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Abstract 
A common step in developing generalizable, dynamic mechanistic models is to fit 
unmeasured parameters to measured data.  Fitting differential equation-based models can 
be computationally expensive due to the presence of nonlinearity and stiffness.  This work 
proposes a two-stage indirect approach where Neural ODEs approximate state 
derivatives, which are used to estimate the parameters of a differential model.  In addition 
to its computational efficiency, the proposed method demonstrates the ability to work in 
concert with direct methods to accurately estimate parameters, even in the case of stiff 
systems. The method is shown here for the training of a microkinetic model. 
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1. Introduction 
The task of finding parameter values of a differential equation (DE) model to explain 
available experimental data is ubiquitous throughout engineering. The physical meaning 
of these DE models (also referred to here as a mechanistic model) permit the modeler to 
predict a system’s behavior in unexplored experimental spaces, assuming the parameters 
have been estimated correctly.  However, due to the complexity of DE systems, methods 
that automate their parameter estimation must often balance efficiency and accuracy.  
Gradient-based ‘direct’ methods either rely on repeated integration of the ODEs being 
regressed, or formulating a constrained nonlinear program discretizing the system of 
ODEs to solve for the parameter values (Li et al. 2005, Hamilton 2011).  Both ‘direct’ 
methods face computational tractability issues, which become more severe when the 
initial parameter estimates are far from the true values, or the ODEs are nonlinear with 
respect to their parameters.  Another problem, common to reaction systems, is the 
presence of rate terms which vary over large orders of magnitude, resulting in a system 
with fast and slow dynamics (i.e., at different timescales).  Ultimately, to make these 
regression problems tractable for direct methods, a modeler may need to apply model 
reduction strategies, ranging from setting tight bounds on parameters to fixing insensitive 
parameters.  Such strategies require domain expertise, which may not be available, as 
well as user-intervention, preventing automation of the parameter estimation process.  

As an alternative to the direct approach, an indirect parameter estimation approach has 
been proposed, which avoids discretizing the mechanistic model (Swartz and 
Bremermann 1975, Brunel 2008).  In this 2-stage approach, the experimental data is 
interpolated by a data-driven model, which is differentiated to obtain system derivative 
estimates.  Those derivative estimates combined with state estimates of the interpolating 
model can be used to estimate the parameters of the mechanistic DEs via nonlinear 
programming (NLP).  The indirect 2-stage approach is so named since it breaks up a 
single regression problem into two regression problems whose combined computational 
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cost is generally less than that of the direct approaches.  Yet despite having the advantage 
of being computationally cheap, this method is often limited in accuracy due to the 
difficulty in accurately estimating a system’s derivative information. 

Recently, we proposed using Neural ODEs (NODEs) as the data-driven surrogate to 
interpolate measurement data (Figure 1) and for estimating system derivatives (Bradley 
and Boukouvala 2021). In that work, NODEs compared favorably with other methods for 

automated parameter estimation 
of a nonlinear mechanistic DE.  
However, one class of DEs not 
covered in that work were those 
with ‘stiff’ dynamics.  This class 
of problems can be particularly 
challenging for parameter 
estimation methods.  One reason 
for this is the need for numerical 
methods that balance the number 
of functional evaluations (i.e., 
computation) and stability (i.e.. 
accuracy).  Recent work has 
evaluated numerical techniques 

for fitting Neural ODEs to stiff 
system data, and for parameter estimation of stiff systems (Kim et al. 2021), however 
further work is needed to develop methods that are both general and accurate. 

2. Methods 
In this work, several approaches, and potential combinations thereof, are compared for 
the parameter estimation of stiff DEs. To start, direct approaches find the parameters 𝑝
to a mechanistic model 𝑓(𝑥, 𝑝) by minimizing the following discrepancy function: 

min ∑(𝑥𝑘,𝑗,𝑚𝑒𝑎𝑠 − 𝑥𝑘,𝑗,𝑝𝑟𝑒𝑑)2   (1) 

𝑠. 𝑡.  𝑑𝑥𝑘,𝑀𝑀
𝑑𝑡

= 𝑓(𝑥𝑘, 𝑝)   (2) 

Here, 𝐾 state variables 𝑥𝑘, where 𝑘 = 1, … , 𝐾, are measured and predicted at time points 
𝑗, where 𝑗 = 1, … , 𝐽, by integrating the mechanistic model (MM) with respect to 
independent variable 𝑡.  Though statistically robust, this method can be computationally 
intensive.  For such cases, a 2-stage indirect approach can be attractive. 

