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Abstract A key question in decision- making is how humans arbitrate between competing 

learning and memory systems to maximize reward. We address this question by probing the balance 

between the effects, on choice, of incremental trial- and- error learning versus episodic memories of 

individual events. Although a rich literature has studied incremental learning in isolation, the role of 

episodic memory in decision- making has only recently drawn focus, and little research disentangles 

their separate contributions. We hypothesized that the brain arbitrates rationally between these 

two systems, relying on each in circumstances to which it is most suited, as indicated by uncer-

tainty. We tested this hypothesis by directly contrasting contributions of episodic and incremental 

influence to decisions, while manipulating the relative uncertainty of incremental learning using a 

well- established manipulation of reward volatility. Across two large, independent samples of young 

adults, participants traded these influences off rationally, depending more on episodic information 

when incremental summaries were more uncertain. These results support the proposal that the brain 

optimizes the balance between different forms of learning and memory according to their relative 

uncertainties and elucidate the circumstances under which episodic memory informs decisions.

Editor's evaluation
This paper posits that higher uncertainty environments should lead to more reliance on episodic 

memory, finding compelling evidence for this idea across several analysis approaches and across 

two independent samples. This is an important paper that will be of interest to a broad group of 

learning, memory, and decision- making researchers.

Introduction
Effective decision- making depends on using memories of past experiences to inform choices in the 

present. This process has been extensively studied using models of learning from trial- and- error, 

many of which rely on error- driven learning rules that in effect summarize experiences using a running 

average (Sutton and Barto, 1998; Rescorla and Wagner, 1972; Houk et  al., 1995). This sort of 

incremental learning provides a simple mechanism for evaluating actions without maintaining memory 

traces of each individual experience along the way and has rich links to conditioning behavior and 

putative neural mechanisms for error- driven learning (Schultz et  al., 1997). However, recent find-

ings indicate that decisions may also be guided by the retrieval of individual events, a process often 

assumed to be supported by episodic memory (Bakkour et al., 2019; Plonsky et al., 2015; Mason 
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et al., 2020; Bornstein et al., 2017; Collins and Frank, 2012; Bornstein and Norman, 2017; Duncan 

et al., 2019; Duncan and Shohamy, 2016; Lee et al., 2015; Wimmer and Büchel, 2020). Although 

theoretical work has suggested a role for episodic memory in initial task acquisition, when experi-

ence is sparse (Gershman and Daw, 2017; Lengyel and Dayan, 2007), the use of episodes may be 

much more pervasive as its influence has been detected empirically even in decision tasks that are 

well- trained and can be solved normatively using incremental learning alone (Plonsky et al., 2015; 

Bornstein et al., 2017; Bornstein and Norman, 2017). The apparent ubiquity of episodic memory as 

a substrate for decision- making raises questions about the circumstances under which it is recruited 

and the implications for behavior.

How and when episodic memory is used for decisions relates to a more general challenge in cogni-

tive control: understanding how the brain balances competing systems for decision- making. An over-

arching hypothesis is that the brain judiciously adopts different decision strategies in circumstances 

for which they are most suited; for example, by determining which system is likely to produce the 

most rewarding choices at the least cost. This general idea has been invoked to explain how the brain 

arbitrates between deliberative versus habitual decisions and previous work has suggested a key role 

for uncertainty in achieving a balance that maximizes reward (Daw et al., 2005; Lee et al., 2014). 

Moreover, imbalances in arbitration have been implicated in dysfunction such as compulsion (Gillan 

et al., 2011; Voon et al., 2015), addiction (Ersche et al., 2016; Everitt and Robbins, 2005), and 

rumination (Hunter et al., 2022; Dayan and Huys, 2008; Huys et al., 2012).

Here, we hypothesized that uncertainty is used for effective arbitration between decision systems 

and tested this hypothesis by investigating the tradeoff between incremental learning and episodic 

memory. This is a particularly favorable setting in which to examine this hypothesis due to a rich 

prior literature theoretically analyzing, and experimentally manipulating, the efficacy of incremental 

learning in isolation. Studies of this sort typically manipulate the volatility, or frequency of change, of 

the environment, as a way of affecting uncertainty about incrementally learned quantities. In line with 

predictions made by statistical learning models, these experiments demonstrate that when the reward 

associated with an action is more volatile, people adapt by increasing their incremental learning rates 

(Behrens et al., 2007; Mathys et al., 2011; O’Reilly, 2013; Nassar et al., 2012; Nassar et al., 2010; 

Browning et al., 2015; Piray and Daw, 2020; Kakade and Dayan, 2002; Yu and Dayan, 2005). In this 

case, incrementally constructed estimates reflect a running average over fewer experiences, yielding 

both less accurate and more uncertain estimates of expected reward. We, therefore, reasoned that 

the benefits of incremental learning are most pronounced when incremental estimation can leverage 

many experiences or, in other words, when volatility is low. By contrast, when the environment is either 

changing frequently or has recently changed, estimating reward episodically by retrieving a single, 

well- matched experience should be relatively more favorable.

We tested this hypothesis using a choice task that directly pits these decision systems against 

one another (Duncan et al., 2019), while manipulating volatility. In particular, we (i) independently 

measured the contributions of episodic memory vs. incremental learning to choice and (ii) altered the 

uncertainty about incremental estimates using different levels of volatility. Two large online samples of 

healthy young adults completed three tasks. Results from the primary sample (n = 254) are reported in 

the main text; results from a replication sample (n = 223) are reported in the appendices (Appendix 1).

The main task of interest combined incremental learning and episodic memory, referred to 

throughout as the deck learning and card memory task (Figure 1A, middle panel). On each trial of 

this task, participants chose between two cards of a different color and received feedback following 

their choice. The cards appeared on each trial throughout the task, but their relative value changed 

over time (Figure 1B). In addition to the color of the card, each card also displayed an object. Criti-

cally, objects appeared on a card at most twice throughout the task, such that a chosen object could 

reappear between 9 and 30 trials after it was chosen the first time, and would deliver the same 

reward. Thus, participants could make decisions based on incremental learning of the average value 

of the decks or based on episodic memory for the specific value of an object which they only saw 

once before. Additionally, participants made choices across two environments: a high- volatility and a 

low- volatility environment. The environments differed in how often reversals in deck value occurred.

In addition to the main task, participants also completed two other tasks in the experiment. First, 

participants completed a simple deck learning task (Figure 1A, left panel) to acclimate them to each 

environment and quantify the effects of uncertainty. This task included choices between two diamonds 
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Figure 1. Study design and sample events. (A) Participants completed three tasks in succession. The first 

was the deck learning task that consisted of choosing between two colored cards and receiving an outcome 

following each choice. One color was worth more on average at any given timepoint, and this mapping changed 

periodically. Second was the main task of interest, the deck learning and card memory task, which followed the 

same structure as the deck learning task but each card also displayed a trial- unique object. Cards that were chosen 

could appear a second time in the task after 9–30 trials and, if they reappeared, were worth the same amount, 

thereby allowing participants to use episodic memory for individual cards in addition to learning deck value 

from feedback. Outcomes ranged from $0 to $1 in increments of 20¢ in both of these tasks. Lastly, participants 

completed a subsequent memory task for objects that may have been seen in the deck learning and card memory 

task. Participants had to indicate whether they recognized an object and, if they did, whether they chose that 

object. If they responded that they had chosen the object, they were then asked if they remembered the value 

of that object. (B)  Uncertainty manipulation within and across environments. Uncertainty was manipulated by 

varying the volatility of the relationship between cue and reward over time. Participants completed the task in 

two counterbalanced environments that differed in their relative volatility. The low- volatility environment featured 

half as many reversals in deck luckiness as the high- volatility environment. Top: the true value of the purple deck 

is drawn in gray for an example trial sequence. In purple and orange are estimated deck values from the reduced 

Bayesian model (Nassar et al., 2010). Trials featuring objects appeared only in the deck learning and card 

memory task. Bottom: uncertainty about deck value as estimated by the model is shown in gray. This plot shows 

relative uncertainty, which is the model’s imprecision in its estimate of deck value.
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of a different color on each trial, without any trial- unique objects. Second, after the main task, partic-

ipants completed a standard subsequent memory task (Figure 1A, right panel) designed to assess 

later episodic memory for objects encountered in the main task.

We predicted that greater uncertainty about incremental values would be related to increased use 

of episodic memory. The experimental design provided two opportunities to measure the impact of 

uncertainty: across conditions, by comparing between the high- and the low- volatility environments, 

and within condition, by examining how learning and choices were impacted by each reversal.

Results
Episodic memory is used more under conditions of greater volatility
As noted above, participants completed two decision- making tasks. The deck learning task familiar-

ized them with the underlying incremental learning task and established an independent measure of 

sensitivity to the volatility manipulation. The separate deck learning and card memory task measured 

the additional influence of episodic memory on decisions (Figure 1). In the deck learning task, partic-

ipants chose between two decks with expected value ( V  ) that reversed periodically across two envi-

ronments, with one more volatile (reversals every 10 trials on average) and the other less volatile 

(reversals every 20 trials on average).

Participants were told that at any point in the experiment one of the two decks was ‘lucky,’ meaning 

that its expected value ( Vlucky  = 63¢) was higher than the other ‘unlucky’ deck ( Vunlucky  = 37¢). They 

were also told that which deck was currently lucky could reverse at any time, and that they would 

be completing the task in two environments that differed in how often these reversals occurred. We 

reasoned that, following each reversal, participants should be more uncertain about deck value and 

Figure 2. Evaluating the proportion of incremental and episodic choices. (A) Participants’ (n = 254) choices demonstrate sensitivity to the value of old 

objects. Group- level averages are shown as points and lines represent 95% confidence intervals. (B) Reversals in deck luckiness altered choice such that 

the currently lucky deck was chosen less following a reversal. The line represents the group- level average, and the band represents the 95% confidence 

interval. (C) On incongruent trials, choices were more likely to be based on episodic memory (e.g., high- valued objects chosen and low- valued objects 

avoided) in the high- compared to the low- volatility environment. Averages for individual subjects are shown as points, and lines represent the group- 

level average with a 95% confidence interval. (D) Median reaction time was longer for incongruent choices based on episodic memory compared to 

those based on incremental learning.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Recreation of Figure 2 in the main text using the replication dataset.
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that this uncertainty should reduce with experience. Because the more volatile environment featured 

more reversals, in this condition subjects should have greater uncertainty about the deck value overall.

