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Abstract

Neural networks (NN)s have been increasingly proposed as surrogates for approximation of sys-
tems with computationally expensive physics for rapid online evaluation or exploration. As these
surrogate models are integrated into larger optimization problems used for decision making, there
is a need to verify their behavior to ensure adequate performance over the desired parameter space.
We extend the ideas of optimization-based neural network verification to provide guarantees of
surrogate performance over the feasible optimization space. In doing so, we present formulations
to represent neural networks within decision-making problems, and we develop verification ap-
proaches that use model constraints to provide increasingly tight error estimates. We demonstrate
the capabilities on a simple steady-state reactor design problem.
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1. Introduction

Neural networks (NNs) have seen wide success across engineering disciplines. Their excellent ap-
proximation qualities (Hornik et al. (1989)) can reduce challenging problems into tractable com-
putational models and their training procedure can incorporate diverse data sets and expert domain
knowledge (Beck et al. (2016)). Successful engineering applications have harnessed NN in plan-
ning, design, and control (Pistikopoulos et al. (2021)) with notable process-systems applications
that span: forecasting renewable energy generation (Lee et al. (2016)), predicting distillation dy-
namics (Sdnchez-Ramirez et al. (2020)), and estimating reactor performance (Salah et al. (2016)).

Typical NN applications are concerned with making forward predictions (i.e., NNs are evaluated in
a forward-mode), but they are also advantageous in the context of optimization where they can take
on the form of algebraic surrogates. Such surrogate models can be used to reduce the complex-
ity of underlying equations by replacing them with more tractable formulations. Neural network
surrogates have seen successful application in optimizing chemical process operation (Fernandes
(2006)), performing process synthesis with super-structures (Henao and Maravelias (2010)), solv-
ing stochastic optimization problems to operate distillation columns (Gutiérrez-Antonio (2016)),
and representing contingency constraints in security-constrained optimal power flow (Kilwein
et al. (2021)).

The verification of neural networks is often concerned with finding adversarial inputs (Good-
fellow et al. (2015)) using techniques such as mixed-integer-linear-programming (MILP) (Tjeng
et al. (2017)), Satisfiability Modulo Theories (Scheibler et al. (2015)), and Lagrangian duality
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(Dvijotham et al. (2018)). This manuscript extends verification concepts and addresses the need
to verify NNs that are deployed as optimization-based surrogates. In contrast to methods that ver-
ify over a specified input space, we propose formulations that verify over constraints involving
both the inputs and outputs of the neural network. In doing so, we develop optimization prob-
lems that verify worst-case NN prediction error subject to known model physics and operational
constraints, and we show that incorporating known constraints leads to tighter error estimates than
simply verifying over the input space.

2. Optimization with Neural Network Surrogates

We consider the solution of an optimization problem given by, (1),

f(p)=min f(x,y.z,p) (1a)
s.t. y=h(x,p) (1b)
c(x,y,2,p) =0 (Ic)

g(x,y,2,p) <0 (1d)

d<x<iV (le)

where p represents system parameters which are known inputs for a particular optimization in-
stance, and x, y, and z represent optimization variables. We desire efficient solutions of this prob-
lem for different values of the parameters p (e.g., in an online context, or for multi-scenario anal-
ysis). For improved solution, we consider instead an approximate formulation where we replace
a portion of the model with a neural network surrogate. We assume that the NN surrogate brings
some benefit to the optimization problem by facilitating a more tractable computation. This could
entail the simplification of (1b) to support more rapid or reliable optimization in an online context,
or involve creating a piecewise linear approximation (e.g., using ReLU activation functions) of &
to facilitate global optimization approaches. We show the new optimization formulation below,
where we approximate 4 in (1b) with the neural network N in (2b). Here, § represents the neural
network output, and is an approximation of the original variables y.

f5(p) = g}ng f(x,9,2,p) (2a)
s.t. $=N(x,p) (2b)
C(X7ﬁ72717) =0 (2C)

glx,3,z,p) <0 (2d)

b <x<al (2e)

This hybrid modeling approach is common in engineering applications. However, before “deploy-
ing” problem (2) in a decision-making application, we wish to verify the accuracy of the neural
network approximation. In the next section, we describe a verification formulation that explicitly
considers the feasible region of the constraints above and the range on the input parameters p.

