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Droplet formation happens in finite time due to the surface tension force. The linear stability analysis is useful to
estimate droplet size but fails to approximate droplet shape. This is due to a highly non-linear flow description near the
point where the first pinch-off happens. A one-dimensional axisymmetric mathematical model was first developed by
Eggers and Dupont [J. Eggers and T. F. Dupont, Journal of Fluid Mechanics, 262, 205 (1994)] using asymptotic analysis.
This asymptotic approach to the Navier-Stokes equations leads to a universal scaling explaining the self-similar nature
of the solution. Numerical models for the one-dimensional model were developed using the finite difference [J. Eggers
and T. F. Dupont, Journal of Fluid Mechanics, 262, 205 (1994)] and finite element method [B. Ambravaneswaran, E.
D. Wilkes, and O. A. Basaran, 14, 2606 (2002)]. The focus of this study is to provide a robust computational model
for one-dimensional axisymmetric droplet formation using the Portable, Extensible Toolkit for Scientific Computation
(PETSc). The code is verified using the Method of Manufactured Solutions (MMS) and validated using previous
experimental studies done by Zhang and Basaran [X. Zhang and O. A. Basaran, Physics of Fluids, 7, 1184 (1995)]. The
present model is used for simulating pendant drops of water, glycerol and paraffin wax, with an aspiration of extending

the application to simulate more complex pinch-off phenomena.

I. INTRODUCTION

Singularity in free surface flows is a crucial problem for
time-accurate simulations. A mathematical treatment, built
on the self-similarity of the pinch-off region, has made
numerical simulations tractable. Our study is concerned with
the formation of pendant droplets. Rayleigh was the first
to demonstrate that droplet formation occurs in finite time
due to the force of surface tension acting against inertia'.
The pinch-off dynamics of a pendant drop has received
the most attention from both mathematicians and scientists.
Considering the pendant drop as a fluid column, the surface
tension force and the gravitational force are initially balanced.
The drop becomes heavier as more fluid is added from the top.
Eventually gravity extends the drop, increasing the surface
energy. In order to minimize this energy, the radius of the
fluid column shrinks, forming a neck region, what we see as
the action of surface tension. At some finite time, the radius
becomes zero at some location and the drop separates from
the fluid column. This location in the fluid column is called
the pinch-off point or singularity.

Fluid motion in the immediate vicinity of the singularity
is driven by very high velocity gradients generated by the
surface tension, inertial, and viscous forces. In fact, the
solution in this region is self-similar, meaning that it does
not depend on the initial or boundary conditions, but has
a universal character. After the first pinch-off, a long
neck recoils back with high velocity. This induces surface
perturbations in the column and can lead to further breakup
into smaller satellite droplets, a phenomenon also observed in
liquid bridges and decaying jets. A now-classic treatment of
the governing dynamics of singularities as well as analysis of
the self-similarity for these cases is given by Eggers>>. Linear

stability analysis can accurately approximate droplet size, but
fails to approximate the shape of a droplet*. Moreover, even
the higher order analysis is not able to explain the shape of
the drop near singularity*>. One-dimensional analysis has
proved useful for circular liquid jets®’ and pendant drops®.
On the experimental side, studies have examined the pinch-
off dynamics of pendant drops™!?, as well as characterized
droplet dynamics in terms of non-dimensional parameters'!.

A full one-dimensional mathematical model was
constructed by Eggers and Dupont!? using the asymptotic
expansion of the Navier-Stokes equations in cylindrical
coordinates.  They used a finite difference scheme to
discretize the equations, and simulated both a pendant drop
and a decaying jet. They verified that one-dimensional
treatment can accurately simulate the pinch-off dynamics
for a fluid in a quiescent background. —However, their
computational approach could only simulate up to the first
pinch-off. Other computational models using one and two-
dimensional analysis were explored by Ambravaneswaran
et al. using finite elements to discretize the problem'3.
They investigated the effect of volume flow rate on droplet
and neck shape. Moreover, they were able to simulate
satellite drops. However, they were not able to validate the
satellite drop simulations, as they had the primary droplet.
Their two-dimensional simulations support the conclusion
that for axisymmetric droplet formation, one-dimensional
computational models are much faster and reliably accurate.
Ambravaneswaran et al. also propose a hybrid 1D-2D
computational model, and matching between 1D and 2D
domains is also explored'*. Other numerical approaches like
the Volume-of-Fluid (VOF) method were tested, but either
failed to accurately capture features of the flow, such as
micro-threads, or were limited to only a certain range of fluid
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parameters, such as viscosity!>!%. Additionally, the VOF

method requires at least a 2D domain, which increases the
computational cost.