In the second deck learning and card memory task, each deck featured cards with trial- unique 

objects that could reappear once after being chosen and were worth an identical amount at each 

appearance. Here, participants were told that they could use their memory for the value of objects 

they recognized to guide their choices. They were also told that the relative level of volatility in each 

environment during the card learning task would be identical in this task. We predicted that deci-

sions would be based more on object value when deck value was more volatile. Our logic was that 

episodic memory should be relied upon more strongly when incremental learning is less accurate 

and reliable due to frequent change. This, in turn, is because episodic memory is itself imperfect in 

practice, so participants face a nontrivial tradeoff between attempting episodic recall vs. relying on 

incremental learning when an object recurs. We, therefore, expected choices to be more reliant on 

episodic memory in the high- compared to the low- volatility environment.

We first examined whether participants were separately sensitive to each source of value in the 

deck learning and card memory task: the value of the objects (episodic) and of the decks (incre-

mental). Controlling for average deck value, we found that participants used episodic memory for 

object value, evidenced by a greater tendency to choose high- valued old objects than low- valued 

old objects ( βOldValue = 0.621, 95%CI =
[

0.527, 0.713
]

 ; Figure  2A). Likewise, controlling for object 

value, we also found that participants used incrementally learned value for the decks, evidenced 

by the fact that the higher- valued (lucky) deck was chosen more frequently on trials immediately 

preceding a reversal ( βt−4 = 0.038, 95%   CI = [−0.038, 0.113] ;  βt−3 = 0.056, 95%   CI = [−0.02, 0.134] ;  βt−2 = 0.088, 95%  

 CI = [0.009, 0.166] ;  βt−1 = 0.136, 95%   CI = [0.052, 0.219] ; Figure 2B), that this tendency was disrupted by the rever-

sals ( βt=0 = −0.382, 95%CI =
[

−0.465, − 0.296
]

 ), and by the quick recovery of performance on the trials 

following a reversal ( βt+1 = −0.175, 95%CI =
[

−0.258, − 0.095
]

 ;  βt+2 = −0.106, 95%CI =
[

−0.18, − 0.029
]

 ; 

 βt+3 = −0.084, 95%CI =
[

−0.158,−0.006
]

 ;  βt+4 = 0.129, 95%CI =
[

0.071, 0.184
]

 ).

Having established that both episodic memory and incremental learning guided choices, we next 

sought to determine the impact of volatility on episodic memory for object value by isolating trials 

on which episodic memory was most likely to be used. To identify reliance on object value, we first 

focused on trials where the two sources of value information were incongruent: that is, trials for 

which the high- value deck featured an old object that was of low value (<50¢) or the low- value deck 

featured an old object that was of high value (>50¢). We then defined an episodic- based choice 

index (EBCI) by considering a choice as episodic if the old object was, in the first case, avoided 

or, in the second case, chosen. Consistent with our hypothesis, we found greater evidence for 

episodic choices in the high- volatility environment compared to the low- volatility environment 

( βEnv = 0.092, 95%CI =
[

0.018, 0.164
]

 ; Figure  2C). Finally, this analysis also gave us the opportunity 

to test differences in reaction time between incremental and episodic decisions. Decisions based on 

episodic value took longer ( βEBCI = 37.629, 95%CI =
[

28.488, 46.585
]

 ; Figure  2D), perhaps reflecting 

that episodic retrieval may take more time than retrieval of cached incremental value.

Uncertainty about incremental values increases sensitivity to episodic 
value
The effects of environment described above provide a coarse index of overall differences in learning 

across conditions. To capture uncertainty about deck value on a trial- by- trial basis, we adopted a 

computational model that tracks uncertainty during learning. We then used this model to test our 

central hypothesis: that episodic memory is used more when posterior uncertainty about deck value is 

high. Our reasoning was that episodic memory should not only be deployed more when incremental 

learning is overall inaccurate due to frequent change, but also within either condition following recent 

change. We, therefore, predicted that, across both environments, participants would be more likely to 

recruit episodic memory following reversals in deck value, when uncertainty is at its highest.

We began by hierarchically fitting two classes of incremental learning models to the behavior on 

the deck learning task: a baseline model with a Rescorla–Wagner (Rescorla and Wagner, 1972) style 

update (RW) and a reduced Bayesian model (Nassar et al., 2010) (RB) that augments the RW learner 

with a variable learning rate, which it modulates by tracking ongoing uncertainty about deck value. 

This approach – which builds on a line of work applying Bayesian learning models to capture trial- 

by- trial modulation in uncertainty and learning rates in volatile environments (Behrens et al., 2007; 
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Mathys et  al., 2011; Nassar et  al., 2010; Piray and Daw, 2020; Kakade and Dayan, 2002; Yu 

and Dayan, 2005) – allowed us to first assess incremental learning free of any contamination due to 

competition with episodic memory. We then used the parameters fit to this task for each participant 

to generate estimates of subjective deck value and uncertainty around deck value, out of sample, in 

the deck learning and card memory task. These estimates were then used alongside episodic value to 

predict choices on incongruent trials in the deck learning and card memory task.

We first tested whether participants adjusted their rates of learning in response to uncertainty, 

both between environments and due to trial- wise fluctuations in uncertainty about deck value. We did 

this by comparing the ability of each combined choice model to predict participants’ decisions out of 

sample. To test for effects between environments, we compared models that controlled learning with 

either a single free parameter (for RW, a learning rate  α ; for RB, a hazard rate H capturing the expected 

frequency of reversals) shared across both environments or models with a separate free parameter for 

each environment. To test for trial- wise effects within environments, we compared between RB and 

RW models: while RW updates deck value with a constant learning rate, RB tracks ongoing posterior 

uncertainty about deck value (called relative uncertainty, RU) and increases its learning rate when this 

quantity is high.

We also included two other models in our comparison to control for alternative learning strate-

gies. The first was a contextual inference model (CI), which modeled deck value as arising from two 

switching contexts (either that one deck was lucky and the other unlucky or vice versa) rather than 

from incremental learning. The second was a Rescorla–Wagner model that, like the RB model but 

unlike the RW models described above, learned only a single- value estimate (RW1Q). The details for 

all models can be found in Appendix 3.

Participants were sensitive to the volatility manipulation and also incorporated uncertainty into 

updating their beliefs about deck value. This is indicated by the fact that the RB combined choice 

model that included a separate hazard rate for each environment (RB2H) outperformed both 

RW models, the RB model with a single hazard rate, as well as other alternative learning models 

(Figure 3A). Further, across the entire sample, participants detected higher levels of volatility in 

the high- volatility environment, as indicated by the generally larger hazard rates recovered from 

this model in the high- compared to the low- volatility environment ( HLow = 0.04, 95%CI =
[

0.033, 0.048
]

 ; 

 HHigh = 0.081, 95%CI =
[

0.067, 0.097
]

 ; Figure 3B). Next, we examined the model’s ability to estimate uncer-

tainty as a function of reversals in deck luckiness. Compared to an average of the four trials 

prior to a reversal, RU increased immediately following a reversal and stabilized over time 

( βt=0 = 0.014, 95%CI = [−0.019, 0.048] ;  βt+1 = −0.242, 95%CI = [−0.276, −0.209] ;  βt+2 = −0.145, 95%CI = [−0.178, −0.112] ; 

 βt+3 = −0.1, 95%CI = [−0.131, −0.07] ;  βt+4 = −0.079 ,  95%CI = [−0.108, −0.048] ; Figure  3C). As expected, RU was 

also, on average, greater in the high- compared to the low- volatility environment ( βEnv = 0.015 , 

 95%CI = [0.012, 0.018] ). Lastly, we were interested in assessing the relationship between reaction time 

and RU as we expected that higher uncertainty may be reflected in more time needed to resolve 

decisions. In line with this idea, RU was strongly related to reaction time such that choices made 

under more uncertain conditions took longer ( βRU = 1.685, 95%CI = [0.823, 2.528] ).
Having established that participants were affected by uncertainty around beliefs about deck 

value, we turned to examine our primary question: whether this uncertainty alters the use of 

episodic memory in choices. We first examined effects of RU on the episodic choice index, 

which measures choices consistent with episodic value on trials when it disagrees with incre-

mental learning. This analysis verified that episodic memory was used more on incongruent 

trial decisions made under conditions of high RU ( βRU = 2.133, 95%CI =
[

0.7, 3.535
]

 ; Figure  4A). 

To more directly test the prediction that participants would use episodic memory when uncer-

tainty is high, we included trial- by- trial estimates of RU in the RB2H combined choice model, 

which was augmented with an additional free parameter to capture any change with RU in the 

effect of episodic value on choice. Formally, this parameter measured an effect of the inter-

action between these two factors, and the more positive this term the greater the impact of 

increased uncertainty on the use of episodic memory. This new combined choice model 

further improved out- of- sample predictions (RB2H+RU, Figure  3A). As predicted, while both 

incremental and episodic value were used overall ( βDeckValue = 0.502, 95%CI =
[

0.428, 0.583
]

 ; 

 βOldValue = 0.150, 95%CI =
[

0.101, 0.20
]

 ), episodic value impacted choices more when RU was high 

( βOldValue : RU = 0.067, 95%CI =
[

0.026, 0.11
]

 ; Figure 4B) and more generally in the high- compared 
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Figure 3. Evaluating model fit and sensitivity to volatility. (A) Expected log pointwise predictive density (ELPD) from each model was calculated from 

a 20- fold leave- N- subjects- out cross- validation procedure and is shown here subtracted from the best- fitting model. The best- fitting model was the 

reduced Bayesian (RB) model with two hazard rates (2H) and sensitivity to the interaction between old object value and relative uncertainty (RU) in the 

choice function. Error bars represent standard error around ELPD estimates. (B) Participants (n = 254) were sensitive to the relative level of volatility in 

Figure 3 continued on next page
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to the low- volatility environment ( βOldValue : Env = 0.06, 95%CI =
[

0.02, 0.1
]

 ). This is consistent with 

the hypothesis that episodic value was relied on more when beliefs about incremental value were 

uncertain.

