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Droplet formation happens in finite time due to the surface tension force. The linear stability analysis is useful to

estimate droplet size but fails to approximate droplet shape. This is due to a highly non-linear flow description near the

point where the first pinch-off happens. A one-dimensional axisymmetric mathematical model was first developed by

Eggers and Dupont [J. Eggers and T. F. Dupont, Journal of Fluid Mechanics, 262, 205 (1994)] using asymptotic analysis.

This asymptotic approach to the Navier-Stokes equations leads to a universal scaling explaining the self-similar nature

of the solution. Numerical models for the one-dimensional model were developed using the finite difference [J. Eggers

and T. F. Dupont, Journal of Fluid Mechanics, 262, 205 (1994)] and finite element method [B. Ambravaneswaran, E.

D. Wilkes, and O. A. Basaran, 14, 2606 (2002)]. The focus of this study is to provide a robust computational model

for one-dimensional axisymmetric droplet formation using the Portable, Extensible Toolkit for Scientific Computation

(PETSc). The code is verified using the Method of Manufactured Solutions (MMS) and validated using previous

experimental studies done by Zhang and Basaran [X. Zhang and O. A. Basaran, Physics of Fluids, 7, 1184 (1995)]. The

present model is used for simulating pendant drops of water, glycerol and paraffin wax, with an aspiration of extending

the application to simulate more complex pinch-off phenomena.

I. INTRODUCTION

Singularity in free surface flows is a crucial problem for

time-accurate simulations. A mathematical treatment, built

on the self-similarity of the pinch-off region, has made

numerical simulations tractable. Our study is concerned with

the formation of pendant droplets. Rayleigh was the first

to demonstrate that droplet formation occurs in finite time

due to the force of surface tension acting against inertia1.

The pinch-off dynamics of a pendant drop has received

the most attention from both mathematicians and scientists.

Considering the pendant drop as a fluid column, the surface

tension force and the gravitational force are initially balanced.

The drop becomes heavier as more fluid is added from the top.

Eventually gravity extends the drop, increasing the surface

energy. In order to minimize this energy, the radius of the

fluid column shrinks, forming a neck region, what we see as

the action of surface tension. At some finite time, the radius

becomes zero at some location and the drop separates from

the fluid column. This location in the fluid column is called

the pinch-off point or singularity.

Fluid motion in the immediate vicinity of the singularity

is driven by very high velocity gradients generated by the

surface tension, inertial, and viscous forces. In fact, the

solution in this region is self-similar, meaning that it does

not depend on the initial or boundary conditions, but has

a universal character. After the first pinch-off, a long

neck recoils back with high velocity. This induces surface

perturbations in the column and can lead to further breakup

into smaller satellite droplets, a phenomenon also observed in

liquid bridges and decaying jets. A now-classic treatment of

the governing dynamics of singularities as well as analysis of

the self-similarity for these cases is given by Eggers2,3. Linear

stability analysis can accurately approximate droplet size, but

fails to approximate the shape of a droplet4. Moreover, even

the higher order analysis is not able to explain the shape of

the drop near singularity4,5. One-dimensional analysis has

proved useful for circular liquid jets6,7 and pendant drops8.

On the experimental side, studies have examined the pinch-

off dynamics of pendant drops9,10, as well as characterized

droplet dynamics in terms of non-dimensional parameters11.

A full one-dimensional mathematical model was

constructed by Eggers and Dupont12 using the asymptotic

expansion of the Navier-Stokes equations in cylindrical

coordinates. They used a finite difference scheme to

discretize the equations, and simulated both a pendant drop

and a decaying jet. They verified that one-dimensional

treatment can accurately simulate the pinch-off dynamics

for a fluid in a quiescent background. However, their

computational approach could only simulate up to the first

pinch-off. Other computational models using one and two-

dimensional analysis were explored by Ambravaneswaran

et al. using finite elements to discretize the problem13.

They investigated the effect of volume flow rate on droplet

and neck shape. Moreover, they were able to simulate

satellite drops. However, they were not able to validate the

satellite drop simulations, as they had the primary droplet.

Their two-dimensional simulations support the conclusion

that for axisymmetric droplet formation, one-dimensional

computational models are much faster and reliably accurate.

Ambravaneswaran et al. also propose a hybrid 1D-2D

computational model, and matching between 1D and 2D

domains is also explored14. Other numerical approaches like

the Volume-of-Fluid (VOF) method were tested, but either

failed to accurately capture features of the flow, such as

micro-threads, or were limited to only a certain range of fluid
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parameters, such as viscosity15,16. Additionally, the VOF

method requires at least a 2D domain, which increases the

computational cost.

