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Abstract

A common step in developing generalizable, dynamic mechanistic models is to fit
unmeasured parameters to measured data. Fitting differential equation-based models can
be computationally expensive due to the presence of nonlinearity and stiffness. This work
proposes a two-stage indirect approach where Neural ODEs approximate state
derivatives, which are used to estimate the parameters of a differential model. In addition
to its computational efficiency, the proposed method demonstrates the ability to work in
concert with direct methods to accurately estimate parameters, even in the case of stiff
systems. The method is shown here for the training of a microkinetic model.
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1. Introduction

The task of finding parameter values of a differential equation (DE) model to explain
available experimental data is ubiquitous throughout engineering. The physical meaning
of these DE models (also referred to here as a mechanistic model) permit the modeler to
predict a system’s behavior in unexplored experimental spaces, assuming the parameters
have been estimated correctly. However, due to the complexity of DE systems, methods
that automate their parameter estimation must often balance efficiency and accuracy.
Gradient-based ‘direct’ methods either rely on repeated integration of the ODEs being
regressed, or formulating a constrained nonlinear program discretizing the system of
ODEs to solve for the parameter values (Li et al. 2005, Hamilton 2011). Both ‘direct’
methods face computational tractability issues, which become more severe when the
initial parameter estimates are far from the true values, or the ODEs are nonlinear with
respect to their parameters. Another problem, common to reaction systems, is the
presence of rate terms which vary over large orders of magnitude, resulting in a system
with fast and slow dynamics (i.e., at different timescales). Ultimately, to make these
regression problems tractable for direct methods, a modeler may need to apply model
reduction strategies, ranging from setting tight bounds on parameters to fixing insensitive
parameters. Such strategies require domain expertise, which may not be available, as
well as user-intervention, preventing automation of the parameter estimation process.

As an alternative to the direct approach, an indirect parameter estimation approach has
been proposed, which avoids discretizing the mechanistic model (Swartz and
Bremermann 1975, Brunel 2008). In this 2-stage approach, the experimental data is
interpolated by a data-driven model, which is differentiated to obtain system derivative
estimates. Those derivative estimates combined with state estimates of the interpolating
model can be used to estimate the parameters of the mechanistic DEs via nonlinear
programming (NLP). The indirect 2-stage approach is so named since it breaks up a
single regression problem into two regression problems whose combined computational
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cost is generally less than that of the direct approaches. Yet despite having the advantage
of being computationally cheap, this method is often limited in accuracy due to the
difficulty in accurately estimating a system’s derivative information.

Recently, we proposed using Neural ODEs (NODEs) as the data-driven surrogate to
interpolate measurement data (Figure 1) and for estimating system derivatives (Bradley
and Boukouvala 2021). In that work, NODEs compared favorably with other methods for
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system data, and for parameter estimation of stiff systems (Kim et al. 2021), however
further work is needed to develop methods that are both general and accurate.

2. Methods

In this work, several approaches, and potential combinations thereof, are compared for
the parameter estimation of stiff DEs. To start, direct approaches find the parameters p
to a mechanistic model f (x, p) by minimizing the following discrepancy function:

minZ(xk,j,meas - xk,}',pred)2 (1)

s.t. d"";% = f(xe, D) 2)

Here, K state variables x;, where k = 1, ..., K, are measured and predicted at time points
j,where j=1,..,], by integrating the mechanistic model (MM) with respect to
independent variable t. Though statistically robust, this method can be computationally
intensive. For such cases, a 2-stage indirect approach can be attractive.

As illustrated in Figure 1, the 2-stage indirect approach fits the parameters of the
mechanistic model by solving 2 separate regression problems. In the first stage, the
parameters of the data-driven model are fitted using the original measurement data. In
the second stage, the parameters of the mechanistic ODE are found using the state and
derivative estimates of the data-driven model. The data-driven model used in our work
is a NODE model. This is done by first solving Eq.(1) subject to Eq.(3):

dxy,NODE

s.t.
dat

= NN (x;, w) 3)