The analyses above focus on uncertainty present at the time of retrieving episodic value because 

this is what we hypothesized would drive competition in the reliance on either system at choice time. 

However, in principle, reward uncertainty at the time an object is first encountered might also affect its 

encoding, and hence its subsequent use in episodic choice when later retrieved (Rouhani et al., 2018). 

To address this possibility, we looked at the impact of RU resulting from the first time an old object’s 

value was revealed on whether that object was later retrieved for a decision. Using our EBCI, there was 

no relationship between the use of episodic memory on incongruent trial decisions and RU at encoding 

( βRU = 0.622, 95%CI =
[

−0.832, 2.044
]

 ; Figure 4—figure supplement 2A). Similarly, we also examined 

effects of trial- by- trial estimates of RU at encoding time in the combined choice model by adding 

another free parameter that captured change with RU at encoding time in the effect of episodic value 

on choice. This parameter was added alongside the effect of RU at retrieval time (from the previous anal-

ysis). There was no effect on choice in either sample (main:  βOldValue : RU = 0.028, 95%CI =
[

−0.011, 0.067
]

 ; 

replication:  βOldValue : RU = −0.003, 95%CI =
[

−0.046, 0.037
]

  ; Figure 4—figure supplement 2B) and the 

each environment as measured by the hazard rate. Group- level parameters are superimposed on individual subject parameters. Error bars represent 

95% posterior intervals. The true hazard rate for each environment is shown on the interior of the plot. (C) RU peaks on the trial following a reversal and 

is greater in the high- compared to the low- volatility environment. Lines represent group means, and bands represent 95% confidence intervals.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Recreation of Figure 3 in the main text using the replication dataset.

Figure 3 continued

Figure 4. Evaluating effects of sensitivity to uncertainty on episodic choices. (A) Participants’ (n = 254) degree of episodic- based choice increased with 

greater relative uncertainty (RU) as predicted by the combined choice model. Points are group means, and error bars are 95% confidence intervals. (B) 

Estimates from the combined choice model. Participants were biased to choose previously seen objects regardless of their value and were additionally 

sensitive to their value. As hypothesized, this sensitivity was increased when RU was higher, as well as in the high- compared to the low- volatility 

environment. There was no bias to choose one deck color over the other, and participants were highly sensitive to estimated deck value. Group- level 

parameters are superimposed as bars on individual subject parameters represented as points. Error bars represent 95% posterior intervals around 

group- level parameters. Estimates are shown in standard units.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Recreation of Figure 4 in the main text using the replication dataset.

Figure supplement 2. Results of relative uncertainty (RU) at encoding time on episodic- based choice in the main (A–C) and replication (D–F) sample.
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inclusion of this parameter did not provide a better fit to subjects’ choices than the combined choice 

model with only increased sensitivity due to RU at retrieval time (Figure 4—figure supplement 2C).

Episodic and incremental value sensitivity predicts subsequent memory 
performance
Having determined that decisions depended on episodic memory more when uncertainty about 

incremental value was higher, we next sought evidence for similar effects on the quality of episodic 

memory. Episodic memory is, of course, imperfect, and value estimates derived from episodic memory 

are therefore also uncertain. More uncertain episodic memory should then be disfavored while the 

influence of incremental value on choice is promoted instead. Although in this study we did not exper-

imentally manipulate the strength of episodic memory, as our volatility manipulation was designed 

to affect the uncertainty of incremental estimates, we did measure memory strength in a subsequent 

memory test. Thus, we predicted that participants who base fewer decisions on object value and more 

decisions on deck value should have poorer subsequent memory for objects from the deck learning 

and card memory task.

We first assessed subsequent memory performance. Participants’ recognition memory was well 

above chance ( β0 = 1.887, 95%CI =
[

1.782, 1.989
]

 ), indicating a general ability to discriminate objects 

seen in the main task from those that were new. Recall for the value of previously seen objects was also 

well predicted by their true value ( βTrueValue = 0.174, 95%CI =
[

0.160, 0.188
]

 ), providing further support 

that episodic memory was used to encode object value. To underscore this point, we sorted subse-

quent memory trials according to whether an object was seen on an episodic- or incremental- based 

choice, as estimated according to our EBCI, during the deck learning and card memory task. Not only 

were objects from episodic- based choices better remembered than those from incremental- based 

choices ( βEBCI = 0.192, 95%CI =
[

0.072, 0.322
]

 ; Figure 5A), but value recall was also improved for these 

objects ( βEBCI : TrueValue = 0.047, 95%CI =
[

0.030, 0.065
]

 ; Figure 5B).

We next leveraged the finer- grained estimates of sensitivity to episodic value from the learning 

model to ask whether, across participants, individuals who were estimated to deploy episodic value 

more during the deck learning and card memory task also performed better on the subsequent memory 

test. In line with the idea that episodic memory quality also impacts the relationship between incre-

mental learning and episodic memory, participants with better subsequent recognition memory were 

more sensitive to episodic value ( βEpSensitivity = 0.373, 95%CI =
[

0.273, 0.478
]

 ; Figure 5C), and these same 

participants were less sensitive to incremental value ( βIncSensitivity = −0.276, 95%CI =
[

−0.383, − 0.17
]

 ; 

Figure 5D). This result provides further evidence for a tradeoff between episodic memory and incre-

mental learning. It also provides preliminary support for a broader version of our hypothesis, which is 

that uncertainty about value provided by either memory system arbitrates the balance between them.

Lastly, the subsequent memory task also provided us with the opportunity to replicate other studies 

that have found that prediction error and its related quantities enhance episodic memory across a 

variety of tasks and paradigms (Rouhani et al., 2018; Rouhani and Niv, 2021; Antony et al., 2021; 

Ben- Yakov et  al., 2022). We predicted that participants should have better subsequent memory 

for objects encoded under conditions of greater uncertainty. While not our primary focus, we found 

support for this prediction across both samples (see Appendix 2, Figure 5—figure supplement 2).

Replication of the main results in a separate sample
We repeated the tasks described above in an independent online sample of healthy young adults (n 

= 223) to test the replicability and robustness of our findings. We replicated all effects of environment 

and RU on episodic- based choice and subsequent memory (see Appendix 1 and figure supplements 

for details).

Discussion
Research on learning and value- based decision- making has focused on how the brain summarizes 

experiences by error- driven incremental learning rules that, in effect, maintain the running average 

of many experiences. While recent work has demonstrated that episodic memory also contributes to 

value- based decisions (Bakkour et al., 2019; Plonsky et al., 2015; Mason et al., 2020; Bornstein 

et al., 2017; Collins and Frank, 2012; Bornstein and Norman, 2017; Duncan et al., 2019; Duncan 
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Figure 5. Relationship between choice type and subsequent memory. (A) Objects originally seen during episodic- based choices were better 

remembered than objects seen during incremental- based choices. Average hit rates for individual subjects (n = 254) are shown as points, bars represent 

the group- level average, and lines represent 95% confidence intervals. (B) The value of objects originally seen during episodic- based choices was better 

recalled than objects seen during incremental- based choices. Points represent average value memory for each possible object value, and error bars 

represent 95% confidence intervals. Lines are linear fits, and bands are 95% confidence intervals. (C) Participants with greater sensitivity to episodic 

value as measured by random effects in the combined choice model tended to better remember objects seen originally in the card learning and deck 

memory task. (D) Participants with greater sensitivity to incremental value tended to have worse memory for objects from the card learning and deck 

memory task. Points represent individual participants, lines are linear fits, and bands are 95% confidence intervals.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure 5 continued on next page
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and Shohamy, 2016; Lee et al., 2015; Wimmer and Büchel, 2020), many open questions remain 

about the circumstances under which episodic memory is used. We used a task that directly contrasts 

episodic and incremental influences on decisions and found that participants traded these influences 

off rationally, relying more on episodic information when incremental summaries were less reliable, 

that is, more uncertain and based on fewer experiences. We also found evidence for a complementary 

modulation of this episodic- incremental balance by episodic memory quality, suggesting that more 

uncertain episodic- derived estimates may reduce reliance on episodic value. Together, these results 

indicate that reward uncertainty modulates the use of episodic memory in decisions, suggesting that 

the brain optimizes the balance between different forms of learning according to volatility in the 

environment.

Our findings add empirical data to previous theoretical and computational work, which has 

suggested that decision- making can greatly benefit from episodic memory for individual estimates 

when available data are sparse. This most obviously arises early in learning a new task, but also in task 

transfer, high- dimensional or non- Markovian environments, and (as demonstrated in this work) during 

conditions of rapid change (Lengyel and Dayan, 2007; Blundell, 2016; Santoro et al., 2016). We 

investigate these theoretical predictions in the context of human decision- making, testing whether 

humans rely more heavily on episodic memory when incremental summaries comprising multiple 

experiences are relatively poor. We operationalize this tradeoff in terms of uncertainty, exemplifying 

a more general statistical scheme for arbitrating between different decision systems by treating them 

as estimators of action value.

There is precedent for this type of uncertainty- based arbitration in the brain, with the most well- 

known being the tradeoff between model- free learning and model- based learning (Daw et al., 2005; 

Keramati et al., 2011). Control over decision- making by model- free and model- based systems has 

been found to shift in accordance with the accuracy of their respective predictions (Lee et al., 2014), 

and humans adjust their reliance on either system in response to external conditions that provide 

a relative advantage to one over the other (Simon and Daw, 2011; Kool et al., 2016; Otto et al., 

2013). Tracking uncertainty provides useful information about when inaccuracy is expected and helps 

to maximize utility by deploying whichever system is best at a given time. Our results add to these 

findings and expand their principles to include episodic memory in this tradeoff. This may be espe-

cially important given that human memory is resource limited and prone to distortion (Schacter et al., 

2011) and forgetting (Ebbinghaus, 2013). Notably, in our task, an observer equipped with perfect 

episodic memory would always benefit from using it to make decisions. Yet, as our findings show, 

participants vary in their episodic memory abilities, and this memory capacity is related to the extent 

to which episodic memory is used to guide decisions.

One intriguing possibility is that there is more than just an analogy between the incremental- 

episodic balance studied here and previous work on model- free versus model- based competition. 