3. Formulation of Neural Network Verification Problem

Typical verification approaches seek to determine the maximum error between y and § over a pre-
defined input space in x and p. However, these approaches can produce errors that are larger than
necessary since they allow points in x and p that may not feasible with respect to the constraints in
formulations (1) and (2). Here, we are specifically interested in the accuracy of the neural network
over the feasible space of the optimization problem, and we formulate the verification problem (3)
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shown below:

max Iy =91l (3a)
s.t. y=h(x,p) True Model (3b)
$=N(x,p) NN Surrogate (3e)
<x<al Input Bounds (3d)
pr<p<pY Parameter Bounds (3e)

[c(x,y,@p) = 0] v {c()@y,z,p) - 0} Feasibility Constraints (3f)

g(x,yz,p) <0| 7 |g(x,9,2,p) <0

Here, the objective function (3a) maximizes the infinity norm over the NN prediction errors. Max-
imizing other error measures such as mean-squared-error, mean-absolute-error, or individual pre-
diction errors is also possible. The constraints (3b) and (3c) are the same as (1b) and (2b), respec-
tively, which relate the NN inputs to the true model variables y and the neural network outputs §.
As indicated above, a natural choice of verification constraints are limits on the input space of the
neural network (i.e., bounds over x and p). While a typical verification formulation would include
only (3a)-(3e), we seek to limit the verification to points in x and p that are feasible with respect
to the optimization problems (1) and (2).

Our target optimization problem (2) includes feasibility constraints over ¥. However, including
only constraints (2¢-2d) in the verification problem (rather than the disjunction in (3f)) is insuffi-
cient because of errors between y and y. Constraints (2c-2d) alone may not sufficiently represent
the feasible region in problem (1). Indeed, if the NN accuracy is low, the feasible region for x and
p could be significantly underestimated or even empty. Therefore, we search for the maximum
error over both the constraints (1c-1d) and (2¢-2d) as represented by the disjunction in (3f). With
this, problem (3) finds the maximum deviation between y and  subject to the constraints of the
optimization problem applied conservatively to either y or .

For the case studies in this paper, we consider three formulations to analyze the verification ap-
proach. Formulation (V1) represents the typical verification formulation used in the literature
which considers only explicit constraints on the input space for x and p. In practice, while we
could solve the disjunctive problem (3) directly, it is convenient to solve with each disjunct sep-
arately where the solution of (3) is given by the maximum of the solutions from (V2) and (V3)
below.

A Jmax [ly=]l Jmax [ly—5il

max [y =3l st GD-(G0) (v st GD)-(Ge) (v
s.t.  (3b)—(3e) c(x,y,z,p) =0 c(x,9,z,p) =0
g(x,»z,p) <0 g(x,%,2,p) <0

4. Illustrative Example: Reactor Optimization with Neural Network Surro-
gates

We provide an illustrative reactor optimization example where we use NNs (with ReLU activa-
tions) to replace nonlinear physics with piecewise-linear approximations. We demonstrate global
solution of the verification problem and compare with the input-only formulation given by (V1).

4.1. Reactor Optimization Problem

The problem of interest is a steady-state continuous-stirred-tank-reactor (CSTR) that converts feed
components A and B to produce D as depicted by Figure 1 where C is an intermediate and E is a
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Figure 1: Simple Steady-State CSTR

side product. The overall mass balance is given by (4) (or by (5) in terms of the neural network
outputs, ¥).

C = C,‘70 — Tlr i€ {A7B} (4a) C = C,'A’() — ’/Z:'lr i€ {A,B} (5a)
Ce= Cc_’() + ’L'lr — ’CE (4b) Ce= C(;iy() + flr — fg (5b)
Ci= C,*,() + Tzr ie {D,E} (40) Ci= C,"() + f’g ie {D,E} (50)

We define variables 7| and 75 in (6) to represent the product of 7 (the space-time) and the corre-
sponding reaction rate (r; or r2). The reaction rate constants K; are selected as the parameters p.
We also include operating constraints given by (7) which correspond to the minimum conversion
and yield the reactor must achieve with 177=0.9 and 1,=0.2.

