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ABSTRACT

Technologies for post-combustion carbon capture are essential for the reduction of
greenhouse gas emissions to the atmosphere. However, they are still associated with high
costs and energy consumption. Intensified processes for carbon capture have the poten-
tial to overcome these challenges due to their higher efficiency, lower capital cost, and
increased operational flexibility. This work investigates simultaneous optimization of
process conditions and adsorbent selection for a modular Vacuum Pressure-Swing
Adsorption system designed for CO, capture. Both surrogate-based Nonlinear
Programming and Mixed-Integer Nonlinear Programming approaches are applied and
compared in terms of computational efficiency and solution accuracy. Moreover, process
performance results are examined by applying several data analytics techniques to gain
insights into the material-process correlations. Data-driven classifiers and neural net-
works can accurately predict whether a material is likely to satisfy purity, recovery, and
energy constraints when operated at optimal process conditions.

2022 Institution of Chemical Engineers. Published by Elsevier Ltd. All rights reserved.

1. Introduction

separation efficiency, low energy cost in comparison to ab-
sorption-based technologies, and its potential for modular-
ization (DeWitt et al. 2019).

Emission of CO, has been recognized as an important en-
vironmental issue and one of the major contributing causes
of climate change (Choi et al. 2009, Bhown and Freeman,
2011, Hasan et al. 2014, Hasan et al. 2015, Ben-Mansour et al.
2016, Bui et al. 2018). In 2017, the amount of CO, emissions in
the U.S. totaled 6457 million metric tons ("U.S. EPA's
Inventory of U.S., 2019). Carbon Capture and Storage (CCS)
has been proposed to reduce CO, emissions but several ex-
isting techniques are currently associated with high cost and
large energy consumption (Yang, Xu et al. 2008, Hasan et al.
2013, Ben-Mansour et al. 2016, Leperi et al. 2019). One pro-
mising technology for post-combustion carbon capture is
adsorption using solid sorbents due to its relatively high
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During adsorption, separation units containing solid ad-
sorbent sequester CO, from flue gas through a dynamic cyclic
operation (Ruthven, 1984, Ebner and Ritter, 2009). During
each cycle, CO, is captured and separated from the rest of the
mixture; the adsorbent is then regenerated, and the cycle is
repeated (Ruthven, 1984). Depending on how the adsorbent is
regenerated, adsorption-based technology, which is typically
carried out in packed-bed adsorbers, can be grouped into
three main operational modes: (1) pressure-swing adsorption
(PSA), (2) vacuum-swing adsorption (VSA), and (3) tempera-
ture-swing adsorption (TSA) (Ruthven, 1984, Ruthven et al.
1994). Significant research efforts have focused on improving
these packed-bed adsorbers by overcoming pressure-drop
limitations, mitigating adsorption enthalpy, and improving
mass transfer to make the operation more cost- and energy-
efficient (Samanta et al. 2012, Rezaei et al. 2014, DeWitt et al.
2019, Jang et al. 2019, Sinha and Realff, 2019). Parallel to these
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efforts, the development of new adsorbents with high oper-
ating capacity and adsorptive selectivity has also been in-
vestigated extensively (Darunte et al. 2019). A wide spectrum
of sorbents are commercially available and under develop-
ment, including activated carbons, zeolites, and metal-or-
ganic frameworks (MOFs) (Yazaydin et al. 2009, Huck et al.
2014, Ben-Mansour et al. 2016, Findley et al. 2018, Darunte et
al. 2019). It has been repeatedly demonstrated that the
choice of an adsorbent is critical for the successful design of
an adsorption process that targets low cost and minimal
energy penalty for CCS (Choi et al. 2009, Sinha and
Realff, 2019).

Recent studies have revealed that process performance is
intricately linked to the choice of an adsorbent, implying that
the adsorbent selection and process optimization should be
considered simultaneously (Hasan et al. 2013, Khurana and
Farooq, 2016, Khurana and Farooq, 2017, Subramanian
Balashankar, 2019). This requires the formulation of a com-
plex simulation-based optimization problem because cyclic
adsorption processes are typically described by detailed
mathematical models consisting of Partial Differential-Alge-
braic Equations (PDAEs). Conventional equation-based opti-
mization has been used in (Kikkinides et al. 1993, Ko et al.
2005, Agarwal et al. 2010) but may pose limitations when
model complexity is high. Hence, the use of stochastic
sampling-based and/or surrogate-based techniques have
been proposed. In (Fiandaca et al. 2009, Haghpanah et al.
2013, Haghpanah et al. 2013, Khurana and Farooq, 2016; 2017,
Leperi et al. 2019) a stochastic optimization algorithm (e.g.,
Genetic Algorithm (GA)) is used to determine the optimal
process operating conditions. However, stochastic algo-
rithms tend to require many simulation evaluations; thus, it
may not be suitable when the computer simulation is com-
putationally expensive. To overcome this limitation, surro-
gate-based optimization techniques have been proposed
(Forrester, 2009, Boukouvala et al. 2017, Beykal et al. 2020,
Dias and lerapetritou, 2020). Different terminology has been
used in the literature such as ‘meta-model’, ‘Machine-
Learning model’, and ‘Surrogate model’ to refer to approx-
imations of data or higher-order models. To avoid any con-
fusion, we will use the term ‘Surrogate model’ throughout
the paper. A surrogate model approximates the input-output
relationship of a high-fidelity simulation with reduced com-
plexity (Boukouvala and Floudas, 2017,
lerapetritou, 2018, Kim and Boukouvala, 2019, McBride and
Sundmacher, 2019). The surrogate model is subsequently
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used within algorithms that iteratively sample-fit-optimize
surrogates to find optimal solutions and several such surro-
gate-based optimization techniques exist in the literature
(Boukouvala et al., 2017; Cozad et al., 2014; Hullen et al., 2019;
Regis, 2020; Williams and Cremaschi, 2021; Kim and
Boukouvala, 2020; Regis, 2020).

Recent advances in simulation based optimization have
attracted the attention of many researchers and led to the
development of algorithms that can handle mixed-integer in-
puts in high-dimensional spaces (Kim and Boukouvala, 2020,
Regis, 2020; Sun et al. 2020, Williams and Cremaschi, 2021).
However, there are some challenges that remain, especially
when the sampling costs are limited and the inputs contains
both discrete and continuous variables (Sun et al. 2020). For
example, the performance of one of the popular direct-search
solvers NOMAD was compared w.r.t. the quality of the solution
and the number of simulation runs to other surrogate-based
optimization algorithms in (, Kim and Boukouvala, 2020, Regis,

2020, Sun et al. 2020) and was found to have high sampling
costs. This further encouraged to look for alternatives, such as
surrogate-based optimization algorithms.