Incremental error- driven learning coincides closely with model- free learning in other settings (Schultz 

et al., 1997; Daw et al., 2005) and, although it has been proposed that episodic control constitutes 

a ‘third way’ (Lengyel and Dayan, 2007), it is possible that behavioral signatures of model- based 

learning might instead arise from episodic control via covert retrieval of individual episodes (Gershman 

and Daw, 2017; Hassabis and Maguire, 2009; Schacter et al., 2012; Vikbladh et al., 2017), which 

contain much of the same information as a cognitive map or world model. While this study assesses 

single- event episodic retrieval more overtly, an open question for future work is whether the extent 

to which these same processes, and ultimately the same episodic- incremental tradeoff, might also 

explain model- based choice as it has been operationalized in other decision tasks. A related line of 

work has emphasized a similar role for working memory in maintaining representations of individual 

trials for choice (Collins and Frank, 2012; Yoo and Collins, 2022; Collins, 2018; Collins and Frank, 

2018). Given the capacity constraints of working memory, we think it unlikely that working memory 

can account for the effects shown here, which involve memory for dozens of trial- unique stimuli main-

tained over tens of trials.

Figure supplement 1. Recreation of Figure 5 in the main text using the replication dataset.

Figure supplement 2. Effects of relative uncertainty (RU), changepoint probability (CPP), and absolute prediction error (APE) at encoding time on 

subsequent recognition and value memory in both the main and replication samples.

Figure 5 continued
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Our findings also help clarify the impacts of uncertainty, novelty, and prediction error on episodic 

memory. Recent studies found that new episodes are more likely to be encoded under novel circum-

stances while prior experiences are more likely to be retrieved when conditions are familiar (Duncan 

et al., 2019; Duncan and Shohamy, 2016; Duncan et al., 2012; Hasselmo, 2006). Shifts between 

these states of memory are thought to be modulated by one’s focus on internal or external sources of 

information (Decker and Duncan, 2020; Tarder- Stoll et al., 2020) and signaled by prediction errors 

based in episodic memory (Bein et al., 2020; Chen et al., 2015; Sinclair and Barense, 2018; Greve 

et  al., 2017). Relatedly, unsigned prediction errors, which are a marker of surprise, improve later 

episodic memory (Rouhani et al., 2018; Rouhani and Niv, 2021; Antony et al., 2021; Ben- Yakov 

et al., 2022). Findings have even suggested that states of familiarity and novelty can bias decisions 

toward the use of single past experiences or not (Duncan et al., 2019; Duncan and Shohamy, 2016).

One alternative hypothesis that emerges from this work is that change- induced uncertainty and 

novelty could exert similar effects on memory, such that novelty signaled by expectancy violations 

increases encoding in a protracted manner that dwindles as uncertainty is resolved, or the state of 

the environment becomes familiar. Our results provide mixed support for this interpretation. While 

subsequent memory was improved by the presence of uncertainty at encoding, as would be predicted 

by this work, there was little effect of uncertainty at encoding time on the extent to which decisions 

were guided by individual memories. It, therefore, seems likely that uncertainty and novelty operate 

in concert but exert different effects over decision- making, an interpretation supported by recent 

evidence (Xu et al., 2021).

This work raises further questions about the neurobiological basis of memory- based decisions 

and the role of neuromodulation in signaling uncertainty and aiding memory. In particular, studies 

have revealed unique functions for norepinephrine (NE) and acetylcholine (ACh) on uncertainty and 

learning. These findings suggest that volatility, as defined here, is likely to impact the noradrenergic 

modulatory system, which has been found to signal unexpected changes throughout learning (Nassar 

et al., 2012; Yu and Dayan, 2005; Yu and Dayan, 2002; Zhao et al., 2019). Noradrenergic termi-

nals densely innervate the hippocampus (Schroeter et al., 2000), and a role for NE in both explicit 

memory formation (Grella et  al., 2019) and retrieval (Murchison et  al., 2004) has been posited. 

Future studies involving a direct investigation of NE or an indirect investigation using pupillometry 

(Nassar et al., 2012) may help to isolate its contributions to the interaction between incremental 

learning and episodic memory in decision- making. ACh is also important for learning and memory 

as memory formation is facilitated by ACh in the hippocampus, which may contribute to its role in 

separating and storing new experiences (Hasselmo, 2006; Decker and Duncan, 2020). In addition to 

this role, ACh is heavily involved in incremental learning and has been widely implicated in signaling 

expected uncertainty (Yu and Dayan, 2002; Bland and Schaefer, 2012). ACh may therefore play an 

important part in managing the tradeoff between incremental learning and episodic memory.

Indeed, while in this work we investigated the impact of uncertainty on learning using a well- 

established manipulation of environmental volatility, in general (and even in this task) uncertainty 

also arises from many other parameters of the environment, such as stochasticity (trial- wise outcome 

variance) (Piray and Daw, 2021). It remains to be seen whether similar results would be observed 

using other types of manipulations targeting uncertainty. In our task, the outcome variance was held 

constant, making it difficult to isolate the effects of stochasticity on participants’ subjective experience 

of uncertainty. The decision to focus on volatility was based on a rich prior literature demonstrating 

that volatility manipulations are a reliable means to modulate uncertainty in incremental learning 

(Behrens et al., 2007; Mathys et al., 2011; O’Reilly, 2013; Nassar et al., 2012; Nassar et al., 2010; 

Browning et al., 2015; Piray and Daw, 2020). Nonetheless, altering outcome variance to capture 

effects of stochasticity on episodic memory remains a critical avenue for further study. Still other 

attributes of the learning environment, like valence, have been shown to impact both uncertainty 

estimation (Aylward et al., 2019; Pulcu and Browning, 2019) and subsequent memory (Rosenbaum 

et al., 2022; Kensinger, 2004). It remains an open question how the valence of outcomes may impact 

the effects we observed here.

Further, another interpretation of this work is that, rather than capturing a tradeoff between 

multiple memory systems, our task could possibly be accomplished by a single system learning about, 

and dynamically weighting, independent features. Specifically, here we operationalized incremental 

learning as learning about a feature shared across multiple events (deck color) and episodic memory 
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as learning about a trial- unique feature (an object that could be repeated once). Shifting attention 

between these independent features whenever one is less reliable could then yield similar behavior 

to arbitrating between incremental learning and episodic memory as we have posited here. While a 

scheme like this is possible, much prior work (Duncan et al., 2019; Lee et al., 2015; Poldrack et al., 

2001; Packard and McGaugh, 1996; McDonald and White, 1994; Wimmer et al., 2014) indicates 

that multiple memory systems (differentiated by numerous other behavioral and neural signatures) 

are involved in the types of repeated vs. one- shot learning measured here. Further, our subsequent 

memory findings that individual objects and their associated value were better remembered from 

putatively episodic choices lend further support to the idea that episodic memory is used throughout 

the task. Nevertheless, more work is needed to distinguish between these alternatives and verify the 

connection between our task and other signatures of incremental vs. episodic memory.

For example, while in this study we disadvantaged incremental learning relative to episodic 

memory, similar predictions about their balance could be made by instead preferentially manipu-

lating episodic memory, for example, through effects such as interference or recency and primacy. 

Another direction would be to look to the computational literature for additional task circumstances 

in which there are theoretical benefits to deploying episodic memory, and where incremental learning 

is generally ill suited, such as in environments that are high dimensional or require planning far into 

the future (Gershman and Daw, 2017). In principle, the brain can use episodic memory to precisely 

target individual past experiences in these situations depending on the relevance of their features to 

decisions in the present. Recent advances in computational neuroscience have, for example, demon-

strated that artificial agents endowed with episodic memory are able to exploit its rich representation 

of past experience to make faster, more effective decisions (Lengyel and Dayan, 2007; Blundell, 

2016; Santoro et al., 2016). While here we provided episodic memory as an alternative source of 

value to be used in the presence of uncertainty about incremental estimates, future studies making 

use of paradigms tailored more directly toward episodic memory’s assets will help to further elucidate 

how and when the human brain recruits episodic memory for decisions.

Finally, it is worth noting that many individuals, in both the main and replication samples, failed to 

meet our baseline performance criterion of altering the incremental learning rate between the low- 

and high- volatility environments (see ‘Materials and methods’). It is unclear whether this insensitivity 

to volatility was due to the limitations of online data collection, such as inattentiveness, or whether it 

is a more general feature of human behavior. While the low- volatility environment used here had half 

as many reversals as the high- volatility environment, it was still much more volatile than some environ-

ments used previously to study the effects of volatility on incremental learning (e.g., in entirely stable 

environments; Behrens et al., 2007). Thus, the relatively subtle difference between environments may 

also have contributed to some participants’ volatility insensitivity.

In conclusion, we have demonstrated that uncertainty induced by volatile environments impacts 

whether incremental learning or episodic memory is recruited for decisions. Greater uncertainty 

increased the likelihood that single experiences were retrieved for decision- making. This effect 

suggests that episodic memory aids decision- making when simpler sources of value are less accurate. 

By focusing on uncertainty, our results shed light on the exact circumstances under which episodic 

memory is used for decision- making.

Materials and methods
Experimental tasks
The primary experimental task used here builds upon a paradigm previously developed by our lab 

(Duncan et al., 2019) to successfully measure the relative contribution of incremental and episodic 

memory to decisions (Figure 1A). Participants were told that they would be playing a card game 

where their goal was to win as much money as possible. Each trial consisted of a choice between two 

decks of cards that differed based on their color (shown in Figure 1 as purple and orange). Partici-

pants had 2 s to decide between the decks and, upon making their choice, a green box was displayed 

around their choice until the full 2 s had passed. The outcome of each decision was then immediately 

displayed for 1 s. Following each decision, participants were shown a fixation cross during the inter-

trial interval period that varied in length (mean = 1.5 s, min = 1 s, max = 2 s). Decks were equally likely 
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to appear on either side of the screen (left or right) on each trial and screen side was not predictive 

of outcomes. Participants completed a total of 320 trials and were given a 30 s break every 80 trials.