As illustrated in Figure 1, the 2-stage indirect approach fits the parameters of the 
mechanistic model by solving 2 separate regression problems.  In the first stage, the 
parameters of the data-driven model are fitted using the original measurement data.  In 
the second stage, the parameters of the mechanistic ODE are found using the state and 
derivative estimates of the data-driven model.  The data-driven model used in our work 
is a NODE model.  This is done by first solving Eq.(1) subject to Eq.(3): 

𝑠. 𝑡.  𝑑𝑥𝑘,𝑁𝑂𝐷𝐸
𝑑𝑡

= 𝑁𝑁(𝑥𝑘, 𝑤)    (3) 

Neural Network parameters 𝑤 are fitted to minimize an objective function equal to the 
sum of squared errors between the model prediction and measured state data.  Once the 

Figure 1. Depiction of the direct vs indirect approach to 
parameter estimation 
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NODE is trained, derivative estimates are obtained by evaluating the trained NODE at 
times where measured data was collected using the same process conditions of the 
measured data.  Following the procedure of (Bradley and Boukouvala 2021), we exclude 
derivative estimates at time t=0, which tend to be less reliable, to improve parameter 
estimates of the mechanistic DE.  For stage two, an NLP is formulated as in Eq.(4) and 
(5) to find the parameters of the mechanistic DE without integrating the mechanistic DE.  

min ∑ (
𝑑𝑥𝑗,𝑘,𝑁𝑂𝐷𝐸

𝑑𝑡
−

𝑑𝑥𝑗,𝑘,𝑀𝑀

𝑑𝑡
)

2
   (4) 

𝑠. 𝑡.  
𝑑𝑥𝑗,𝑘,𝑀𝑀

𝑑𝑡
= 𝑓(𝑥𝑗,𝑘,𝑁𝑂𝐷𝐸, 𝑝)       (5) 

Depending on the required accuracy, the indirect 2-stage approach may be sufficient for 
the needs of the model-building problem at hand.  However, if increased accuracy is 
required, we hypothesized a more robust fit would require including the mechanistic 
model constraints when fitting the measured state data.  A tempting option would be a 
simultaneous approach, which combines the objective functions of the 2-stage approach 
into a single hybrid objective function: 

min ∑(𝑥𝑘,𝑗,𝑚𝑒𝑎𝑠 − 𝑥𝑘,𝑗,𝑝𝑟𝑒𝑑)2 + λ ∑ (
𝑑𝑥𝑗,𝑘,𝑁𝑂𝐷𝐸

𝑑𝑡
−

𝑑𝑥𝑗,𝑘,𝑀𝑀

𝑑𝑡
)

2
  (6) 

Like the indirect approach, Eq.(6) uses the data-driven Neural ODE of Eq.(2) to fit the 
state data and provide derivative estimates.  However, in the hybrid objective both the 
Neural ODE fit and mismatch between NODE and mechanistic DE are minimized 
simultaneously, their relative weights controlled by the hyperparameter lambda, 𝜆. 

A final alternative to increasing model fidelity is to fit the mechanistic DE directly (i.e., 
minimize Eq.(1) subject to Eq.(2)).  However, as mentioned earlier this incurs an 
increased compute overhead.  In the case of stiff systems, the increased compute cost 
comes from the finer discretization required to stably integrate the mechanistic model.  
To reduce compute costs, the direct approach can use parameter estimates informed by 
the indirect approach.  Specifically, the parameters estimated from the 2-stage fitting are 
used as an initial guess for the DE of Eq.(2).  A single application of the indirect followed 
by the direct approach is herein referred to as the incremental approach. 

Throughout this work, we use PyTorch’s LBFGS solver and IPOPT within PYOMO as 
the nonlinear optimizers of the stage 1 and stage 2 regression problems, respectively. For 
the sake of consistency, the structure of the NODE is fixed to a single hidden layer with 
tanh activation function and 15 hidden nodes.  Further, we assume minimal knowledge 
of the true parameters prior to model-fitting, and thus all parameters are initialized to the 
same order of magnitude, specifically a value of 2, for the direct and indirect approaches.   

3. Results 
To demonstrate the effectiveness of the 2-stage approach, we chose as an example a 
microkinetic model (MKM) for heterogeneous catalysis (Gusmão et al. 2020).  MKMs 
represent a large class of coupled differential equations which exhibit stiffness due to the 
presence of both slow and fast rate terms caused by parameter values varying over large 
orders of magnitude. The MKM system of ODEs governed by a material balance and rate 
equations are outlined in Figure 2.  Table 1 lists the true parameter values. 
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Figure 2. Full MKM system of ODE equations  

In this process, gaseous reactants A and B adsorb to a solid surface to form intermediate 
species before the final product C desorbs into the gas phase.  Reactants bound to a 
catalyst surface site [*] are indicated by an asterisk ‘*’. All reactions are reversible.  

Two datasets were used to represent possible fitting scenarios for the 2-stage approach, 
each comprising data simulated from two sets of initial conditions.  In one dataset, state 
variables are sampled 15 times logarithmically for each run in the range t = [10e-3, 0.5], 
amounting to a sample size of 30 datapoints.  The second dataset includes the same 
number of points sampled linearly from time t=0 to t=0.5.  At first, the 2-stage approach 
was applied on the linear dataset.  Specifically, the data was used to fit a NODE whose 
derivatives were then used to solve for the parameters of the mechanistic DE.  The 
parameters found through this approach are compiled in Table 1, column labelled 
‘Linear Indirect’.  Results show that some of the parameters found differ significantly 
from the true parameters.  This is not surprising since data is available only sparsely at 
earlier times where state values change rapidly due to the stiffness of the system.   