71 = 7r1 = 1K1C4Cp (6a) Cp > Ni(Cap—Ca) (7a)
T, = 1Try = 1K C. (6b) Cp > m(Ca+Cs+C.) (7b)

The true design problem as a function of p is then given by (8) where we seek to minimize the
space-time 7 (i.e., maximize throughput) subject to physical balances and operating requirements.
Consequently, we train ReLU-based NN to replace the associated nonlinear terms and formulate
the approximate design problem (9) as an MILP (Grimstad and Andersson (2019)).

mrin T (8a) rnfin T (9a)

S.t. ‘L']r = 1K CsCp (8b) S.t. f’{ =K|N, (CA,CB,’L') (9b)

% = 1KC, (8c) # = KoN> (Ce, 7) 9c)
@), (5),(7

4.2. Verification Problem

The verification problem corresponding to (3) is given by (11) with the NN input and model
parameter bounds defined by (10) below.

Ch<Ca<C{, C5<Cp<Cy, CE<Cc<C¥,

(10)
tt<e<d’, Kf<Ki<k{, Kf<K,<KY

The valid range for the parameters K is given by K1=0.31051 = 10%% and K>=0.026650 +

10%%. For this example we seek to maximize the squared prediction error of both 7] and 7; (i.e.,
we solve verification problems for each output) but it is also possible to formulate mean-absolute
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error using integer variables.

max (8/—1))* je{1,2} (11a)
s.t.  (8b), (8¢) Original Model (11b)
(9b),(9¢) NN (11¢)

(10) Input Bounds and Parameter Bounds (11d)

(@, D]V [(5), (D] Model Constraints OR NN Constraints (11e)

We apply each of the presented verification formulations to our reactor example. In particular,
we formulate (V1) with equations (11a-11d). We formulate (V2) and (V3) using these equations
along with each of the individual disjuncts in (11e).

4.3. Results

We use TensorFlow 2.3 to train the multi-layer neural network surrogates with increasing num-
bers of nodes using ReLU activation functions. We use Gurobi 9.1 to solve the non-convex
true design problem (8) and the verification problems. The results are presented in Figure 2 and
are summarized as follows: (i) (V1) provides the expected global worst-case error over the input
space, but we can obtain tighter error bounds using (V2) and (V3) which satisfy the known con-
straints, (ii) (V3) is tighter than (V2) with smaller networks where the accuracy is poor and the
feasible region is poorly approximated, and (iii) worst-case error improves for larger neural net-
works, but there are likely trade-offs with performance vs accuracy. We also compare the solution
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Figure 2: Results for test error (box plots) and verification (colored markers for V1, V2, and V3).
Observed errors for 7] (left) and 7, (right) for increasingly larger neural networks.

of (9) for each NN to the true problem (8) using Gurobi 9.1. Table 1 shows each NN prediction
and objective value 7 which are consistent with the verification findings. Tighter worst-case error
estimates correspond with closer approximations of the true problem, but even NNs with consid-
erable error according to (V1) perform adequately as algebraic surrogates when considering the
feasible region and their usage within the optimization problem.

5. Conclusions

This manuscript explores verification approaches for neural network (NN) surrogates used within
optimization problems. We demonstrated how verification over known constraints produces tighter
worst-case NN violations. We presented an illustrative reactor design example to elucidate verifi-
cation concepts for NNs used as surrogates in an optimization setting.
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Table 1: Comparison of results for reactor optimization problem solution for increasingly larger
neural networks. Percentages correspond to percent difference from the true global solution.

Error (Relative Error %)

Variable True 45 Nodes 90 Nodes 135 Nodes 180 Nodes

T 0.527 | -3.9E-3 (-0.75%) | 1.5E-3 (0.28%) | -8.8E-4 (-0.17%) | 5.6 E-4 (0.11%)
7 0.474 | -3.5E-3 (-0.75%) | 1.3E-3 (0.28%) | -7.9E-4 (-0.17%) | 5.0E-4 (0.11%)
T 337.7 | -14.5 (-4.29%) | -10.7 (-3.17%) | 3.3 (0.99%) | 0.17 (0.05%)
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