimal operating conditions determined in
Section 3.1) of all 75 adsorbents are included in  this analysis.
Investigating the correlation between independent variables
is  an important stage in  machine learning since multi-colli-
nearity can potentially create difficulty in  estimating model
parameters (Alin, 2010).

Fig. 5 shows a correlation matrix generated from the 75
adsorbents, the correlation coefficients are calculated using
Spearman’s correlation. A s  expected, adsorption equilibrium
parameters tend to be highly correlated (e.g., qsat11     and
qsat12) s ince these parameters are typically estimated by
nonlinear fitting of experimental data and solving a system
of equations (Khurana and Farooq, 2016). Thus ,  we can ob-
serve higher correlation values in  the upper left quadrant of
the correlation matrix. On the other hand, operation features
tend to be less correlated, because these are design variables
that are optimized. Some moderate correlation is  still ob-
served among Phigh, evac and Qfeed as observed in  the lower
right quadrant of the correlation matrix.

(i.e., via the MINLP search), and as a result it requires a sig-
nificantly less amount of data to find optimal solutions. 4.2. Principal Component Analysis Results

In  terms of solution accuracy, both the bb-MINLP and bb-
NLP approaches identified Zn-MOF-74 as the best adsorbent
with productivity 0.0481 mol/kg s and     0.0491 mol/kg s, re-
spectively. While  the MINLP search stage correctly identifies
the optimal adsorbent, the NLP stage can lead to a slightly
different optimal result, w h i c h  is  typical when applying
surrogate-based approaches due to stochasticity caused by
different sampling locations and model training.

4. A n a l y s i s  of Adsorbent-Process Interaction
u s i n g  Data Analyt ics  a n d  Machine Learn ing

In  Section 3, we collect all results obtained from the previous
analysis (optimal process conditions and module design) for
all 75 adsorbents. The different adsorbent materials are
characterized by different extended Dual-Site Langmuir
equilibrium parameters. Our aim here is  to perform some
analysis on the merged process-material data and gain fur-
ther insight into the correlations between process design and
adsorbent. We first compute a correlation matrix to observe
how all process features and isotherm features are corre-
lated. We then perform Principal Component Analys is  (PCA)
to handle highly correlated variables and observe the im-
portance of process and adsorbent features. Finally, we
construct machine learning-based classification and regres-
sion models that allow us  to predict adsorbent feasibility and
performance.

Principal Component Analys is  is  a dimensionality reduction
technique used for data visualization and handling data
multi-coll inearity (Hastie, Tibshirani et al. 2013). To observe
any pattern or clustering among feasible and infeasible ad-
sorbents, we combine 15 adsorbent features (i.e., isotherm
parameters) and 5 optimal process features for 75 adsorbents
and perform linear PCA. Note that we have tested several
nonlinear kernels (e.g., polynomial, radial basis function,
sigmoid, and cosine), but they did not improve the visuali-
zation of feasible/infeasible adsorbents. These results are not
included in  this paper but can be found in  the provided
Supplementary Material – Jupyter notebook. Fig. 6 shows the
cumulative explained variance vs. the number of principal
components (PCs). With  just 6 PCs, we can explain about 80%
of the data variance, w h i c h  means that we can potentially
decrease the dimension of the problem from 20 to 6 and still
accurately capture most of the data variance.

For linear PCA, each PC is  represented as a linear combi-
nation of original features: PCp =  f F wf (x µf ), where p re-

presents the selected PC and F represents all 20 isotherm and
process features. We can analyze the importance of each
feature by analyzing its weight wf , where a feature with
larger |wf | is  considered more important. To compare the
importance of adsorbent and process features for the first s i x
PCs, we computed their percentage contribution, expressed

by: %Contribution =  100 f 

f F |

| w 

| 

|
, where F represents a set of
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Fig. 5 – Correlation m a t r i x  of 15 adsorbent features a n d  5 process features. T he  adsorbent features include: 12 eD S L
equi l ibr ium parameters (‘B11′, ‘B12′, ‘B21′, ‘B22′, ‘b11_0′, ‘b12_0′, ‘b21_0′, ‘b22_0′, ‘qsat11′, ‘qsat12′, ‘qsat21′, ‘qsat22′);
adsorbent density  (‘Density’); & isosteric heats of adsorption (‘dH1′ & ‘dH2′). T he  5 process features are: adsorption pressure
level (‘Phigh’); evacuation pressure ('Pevac’); feed volumetric flow rate (‘Qfeed’); adsorption time (‘tads’); & weight  fraction of
adsorbent i n  the fiber composite (‘omega_ads’). Darker  colors (both blue a n d  red) represent h igher  correlation.

either adsorbent or process features. Fig. 6 also shows the
computed feature contribution. For the first PC, adsorbent
features explain about 70% of data variance; for the second

of an adsorbent improves as we approach the lower left
quadrant in  the PC space.