  
Figure 3. NODE fit (solid lines) to log-sampled data (dots). True derivative shown with x’s. 

The fitting procedure was repeated with data sampled logarithmically with respect to 
time.  The fit of the Neural ODE to the log-sampled data is presented in Figure 3 for the 
adsorbed species.  Noticeably, despite the NODE fitting the state outputs perfectly 
(effectively to machine precision), the data-driven model does not capture the exact 
profile of the derivatives.  This result is believed to be due to the inherent flexibility of 
NODEs, which are not as constrained in outcomes as the simulating mechanistic model.  
The results of the 2-stage regression including the mean absolute error (MAE) of the 
fitted model on the log-sampled data are compiled in Table 1 (‘Log Indirect’ column).   

Aiming to improve the accuracy of the fitted mechanistic model, the simultaneous 
approach was applied using various values for lambda.  However, minimizing the 
hybrid objective function did not result in significantly improved parameter estimates vs 



   

the indirect approach, notwithstanding its higher compute cost.  This finding was again 
attributed to the flexibility of NODEs, their being able to interpolate state data despite 
estimating derivatives that may not exactly match the ‘true’ derivatives.  Due to their 
low accuracy, results of the simultaneous approach were not included in Table 1. 

Instead, the remaining columns in Table 1 include the computational cost and model 
accuracy from integrating the mechanistic DE during training, either using an 
uninformed initial guess (i.e., the direct approach) or initializing the mechanistic 
parameters with the parameters found by the 2-stage methods (i.e., the incremental 
approach).  Figure 4 displays the mechanistic model fit to the linearly-sampled data via 
the indirect and direct approach.  The direct and incremental approaches gave similar 
simulated trajectories so only the results of the direct method are plotted. 

 
Figure 4. State and derivative estimates of the mechanistic model after parameter estimation via 
indirect (solid line) and direct approach (dotted line) on linearly-sampled data (solid dots). 

A couple trends are worth noting.  Firstly, the MAE of the final simulation is lower after 
using the direct approach, regardless of sampling strategy, indicating increased accuracy 
can be gained via the direct approach.  What’s more, applying the incremental approach 
offers compute savings over the direct approach with an uninformed initial guess, at 
least for the log-sampled case.  However, when fitting the linearly-sampled data, the 
compute savings from incremental approach are negligible.  At least two factors are 
believed to cause this discrepancy.  First, the parameters found through the indirect 
approach on the linear data were further from the true parameters than for the log-
sampled case, offering a poorer initial guess.  Second, an increased number of Euler 
steps were required between datapoints for integrating mechanistic model on the log-
sampled data (n=256 vs 56 in the linear case) to avoid divergence issues near the 
equilibrium region, exacerbating the computational load in the log-sampled case when 
uninformed initial estimates are used.  Ultimately, this indicates that, given a 
sufficiently sampled experimental space, the incremental approach can merge the direct 
and indirect approaches in ways that balance both accuracy and efficiency. 
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Table 1. Table of compute times, parameters estimated, and model errors for different approaches 

 
True 
params 

Log 
Indirect 

Log 
Incr. 

Log 
Direct 

Linear 
Indirect 

Linear 
Incr. 

Linear 
Direct 

Fit (s) 
Time N/A 15.21 137.7 362.31 12.62 74.22 80.94 
MAE N/A 2.46E-3 6.05E-4 4.52E-4 1.45E-2 4.70E-4 2.69E-4 
k3 20 20.46 19.98 19.97 12.82 19.67 19.80 
k4 8 9.061 7.983 7.994 4.556 7.854 7.917 
k5 16 16.50 15.69 15.81 13.49 16.07 15.84 
k6 4 3.490 3.825 3.886 2.637 4.051 3.938 
k7 12 11.38 11.99 12.09 10.19 11.89 11.92 
k8 8 7.695 7.998 8.048 6.719 7.940 7.957 
k11 1200 2615 2607 1793 400.4 446.5 1809 
k12 400 849.3 871.6 600.8 138.7 147.6 604.0 
k13 2000 1672 1662 1117 38.28 2999 1745 
k14 1600 1320 1332 890.3 24.05 2401 1395 

*Abbreviations: Incr. (Incremental Approach) 

4. Conclusions 
This work demonstrated a method for accelerating the regression of mechanistic ODEs 
for stiff systems and evaluated the ability of NODEs to estimate mechanistic ODE 
parameters with a large magnitude of variability in their true values using different 
sampling strategies. While the NODE-based incremental approach presents a promising 
step towards automated parameter estimation of stiff systems, several challenges remain. 
Neural Networks have limited ability to make predictions that vary over large orders of 
magnitude, common to stiff systems, which to overcome may require modifying the data-
driven model structure to enable greater accuracy.  In future, a comparison with 
incremental and simultaneous methods employing other surrogate models should be 
performed to assess the Neural ODE’s suitability as a general-purpose DE estimator. 
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