Realizing the complexity of dynamic PSA simulations,
many researchers have employed surrogate modeling to re-
present outputs of interest produced by the simulation for
optimization (Sundaram, 1999, Li et al. 2016, Sant Anna, et al.
2017, Leperi et al. 2019, Ye, Ma et al. 2019, Xiao, Li et al. 2020,
Xiao et al. 2021). Several works studying adsorbent selection
and process optimization also exist in the literature. Hasan
et al. (Hasan et al. 2013) proposes an adsorbent screening
framework using a combined material characterization and
process optimization procedure for both PSA and VSA pro-
cesses. A kriging-based grey-box optimization approach is
used, and the minimum cost of capture and compression is
obtained for the final optimal design satisfying purity and
recovery constraints. Khurana and Farooq present a two-
stage adsorbent screening framework for a VSA process for
carbon capture (Khurana, 2016). They apply a neural net-
work-based classification model to preliminarily screen ad-
sorbents based on purity-recovery targets; an extensive
optimization study is then performed to rank adsorbents and
determine the best operating conditions. The same authors
perform a study of integrated material-design optimization,
where material properties are represented as cleverly ex-
tracted features that span the material property space
(Khurana and Farooq, 2017). Leperi et al. (Leperi et al. 2019)
perform a full PSA modeling and optimization using GA and
introduced a general evaluation metric (GEM) for the
screening of MOFs. More recently, Balashankar et al.
(Subramanian Balashankar and Rajendran, 2019) coupled a
genetic algorithm-based process optimization with a detailed
VSA model to develop a zeolite screening framework.
Khurana and Farooq (Khurana and Farooq, 2019) extended
their previous work to include a costing framework and
Yancy, Liperi et al.,, performed process-level optimization
and economic analysis of 15 MOFs from the literature
(Yancy-Caballero, Leperi et al. 2020). A screening analysis
using machine learning techniques was performed in (Burns
et al. 2020) to screen 1632 experimentally characterized MOFs
utilizing GA for process optimization. Some of the recent
works such as (Nogueira et al. 2022) utilize surrogate based
optimization framework using Neural Networks for si-
multaneous material screening and process optimization
and (Pai et al. 2022) use Neural Networks predicting the
performance of adsorbents. Many such works involving
performance-based screening have been listed in (Farmahini,
Krishnamurthy et al. 2021).

Despite these efforts, challenges still remain for the in-
dustrial-scale deployment of adsorptive separations for
carbon capture, namely the cost of adsorbents, pressure-
drop limitations observed in conventional industrial-size
beds, and high adsorption enthalpy (DeWitt et al. 2019).
Modular process intensification (Pl) offers the opportunity to
effectively overcome these technical challenges (Stankiewicz
and Moulijn, 2000, Baldea et al. 2017, Kim, Park et al. 2017).
Energy consumption is highly correlated with the size of a
chemical process, implying large-scale processes are poten-
tially more inefficient (Stankiewicz and Moulijn, 2000, Lutze
et al. 2010). By reducing the size, one can enhance mass and
heat transfer and reduce pressure drop, which may lead to
30% energy savings and 20% lower operating costs (Baldea et
al. 2017). Another major advantage of modularization
concerns module fabrication and deployment. In contrast to
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centralized facilities that require most of their processes to
be built on-site, modules can be mass-produced, leading up
to 40% less capital expenditure and shorter module con-
struction and deployment time (Baldea et al. 2017). These
modules can be added or removed depending on plant ca-
pacity, allowing flexible deployment. However, in order to
fully exploit these advantages, modules need to be optimally
designed so that they can be operated at variable process
conditions with the chosen adsorbent. Moreover, the poten-
tial of operating integrated modules each with different
material for adsorption is a promising approach to process
feeds with varying flowrates, and this is a problem that
would require simultaneous optimization of operation and
material selection.

Responsible for about 30% of electricity production in the
USA, coal-fired power plants could benefit greatly from
modular Pl by exploiting several advantages intrinsic to
modular deployment and production. First, modularization
may allow CCS to be viable by allowing incremental de-
ployment, reducing the initial capital requirements, and
permitting technological learning, thereby resulting in an
overall reduction in risk (Yang et al. 2008, Yu et al. 2012,
Weber et al. 2018). Second, there is significant variability in
the CO,-content emitted by coal-fired plants across the
United States. Since the modules are mass-produced and are
smaller in size, they could be transported and operated to
best-match power-plant capacity and seasonal emission
characteristics, offering advantageous operational flexibility.

The purpose of this work is two-fold. First, we propose a
technique to design modular CO, capture systems for coal-
fired power plants using VPSA coupled with thermally-
modulated fiber composite adsorbents. Surrogate-based op-
timization is used to determine the optimal adsorbent and
process conditions simultaneously to meet at least 95%
purity and 90% recovery targets. From a computational as-
pect, in this work we compare the feasibility and compute-
cost savings of simultaneous optimization of material se-
lection and operation using surrogate-based techniques
versus a brute-force parallel optimization of operation for
each material separately. To the best of our knowledge, this
is the first attempt to use a surrogate based MINLP algorithm
considering 75 adsorbents and 5 operating conditions for the
simultaneous optimization of adsorbent and process condi-
tions. In the second part, we present a purely machine
learning-based classification and regression approach to gain
further insight into adsorbent-process performance through
the use of the large amount of data obtained from the si-
mulation-based optimization study. In this part, we present
useful reduced-order correlations between material and
process operating conditions, that are revealed when ana-
lyzing the large amount of locally optimal solutions obtained
by our optimization algorithm.

The paper is organized as follows. Section 2 provides a
background on VPSA cycle modeling as well as an overview
of the surrogate-based optimization algorithm with a specific
focus on a neural network surrogate model. In Section 3,
adsorbent selection and process optimization are performed
using surrogate-based NLP and MINLP algorithms, and a
comparison between the two proposed methodologies is
presented. Using the optimal process data for adsorbents,
Section 4 presents the use of dimensionality reduction,
classification, and regression techniques to gain further in-
sight into adsorbent-process performance and trade-offs. We
end with conclusions and future outlook.

2. Background: process modeling and
optimization

2.1. VPSA cycle modeling

2.1.1.  Process description

In this work, we consider a VPSA process for a single module
with alength of 1 m and a diameter of 1/6 m. This fixed-bed
adsorber is packed with thermally-modulated fiber compo-
sites that consist of a porous polymeric matrix spun as a fiber
embedded with adsorbent particles (ADS) and phase-change
material (PCM). The fraction of the polymer matrix that can
be loaded with solids is fixed at a minimum of 25% to guar-
antee correct fiber manufacturing, while allowing suitable
amounts of adsorbent and PCM. In this way, an optimal
trade-off between ADS and PCM is achieved in the process
design. We present a detailed thermal management study in
(Rubiera et al. 2020) that addresses this type of contactors
based on our recent experimental results (DeWitt et al. 2019).
The application of this kind of fiber composite reduces
pressure drop in the packed-bed, thus enabling higher gas-
velocity operation and better modulation of the heat gener-
ated by adsorption, rendering productive cycle operation
with optimal adsorbent utilization (DeWitt et al.,, 2018). Ad-
sorption equilibria are modeled with the extended dual-site
Langmuir equation (eDSL) as required by the selection of
adsorbents applied in the optimization (see Section 2.3). The
and CO,
modeling are estimated for each adsorbent from the corre-

heats of adsorption for N, required for process
sponding eDSL equation parameter values. The isosteric
heats of adsorption were calculated using Clausius-Cla-
peyron equation. We have assumed that the heats of ad-
sorption were constant throughout the loading range. We
utilize a thermally modulated fiber bed, and therefore ne-
glect the dependence of heats of adsorption on temperature
(see Supporting Information). The VPSA cycle consists of the
following four steps: counter-current pressurization (ccPr),
high-pressure adsorption (Ad), co-current blow-down (coBd),
and counter-current evacuation (ccEv). Fig. 1 illustrates this
cycle, which allows recovering CO, during the evacuation
step at high purity. This is enhanced by pressurization with
the light-product (LPP) stream, which is rich in N,.