Formation of droplets can be seen in many scientific

and industrial applications, a few examples being ink-jet

printing17, spray cooling18, and droplet entrainment in annular

flow19. Moreover, droplet formation has a pivotal role in

fuel entrainment and burning in hybrid rockets20, which is the

motivation to pursue this study. We present a computational

model that is both verified with MMS and validated with

previous experimental work. We extend the results with

paraffin wax simulations to build a base for the future work

on droplets in a shear force environment.

II. MATHEMATICAL AND COMPUTATIONAL MODEL

In this section, we consider the Navier-Stokes momentum

equation in cylindrical coordinates for an axisymmetric fluid

column, as treated by Eggers and Dupont12. The fluid

is considered incompressible with density ρ and kinematic

viscosity ν . Assuming no swirling motion, we consider the

flow only in radial and axial directions. A schematic of a

pendant drop in cylindrical coordinates is shown in Fig. 1.

The surface of the droplet, which is defined as variable h(z, t),
is moving with the velocity. Therefore, the model equation for

h is given by

∂h

∂ t
+uz

∂h

∂ z
= ur|r=h

Approaching the pinch-off point, the radial contraction is

much faster than the axial expansion. Therefore, considering

the radius r as an asymptotic parameter, the axial velocity

(uz) and pressure (p) are expanded asymptotically in even

order terms to satisfy symmetry. Then using the continuity

equation, the radial velocity is derived.

uz = u0 +u2r2 + . . . ,

ur =−
∂u0

∂ z

r

2
−

∂u2

∂ z

r3

4
− . . . ,

p = p0 + p2r2 + . . .

To introduce the surface tension force (γ) in the governing

equations, the following force balance is considered.

n̂σ n̂ =−γ (∇ · n̂)

n̂σ t̂ = 0

Here, σ is a stress tensor, n̂ is a unit outward normal, t̂ is

a unit tangent, and ∇ · n̂ is a mean curvature. The above

force balance explains that the normal stress is balanced by

the surface tension and the tangential stress is zero.

Using the force balance and the leading order terms in r

from the expansion, we simplify the momentum equation.

The advecting surface equation is already in leading order.

L(t)

h0
r

z

FIG. 1. Schematic of a pendant droplet.

Dropping the subscripts, the governing equations for one-

dimensional axisymmetric fluid column is given by

∂u

∂ t
+u

∂u

∂ z
+

γ

ρ

∂ (∇ · n̂)

∂ z
−

3ν

h2

∂

∂ z

(

h2 ∂u

∂ z

)

−g = 0 (1)

∂h

∂ t
+u

∂h

∂ z
+

h

2

∂u

∂ z
= 0 (2)

where, the mean curvature term ∇ · n̂ is given by

∇ · n̂ =







1

h
(

1+ ∂h
∂ z

2
)1/2

−

∂ 2h
∂ z2

(

1+ ∂h
∂ z

2
)3/2






(3)

Here, the curvature term is not approximated to the leading

order because it has been shown that using the full curvature

term better captures the singularities3.

Equations (1) and (2) govern a pendant drop under

gravitational forcing. These are solved for u and h using

a finite element discretization. However, the highest order

derivative is of third order, which is problematic for our C0

continuous element scheme. The approximation for this term

will be discontinuous across element interfaces. We could

handle this using a discontinuous Galerkin (DG) scheme, but

instead we choose a mixed-element formulation, inspired by

Ambravaneswaran et al.13, in which we explicitly discretize

the axial derivative of the radius h (or slope), s = ∂h/∂ z, so

that

∇ · n̂ =

[

1

h(1+ s2)1/2
−

∂ s
∂ z

(1+ s2)3/2

]

(4)
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The mixed finite element formulation is given by
∫

Ω
q

[

∂u

∂ t
+u

∂u

∂ z
+

γ

ρ

∂ (∇ · n̂)

∂ z

−
3ν
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∂
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(

h2 ∂u

∂ z

)

−g

]

dΩ = 0 (5)

∫

Ω
v

[
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∂ t
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1

2
h
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∫

Ω
w

[

s−
∂h

∂ z

]

dΩ = 0 (7)

Here, q, v, and w are test functions, and the mean curvature is

defined by Eq. (4). The third and fourth terms in Eq. (5) are

simplified by performing integration by parts, which makes

the weak form with the highest order derivative to first order.