Participants were made aware that there were two ways they could earn bonus money throughout 

the task, which allowed for the use of incremental and episodic memory, respectively. First, at any 

point in the experiment one of the two decks was ‘lucky,’ meaning that the expected value ( V  ) of one 

deck color was higher than the other ( Vlucky  = 63¢,  Vunlucky  = 37¢). Outcomes ranged from $0 to $1 in 

increments of 20¢. Critically, the mapping from  V   to deck color underwent an unsignaled reversal peri-

odically throughout the experiment (Figure 1B), which incentivized participants to utilize each deck’s 

recent reward history in order to determine the identity of the currently lucky deck. Each participant 

completed the task over two environments (with 160 trials in each) that differed in their relative vola-

tility: a low- volatility environment with 8  V   reversals, occurring every 20 trials on average, and a high- 

volatility environment with 16  V   reversals, occurring every 10 trials on average. Reversal trials in each 

environment were determined by generating a list of bout lengths (high volatility: 16 bouts between 6 

trials minimum and 14 trials maximum; low volatility: 8 bouts between 15 trials minimum and 24 trials 

maximum) at the beginning of the task and then randomizing this list for each participant. Participants 

were told that they would be playing in two different casinos and that in one casino deck luckiness 

changed less frequently while in the other deck luckiness changed more frequently. Participants were 

also made aware of which casino they were currently in by a border on the screen, with a solid black 

line indicating the low- volatility casino and a dashed black line indicating the high- volatility casino. The 

order in which the environments were seen was counterbalanced across participants.

Second, in order to allow us to assess the use of episodic memory throughout the task, each card 

within a deck featured an image of a trial- unique object that could reappear once throughout the 

experiment after initially being chosen. Participants were told that if they encountered a card a second 

time it would be worth the same amount as when it was first chosen, regardless of whether its deck 

color was currently lucky or not. On a given trial  t , cards chosen once from trials  t − 9  through  t − 30  

had a 60% chance of reappearing following a sampling procedure designed to prevent each deck’s 

expected value from becoming skewed by choice, minimize the correlation between the expected 

value of previously seen cards and deck expected value, and ensure that choosing a previously 

selected card remained close to 50¢. Specifically, outcomes for each deck were drawn from a pseudo-

random list of deck values that was generated at the start of the task, sampled without replacement, 

and repopulated after each reversal. Previously seen cards were then sampled using the following 

procedure: (i) a list of objects from the past 9–30 trials equal to an outcome left in the current list of 

potential deck outcomes was generated; (ii) the list was narrowed down to objects whose value was 

incongruent with the current expected value of their associated deck if such objects were available; 

and (iii) if the average value of objects shown to a participant was greater than 50¢, the object with 

the lowest value was shown, otherwise an object was randomly sampled without replacement. This 

sampling procedure is identical to that used previously in Duncan et al., 2019.

Participants also completed a separate decision- making task prior to the combined deck learning 

and card memory task that was identical in design but lacked trial- unique objects on each card. This 

task, the deck learning task, was designed to isolate the sole contribution of incremental learning to 

decisions and to allow participants to gain prior experience with each environment’s volatility level. 

In this task, all participants first saw the low- volatility environment followed by the high- volatility envi-

ronment in order to emphasize the relative increase in the high- volatility environment. Participants 

completed the combined deck learning and card memory task immediately following completion of 

the deck learning task and were told that the likelihood of deck luckiness reversals in each environ-

ment would be identical for both the deck learning task and the deck learning and card memory task. 

Instructions were presented immediately prior to each task, and participants completed five practice 

trials and a comprehension quiz prior to starting each.

Following completion of the combined deck learning and card memory task, we tested partic-

ipants’ memory for the trial- unique objects. Participants completed 80 (up to) three- part memory 

trials. An object was first displayed on the screen, and participants were asked whether or not they 

had previously seen the object and were given five response options: Definitely New, Probably New, 

Don’t Know, Probably Old, and Definitely Old. If the participant indicated that they had not seen the 

object before or did not know, they moved on to the next trial. If, however, they indicated that they 

had seen the object before, they were then asked if they had chosen the object or not. Lastly, if they 
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responded that they had chosen the object, they were asked what the value of that object was (with 

options spanning each of the six possible object values between $0 and $1). Of the 80 trials, 48 were 

previously seen objects and 32 were new objects that had not been seen before. Of the 48 previously 

seen objects, half were sampled from each environment (24 each) and, of these, an equal number 

were taken from each possible object value (with 4 from each value in each environment). As with the 

decision- making tasks, participants were required to pass a comprehension quiz prior to starting the 

memory task.

All tasks were programmed using the jsPsych JavaScript library (de Leeuw, 2015) and hosted on a 

Google Cloud server running Apache and the Ubuntu operating system. Object images were selected 

from publicly available stimulus sets (Konkle and Oliva, 2012; Brady et al., 2008) for a total of 665 

unique objects that could appear in each run of the experiment.

Participants
A total of 418 participants between the ages of 18–35 were recruited for our main sample through 

Amazon Mechanical Turk using the Cloud Research Approved Participants feature (Litman et  al., 

2017). Recruitment was restricted to the United States, and $9 compensation was provided following 

completion of the 50 min experiment. Participants were also paid a bonus in proportion to their final 

combined earnings on both the training task and the combined deck learning and card memory task 

(total earnings/100). Before starting each task, all participants were required to score 100% on a quiz 

that tested their comprehension of the instructions and were made to repeat the instructions until 

this score was achieved. Informed consent was obtained with approval from the Columbia University 

Institutional Review Board.

From the initial pool, participants were excluded from analysis on the deck learning and card 

memory task if they (i) responded to fewer trials than the group average minus 1 standard deviation 

on the deck learning and card memory task, (ii) responded faster than the group average minus 1 

standard deviation on this task, or (iii) did not demonstrate faster learning in the high- compared to 

the low- volatility environment on the independent deck learning task. Our reasoning for this latter 

decision was that it is only possible to test for effects of volatility on episodic memory recruitment 

in participants who were sensitive to the difference in volatility between the environments, and it 

is well- established that a higher learning rate should be used in more volatile conditions (Behrens 

et al., 2007). Further, our independent assessment of deck learning was designed to avoid issues 

of selection bias in this procedure. We measured the effect of environment on learning by fitting a 

mixed- effects logistic regression model to predict if subjects chose the lucky deck up to five trials 

after a reversal event in the deck learning task. For each subject  s  and trial  t , this model predicts the 

probability that the lucky deck was chosen:
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where βs are fixed effects,  b  s are random effects,  TSinceRev  is the trial number coded as distance 

from a reversal event (1–5), and  Env  is the environment a choice was made in coded as –0.5 and 0.5 

for the low- and high- volatility environments, respectively. Participants with positive values of  b1  can 

be said to have chosen the lucky deck more quickly following a reversal in the high- compared to the 

low- volatility environment, and we included only these participants in the rest of our analyses. A total 

of 254 participants survived after applying these criteria, with 120 participants failing to respond to 

the volatility manipulation (criteria iii) and 44 participants responding to too few trials (criteria i) or too 

quickly (criteria ii).

Deck learning and card memory task behavioral analysis
For regression models described here as well as those in the following sections, fixed effects are 

reported in the text as the median of each parameter’s marginal posterior distribution alongside 95% 

credible intervals, which indicate where 95% of the posterior density falls. Parameter values outside 

of this range are unlikely given the model, data, and priors. Thus, if the range of likely values does not 

include zero, we conclude that a meaningful effect was observed.
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We first analyzed the extent to which previously seen (old) objects were used in the combined deck 

learning and card memory task by fitting the following mixed- effects regression model to predict 

whether an old object was chosen:
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where  OldVal  is the centered value (between –0.5 and 0.5) of an old object. We additionally 

controlled for the influence of deck value on this analysis by adding a regressor,  TrueDeckVal , which is 

the centered true average value of the deck on which each object was shown. Trials not featuring old 

objects were dropped from this analysis.

We then similarly assessed the extent to which participants engaged in incremental learning overall 

by looking at the impact of reversals on incremental accuracy directly. To do this, we grouped trials 

according to their distance from a reversal, up to four trials prior to ( t = −4: − 1 ), during ( t = 0 ), and 

after ( t = 1: 4 ) a reversal occurred. We then dummy coded them to measure their effects on incre-

mental accuracy separately. We also controlled for the influence of old object value in this analysis by 

including in this regression the coded value of a previously seen object (ranging from 0.5 if the value 

was $1 on the lucky deck or $0 on the lucky deck to –0.5 if the value was $0 on the lucky deck and $1 

on the unlucky deck), for a total of 18 estimated effects:
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To next focus on whether there was an effect of environment on the extent to which the value of old 

objects was used for decisions, we restricted all further analyses involving old objects to ‘incongruent’ 

trials, which were defined as trials on which either the old object was high valued (>50¢) and on the 

unlucky deck or low valued (<50¢) and on the lucky deck. To better capture participants’ beliefs, deck 

luckiness was determined by the best- fitting incremental learning model (see next section) rather than 

using the experimenter- controlled ground truth: whichever deck had the higher model- derived value 

estimate on a given trial was labeled the lucky deck. Our logic in using only incongruent trials was that 

choices that stray from choosing whichever deck is more valuable should reflect choices that were 

based on the episodic value for an object. Lastly, we defined our outcome measure of EBCI to equal 

1 on trials where the ‘correct’ episodic response was given (i.e., high- valued objects were chosen and 

low- valued object were avoided), and 0 on trials where the ‘correct’ incremental response was given 

(i.e., the opposite was true). A single mixed- effects logistic regression was then used to assess the 

possible effects of environment  Env  on EBCI:
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where  Env  was coded identically to the above analyses. We included a covariate  EnvNoise  in this anal-

ysis to account for the possibility that participants are likely to make noisier incremental value- based 

decisions in the high- volatility compared to the low- volatility environment, which may contribute to 

the effects of environment on EBCI. To calculate this index, we fit the following mixed- effects logistic 

regression model to capture an interaction effect of environment and RB model- estimated deck value 

(see ‘Deck learning computational models’ section below) on whether the orange deck was chosen:
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We fit this model only to trials without the presence of a previously seen object in order to achieve 

a measure of noise specific to incremental learning. Each participant’s random effect of the interac-

tion between deck value and environment,  b3  , was then used as the  EnvNoise  covariate in the logistic 

regression testing for an effect of environment on EBCI.