Extensive studies have been performed on the adequacy
of this kind of cycle configuration for CO, capture applica-
tions — see e.g. (Haghpanah et al. 2013) and references listed
therein. Other cycle designs that consider multi-column op-
eration and column-interaction through pressure equaliza-
tion steps are also available for this kind of separation but are
outside of the scope of this work (Xiao et al. 2008).

2.1.2. Mathematical Modeling and Numerical Solution

The detailed full-order dynamic adsorber model for non-
isothermal operation consists of a set of partial differential-
algebraic equations (PDAEs) in one spatial dimension, which
is transformed to an ordinary differential equation (ODE)
system in time by application of the first-order upwind dis-
cretization scheme (UDS), a finite-volume discretization that
is suitable due to its numerical robustness—method of lines
(MOL) approach (Schiesser, 1991). The time integration of this
ODE system proceeds by applying the Backward Differ-
entiation Formulae of Gear (Gear and Gear, 1971). This model
is coded and solved entirely in MATLAB (MATLAB, 2018),
applying the ‘odel5s’ numerical integration function at de-
fault tolerances. We apply suitable boundary conditions (BCs)
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Fig. 1 — Schematic representation of the 4-step VPSA cycle
with light-product pressurization (LPP).
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Fig. 2 — Illustration of a neural network with an input, one

hidden, and an output layer.

and initial conditions (ICs) to represent the cyclic operation
displayed in Fig. 1. The complete mathematical model is
documented in the Supporting Information.

2.1.3. Process Optimization
Several degrees of freedom are available to optimize the
4-step VPSA cycle. We select a subset of these decision
variables, which have the strongest impact on VPSA
process performance. Specifically, these are (1) Adsorption
step pressure (2.5 < Ppign < 20[atm]), (2)

pressure (0.01 < Pyoc <0.5[atm]), (3) Feed gas flow rate

Evacuation step

(0.001 < Qfeed < 0.0075[13 , (4) Weight-fraction of adsorbent
s

in fiber (0.15 < Wqgs < 0.5 [%])and (5) Adsorption time
(15 < tgas < 120[sec]).

The adsorption and evacuation pressures determine the
magnitude of the pressure-swing applied to the process. Feed
gas flow rate and adsorption step time control the feed
throughput and are therefore critical in the positioning of
concentration and temperature fronts along the axial flow
direction of the adsorber, once cyclic steady-state (CSS) op-

eration has been attained. Lastly, the weight fraction of PCM

in the composites establishes the extent to which the heat
generated by adsorption is modulated. The adsorption en-
thalpy varies between the adsorbents considered, leading to
values of PCM content that are specific to each adsorbent and
the optimal VPSA operation conditions. The blow-down step
pressure is fixed at 1 atm, therefore avoiding the application
of two different evacuation pressure levels, which in practice
would increase the technical complexity of the applied eva-
cuation system. We select values of the valve-coefficients for
the pressure-changing steps (ccPr, coBd & ccEv) that mini-
mize total cycle time. The five decision variables described
above are critical in determining the cycle operation and are
essential for its optimization, as we discuss below.

In contrast to the conventional fixed bed packed with
particles and without any thermal modulation, we explore
the process operation at higher adsorption pressures for a
few reasons: (1) one of the intrinsic advantages of thermally
modulated fiber composite packed beds includes minimal
pressure drop, which allows operating at higher gas flow
rates; and (2) the heat generated by the adsorption process is
managed by the phase-change material, therefore avoiding
large excursions in temperature along the bed. We have
verified recently in the work of DeWitt et al. that this thermal
management strategy is attainable experimentally (DeWitt
et al. 2019). We set the lower bound for the operating pres-
sure as (0.01 atm) for this application of flue gas carbon
capture, because it has been found to be challenging to
achieve vacuum pressures with the state-of-the-art evacua-
tion systems below this value (Pai et al. 2021). Undoubtedly,
one disadvantage of operating in elevated pressures is higher
energy consumption, for which we only impose an upper
bound constraint. To explore the potential of this technology,
in this work we provide the optimizer with a larger range of
pressures and allow the solver to identify optimal pressures
and PCM content in the fiber blend that maximize pro-
ductivity.

In order to evaluate process performance, we use four
standard metrics for separation processes: productivity

mol CO3 in product stream . mol CO3 in product stream
[—:l, product purity [#],

kg adsorbent .s total mol in product stream

mol CO3 in product stream

product recovery, [ ], and specific energy

mol CO3 in Ad step, in

kWh

consumptlon[m

]. Additional complexity in the simu-

lation and optimization of VPSA processes results from
having to evaluate these metrics at CSS. The transient period
before this condition is attained can take several hundreds or
even thousands of cycles in some cases, with the associated
computational burden. Moreover, a challenging feature en-
countered by process optimization of cyclic adsorption pro-
cesses lies in the fact that there exists an inherent trade-off
between performance objectives. This is traditionally ad-
dressed by applying multi-objective optimization techniques
(Rangaiah and Bonilla-Petriciolet, 2013). The alternative ap-
proach we present herein formulates a constrained single-
objective optimization task that maximizes the CO, pro-
ductivity of the VPSA cycle, while introducing purity, re-
covery, and specific energy consumption as constraints to
the problem. This is a suitable approach, since there exist
well-established specifications adopted worldwide by gov-
ernment agencies that a separation technology for CO, cap-
ture should fulfill: CO, purity of at least 95% and CO, recovery
of 90%. The energy constraint is needed since the specific
energy consumption is directly correlated to the operating
cost of the process.
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Fig. 3 — Overview of surrogate-based optimization for VPSA process optimization. These steps are repeated until one of the

convergence criteria is met.

2.2. Overview of surrogate-based optimization

Due to the complexity of the VPSA-cycle simulation, surro-
gate-based optimization is an attractive alternative to equa-
tion-based optimization. We briefly introduce the general
surrogate-based optimization framework and later illustrate
in detail how it is adapted for the investigated VPSA system.
We start by formulating the general optimization problem as
follows (P1):

(P1) min f(x,y)