PC, adsorbent features explain about 50% of data variance.
While  adsorbent features seem to contribute slightly more to

4.3. SVM classification model for adsorbent feasibility

the PCs than the process features, it is  difficult to conclude
the existence of a dominant feature. These results support
our claim that both adsorbent and process features con-
tribute to the overall data variance and are both important
for the VPSA process design. Finally, the first two PCs are
plotted to visualize the data in  a 2-dimensional space and
observe any pattern among feasible and infeasible ad-
sorbents. From Fig. 7, we can observe some clustering of
feasible adsorbents in  the lower left quadrant of the PC space
as well  as a linear separation between feasible and infeasible
adsorbents. In  fact, we have observed that the performance

Using the PCs obtained in  the previous section, we construct a
classification model that predicts adsorbent feasibility,
assuming that we are operating an adsorbent at optimal
operating conditions. A s  shown in  Fig. 7, the feasible and
infeasible adsorbents are linearly separable in  the 2-dimen-
sional PC space. To exploit this trend, we construct a linear
Support Vector Machine (SVM) classification model to clas-
sify adsorbent feasibility using 2 PCs. A  linear SVM model
seeks to find a linear hyperplane that can separate two
classes of points and it has a regularization hyperparameter
C , w h i c h  can be tuned using a grid search (Smola and

Fig.  6 – Left: Percentage of variance expla ined vs.  the number of pr incipal  components. Right: Feature % contribution of the
first 6 PCs.
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Fig.  7 – PC A  i s  performed a n d  the first two PCs are plotted, where feasible adsorbents that sat isfy al l  constraints are
indicated by green dots. T he  decision boundary found v i a  support vector classification i s  also d isp layed  by a  black solid line.
A n d  to the right we s h o w  a  confusion m a t r i x  of the classification.

Schölkopf 2004). For model training, 80% of the data is  used
with 5-fold cross validation, and 20% of the data set is  set
aside to test how well  the model generalizes to a new set of
data. The resulting linear SVM model is  also shown in  Fig. 7.
For the training set, the SVM model accuracy is  82%, and this
error results from the fact that the points are not perfectly
linearly separable. For the test set, the model accuracy is
94%, w h i c h  implies good generalizability. Whi le  we can
generally improve the model accuracy by increasing the
number of PCs or considering nonlinear classification tech-
niques, neither of these two approaches significantly im-
proved our results. Specifically, increasing the number of PCs
led to less than 1% improvements, while consideration of a
nonlinear rbf kernel led to less than 5% improvement, and
not perfect separation of feasible to infeasible materials (see
Supplementary Material – Jupyter notebook). A s  a result, we
favor simplicity and interpretability of PCs in  this work, and
report results for the linear case.

a total of 224 samples, 50 points were filtered out prior to
training because they were highly infeasible solutions with
respect to energy and these would be outliers that would
induce bias in  the regression model. These isotherm-based
PCs are then combined with optimal process features to
construct a prediction model. Fig. 8 summarizes  the result of
linear PCA. Even with just 2 PCs, we can capture �60% of data
variance; with 5 PCs, we can capture �80% of data variance.
When  the first two PCs are plotted (Fig. 8), we did not observe
any pattern among feasible and infeasible adsorbents. T h i s
further enhances our previous c laim that both operation and
adsorbent features are important in  predicting the feasibility
of an adsorbent; thus, both features must  be considered.

After reducing the dimensionality of isotherm features
using PCA, the first two principal components are combined
with optimal process features, w h i c h  results in  7 inputs (i.e.,
PCads,1, PCads,2 Phigh, evac , Qfeed, tads, and     ads). These inputs are
then used to train a single mult i  input-output neural network
model that can predict product productivity, purity, recovery,

4.4.         Adsorbent performance prediction model                                  and energy consumption. For the selection of hyperpara-
meters of the NN,  a grid search is  used with 5-fold cross-

In  the previous section, we constructed a SVM-based ad-
sorbent feasibility classification model using 2 PCs. While this
model is  sufficient when one is  interested in  determining
whether an adsorbent is  feasible or not, it is  not sufficient to
provide detailed information on the performance of the VPSA
system in  terms of product productivity, purity, recovery, and
specific energy consumption. Thus,  we construct a neural
network-based adsorbent performance prediction model to
predict the VPSA system performance given isotherm para-
meters and the optimal operating conditions.