The equations after integration by parts take the following

form.
∫

Ω
q

[

∂u

∂ t
+u

∂u

∂ z
−

6ν

h

∂h

∂ z

∂u

∂ z

+
γ

ρ

{

−
s ∂ s
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h(1+ s2)3/2
−

s
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}

−g

]

+
∫

Γ
∇q

[

3ν
∂u

∂ z
+

γ

ρ

∂ s
∂ z

(1+ s2)3/2

]

dΩ = 0 (5a)

∫

Ω
v

[

∂h

∂ t
+u

∂h

∂ z
+

1

2
h

∂u

∂ z

]

dΩ = 0 (6a)

∫

Ω
w

[

s−
∂h

∂ z

]

dΩ = 0 (7a)

Initially, the velocity is zero and the curvature profile is

a hemisphere as that minimizes surface energy. The inlet

radius h0 is fixed depending on the nozzle radius and the

inflow velocity u0 is constant. The radius at the tip of the

droplet, at length L(t), is zero. The set of Eq. (5)-(7) are then

solved using a continuous Galerkin formulation subject to the

following constraints.

Initial conditions:

h =
√

h2
0 − z2

s =−
z

√

h2
0 − z2

for (0 ≤ z < L0), s|L0
=−C

u = 0

where, C is a large negative number. In our implementation,

we use −10. However, the code was tested with larger values

and results were unchanged.

Boundary conditions:

z = 0 h = h0 u = u0

z = L(t) h = 0 u = dL
dt

The length of the drop L(t) can be calculated as a part of

the solution as explained by Ambravaneswaran et al.13 by

calculating volume of the drop, which can then be used to

calculate the velocity at the tip. However, this results in a

dense row in the Jacobian, so we instead produce L(t) by self-

consistent iteration.

Initially, we are given u(t) and h(t), including the velocity

at the end of the droplet. We use that velocity to predict L(t +
dt) that is L(t)+ utip ∗ dt, giving us our boundary condition,

and we extend our mesh to this length. We then solve

our existing system (Eq. (5)-(7)) for u(t + dt) and h(t + dt).
This allows us to calculate the droplet volume by integrating

h(t +dt) along the length. This must match the volume from

the last time-step augmented by the amount of liquid flowing,

which is 4πh2
0u0dt. The difference between the calculated

volume and the theoretical volume is used for self-consistency

in adjusting the length L(t +dt). We use bisection to arrive at

a consistent length L for this new time-step. This adaptation

loop is done when conservation of volume is satisfied to a

given tolerance (we use 0.1%).

The one-dimensional mesh, representing the domain 0 ≤
z ≤ L(t), moves as the length L(t) changes. We first update

the position of the last vertex, and then move the remaining

vertices to even out the cell lengths. The interpolation of

the discrete field representation between these two meshes

can be achieved using the Galerkin projection21. Galerkin

projection is optimal for the L2 norm, which measures energy.

Alternatively, we could replace this with a volume constraint

during interpolation. As shown in Fig. 2, the re-meshing is

done using the calculated L(t) between each time-step. The

Galerkin projection is then used to interpolate the solution to

the new mesh. For instance, if the solution on the old mesh

is uold and on the new mesh is unew, then the interpolation is

done as follows:

unew = ηnew
i

(

uold
)

unew = ηnew
i

(

∑
k

uold
k φ old

k

)

unew = ∑
k

uold
k ηnew

i

(

φ old
k

)

where,

ηnew
i φ old

k = ∑
q

wqφ old
k (xq)

Here, φ represents the basis, η represents the dual basis, xq are

the quadrature points and wq are the weights on the quadrature

points.

Calculating the length, scaling the mesh, projecting the

solution and the length adaptation (when volume lost is more

than a specified threshold) can be merged into a self-consistent

loop as shown in Algorithm 1. The neck requires sufficiently

refined mesh to capture the singularity. Hence, we start with

a coarse mesh and refine it as we approach the singularity.

The elements are labeled for refinement based on the radius

and velocity gradients. Before the next time step, the labeled

elements are then refined if necessary. This adaptive mesh
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Projection

FIG. 2. Scaling of the mesh according to L(t).