Neural Network parameters w are fitted to minimize an objective function equal to the
sum of squared errors between the model prediction and measured state data. Once the
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NODE is trained, derivative estimates are obtained by evaluating the trained NODE at
times where measured data was collected using the same process conditions of the
measured data. Following the procedure of (Bradley and Boukouvala 2021), we exclude
derivative estimates at time t=0, which tend to be less reliable, to improve parameter
estimates of the mechanistic DE. For stage two, an NLP is formulated as in Eq.(4) and
(5) to find the parameters of the mechanistic DE without integrating the mechanistic DE.

dx; dx; 2
. jkNODE _ dXjkMM
man( ” p” ) 4)
dx;
J kMM _
s.t. —a = f(XjknopESP) ®)

Depending on the required accuracy, the indirect 2-stage approach may be sufficient for
the needs of the model-building problem at hand. However, if increased accuracy is
required, we hypothesized a more robust fit would require including the mechanistic
model constraints when fitting the measured state data. A tempting option would be a
simultaneous approach, which combines the objective functions of the 2-stage approach
into a single hybrid objective function:

(6)

Like the indirect approach, Eq.(6) uses the data-driven Neural ODE of Eq.(2) to fit the
state data and provide derivative estimates. However, in the hybrid objective both the
Neural ODE fit and mismatch between NODE and mechanistic DE are minimized
simultaneously, their relative weights controlled by the hyperparameter lambda, A.

A%}k NODE _ dxj,k.MM)z

min Z(xk,j,meas - xk,j,pred)2 +1X ( dc dt

A final alternative to increasing model fidelity is to fit the mechanistic DE directly (i.e.,
minimize Eq.(1) subject to Eq.(2)). However, as mentioned earlier this incurs an
increased compute overhead. In the case of stiff systems, the increased compute cost
comes from the finer discretization required to stably integrate the mechanistic model.
To reduce compute costs, the direct approach can use parameter estimates informed by
the indirect approach. Specifically, the parameters estimated from the 2-stage fitting are
used as an initial guess for the DE of Eq.(2). A single application of the indirect followed
by the direct approach is herein referred to as the incremental approach.

Throughout this work, we use PyTorch’s LBFGS solver and IPOPT within PYOMO as
the nonlinear optimizers of the stage 1 and stage 2 regression problems, respectively. For
the sake of consistency, the structure of the NODE is fixed to a single hidden layer with
tanh activation function and 15 hidden nodes. Further, we assume minimal knowledge
of the true parameters prior to model-fitting, and thus all parameters are initialized to the
same order of magnitude, specifically a value of 2, for the direct and indirect approaches.

3. Results

To demonstrate the effectiveness of the 2-stage approach, we chose as an example a
microkinetic model (MKM) for heterogeneous catalysis (Gusmao et al. 2020). MKMs
represent a large class of coupled differential equations which exhibit stiffness due to the
presence of both slow and fast rate terms caused by parameter values varying over large
orders of magnitude. The MKM system of ODEs governed by a material balance and rate
equations are outlined in Figure 2. Table 1 lists the true parameter values.
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Figure 2. Full MKM system of ODE equations

In this process, gaseous reactants A and B adsorb to a solid surface to form intermediate
species before the final product C desorbs into the gas phase. Reactants bound to a
catalyst surface site [*] are indicated by an asterisk “*’. All reactions are reversible.

Two datasets were used to represent possible fitting scenarios for the 2-stage approach,
each comprising data simulated from two sets of initial conditions. In one dataset, state
variables are sampled 15 times logarithmically for each run in the range t = [10e-3, 0.5],
amounting to a sample size of 30 datapoints. The second dataset includes the same
number of points sampled linearly from time t=0 to t=0.5. At first, the 2-stage approach
was applied on the linear dataset. Specifically, the data was used to fit a NODE whose
derivatives were then used to solve for the parameters of the mechanistic DE. The
parameters found through this approach are compiled in Table 1, column labelled
‘Linear Indirect’. Results show that some of the parameters found differ significantly
from the true parameters. This is not surprising since data is available only sparsely at
earlier times where state values change rapidly due to the stiffness of the system.
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Figure 3. NODE fit (solid lines) to log-sampled data (dots). True derivative shown with x’s.

The fitting procedure was repeated with data sampled logarithmically with respect to
time. The fit of the Neural ODE to the log-sampled data is presented in Figure 3 for the
adsorbed species. Noticeably, despite the NODE fitting the state outputs perfectly
(effectively to machine precision), the data-driven model does not capture the exact
profile of the derivatives. This result is believed to be due to the inherent flexibility of
NODE:s, which are not as constrained in outcomes as the simulating mechanistic model.
The results of the 2-stage regression including the mean absolute error (MAE) of the
fitted model on the log-sampled data are compiled in Table 1 (‘Log Indirect’ column).