.t glx,y)<0, ¢c=1,..,C

X/ <xi<xt, XieR, v, € {0, 1},

where x; represents a continuous variable, xi’ and x“ are lower
and upper bounds of x;, respectively; y; represents a binary
variable; f(x,y) represents the objective function, andg_(x
, y)represents each unknown constraint. Using surrogate
modeling, we seek to obtain f(x,y) and d.(x, y) that ap-
proximate f(x,y) and g.(x, y). If only continuous variables
exist (i.e., J = ), P1is a constrained nonlinear programming
(NLP) problem; otherwise, P1is a constrained mixed-integer
(binary) nonlinear programming (MINLP) problem.
Surrogate-based optimization studied
tensively for NLPs and several algorithms currently exist
(Forrester and Keane, 2009, Hasan et al. 2013, Cozad et al.
2014, Boukouvala et al. 2017, Bhosekar and lerapetritou, 2018,
Hullen et al. 2019, Kim and Boukouvala, 2019). Unlike surro-
gate-based optimization for NLP, only a few works currently

has been ex-

exist on surrogate-based optimization for MINLP (Holmstréom
et al. 2008, Mulle et al. 2013, Rashid et al. 2013, Miller 2016,
Kim and Boukouvala, 2020). Existing surrogate-based opti-
mization algorithms generally consist of four main steps: (1)

initial sampling, (2) surrogate model construction, (3) opti-
mization, and (4) adaptive sampling to locate promising so-
lutions and update the surrogate model. When binary
variables are present in addition to continuous variables, a
black-box MINLP (bb-MINLP) algorithm described in (Kim and
Boukouvala, 2020) can be used. The algorithm follows a de-
composition approach: first, surrogate-based optimization is
y*; the
binary variables are then fixed at y * to proceed with a NLP

performed to locate the optimal binary solution

surrogate-based optimization search with respect to con-
tinuous variables x. We have previously shown in (Kim and
Boukouvala, 2020) that this approach is capable of locating
the global solutions of MINLP benchmark problems with up
to 12 continuous and 8 binary variables, and some of its key
features are briefly described below.

First, an efficient sampling strategy must be used to
construct an initial design of experiment (DOE). A good
space-filling design should satisfy two conditions: 1) sam-
ples should be uniformly, but not regularly, distributed in
the search space, and 2) when sample points are projected
the should
overlap (Forrester and Keane, 2009). Several DOE techniques

onto each variable axis, projections not
currently exist, such as Latin Hypercube Design (McKay,
Beckman et al. 1979), and Sobol Sequences. In this work, we
fix our initial design to LHD because it has been validated in
previous works as a good starting point (Forrester and
Keane, 2009). While different DOE techniques could have
minor impacts on the overall result, this is outside the scope
of this work. For bb-MINLP, we have previously shown that
creating a balanced LHD for each discrete level is the best
sampling strategy, and we have proposed heuristics on the
size of the initial LHD for each discrete level such that we
minimize the overall

Boukouvala, 2020).

sampling requirements (Kim and
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Second, a surrogate model is constructed for the objective
and all constraints. There currently exist several types of
surrogate models, ranging from simpler models, such as
linear and quadratic regression, to more complicated
models, such as Gaussian Process (GP), Neural Network (NN),
and Support Vector Regression (SVR) models (Jones et al.
1998, Smola and Scholkopf 2004, Heaton, 2008, Forrester and
Keane, 2009). The surrogate models, f(x, y) and g.(x, y), are
low-fidelity representations of an actual high-fidelity simu-
lation f(x, y)and g.(x, y), thereby reducing the complexity of
the optimization model. When binary variables are present,
the surrogate model can be constructed either using a re-
laxed approach or a mixed-integer approach (Kim and
Boukouvala, 2020). A relaxed surrogate model assumes all
model inputs are continuous; a mixed-integer surrogate
model uses a data preprocessing technique called “one-hot
encoding” to explicitly handle the discrete search space. The
details of relaxed and mixed-integer surrogate models have
been published in (Kim and Boukouvala, 2020). In this work,
we use a relaxed NN surrogate model to achieve a balance
between model accuracy and complexity. While a mixed-
integer surrogate model is more accurate than a relaxed
model, the use of one-hot encoding increases the dimension
of the problem by two as each binary variable is converted to
two dummy variables. For this work, we expect that the cost
of doubling the dimension would be more significant than
the slight loss of model accuracy when relaxing the discrete
inputs. Due to the large dimensionality of the binary space,
the mixed-integer sampling and surrogate fitting approach
would be intractable, therefore, the relaxed approach was
chosen. This is a limitation of the current implementation of
our method, and the general recommendation is to apply a
“relaxed-surrogate” option for any problem with more than
[15-20 binary variables.

Within a neural network, the input layer represents input
variables, the output layer represents the objective and all
constraints, and these two layers are connected by a hidden
layer. The number of hidden layers plays an important role
in the overall NN architecture and the number of neurons in
the hidden layer affect the fitting. If too few neurons are used
in the hidden layers, it might result in underfitting and si-
milarly using too many neurons in the hidden layers might
result in overfitting. Most of the conventional problems re-
quire no more than two hidden layers (Hush and Horne, 1993,
Xiao et al. 2020). It should be noted that determining the
number of hidden layers and the neurons in the hidden
layers is subject to the availability of the data. Although very
extensive grid search or optimization can be performed to
identify the optimized hyperparameters given the training
data, here we utilize the heuristic rule (Heaton, 2008), where
the number of nodes is 2/3 of the number of input nodes plus
the number of output nodes. A hyperbolic tangent function (
(¥) = tanh(x)) is used as activation function for the input-
hidden layer. For the final layer, the identity activation
function (g(x) = x) is used (Schweidtmann and Mitsos, 2018).
These decisions reduce the computational cost of the overall
algorithm, since surrogates are used as approximate models
to guide further sampling. The final functional form of a
neural network with a single hidden layer is:

fNN (x) = 0o (Z/ le)ah (Zh WLOJX + b(O)) + b(l))

where h and | represent the number of nodes in hidden and

output layers, respectively, o represents an activation

function, W and p(" are the weights and bias values for
input-hidden (W© and p(@) and hidden-output (W@ and p1)
layers.

After neural network surrogate models are constructed,
these models are then optimized using deterministic local
and global optimization solvers, and the accuracy of the ob-
tained solutions (x *, y *) are validated. Adaptive sampling is
used to update the surrogate models and further refine the
optimal solution. Steps 2—4 are repeated until we find a so-
lution that meets one of the termination criteria: (1) con-
straint violation is less than 10-5, (2) no improvement in the
objective value over ten consecutive iterations, and (3) the
maximum number of sample evaluation is reached. In the
case where inputs are mixed-integer (bb-MINLP), a MINLP
search is first performed and a binary optimal solution is
identified; with the binary solution fixed, the NLP stage is
then performed to refine the solution with respect to the
continuous variables. On the other hand, when all inputs are
continuous (bb-NLP), a single search procedure is required.
Details of the algorithm have been published in (Boukouvala
and Floudas, 2017, Kim and Boukouvala, 2019, Kim and
Boukouvala, 2020).