To assess the effect of episodic- based choices on reaction time (RT), we used the following mixed- 

effects linear regression model:
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RTt = β0 + b0,s
[

t
] + EBCIt

(

β1 + b1,s
[

t
]

)

+

Switcht
(

β2 + b2,s
[

t
]

)

+

ChosenValt
(

β3 + b3,s
[

t
]

)

+

RUt
(

β4 + b4,s
[

t
]

)

  

where  EBCI   was coded as –0.5 for incremental- based trials and 0.5 for episodic- based trials. We 

also included covariates to control for three other possible effects on RT. The first,  Switch , captured 

possible RT slowing due to exploratory decisions, which in the present task required participants to 

switch from choosing one deck to the other. This variable was coded as –0.5 if a stay occurred and 0.5 

if a switch occurred. The second,  ChosenVal , captured any effects due to the value of the option that 

may have guided choice, and was set to be the value of the previously seen object on episodic- based 

trials and the running average true value on incremental- based trials. Finally, the third,  RU  , captured 

effects due to possible slowing when choices occurred under conditions of greater uncertainty as 

estimated by the reduced Bayesian model (see below).

Deck learning computational models
We next assessed the performance of several computational learning models on our task in order 

to best capture incremental learning. A detailed description of each model can be found in the 

‘Supplementary methods.’ In brief, these included one model that performed ("Rescorla- Wagner style 

updating [Rescorla and Wagner, 1972]”) with both a single (RW1α) and a separate (RW2α) fixed 

learning rate for each environment, two reduced Bayesian (RB) models (Nassar et al., 2010) with both 

a single (RB1H) and a separate hazard rate for each environment (RB1H), a contextual inference model 

(CI), and a Rescorla–Wagner model that learned only a single- value estimate (RW1Q). Models were 

fit to the deck learning task (see ‘Posterior inference’ and Appendix 3) and used to generate subject- 

wise estimates of deck value, and where applicable, uncertainty in the combined deck learning and 

card memory task.

Combined choice models
After fitting the above models to the deck learning task, parameter estimates for each subject 

were then used to generate trial- by- trial time series for deck value and uncertainty (where appli-

cable) throughout performance on the combined deck learning and card memory task. Mixed- effects 

Bayesian logistic regressions for each deck learning model were then used to capture the effects of 

multiple memory- based sources of value on incongruent trial choices in this task. For each subject  s  

and trial  t , these models can be written as

 

p
(

ChooseOrange
)

= σ
(

β0 + b0,s
[

t
]+

DeckValt
(

β1 + b1,s
[

t
]

)

+

Oldt
(
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t
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)

+

OldValt
(

β3 + b3,s
[

t
]

)

+

OldValt × Envt
(

β4 + b4,s
[

t
]

))

  

where the intercept captures a bias toward choosing either of the decks regardless of outcome, 

 DeckVal  is the deck value estimated from each model, the effect of  Old  captures a bias toward choosing 

a previously seen card regardless of its value, and  OldVal  is the coded value of a previously seen object 

(ranging from 0.5 if the value was $1 on the orange deck or $0 on the purple deck to –0.5 if the value 

was $0 on the orange deck and $1 on the purple deck). To capture variations in sensitivity to old object 

value due to volatility (represented here by a categorical environment variable,  Env , coded as –0.5 for 

the low- and 0.5 for the high- volatility environment), we also included an interaction term between old 

object value and environment in each model. An additional seventh regression that also incorporated 

our hypothesized effect of increased sensitivity to old object value when uncertainty about deck value 

is higher was also fit. This regression was identical to the others but included an additional interaction 

effect of uncertainty and old object value: 
 
OldValt × Unct

(

β5 + b5,s
[

t
]

)

 
 and used the RB2H model’s 
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 DeckVal  estimate alongside its estimate of RU to estimate the effect of  OldVal × Unc . RU was chosen 

over CPP because it captures the reducible uncertainty about deck value, which is the quantity we 

were interested in for this study. Prior to fitting the model, all predictors were z scored in order to 

report effects in standard units.

Relative uncertainty analyses
We conducted several other analyses that tested effects on or of RU throughout the combined deck 

learning and card memory task. RU was mean- centered in each of these analyses. First, we assessed 

separately the effect of RU at retrieval time on EBCI using a mixed- effects logistic regression:

 
p
(

EBCI
)

= σ
(

β0 + b0,s
[

t
] + RUt

(

β1 + b1,s
[

t
]

)

+ RU2
t
(

β2 + b2,s
[

t
]

))

  

An additional binomial term was included in this model to allow for the possibility that the effect 

of RU is nonlinear, although this term was found to have no effect. The effect of RU at encoding time 

was assessed using an identical model but with RU at encoding included instead of RU at retrieval.

Next, to ensure that the RB model captured uncertainty related to changes in deck luckiness, we 

tested for an effect of environment on RU using a mixed- effects linear regression:

 
RUt = β0 + b0,s

[

t
] + Envt

(

β1 + b1,s
[

t
]

)

  

We then also looked at the impact of reversals on RU. To do this, we calculated the difference in 

RU on reversal trials and up to four trials following a reversal from the average RU on the four trials 

immediately preceding a reversal. Then, using a dummy coded approach similar to that used for the 

model testing effects of reversals on incremental accuracy, we fit the following mixed- effects linear 

regression with five effects:

 
RUDifferencet = T0 : 4

(

β1 : 5 + b1 : 5,s
[

t
]

)

  

We also assessed the effect of RU on reaction time using another mixed- effects linear regression:

 
RTt = β0 + b0,s

[

t
] + RUt

(

β1 + b1,s
[

t
]

)

  

Subsequent memory task behavioral analysis
Performance on the subsequent memory task was analyzed in several ways across recognition memory 

and value memory trials. We first assessed participants’ recognition memory accuracy in general by 

computing the signal detection metric d prime for each participant adjusted for extreme propor-

tions using a log- linear rule (Hautus, 1995). The relationship with d prime and sensitivity to both 

episodic value and incremental value was then determined using simple linear regressions of the form 

 dprimes = β0 + Sensitivitys
(

β1
)

 , where  Sensitivity  was either the random effect of episodic value from 

the combined choice model for each participant or the random effect of incremental value from the 

combined choice value for each participant. We additionally assessed the difference in recognition 

memory performance between environments by computing d prime for each environment separately, 

with the false alarm rate shared across environments and hit rate differing between environments, 

using the following mixed- effects linear regression:

 dprime = β0 + b0,s + Env
(

β1 + b1,s
)

  

We next determined the extent to which participants’ memory for previously seen objects was 

impacted by whether an object was seen initially on either an episodic- or incremental- based choice 

using the following mixed- effects logistic regression model:

 
p
(

Hitt
)

= σ
(

β0 + b0,s
[

t
] + EBCIt

(

β1 + b1,s
[

t
]

))

  

where  Hit  was 0 if an object was incorrectly labeled as new and 1 if it was accurately identified 

as old. The final recognition memory analysis we performed was focused on assessing the impact 

of variables (RU, changepoint probability [CPP], and the absolute value of prediction error [APE]) 
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extracted from the RB model at encoding time on future subsequent memory. Because these variables 

are, by definition, highly correlated with one another (see ‘Supplementary methods’), we fit separate 

simple mixed- effects logistic regression models predicting recognition memory from each variable 

separately and then compared the predictive performance of each model (see below) to determine 

which best accounted for subsequent memory performance. The models additionally controlled for 

potential recognition memory enhancements due to the absolute magnitude of an object’s true value 

by including this quantity as a covariate in each of these models.

In addition to the analyses of recognition memory, analogous effects were assessed for perfor-

mance on memory for value. General value memory accuracy and a potential effect of environment on 

remembered value were assessed using the following mixed- effect linear regression:

 

Valuet = β0 + b0,s
[

t
]+

TrueValt
(

β1 + b1,s
[

t
]

)

+

Envt
(

β2 + b2,s
[

t
]

)

+

Envt × TrueValt
(

β3 + b3,s
[

t
]

)

  

where  Value  is the remembered value of an object on each memory trial (between $0 and $1), and 

 TrueVal  is an object’s true value. We next assessed whether value memory was similarly impacted by 

whether an object was seen initially on either ran episodic- or incremental- based choice using a similar 

model for objects from incongruent trials only with  EBCI   as a predictor rather than  Env . Lastly, as with 

the recognition memory analyses, we determined the extent to which trial- wise variables from the RB 

model (RU, CPP, and APE) at encoding impacted subsequent value memory by using each of these 

as a predictor instead in similar models and then comparing the predictive performance of each in an 

identical manner to the recognition memory models.

Posterior inference and model comparison
Parameters for all incremental learning models were estimated using hierarchical Bayesian inference 

such that group- level priors were used to regularize subject- level estimates. This approach to fitting 

reinforcement learning models improves parameter identifiability and predictive accuracy (van Geen 

and Gerraty, 2021). The joint posterior was approximated using No- U- Turn Sampling (Hoffman 

and Gelman, 2011) as implemented in Stan (Team SD, 2020). Four chains with 2000 samples (1000 

discarded as burn- in) were run for a total of 4000 posterior samples per model. Chain convergence 

was determined by ensuring that the Gelman–Rubin statistic  R  was close to 1. A full description of 

the parameterization and choice of priors for each model can be found in Appendix 3. All regression 

models were fit using No- U- Turn Sampling in Stan with the same number of chains and samples. 

Default weakly informative priors implemented in the rstanarm package (Rstanarm, 2022) were used 

for each regression model. Model fit for the combined choice models and the models measuring 

trial- wise effects of encoding on subsequent memory was assessed by separating each dataset into 

20- folds and performing a cross- validation procedure by leaving out N/20 subjects per fold, where N 

is the number of subjects in each sample. The expected log pointwise predictive density (ELPD) was 

then computed and used as a measure of out- of- sample predictive fit for each model.

Replication
We identically repeated all procedures and analyses applied to the main sample on an independently 

collected replication sample. A total of 401 participants were again recruited through Amazon 

Mechanical Turk, and 223 survived exclusion procedures carried out identically to those used for the 

main sample, with 124 participants failing to respond to the volatility manipulation (criteria iii) and 54 

participants responding to too few trials (criteria i) or too quickly (criteria ii).