Algorithm 1: Self consistency using TSAdapt

• PreStep:

– Calculate Vt+1 =Vt +Vdt (V0 is known)

– Calculate lt+1 = lt +(utip ∗dt)

– Scale the mesh and Project the solution

– Label the cells to refine

• TSSolve: Solve the equations

• TSAdapt:

– Calculate Vnew

– If(Vnew =Vt+1) ⇒ Accept the solution

– Else

- Reject the solution

- Adapt the length using Vnew and Vt+1

- Scale the mesh and Project the solution

- GoTo: TSSolve

• PostStep: Refine the labeled cells

refinement is also included in the algorithm22,23. We use

the Portable, Extensible Toolkit for Scientific Computation

(PETSc)24,25 to setup and solve the system using time-stepper

(TS) object26. The self-consistent algorithm is setup using

TSAdapt functionality of TS. We use a direct solver using LU

factorization.

III. RESULTS AND DISCUSSION

In this section, we discuss the verification and validation of

the numerical model presented in the previous section. Then,

we explore the pinch-off dynamics in paraffin wax.

A. Verification and Validation

Before proceeding with the computational model, it is vital

to perform a verification test. Verification is a mathematical

exercise that can be used to examine the error evaluation
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FIG. 3. Discretization errors in velocity (u), radius (h) and slope (s)

for different mesh sizes using manufactured solution.

done by the implemented code. One elegant method for

code verification is the Method of Manufactured Solution

(MMS)27. This is a very straightforward method, where we

simply pick a non-trivial solution and add the source term

into the equation generated by applying the operator on the

solution. This way we know the exact solution of the modified

equation (original equation with the source term). Then the

error evaluation for this modified equation must be zero. The

computational model we use is verified using the MMS. The

MMS helps to eliminate coding errors and also useful to test

the discretization for problems with unknown exact solutions.

Figure 3 shows log-log plot of L2 norm of the error, ||u f e −
umms||L2

, where u f e is finite element solution and umms is the

manufactured solution. The velocity (u) and radius (h) are

discretized using third order polynomials, whereas slope (s) is

discretized using second order polynomial. The error reduces

by order four for u and h, and order three for s, verifying

the correct implementation of the numerical model. The error

evaluation is done on a moving mesh with the scaling factor

of 1.0001. The MMS solution is evaluated every time-step on

a scaled mesh and compared to the solution.

TABLE I. Physical properties of the materials used for the

simulations.

Material ρ (kg/m3) ν (m2/s) γ a (N/m)

Water 998 1.0×10−6 0.0728

85% Glycerol 1223 9.2×10−5 0.066

Paraffin wax b 760 4.2×10−6 0.028

a Surface tension value at liquid-air interface.
b Wax properties are at 100◦ C.
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For the validation of our computational model, we use

the experimental results by Zhang and Basaran11. One

crucial parameter to validate is the evolution of the droplet

length with time. Because the calculation of the length is

implicitly involved in the numerical model as explained in

Algorithm 1. Figure 4 illustrates the comparison of the

numerical simulation result with the experimental data. The

length (L) is non-dimensionalized by the inlet radius (h0).

The time axis shows the time-distance from the pinch-off.

The comparison presented is for water and (85%) glycerol

solution. The viscosity, density, and surface tension are given

in Table I. Initially, the droplet evolves slowly because the

surface tension force is stronger than the effect of gravity. As

we add more fluid, the drop becomes heavier and eventually

the gravitational force surpasses the surface tension. The

surface tension starts to decrease the radius from the middle

section, trying to minimize the surface energy. The length

evolves much faster after the necking begins, suggesting an

increase in the advection due to increasing velocity gradients.

The primary droplet is separated when the radius is zero. The

visualization of the droplet evolution after necking is also

shown for water and (85%) glycerol. Each droplet profile is

attached to the point in the plot that corresponds to the time

away from the pinch-off. The glycerol solution shows more

elongation approaching the pinch-off time, which explains the

effect of viscosity. The strong viscous effect allows glycerol

droplet to have a long neck. In case of the water droplet,

the surface tension force is much more dominant compared

to the viscous forces approaching the singularity, resulting

a shorter neck. Another important parameter for validation

is the evolution of a minimum radius in time away from

the pinch-off. Figure 5 illustrates numerical results for the

evolution of this parameter, compared with the experimental

profiles for water and (85%) glycerol solution. The profiles

for both water and glycerol show similar evolution until a

point where the dynamics starts to become self-similar. From

this point the glycerol profile shows the influence of high

viscosity by more elongation. The minimum radius decrease

slower, which is evident by the long tail at the end of the

FIG. 4. Evolution of non-dimensional length in time approaching

the pinch-off for (a) water and (b) 85% glycerol. The inlet radius

h0 = 0.0016 m and inflow rate = 1 mL/min.