2.3. Problem Formulation and Surrogate-Based
Optimization for MINLP and NLP

In this section, we provide an in-depth explanation on sur-
rogate modeling and optimization specific to the VPSA pro-
cess. We consider 75 adsorbents investigated by Khurana &
Farooq (Khurana and Farooq, 2016) and originally addressed
by Huck et al. (Huck et al. 2014) for post-combustion CO,
capture. The applied extended dual-site Langmuir adsorp-
tion isotherm model in their work (Khurana and Farooq,
2016) consists of 15 parameters specific to each adsorbent.
One main contribution of this work is the use of black-box
MINLP algorithm for efficient process optimization and ad-
sorbent selection. Unlike the brute-force approach, where
each adsorbent is optimized separately using black-box NLP
algorithm, binary variables are used to represent an ad-
sorbent such that simultaneous process optimization and
adsorbent selection can occur. Even though the bb-MINLP
solver initially requires a set of LHD for each adsorbent,
further exploration of the material (i.e., binary space) is
limited to adsorbents (i.e., nodes) that have promising be-
havior. Thus, the hypothesis is that this simultaneous opti-
mization approach will overall exploit process-material
relationships and find optimal solutions with fewer samples
by avoiding to sample for non-promising adsorbents. At the
end of the MINLP stage of the algorithm, all materials are
ranked based on a heuristic that incorporates both average
feasibility and objective function values. The algorithm then
automatically selects which of the materials (i.e., binary
combinations) to further refine in the NLP stage. Although we
do not make any claims about global guarantees of optim-
ality using our approach, in this case the algorithm was able
to identify the optimal material option. More details about
the algorithmic heuristics can be found in (Kim and
Boukouvala, 2020). In order to test the performance of the bb-
MINLP algorithm with respect to solution accuracy and
computational efficiency, we solve this problem using both
the bb-MINLP and brute-force NLP approaches. The following
optimization formulation (P2) is used to identify the optimal
VPSA design that maximizes productivity subject to 95%
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purity and 90% recovery constraints with an upper bound on
the specific energy consumption of 2000 kWh/tonne CO;:

(P2)maxProductivity = f(Phigh,  Pevacy tadss  @Wads,

Qfeed, ¥, k )

ads

s. t. Purity = gl(Phigh, Pvac,  tads,  wads;  Qfeed, yl;js) >0.95

Recovery = g9, (Phlgh: Povac, tads, Wads, Qfeed: yI;ds) >0.9

Specific Energy Consumption = g;(Phigh, Rvac, tads, wads) Qreeds ¥Y.Xc)
< 2000

2.5 < Phigh €20, 0.01 < Pyge < 0.5, 15 < tqg < 120,

0.15 < wggs £ 0.5, 0.001 < Qfeeq < 0.0075

vi.e0,1, Y yko=1, k=1, ..,k

keadsorbents

Binary variables y*

.4s TEPresent an adsorbent k, where ke

set of 75 adsorbents (i.e., K = 75). If yakc;s = 1, then adsorbent k’
is selected. An additional constraint zky’;ds = 1is needed to
allow the selection of a single adsorbent. For the brute-force
approach, k= @; hence, the problem reduces to NLP.

3. Results and discussion: adsorbent selection
and process optimization

In this section, we present the optimization results for ad-
sorbent selection and process optimization using both bb-
NLP and bb-MINLP approaches. The bb-NLP approach per-
forms a separate optimization for each adsorbent. The bb-
MINLP approach, on the other hand, conducts a single opti-
mization for simultaneous adsorbent selection and process
optimization. These results are compared with respect to
computational efficiency and solution accuracy.

The optimization framework is written in Python. The
VPSA simulation is coded in Matlab version 2018b (MATLAB,
2018), and a Python-Matlab interface is applied. Since the
simulation is computationally expensive, 5 processors are
used. A neural network surrogate model is constructed with
the Python module ‘scikit-learn’, and the optimization is
performed using GAMS. At each iteration, all local and global
optimal solutions are collected using DICOPT (Drud, 1994) (or
CONOPT (Drud, 1994) for NLP) and BARON (Tawarmalani and
Sahinidis, 2005) solvers, respectively. The maximum allowed
computation time is 50 h. The optimization is repeated 3
times, and the best result is reported. Because the surrogate
model we use is non-convex, this repetition was done to
choose the best possible solution out of the three runs. Al-
though we cannot guarantee the global solution will be
identified, multistart techniques increase the chance of lo-
cating a better local solution. We have observed that in cer-
tain cases, different local solutions are very similar, while in
others there is significant variation especially in the input
space (up to @90% relative error), often without significantly
affecting the optimal objective function. This variation is an
indication that the landscape is nonconvex, and/or that there
may be multiple combinations of inputs that provide similar
objective function values. This dependence on initialization
is a challenge for many local sampling-based methods, and
as a result, multi-start techniques are advised when com-
putational resources allow it. All results and analysis of their
variation are provided in the Supplementary File-Jupyter

notebook. One way to reduce the variation is to generate an

accurate surrogate, which can later be used for optimization
with deterministic solvers. But it should be noted that gen-
erating an accurate surrogate is itself associated with com-
putationally expensive hyperparameter tuning and requires
large amount of data. The requirement on large amount of
data can be mitigated to a certain extent if the known phy-
sics about the system is used in training the surrogate model.
This approach is usually referred to as Hybrid Modeling and
Physics-Informed Machine Learning and has attracted a lot
of attention over the past few years (Bradley et al. 2022).
However, in the present study we focus more on surrogate-
based MINLP approach and leave Hybrid Modeling as a pos-
sibility for improvement and future work.

Table 1 summarizes the main difference between MINLP
and NLP strategies. It should be noted that each NLP problem
has a dimensionality of 5 and is provided with 51 initial
samples, while the MINLP formulation has a dimensionality
of 80 and is provided with 3875 samples (51 for each mate-
rial). This implies that the two approaches are given an
“equivalent” number of initial samples, if normalized by the
dimensionality. This allows us to compare the performance
of the methods.

3.1. bb-NLP Optimization: Brute-Force Approach

Process optimization is performed separately for all 75 ad-
sorbents using a brute-force NLP approach. For each ad-
sorbent, an initial LHD of size 51 (10/ + 1, where | = 5) is
created. A single layer neural network is constructed with 5
input, 8 hidden, and 4 output nodes using the same heuristic
(Heaton, 2008) to predict 4 process performance metrics (i.e.,
productivity, purity, recovery, and specific energy consump-
tion). Latin Hypercube sampling was selected to ensure the
space was maximally covered with our initial sampling
budget. We also observe that a small fraction of our initial
samples are feasible with respect to all constraints of P2,
which implies that the feasible region of the search spaceis
very small and finding a feasible optimal solution is chal-
lenging.

Table 2 shows the optimal process conditions and the
performance of all feasible adsorbents ranked in the order of
decreasing productivity. Fig. 4 shows scatterplots of optimal
productivity vs. 5 process inputs of all 75 adsorbents. From
the optimization result of 75 adsorbents (Table 2. Supporting
Information and Fig. 4), we can notice a few trends. In terms of
the operating pressure, feasible adsorbents tend to cluster at
high Phign and low .p.. Operating the VPSA cycle at a
higher Pnign allows increased adsorption of CO, during the
pressurization step; operating at a lower Peyoc improves the
recovery of CO, and adsorbent regeneration, while sus-
taining the CO, product purity target. For the feed gas flow
rate, feasible adsorbents tend to cluster at lower Qfed, Since
Qfeeqd should allow sufficient contact time for the gas uptake
to occur. In the case of the adsorption time, tuqgs, the trend is
less obvious, since both feasible and infeasible adsorbents
tend to converge to the lower bound of tus, enabling shorter
cycle times and therefore better productivity results. While
the overall trend is also less obvious for the content of ad-
sorbent in the fiber compositewg,ys when all 75 adsorbents are
considered, we found an interesting trend among only the
feasible adsorbents. As shown in Table 2, Supporting
Information the productivity of an adsorbent is inversely

proportional to wqgs. In fact, two adsorbents that significantly
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Table 1 — Comparison of MINLP and NLP strategies.