Citation race and gender diversity statement
The gender balance of papers cited within this work was quantified using databases that store the 

probability of a first name being carried by a woman. Excluding self- citations to the first and last 

authors of this article, the gender breakdown of our references is 12.16% woman (first)/woman (last), 

6.76% man/woman, 23.44% woman/man, and 57.64% man/man. This method is limited in that (i) 

names, pronouns, and social media profiles used to construct the databases may not, in every case, be 
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indicative of gender identity and (b) it cannot account for intersex, nonbinary, or transgender people. 

Second, we obtained predicted racial/ethnic category of the first and last authors of each reference 

using databases that store the probability of a first and last name being carried by an author of color. 

By this measure (and excluding self- citations), our references contain 9.55% author of color (first)/

author of color(last), 19.97% white author/author of color, 22.7% author of color/white author, and 

47.78% white author/white author. This method is limited in that (i) using names and Florida Voter 

Data to make the predictions may not be indicative of racial/ethnic identity, and (ii) it cannot account 

for indigenous and mixed- race authors, or those who may face differential biases due to the ambig-

uous racialization or ethnicization of their names.
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Appendix 1

Replication results
Here, we repeat and describe all analyses reported in the main text with replication sample. All 
results are reported in the same order as in the main text.

Episodic memory is used more under conditions of greater volatility
Participants in the replication sample were substantially more likely to choose high- valued old objects 
compared to low- valued old objects ( βOldValue = 0.723, 95%CI =

[

0.624, 0.827
]

 ; Figure  2—figure 
supplement 1A). Participants also altered their behavior in response to reversals in deck value. The 
higher- valued (lucky) deck was chosen more frequently on trials immediately preceding a reversal 

 
(

βt−4 = 0.095, 95%   CI = [0.016, 0.176] ;  βt−3 = 0.128, 95%   CI = [0.047, 0.213] ;  βt−2 = 0.168, 95%   CI = [0.085, 0.251] ; 
 βt−1 = 0.161, 95%CI = [0.075, 0.25] ; Figure 2—figure supplement 1B). This tendency was then disrupted 
by trails on which a reversal occurred ( βt=0 = −0.373, 95%CI =

[

−0.464,−0.286
]

 ), with performance 
quickly recovering as the newly lucky deck became chosen more frequently on the trials following 
a reversal ( βt+1 = −0.256, 95%CI =

[

−0.337, − 0.175
]

 ;  βt+2 = −0.144, 95%CI =
[

−0.22, − 0.064
]

 ;  t + 3 : 

 βt+3 = −0.024, 95%CI =
[

−0.102, 0.053
]

 ;  βt+4 = 0.113, 95%CI =
[

0.055, 0.174
]

 ). Thus, participants in the 
replication sample were also sensitive to reversals in deck value, thereby indicating that they 
engaged in incremental learning throughout the task.

Participants in the replication sample also based more decisions on episodic value in the high- 

volatility environment compared to the low- volatility environment ( βEnv = 0.146, 95%CI =
[

0.06, 0.228
]

 ; 

Figure 2—figure supplement 1C). Furthermore, decisions based on episodic value again took longer 

( βEBCI = 39.445, 95%CI =
[

29.660, 49.328
]

 ; Figure 2—figure supplement 1D).

Uncertainty increases sensitivity to episodic value
In the replication sample, the reduced Bayesian model with two hazard rates was again the best- fitting 
model (Figure 3—figure supplement 1A). Participants detected higher levels of volatility in the high- 
compared to the low- volatility environment, as indicated by the generally larger hazard rates recovered 
from the high- compared to the low- volatility environment ( βLow = 0.048, 95%CI =

[

0.038, 0.06
]

 ; 

 βHigh = 0.071, 95%CI =
[

0.058, 0.088
]

 ; Figure 3—figure supplement 1B). Compared to an average of 
the four trials prior to a reversal, RU also increased immediately following a reversal and stabilized 
over time ( βt=0 = 0.021, 95%   CI = [−0.014, 0.056] ;  βt+1 = −0.22, 95%   CI = [−0.253,−0.185] ;  βt+2 = −0.144, 95%  

 CI = [−0.178,−0.11] ;  βt+3 = −0.098, 95%   CI = [−0.129,−0.064] ;  βt+4 = −0.05, 95%   CI = [−0.083,−0.019] ; 
Figure 3—figure supplement 1C). RU was again also, on average, greater in the high- compared to 
the low- volatility environment ( βEnv = 0.01, 95%CI =

[

0.007, 0.013
]

 ) and related to reaction time such 
that choices made under more uncertain conditions took longer ( βRU = 1.364, 95%CI =

[

0.407, 2.338
]

 ).

Episodic memory was also used more on incongruent trial decisions made under conditions 

of high RU ( βRU = 2.718, 95%CI =
[

1.096, 4.436
]

 ; Figure 4—figure supplement 1A). We again fit 

the combined choice model to the replication sample and found the following. Participants 

again used both sources of value throughout the task: both deck value as estimated by 

the model ( βDeckValue = 0.431, 95%CI =
[

0.335, 0.516
]

 ; Figure  4—figure supplement 1B) 

and the episodic value from old objects ( βOldValue = 0.191, 95%CI =
[

0.137, 0.245
]

 ) strongly 

impacted choice. Lastly, episodic value again impacted choices more when RU was high 

( βOldValue : RU = 0.043, 95%CI =
[

0.00003, 0.088
]

 ) and in the high- compared to the low- volatility 

environment ( βOldValue : Env = 0.092, 95%CI =
[

0.047, 0.136
]

 ).

Finally, there was again no relationship between the use of episodic memory on incongruent trial 

decisions and RU at encoding ( βRU = 0.99, 95%CI =
[

−0.642, 2.576
]

 ; Figure 4—figure supplement 2). 

Including a sixth parameter to assess increased sensitivity to old object value due to RU at encoding time 

did not have an effect in the combined choice model ( βOldValue : RU = −0.003, 95%CI =
[

−0.046, 0.037
]

  

; Figure 4—figure supplement 2), which is also reported in the main text. As with the main sample, 

including this parameter did not provide a better fit to subjects’ choices than the combined choice 

model with only increased sensitivity due to RU at retrieval time.

Episodic and incremental value sensitivity predicts subsequent memory 
performance
Participants in the replication sample again performed well above chance on the test of recognition 
memory ( β0 = 1.874, 95%CI =

[

1.772, 1.977
]

 ), and objects from episodic choice trials were better 
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remembered than those from incremental choice trials ( βEBCI = 0.157, 95%CI =
[

0.033, 0.278
]

 ; 
Figure 5—figure supplement 1A). Recall for the value of previously seen objects was also well 
predicted by their true value ( βTrueValue = 0.181, 95%CI =

[

0.162, 0.120
]

 ) and value recall was improved 
for objects from episodic choice trials ( βEBCI : TrueValue = 0.049, 95%CI =

[

0.030, 0.067
]

 ; Figure  5—
figure supplement 1B). Participants with better subsequent recognition memory were again 
more sensitive to episodic value ( βEpSensitivity = 0.334, 95%CI =

[

0.229, 0.44
]

 ; Figure  5—figure 
supplement 1C), and these same participants were again less sensitive to incremental value 
( βIncSensitivity = −0.124, 95%CI =

[

−0.238, − 0.009
]

 ; Figure 5—figure supplement 1D).
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Appendix 2

Uncertainty during encoding improves subsequent memory in both 
samples
The subsequent memory task provided us with the opportunity to test whether participants have 
better subsequent memory for objects encoded under conditions of greater uncertainty. Supporting 
the notion that uncertainty improves subsequent memory, recognition memory for objects encoded 
in the high- volatility environment was better than for those encoded in the low- volatility environment 
(main:  βEnv = 0.053, 95%CI =

[

0.009, 0.098
]

 ; replication:  βEnv = 0.078, 95%CI =
[

0.031, 0.126
]

 ). This 
coarse effect was limited to recognition memory, however, as memory for object value was less 
impacted by the environment in which it was seen (main:  βEnv = −0.002, 95%CI =

[

−0.012, 0.009
]

 ; 
replication:  βEnv = 0.008, 95%CI =

[

−0.002, 0.019
]

 ).

We next examined the impact of RU at encoding on subsequent memory. Both recognition memory 

(main:  βRU = 0.129, 95%CI =
[

0.022, 0.241
]

 ; replication:  βRU = 0.179, 95%CI =
[

0.041, 0.329
]

 ) and value memory (main: 

 βTrueValue : RU = 0.012, 95%CI =
[

0.001, 0.023
]

  ; replication:  βTrueValue : RU = 0.012, 95%CI =
[

0.001, 0.023
]

  ; Figure 5—figure 

supplement 2) were associated with greater RU at encoding time. Lastly, we assessed how these 

effects of uncertainty at encoding compared to the effects of surprise, which is thought to also 

improve subsequent memory and is separately estimated by the RB model (see ‘Supplementary 

methods’). We found that surprise at encoding (quantified here as both the probability of a reversal 

in deck value and the absolute value of reward prediction error) led to modest improvement in 

subsequent memory, but these effects were less consistent across samples and types of memory 

(Figure 5—figure supplement 2). Models of subsequent memory performance featuring surprise 

were also outperformed by those that instead predicted memory from RU. Together, these results 

indicate that the presence of uncertainty at encoding improves subsequent memory.
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Appendix 3

Supplementary methods
Description of incremental learning models
Rescorla–Wagner (RW)
The first model we considered was a standard model- free reinforcement learner that assumes a 
stored value ( Q ) for each deck is updated over time.  Q  is then referenced on each decision in order 
to guide choices. After each outcome  ot  , the value for the orange deck  QO  is updated according to 
the following rule (Rescorla and Wagner, 1972) if the orange deck is chosen:

 QO,t+1 = QO,t + α

(

ot − QO,t
)

  

And is not updated if the purple deck is chosen:

 QO,t+1 = QO,t  

Likewise, the value for the purple deck  QB  is updated equivalently. Large differences between 

estimated value and outcomes therefore have a larger impact on updates, but the overall degree of 

updating is controlled by the learning rate,  α . Two versions of this model were fit, one with a single 

learning rate (RW1α), and one with two learning rates (RW2α),  αlow  or  αhigh  , depending on which 

environment the current trial was completed in. These parameters are constrained to lie between 

0 and 1. A separate learning rate was used for each environment in the (RW2α) version to capture 

the well- established idea that a higher learning rate should be used in more volatile conditions 

(Behrens et al., 2007). A third RW model (RW1Q), also with two learning rates, was additionally fit to 

better match the property of the reduced Bayesian model (described below) in which anticorrelation 

between each deck’s value is assumed due to learning only a single value. This was accomplished 

by forcing the model to learn only one  Q , where outcomes were coded in terms of the orange deck. 