FIG. 5. Evolution of non-dimensional radius of the narrowest

location in time approaching the pinch-off for (a) water and (b) 85%

glycerol. The inlet radius h0 = 0.0016 m and inflow rate = 1 mL/min.

profile. For the water droplet, the radial shrinkage is much

faster due to small viscosity compared to the glycerol solution.

The numerical profile for glycerol agrees with the experiments

very well. For the water, the profile shows a small amount of

delay between the numerical and experimental results. This is

due to initially added artificial viscosity to increase diffusive

behavior, which is inspired from the computational model by

Eggers and Dupont12. We increase the viscosity value initially

for the low viscosity materials, since their highly convective

nature introduces surface fluctuations. We reduce this added

diffusion to zero well before the necking begins. Hence, the

numerical profile for the water droplet starts to agree with

the experiments right where the necking begins. This added

diffusion shows no impact on the length evolution or the

pinch-off location at all.

B. Pinch-off dynamics of paraffin wax

Paraffin wax is explored as one of the potential candidate

fuels for hybrid propellant rockets28. In the combustion

chamber of a hybrid rocket, a solid paraffin wax form a

liquid layer on its burning surface. This liquid layer, under

a high shear forcing, shows hydrodynamic instabilities that

lead to the formation of droplets. These droplets are then

entrained in the flow. Here, we explore the pinch-off dynamics

of a pendant paraffin wax droplet using our computational

model. The curvature is a chief attribute in understanding the

pinch-off dynamics in droplet formation. Figure 6 shows a

paraffin wax droplet profile at pinch-off alongside a curvature

profile. Approaching the singularity, the curvature starts to

increase. But a finite time curvature blow up happens at the

pinch-off location, where the radius is zero. As explained in

the introduction section, the fluid in a close vicinity of this

singular point is driven by very high velocity gradients. The

motion is independent of the initial and boundary conditions.

This feature is mathematically described by a self-similar

solution. The velocity derivative profile on the right in Fig. 6

shows high gradients close to singularity. Moreover, the
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FIG. 6. The curvature profile and the velocity derivative profile when

the pinch-off happens. The inlet radius h0 = 0.0016 m and inflow rate

= 1 mL/min.

velocity gradients change signs at the singular point location.

This suggests that the fluid above and below the pinch-off

point moves in opposite direction very quickly. This recoil

provokes surface instabilities leading to the satellite drop

formation.

However, it is also evident that the fluid motion

approaching the pinch-off is highly convective in nature. The

finite element model can approximate the solution but when

the truncated terms are getting larger, the solution becomes

unstable. Hence, the numerical scheme is augmented with a

stabilization technique when the fluid viscosity is low. There

are many options to consider for stabilization29. We used

the Streamline Upwinding (SU) and Streamline Upwinding

Petrov Galerkin (SUPG) and found that this 1D problem can

become stable with just the SU method. The SUPG method

is better suited for problems with cross convection in 2D

or 3D. Also, the SUPG method regularizes the strong form

residual that contains second order derivatives, which can be

problematic for C0 continuous elements. However, the SU

scheme just adds an artificial diffusion into the system and

is over diffusive in nature30. Therefore, we also decrease

the artificial diffusivity as we refine the mesh adaptively to

avoid adding too much diffusion. This stabilization was only

enabled for low viscosity fluids, like paraffin wax, water, etc.

High viscosity fluids like glycerol can be handled without any

stabilization.

IV. CONCLUSION

A one-dimensional numerical model is reliable for

simulating droplet formation. The present model is validated

using experimental pendant drops of water and glycerol,

which were excellently matched with simulation results.

The SU stabilization method was implemented since the

low viscosity fluids, like water and paraffin wax are highly

convective. The velocity and curvature profile was shown

for paraffin wax at the pinch-off time. The velocity

was approaching infinity at the pinch-off location with the

opposite signs suggesting that the pinch-off is followed by the

recoil and then satellite drop formation.

The current computational model can be extended to

capture the motion after pinch-off and satellite drops as well.

Understanding the volume of satellite droplets is useful in

accurately predicting the regression rate of the fuel in hybrid

rockets. Also, the present model can be improved for droplet

formation in shear environment. The droplet formation

in a turbulent environment may not be axisymmetric since

the turbulence sets the initial droplet profile31. For non-

symmetric interfaces, where no swirling motion assumption

fails, two- or three-dimensional approaches are better, which

is also recommended by Ambraneswaran13. However, the

droplet shape may not be assumed to be axisymmetric, the

solution in singularity region is still self-similar and follows

the analogous dynamics.
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