Approach # Problems Dimension LHD size ANN structure Optimization solvers
bb-MINLP 1 80 3825 80-58-4 Baron, Dicopt
bb-NLP 75 5 51 5-8-4 Baron, Conopt

Table 2 — Optimal process conditions for 26 feasible adsorbents that meet 95% Purity - 90% Recovery constraints. The
adsorbents are listed in the order of decreasing productivity. Detailed cyclic-steady state profiles for the Top 3 adsorbents

in this list can be consulted in along with the profiles for zeolite 13X and Cu-BTC, both
commercially available adsorbents and also listed below. In the last row, the optimal result of the simultaneous MINLP
approach is listed for the optimal material identified by the solver.

Optimal material and solution identified by bb-NLP solver:

Optimal Process Conditions Performance Measurements

Phigh Pevac Q feed tads (s) Wads Purity (%) Recovery (%) Energy
(atm) (atm) (1e-3 m3/s) Productivity ( MW h )
(1e-2 mol/kg's) onne 0O

Zn-MOF-74 20 0.069 1.78 17.85 0.150 4.91 95.10 90.06 860
UTSA-16 19.92 0.088 1.05 25.29 0.150 4.25 95.57 90.22 828
MgX 20 0.036 1.03 24.88 0.150 2.66 95.11 91.18 857
Co-MOF-74 20 0.029 1.05 38.16 0.150 2.43 95.11 90.06 876
ZIF-39-DIA 19.83 0.072 1.38 15.42 0.331 1.96 95.61 90.06 881
NAB 20 0.052 1.02 15.00 0.280 1.85 95.17 90.04 904
h8155527 20 0.074 1.22 15.00 0.348 1.74 95.05 92.51 833
ZIF-82 20 0.033 1.00 30.01 0.291 1.59 95.06 90.09 909
13x 13.46 0.054 1.20 29.17 0.293 1.56 95.13 90.39 708
HMOF-992 20 0.031 1.00 26.74 0.298 1.56 95.16 90.12 950
ZIF-69 20 0.035 1.06 27.25 0.341 1.44 95.05 90.24 921
ZIF-116-MER 20 0.035 1.00 42.49 0.360 1.38 95.40 90.01 929
ZIF-78 20 0.042 1.00 34.69 0.362 1.31 95.00 90.20 875
CaX 20 0.025 1.00 36.01 0.226 1.25 95.05 90.00 877
NaA 20 0.078 1.00 32.90 0.478 1.25 95.52 91.08 829
Al-X 20 0.035 1.00 31.58 0.313 1.22 95.03 91.01 854
CuBTTri 20 0.040 1.02 68.39 0.470 1.21 95.76 90.35 909
ZIF-36-FRL 18.46 0.047 1.00 26.47 0.365 1.16 95.01 90.09 820
CuBTC 20 0.010 1.00 42.32 0.231 1.15 95.06 95.08 995
Na-X 19.88 0.035 1.06 36.51 0.408 0.96 95.40 90.11 865
Mg-X 15.82 0.051 1.00 51.58 0.500 0.88 95.39 90.04 763
h8124767 8.89 0.032 2.20 39.71 0.400 0.82 95.18 91.45 572
ZIF-68 18.62 0.017 1.00 36.24 0.445 0.79 95.03 92.54 932
ZIF-81 19.24 0.018 1.00 40.50 0.500 0.66 95.23 90.02 936
h8291835 19.83 0.015 1.13 18.12 0.500 0.65 95.10 90.21 996
NaX 13.68 0.029 1.00 71.78 0.500 0.57 95.02 92.72 710
Optimal material and solution identified by bb-MINLP solver:

Zn-MOF-74 19.83 0.064 1.23 24.73 0.15 4.81 95.97 90.33 853

outperform the rest of the adsorbents — Zn-MOF-74 and 3.2.
UTSA-16 — converge to the lower range of wugs, and as the

Bb-MINLP Optimization: Simultaneous Approach

optimal productivity decreases, wggs increases. Since the fiber
loading factor is fixed, decreasing adsorbent content in the
fiber composite is equivalent to increasing its PCM content.
This achieves better temperature modulation (Rubiera Landa
et al. 2020). Hence, for adsorbents capable of high CO, up-
take, the presence of PCM in the fiber composites can further
enhance adsorption by effectively managing the heat gen-
erated. The optimum Pyizn values reported by the algorithm
for all the materials vary from @ 2.5 -20 atm. But a closer look
shows that for most of the feasible adsorbent materials the
optimum Puign found is near to 20 atm. This is because high
adsorption pressure helps improve the recovery and pro-
ductivity. But it should be noted that there is also a tradeoff
because, high adsorption pressures might result in high en-
ergy consumption and hence higher cost.

Previously, we used a surrogate-based NLP algorithm to
conduct process optimization of 75 adsorbents separately.
This optimal set of results provides a valuable insight into
adsorbent performance when coupled with data analytics
techniques, which we explore in Section 4. However, re-
quiring K = 75 optimization problems to be solved to con-
vergence, this brute-force approach is computationally
expensive. However, if we treat this as a bb-MINLP problem,

binary variables, y* 5, are used to represent 75 adsorbents,

s
and (P2) is solved ;Z a single problem. To create a balanced
initial sample set, an initial LHD design with asize of 10/ + 1is
constructed for each adsorbent k. These LHD sets are then
combined to construct a final sample set with K(10/ + 1)

points. With y(’;ds, the neural network now has K+ 5 input
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Fig. 4 — Optimal productivity is plotted with 5 process inputs (Phigh, Rvac) Qfeed, tads, and ags). Feasible adsorbents (green) satisfy

the required purity-recovery-energy constraints.

nodes, 4 output nodes, and one hidden layer. The MINLP
search step preliminarily determines the most promising
adsorbent y’;ds, while the NLP search is then performed for
the most promising adsorbent to further refine the solution
with respect to process conditions: Phigh, efic, tads) Qeeds o@d-IN
the last row of Table 2. Supporting Information, the opti-
mization result of the simultaneous MINLP approach is
shown. The optimal adsorbent is Zn-MOF-74 with the op-
timal productivity of 0.0481 mol/kg's. Note that for all the bb-
NLP and bb-MINLP solutions, the final purity and recovery
values converged slightly above 95% and 90%, respectively.
This is potentially due to small approximation errors of re-
gression models that lead to solutions that are not exactly on
the feasible boundary.

3.3. Comparison between bb- NLP and bb-MINLP
Approaches

A comprehensive comparison of bb-NLP and bb-MINLP ap-
proaches with respect to sampling and computational re-

quirements is presented in this section. The bb-NLP

approach is computationally expensive, solving 75 individual
surrogate-based optimization tasks. While this computa-
tional cost can be alleviated to some extent by using parallel
computing, this computational resource may not always be
available. The bb-MINLP approach is computationally more
efficient since it only requires a single surrogate-based opti-
mization to be performed and exploits the material-process
search space efficiently by avoiding re-sampling of non-
promising materials.

Table 3 shows the comparison of the sampling require-
ment and computation time between bb-NLP and bb-MINLP
approaches. For the bb-NLP approach, we first report the
total computation time for the all 75 adsorbents, assuming
that the optimization is performed sequentially. The com-
putation times of each stage of this optimization strategy —
sampling, model fitting, and optimization — are shown. As
expected, the bb-MINLP approach requires about 30 times
less computation time than the bb-NLP approach. When the
computation time of the three stages is compared, the most
computationally expensive stage consists of collecting sam-
ples from the VPSA simulation. In fact, most of the
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Table 3 — Comparison of computational cost between bb-NLP and bb-MINLP approaches. For bb-NLP, both the total and

average computation time are reported to sequentially optimize all 75 adsorbents and a single adsorbent, respectively.