Aiming to improve the accuracy of the fitted mechanistic model, the simultaneous
approach was applied using various values for lambda. However, minimizing the
hybrid objective function did not result in significantly improved parameter estimates vs
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the indirect approach, notwithstanding its higher compute cost. This finding was again
attributed to the flexibility of NODEs, their being able to interpolate state data despite
estimating derivatives that may not exactly match the ‘true’ derivatives. Due to their
low accuracy, results of the simultaneous approach were not included in Table 1.

Instead, the remaining columns in Table 1 include the computational cost and model
accuracy from integrating the mechanistic DE during training, either using an
uninformed initial guess (i.e., the direct approach) or initializing the mechanistic
parameters with the parameters found by the 2-stage methods (i.e., the incremental
approach). Figure 4 displays the mechanistic model fit to the linearly-sampled data via
the indirect and direct approach. The direct and incremental approaches gave similar
simulated trajectories so only the results of the direct method are plotted.
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Figure 4. State and derivative estimates of the mechanistic model after parameter estimation via
indirect (solid line) and direct approach (dotted line) on linearly-sampled data (solid dots).

A couple trends are worth noting. Firstly, the MAE of the final simulation is lower after
using the direct approach, regardless of sampling strategy, indicating increased accuracy
can be gained via the direct approach. What’s more, applying the incremental approach
offers compute savings over the direct approach with an uninformed initial guess, at
least for the log-sampled case. However, when fitting the linearly-sampled data, the
compute savings from incremental approach are negligible. At least two factors are
believed to cause this discrepancy. First, the parameters found through the indirect
approach on the linear data were further from the true parameters than for the log-
sampled case, offering a poorer initial guess. Second, an increased number of Euler
steps were required between datapoints for integrating mechanistic model on the log-
sampled data (n=256 vs 56 in the linear case) to avoid divergence issues near the
equilibrium region, exacerbating the computational load in the log-sampled case when
uninformed initial estimates are used. Ultimately, this indicates that, given a
sufficiently sampled experimental space, the incremental approach can merge the direct
and indirect approaches in ways that balance both accuracy and efficiency.



1746 W. Bradley et al.

Table 1. Table of compute times, parameters estimated, and model errors for different approaches

True Log Log Log Linear Linear Linear

params _ Indirect Incr. Direct Indirect  Incr. Direct
Fit (s)
Time N/A 15.21 137.7 36231 12.62 74.22 80.94
MAE N/A 2.46E-3  6.05E-4 4.52E-4 1.45E-2 4.70E-4 2.69E-4
ks 20 20.46 19.98 19.97 12.82 19.67 19.80
kq 8 9.061 7.983 7.994 4.556 7.854 7.917
ks 16 16.50 15.69 15.81 13.49 16.07 15.84
ks 4 3.490 3.825 3.886 2.637 4.051 3.938
ks 12 11.38 11.99 12.09 10.19 11.89 11.92
ks 8 7.695 7.998 8.048 6.719 7.940 7.957
ki 1200 2615 2607 1793 400.4 446.5 1809
kia 400 849.3 871.6 600.8 138.7 147.6 604.0
ki3 2000 1672 1662 1117 38.28 2999 1745
k4 1600 1320 1332 890.3 24.05 2401 1395

* Abbreviations: Incr. (Incremental Approach)

4. Conclusions

This work demonstrated a method for accelerating the regression of mechanistic ODEs
for stiff systems and evaluated the ability of NODEs to estimate mechanistic ODE
parameters with a large magnitude of variability in their true values using different
sampling strategies. While the NODE-based incremental approach presents a promising
step towards automated parameter estimation of stiff systems, several challenges remain.
Neural Networks have limited ability to make predictions that vary over large orders of
magnitude, common to stiff systems, which to overcome may require modifying the data-
driven model structure to enable greater accuracy. In future, a comparison with
incremental and simultaneous methods employing other surrogate models should be
performed to assess the Neural ODE’s suitability as a general-purpose DE estimator.
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