For example, this means that an outcome worth $1 on the orange deck is treated the same as an 

outcome worth $0 on the purple deck by this model.

Reduced Bayesian (RB)
The second model we considered was the reduced Bayesian (RB) model developed by Nassar and 
colleagues (Nassar et al., 2010). This model tracks and updates its belief that the orange deck is 
lucky based on trial- wise outcomes,  ot  , using the following prediction error- based update:

 Bt+1 = Bt + αt
(

ot − Bt
)

  

This update is identical to that used in the RW model; however, the learning rate  αt  is itself 

updated following each outcome according to the following rule:

 αt = Ωt +
(

1 − Ωt
)

τt  

where  Ωt  is the probability that a change in deck luckiness has occurred on the most recent trial 

(the CPP) and  τt  is the imprecision in the model’s belief about deck value (the RU). The learning rate 

therefore increases whenever CPP or RU increases. CPP can be written as

 
Ωt =

U
(

ot|0, 1
)

H
U
(

ot|0, 1
)

H + N
(

ot|Bt,σ2) (1 − H
)

  

where  H   is the hazard rate or probability of a change in deck luckiness. Two versions of this 

model were fit, one with a single hazard rate (RB1H), and one with two hazard rates (RB2H),  Hlow  

and  Hhigh , depending on the environment the current trial was completed in. In this equation, the 

numerator represents the probability that an outcome was sampled from a new average deck value, 

whereas the denominator indicates the combined probability of a change and the probability that 

the outcome was generated by a Gaussian distribution centered around the most recent belief 

about deck luckiness and the variance of this distribution,  σ2 . Because CPP is a probability, it is 

constrained to lie between 0 and 1. In our implementation,  H   was a free parameter (see ‘Posterior 

inference’ section below) and  Ω1  was initialized to 1.
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RU, which is the uncertainty about deck value relative to the amount of noise in the environment, 

is quite similar to the Kalman gain used in Kalman filtering:

 kt = Ωtσ
2 +

(

1 − Ωt
)

τtσ
2 + Ωt

(

1 − Ωt
) ((

ot − Bt
) (

1 − τt
))2

  

 
τt+1 = kt

kt+σ2   

where  σ2  is the observation noise and was here fixed to the true observation noise (0.33).  kt  

consists of three terms: the first is the variance of the deck value distribution conditional on a change 

point, the second is the variance of the deck value distribution conditional on no change, and the 

third is the variance due to the difference in means between these two distributions. These terms 

are then used in the equation for  τt+1  to provide the uncertainty about whether an outcome was due 

to a change in deck value or the noise in observations that is expected when a change point has not 

occurred. Because this model does not follow the two- armed bandit assumption of our task (i.e., that 

outcomes come from two separate decks), all outcomes were coded in terms of the orange deck, 

as in the RW1Q model described above. While this description represents a brief overview of the 

critical equations of the reduced Bayesian model, a full explanation can be found in Nassar et al., 

2010.

Softmax choice
All incremental learning models were paired with a softmax choice function in order to predict 
participants’ decisions on each trial:

 
θt = 1

1+e−
(

β0+β1Vt
)

  

where  θt  is the probability that the orange deck was chosen on trial  t . This function also consists 

of two inverse temperature parameters:  β0  to model an intercept and  β1  to model the slope of 

the decision function related to deck value. The primary difference for each model was how  Vt  is 

computed: RW ( Vt = QO,t − QB,t ); RB ( Vt = Bt ); RW1Q ( Vt = Qt ). In each of these cases, a positive  Vt  

indicates evidence that the orange deck is more valuable while a negative  Vt  indicates evidence that 

the purple deck is more valuable.

Posterior inference
For all incremental learning models, the likelihood function can be written as

 cs,t ∼ Bernoulli
(

θs,t
)

  

where  cs,t  is 1 if subject  s  chose the orange deck on trial  t  and 0 if purple was chosen. Following 

the recommendations of Gelman and Hill, 2006 and van Geen and Gerraty, 2021,  βs  is drawn from 

a multivariate normal distribution with mean vector  µβ  and covariance matrix  Σβ  :

 βs ∼ MultivariateNormal
(

µβ ,Σβ

)

  

where  Σβ  is decomposed into a vector of coefficient scales  τβ  and a correlation matrix  Ωβ  via

 Σβ = diag
(

τβ

)

× Ωβ × diag
(

τβ

)

  

Weakly informative hyperpriors were then set on the hyperparameters  µβ ,Ωβ , and  τβ  :

 µβ ∼ N
(

0, 5
)

  

 τβ ∼ Cauchy+ (

0, 2.5
)

  

 Ωβ ∼ LKJCorr
(

2
)

  

These hyperpriors were chosen for their respective desirable properties: the half Cauchy is 

bounded at zero and has a relatively heavy tail that is useful for scale parameters, the LKJ prior 
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with shape = 2 concentrates some mass around the unit matrix, thereby favoring less correlation 

(Lewandowski et al., 2009), and the normal is a standard choice for regression coefficients.

Because sampling from heavy- tailed distributions like the Cauchy is difficult for Hamiltonian 

Monte Carlo (Team SD, 2020), a reparameterization of the Cauchy distribution was used here.  τβ  

was thereby defined as the transform of a uniformly distributed variable  τβ_u  using the Cauchy 

inverse cumulative distribution function such that

 
F−1

x
(

τβ_u
)

= τβ

(

π

(

τβ_u −

1
2

))

  

 τβ_u ∼ U
(

0, 1
)

  

In addition, a multivariate noncentered parameterization specifying the model in terms of the 

Cholesky factorized correlation matrix was used in order to shift the data’s correlation with the 

parameters to the hyperparameters, which increases the efficiency of sampling the parameters of 

hierarchical models (Team SD, 2020). The full correlation matrix  Ωβ  was replaced with a Cholesky 

factorized parameter  LΩβ  such that

 Ωβ = LΩβ
× LT

Ωβ  

 βs = µβ +
(

diag
(

τ
)

× LΩβ
× z

)T
  

 LΩβ
∼ LKJCholesky

(

2
)

  

 z ∼ N
(

0, 1
)

  

where multiplying the Cholesky factor of the correlation matrix by the standard normally 

distributed additional parameter  z  and adding the group mean  µβ  creates a  βs  vector distributed 

identically to the original model.

While the choice function is identical for each model, the parameters used in generating deck 

value differ for each. All were fit hierarchically and were modeled with the following priors and 

hyperpriors:

Rescorla–Wagner with a single learning rate (RW1α):

 

α ∼ β
(

a1, a2
)

a1 ∼ N
(

0, 5
)

a2 ∼ N
(

0, 5
)

  

Rescorla–Wagner with two learning rates (RW2α) and with one Q- value (RW1Q):

 

αlow ∼ β
(

a1low, a2low
)

αhigh ∼ β
(

a1high, a2high
)

a1low ∼ N
(

0, 5
)

a2low ∼ N
(

0, 5
)

a1high ∼ N
(

0, 5
)

a2high ∼ N
(

0, 5
)

  

Reduced Bayes with a single hazard rate (RB1H):

 

H ∼ β
(

h1, h2
)

h1 ∼ N
(

0, 5
)

h2 ∼ N
(

0, 5
)

  

Reduced Bayes with two hazard rates (RB2H):
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Hlow ∼ β
(

h1low, h2low
)

Hhigh ∼ β
(

h1high, h2high
)

h1low ∼ N
(

0, 5
)

h2low ∼ N
(

0, 5
)

h1high ∼ N
(

0, 5
)

h2high ∼ N
(

0, 5
)

  

Description of contextual inference model
Because of the structure of our task, one possibility is that participants did not engage in incremental 
learning, but instead inferred which one of two switching contexts they were in (either that the 
orange deck was lucky and the purple deck was unlucky or vice versa). To address this, we developed 
a contextual inference (CI) model based on a standard hidden Markov model (HMM) with two latent 
states. While HMMs are covered extensively elsewhere (Rabiner and Juang, 1986), we provide the 
following brief overview. The model assumes that each outcome,  ot  , was generated by a hidden 
state,  st  , which may take one of two values on each trial,  st ∈

[

1, 2
]

 . The goal of the model is then to 
infer which of the two states gave rise to each outcome on each trial using the following generative 
model:

 

ot ∼ N
(

µs, 1
)

st ∼ Categorical
(

θst−1

)

  

where  µ ∈

[

1, 2
]

 , and  θ  is a 2 × 2 transition matrix. Here, we assume that each outcome is normally 

distributed with a known scale parameter and unknown location parameters,  
(

µ1,µ2
)

 . The state 

variable follows a categorical distribution parameterized by  θ , which determines the likelihood that, 

on a given trial, each state will transition to either the other state or itself. Here,  θ  was modeled 

separately for each environment to mirror the difference in volatility between environments. μ and 

θ were then fit as free parameters for each participant using Hamiltonian Monte Carlo, following 

recommendations for fitting HMMs in Stan (Team SD, 2020). The following priors were used for 

each parameter:

 

θlow ∼ Dirichlet
(

1, 1
)

θhigh ∼ Dirichlet
(

1, 1
)

µ1 ∼ N
(

Vlucky,σ
)

µ2 ∼ N
(

Vunlucky,σ
)

  

where  σ  is the true standard deviation of outcomes, and  Vlucky  and  Vunlucky  are the true expected 

values of the lucky and unlucky decks, respectively.

We then calculated the likelihood of each participant’s sequence of outcomes using the forward 

algorithm to compute the following marginalization:

 
p
(

o|θ,µ
)

=
∑

s
p
(

o, s|θ,µ
)

  

Upon estimating the parameters, the most probable sequence of states to have generated the 

observed outcomes was computed using the Viterbi algorithm. Assigning a state to each timepoint 

allowed us to make use of the assigned state’s μ as the expected state value for the timepoint. This 

was then treated as the deck value for further analyses, as for the incremental learning models. 

Lastly, outcomes were coded similarly to the RB and RW1Q models.
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