Previously in  Section 4.1, we have determined that iso-
therm features (i.e., extended dual-site Langmuir  isotherm
parameters) tend to be highly correlated, whi le process fea-
tures exhibit less correlation. Hence, we perform linear PCA
on just the isotherm features to reduce the dimension from
15 to the selected number of PCs and handle existing corre-
lations between isotherm parameters. A l l  of the obtained
data from the optimization runs  (i.e., initial samples, local
and best solutions) were used to train this final model. Out of

validation to select the most appropriate activation func-
tion—i.e., hyperbolic tangent (tanh) or rectified linear unit
(relu); the number of hidden layers (from 1 to 4 layers), and
the number of nodes per hidden layer (varied from 5 to 12 per
layer). We found that the most challenging output to predict
was energy, and we hypothesize that this i s  due to the fact
that the energy constraint is  relatively easy to satisfy and is
often non-active in  the optimal solution. The optimal archi-
tecture of the N N  from grid search contained 4 hidden layers
with hyperbolic tangent activation and 11, 8, 11, 10 nodes per
hidden layer respectively. Fig. 9 shows the parity plot of
neural network model, and the goodness-of-fit given is  by R2,
and for the train-set were found to be (0.920, 0.918, 0.959,
0.896) and for the test set were found to be (0.951, 0.929, 0.979,
0.958) respectively for productivity, purity, recovery and en-
ergy. We have observed that increasing the number of PCs
does not significantly improve the model. Therefore, ap-
plying only 2 PCs is  a good compromise that balances model
accuracy and complexity.
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Fig. 8 – PC A  on only  isotherm parameters (PCads): (a) Percentage of variance expla ined vs.  the number of PCs, a n d  (b) 2-d
representation of PC space.

Fig.  9 – Parity plot of productivity, purity,  recovery, a n d  energy from the neural  network model. T he  y - a x i s  i s  the predicted
value from a  neural  network model, a n d  the x - a x i s  i s  the actual s imulat ion  output.

To check the robustness of the model, we randomized the
train-test split and fitted the training data using the best
architecture we found in  the grid search for 6 test cases. We
found that the average of R2 the train-set were found to be
(0.928, 0.916, 0.961, 0.905) and for the test set were found to be
(0.928, 0.932, 0.968, 0.916) respectively for productivity,
purity, recovery and energy. T h i s  indicates a good model
performance and that the model is  not overfitting. T h i s
model can be used to preliminarily evaluate the feasibility of
an adsorbent using isotherm and process features.

application of fixed-beds packed with thermally modulated
fiber composites, w h i c h  enhances mass  transfer, min imizes
pressure drop, and allows intr insic  thermal management,
thereby intensifying carbon capture efficiency. To achieve
optimal performance, we consider both the adsorbent se-
lection and process operation conditions to design a modular
VPSA system. We investigate two different approaches to
formulate and solve the optimization problem: 1) the bb-NLP
approach, where the process optimization is  performed for
each adsorbent, and 2) the bb-MINLP approach, where the
adsorbent selection and process optimization are performed

5. Conclus ions a n d  future perspectives simultaneously. For the bb-NLP approach, 75 adsorbents are
considered and 26 feasible adsorbents are identified. The bb-

In  this work, we propose a surrogate-based optimization
approach for the design of modular VPSA systems for post-
combustion CO2      capture. The VPSA cycle considers the

MINLP approach performed simultaneous optimization of
adsorbent selection and process condition by using binary
variables to represent adsorbents. When  all 75 adsorbents
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are compared, the latter approach is  more efficient with re-
spect to sampling and computational requirements.

In  addition to the design of a module, we also demon-
strate how machine learning classification and regression
techniques can be applied to identify feasible adsorbents and
predict the performance from a purely data-driven perspec-
tive. Principal Component Analys is  is  used to reduce the di-
mension of the problem and analyze the importance of
adsorbent and process features. Our result indicates that no
dominant feature exists and both the adsorbent and process
features are important, implying adsorbent selection is
highly linked to process performance. A  clustering of feasible
adsorbents has been observed, and an accurate linear SVM
classification is  developed. Finally, we construct a neural
network-based performance prediction model to predict four
outputs of the VPSA simulation (i.e., purity, recovery, energy
consumption, and productivity). These classification and
neural network models provide valuable preliminary insight
into different adsorbents and process performance.
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