# samples Sampling (hr) Modeling (hr) Optimization (hr) Total

bb-NLP (total) 29335 893.76 9.53 5.76 909.04

bb-NLP (average) 391 11.92 0.13 0.08 12.12

bb-MINLP 5447 13.41 1.72 11.46 26.59
computation time is spent during the sample collection 4.1. Correlation Matrix of Isotherm and Process Features

stage, and the model fitting and optimization stages are
significantly faster.

In Table 3, the average computation time per adsorbent is
also reported for bb-NLP. Looking at the average allows us to
compare the computational efficiency of the algorithm for a
single optimization. On average, the bb-NLP approach re-
quires less number of samples and computation time for a
single adsorbent. This is expected since the bb-NLP approach
constitutes a simpler problem with 5 input variables only.
The bb-MINLP approach requires more samples and com-
putation time because it is a more challenging problem with
80 input variables. In particular, the optimization stage
contributes to about 43% of the total computation time, while
that of the brute-force approach is less than 1%. This is also
expected since the deterministic optimization of a MINLP
problem is more difficult than that of the NLP problem.
Nevertheless, when the total computation requirement is
considered, we can conclude that the bb-MINLP approach is
computationally more efficient overall.

It must be noted that if high-performance computing
capabilities are available, the brute-force approach can be
parallelized, which would lead to significant compute cost
savings. However, what we think is interesting in the si-
multaneous approach is the fact that the optimizer is able to
screen through infeasible adsorbents in an automated way
(i.e., via the MINLP search), and as a result it requires a sig-
nificantly less amount of data to find optimal solutions.

In terms of solution accuracy, both the bb-MINLP and bb-
NLP approaches identified Zn-MOF-74 as the best adsorbent
with productivity 0.0481 mol/kg-s and 0.0491 mol/kg s, re-
spectively. While the MINLP search stage correctly identifies
the optimal adsorbent, the NLP stage can lead to a slightly
different optimal result, which is typical when applying
surrogate-based approaches due to stochasticity caused by
different sampling locations and model training.

4. Analysis of Adsorbent-Process Interaction
using Data Analytics and Machine Learning

In Section 3, we collect all results obtained from the previous
analysis (optimal process conditions and module design) for
all 75 adsorbents. The different adsorbent materials are
characterized by different extended Dual-Site Langmuir
equilibrium parameters. Our aim here is to perform some
analysis on the merged process-material data and gain fur-
ther insight into the correlations between process design and
adsorbent. We first compute a correlation matrix to observe
how all process features and isotherm features are corre-
lated. We then perform Principal Component Analysis (PCA)
to handle highly correlated variables and observe the im-
portance of process and adsorbent features. Finally, we
construct machine learning-based classification and regres-
sion models that allow us to predict adsorbent feasibility and
performance.

A correlation matrix is constructed to observe how the input
variables are correlated. Both the isotherm features (i.e., 12
extended Dual-Site Langmuir equation parameters; ad-
sorbent density; & isosteric heats of adsorption) and process
features (i.e., optimal operating conditions determined in
Section 3.1) of all 75 adsorbents are included in this analysis.
Investigating the correlation between independent variables
is an important stage in machine learning since multi-colli-
nearity can potentially create difficulty in estimating model
parameters (Alin, 2010).

Fig. 5 shows a correlation matrix generated from the 75
adsorbents, the correlation coefficients are calculated using
Spearman’s correlation. As expected, adsorption equilibrium
parameters tend to be highly correlated (e.g., gsat;; and
gsat;,) since these parameters are typically estimated by
nonlinear fitting of experimental data and solving a system
of equations (Khurana and Farooq, 2016). Thus, we can ob-
serve higher correlation values in the upper left quadrant of
the correlation matrix. On the other hand, operation features
tend to be less correlated, because these are design variables
that are optimized. Some moderate correlation is still ob-
served among Phigh, Rvac and Qg as observed in the lower
right quadrant of the correlation matrix.

4.2. Principal Component Analysis Results

Principal Component Analysis is a dimensionality reduction
technique used for data visualization and handling data
multi-collinearity (Hastie, Tibshirani et al. 2013). To observe
any pattern or clustering among feasible and infeasible ad-
sorbents, we combine 15 adsorbent features (i.e., isotherm
parameters) and 5 optimal process features for 75 adsorbents
and perform linear PCA. Note that we have tested several
nonlinear kernels (e.g., polynomial, radial basis function,
sigmoid, and cosine), but they did not improve the visuali-
zation of feasible/infeasible adsorbents. These results are not
included in this paper but can be found in the provided
Supplementary Material — Jupyter notebook. Fig. 6 shows the
cumulative explained variance vs. the number of principal
components (PCs). With just 6 PCs, we can explain about 80%
of the data variance, which means that we can potentially
decrease the dimension of the problem from 20 to 6 and still
accurately capture most of the data variance.

For linear PCA, each PC is represented as a linear combi-
nation of original features: PCp = Jropwr(x — uf), where p re-
presents the selected PC and F represents all 20 isotherm and
process features. We can analyze the importance of each
feature by analyzing its weight wy, where a feature with
larger |ws| is considered more important. To compare the
importance of adsorbent and process features for the first six
PCs, we computed their percentage contribution, expressed
e lwyl

where F' represents a set of
Spepiws |’ P

by: %Contribution = 100-
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Fig. 5 — Correlation matrix of 15 adsorbent features and 5 process features.
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equilibrium parameters (‘B11’, ‘B12’, ‘B21’, ‘B22’, ‘b11_0’, ‘b12_0’, ‘b21_0', ‘b22_0’, ‘qsat11’, ‘gsat12’, ‘qsat21’, ‘gqsat22’);
adsorbent density (‘Density’); & isosteric heats of adsorption (‘dH1’ & ‘dH2’). The 5 process features are: adsorption pressure
level (‘Phigh’); evacuation pressure ('Pevac’); feed volumetric flow rate (‘Qfeed’); adsorption time (‘tads’); & weight fraction of
adsorbent in the fiber composite (‘omega_ads’). Darker colors (both blue and red) represent higher correlation.

either adsorbent or process features. Fig. 6 also shows the
computed feature contribution. For the first PC, adsorbent
features explain about 70% of data variance; for the second
PC, adsorbent features explain about 50% of data variance.
While adsorbent features seem to contribute slightly more to
the PCs than the process features, it is difficult to conclude
the existence of a dominant feature. These results support
our claim that both adsorbent and process features con-
tribute to the overall data variance and are both important
for the VPSA process design. Finally, the first two PCs are
plotted to visualize the data in a 2-dimensional space and
observe any pattern among feasible and infeasible ad-
sorbents. From Fig. 7, we can observe some clustering of
feasible adsorbents in the lower left quadrant of the PC space
as well as alinear separation between feasible and infeasible
adsorbents. In fact, we have observed that the performance
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of an adsorbent improves as we approach the lower left
quadrant in the PC space.

4.3. SVM classification model for adsorbent feasibility

Using the PCs obtained in the previous section, we construct a
that predicts adsorbent feasibility,
assuming that we are operating an adsorbent at optimal

classification model

operating conditions. As shown in Fig. 7, the feasible and
infeasible adsorbents are linearly separable in the 2-dimen-
sional PC space. To exploit this trend, we construct a linear
Support Vector Machine (SVM) classification model to clas-
sify adsorbent feasibility using 2 PCs. A linear SVM model
seeks to find a linear hyperplane that can separate two
classes of points and it has a regularization hyperparameter
C, which can be tuned using a grid search (Smola and
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Fig. 6 — Left: Percentage of variance explained vs. the number of principal components. Right: Feature % contribution of the

first 6 PCs.
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Fig. 7 - PCA is performed and the first two PCs are plotted, where feasible adsorbents that satisfy all constraints are

indicated by green dots. The decision boundary found via support vector classification is also displayed by a black solid line.

And to the right we show a confusion matrix of the classification.

Scholkopf 2004). For model training, 80% of the data is used
with 5-fold cross validation, and 20% of the data set is set
aside to test how well the model generalizes to a new set of
data. The resulting linear SYM model is also shown in Fig. 7.
For the training set, the SVM model accuracy is 82%, and this
error results from the fact that the points are not perfectly
linearly separable. For the test set, the model accuracy is
94%, which implies good generalizability. While we can
generally improve the model accuracy by increasing the
number of PCs or considering nonlinear classification tech-
niques, neither of these two approaches significantly im-
proved our results. Specifically, increasing the number of PCs
led to less than 1% improvements, while consideration of a
nonlinear rbf kernel led to less than 5% improvement, and
not perfect separation of feasible to infeasible materials (see
Supplementary Material — Jupyter notebook). As a result, we
favor simplicity and interpretability of PCs in this work, and
report results for the linear case.

4.4. Adsorbent performance prediction model

In the previous section, we constructed a SVM-based ad-
sorbent feasibility classification model using 2 PCs. While this
model is sufficient when one is interested in determining
whether an adsorbent is feasible or not, it is not sufficient to
provide detailed information on the performance of the VPSA
system in terms of product productivity, purity, recovery, and
specific energy consumption. Thus, we construct a neural
network-based adsorbent performance prediction model to
predict the VPSA system performance given isotherm para-
meters and the optimal operating conditions.

Previously in Section 4.1, we have determined that iso-
therm features (i.e., extended dual-site Langmuir isotherm
parameters) tend to be highly correlated, while process fea-
tures exhibit less correlation. Hence, we perform linear PCA
on just the isotherm features to reduce the dimension from
15 to the selected number of PCs and handle existing corre-
lations between isotherm parameters. All of the obtained
data from the optimization runs (i.e., initial samples, local
and best solutions) were used to train this final model. Out of

a total of 224 samples, 50 points were filtered out prior to
training because they were highly infeasible solutions with
respect to energy and these would be outliers that would
induce bias in the regression model. These isotherm-based
PCs are then combined with optimal process features to
construct a prediction model. Fig. 8 summarizes the result of
linear PCA. Even with just 2 PCs, we can capture B60% of data
variance; with 5 PCs, we can capture B80% of data variance.
When the first two PCs are plotted (Fig. 8), we did not observe
any pattern among feasible and infeasible adsorbents. This
further enhances our previous claim that both operation and
adsorbent features are important in predicting the feasibility
of an adsorbent; thus, both features must be considered.

After reducing the dimensionality of isotherm features
using PCA, the first two principal components are combined
with optimal process features, which results in 7 inputs (i.e.,
PCads,1, PCads,2 Phighs Rvac) Qfeeds tads, and waas). These inputs are
then used to train asingle multi input-output neural network
model that can predict product productivity, purity, recovery,
and energy consumption. For the selection of hyperpara-
meters of the NN, a grid search is used with 5-fold cross-
validation to select the most appropriate activation func-
tion—i.e., hyperbolic tangent (tanh) or rectified linear unit
(relu); the number of hidden layers (from 1 to 4 layers), and
the number of nodes per hidden layer (varied from 5 to 12 per
layer). We found that the most challenging output to predict
was energy, and we hypothesize that this is due to the fact
that the energy constraint is relatively easy to satisfy and is
often non-active in the optimal solution. The optimal archi-
tecture of the NN from grid search contained 4 hidden layers
with hyperbolic tangent activation and 11, 8, 11, 10 nodes per
hidden layer respectively. Fig. 9 shows the parity plot of
neural network model, and the goodness-of-fit given is by R?,
and for the train-set were found to be (0.920, 0.918, 0.959,
0.896) and for the test set were found to be (0.951, 0.929, 0.979,
0.958) respectively for productivity, purity, recovery and en-
ergy. We have observed that increasing the number of PCs
does not significantly improve the model. Therefore, ap-
plying only 2 PCs is a good compromise that balances model
accuracy and complexity.
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value from a neural network model, and the x-axis is the actual simulation output.

To check the robustness of the model, we randomized the
train-test split and fitted the training data using the best
architecture we found in the grid search for 6 test cases. We
found that the average of R? the train-set were found to be
(0.928, 0.916, 0.961, 0.905) and for the test set were found to be
(0.928, 0.932, 0.968, 0.916)
purity, recovery and energy. This indicates a good model

respectively for productivity,
performance and that the model is not overfitting. This
model can be used to preliminarily evaluate the feasibility of
an adsorbent using isotherm and process features.

5. Conclusions and future perspectives
In this work, we propose a surrogate-based optimization

approach for the design of modular VPSA systems for post-
combustion CO, capture. The VPSA cycle considers the

application of fixed-beds packed with thermally modulated
fiber composites, which enhances mass transfer, minimizes
pressure drop, and allows intrinsic thermal management,
thereby intensifying carbon capture efficiency. To achieve
optimal performance, we consider both the adsorbent se-
lection and process operation conditions to design a modular
VPSA system. We investigate two different approaches to
formulate and solve the optimization problem: 1) the bb-NLP
approach, where the process optimization is performed for
each adsorbent, and 2) the bb-MINLP approach, where the
adsorbent selection and process optimization are performed
simultaneously. For the bb-NLP approach, 75 adsorbents are
considered and 26 feasible adsorbents are identified. The bb-
MINLP approach performed simultaneous optimization of
adsorbent selection and process condition by using binary
variables to represent adsorbents. When all 75 adsorbents
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are compared, the latter approach is more efficient with re-
spect to sampling and computational requirements.

In addition to the design of a module, we also demon-
strate how machine learning classification and regression
techniques can be applied to identify feasible adsorbents and
predict the performance from a purely data-driven perspec-
tive. Principal Component Analysis is used to reduce the di-
mension of the problem and analyze the importance of
adsorbent and process features. Our result indicates that no
dominant feature exists and both the adsorbent and process
features are important, implying adsorbent selection is
highly linked to process performance. A clustering of feasible
adsorbents has been observed, and an accurate linear SVM
classification is developed. Finally, we construct a neural
network-based performance prediction model to predict four
outputs of the VPSA simulation (i.e., purity, recovery, energy
consumption, and productivity). These classification and
neural network models provide valuable preliminary insight
into different adsorbents and process performance.
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