Formation of droplets can be seen in many scientific
and industrial applications, a few examples being ink-jet
printing!”, spray cooling'®, and droplet entrainment in annular
flow!®. Moreover, droplet formation has a pivotal role in
fuel entrainment and burning in hybrid rockets?®, which is the
motivation to pursue this study. We present a computational
model that is both verified with MMS and validated with
previous experimental work. We extend the results with
paraffin wax simulations to build a base for the future work
on droplets in a shear force environment.

II. MATHEMATICAL AND COMPUTATIONAL MODEL

In this section, we consider the Navier-Stokes momentum
equation in cylindrical coordinates for an axisymmetric fluid
column, as treated by Eggers and Dupont!?. The fluid
is considered incompressible with density p and kinematic
viscosity V. Assuming no swirling motion, we consider the
flow only in radial and axial directions. A schematic of a
pendant drop in cylindrical coordinates is shown in Fig. 1.
The surface of the droplet, which is defined as variable h(z,1),
is moving with the velocity. Therefore, the model equation for
h is given by

dh dh
5 uzaiz = ur'r:h

Approaching the pinch-off point, the radial contraction is
much faster than the axial expansion. Therefore, considering
the radius r as an asymptotic parameter, the axial velocity
(u;) and pressure (p) are expanded asymptotically in even
order terms to satisfy symmetry. Then using the continuity
equation, the radial velocity is derived.

uZ=u0+u2r2+...,
U= ——— = — —=——— — ...,
p:po+p2r2—|—...

To introduce the surface tension force (y) in the governing
equations, the following force balance is considered.

Here, o is a stress tensor, i is a unit outward normal, £ is
a unit tangent, and V - fi is a mean curvature. The above
force balance explains that the normal stress is balanced by
the surface tension and the tangential stress is zero.

Using the force balance and the leading order terms in r
from the expansion, we simplify the momentum equation.
The advecting surface equation is already in leading order.

FIG. 1. Schematic of a pendant droplet.

Dropping the subscripts, the governing equations for one-
dimensional axisymmetric fluid column is given by

du  du YW-ﬁ)_E‘Va(za“)_g:o (1)
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where, the mean curvature term V - i is given by
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Here, the curvature term is not approximated to the leading
order because it has been shown that using the full curvature
term better captures the singularities®.

Equations (1) and (2) govern a pendant drop under
gravitational forcing. These are solved for u and % using
a finite element discretization. However, the highest order
derivative is of third order, which is problematic for our C°
continuous element scheme. The approximation for this term
will be discontinuous across element interfaces. We could
handle this using a discontinuous Galerkin (DG) scheme, but
instead we choose a mixed-element formulation, inspired by
Ambravaneswaran et al.'?, in which we explicitly discretize
the axial derivative of the radius & (or slope), s = dh/dz, so
that

1 =2
V.ii= % 4)
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The mixed finite element formulation is given by

/ du_ ou yo(V-i)
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Here, ¢, v, and w are test functions, and the mean curvature is
defined by Eq. (4). The third and fourth terms in Eq. (5) are
simplified by performing integration by parts, which makes
the weak form with the highest order derivative to first order.
The equations after integration by parts take the following
form.

+/Vq l3v‘9“+y3Z Q=0  (5a)
JT
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Jo |
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Initially, the velocity is zero and the curvature profile is
a hemisphere as that minimizes surface energy. The inlet
radius hg is fixed depending on the nozzle radius and the
inflow velocity ug is constant. The radius at the tip of the
droplet, at length L(z), is zero. The set of Eq. (5)-(7) are then
solved using a continuous Galerkin formulation subject to the
following constraints.

Initial conditions:

h=\/h}—22

s=—————for (0<z<Lp), sltg=—C
V-2
u=0

where, C is a large negative number. In our implementation,
we use —10. However, the code was tested with larger values
and results were unchanged.

Boundary conditions:

z=0 h=hy

— __dL

u=ugn

z=L(r)

The length of the drop L(t) can be calculated as a part of
the solution as explained by Ambravaneswaran et al.'*> by
calculating volume of the drop, which can then be used to
calculate the velocity at the tip. However, this results in a
dense row in the Jacobian, so we instead produce L(¢) by self-
consistent iteration.

Initially, we are given u(¢) and h(t), including the velocity
at the end of the droplet. We use that velocity to predict L(z +
dt) that is L(r) 4 uyp * dt, giving us our boundary condition,
and we extend our mesh to this length. We then solve
our existing system (Eq. (5)-(7)) for u(¢t +dt) and h(r 4 dt).
This allows us to calculate the droplet volume by integrating
h(r +dt) along the length. This must match the volume from
the last time-step augmented by the amount of liquid flowing,
which is 4ﬂh%uodt. The difference between the calculated
volume and the theoretical volume is used for self-consistency
in adjusting the length L(z 4+ dr). We use bisection to arrive at
a consistent length L for this new time-step. This adaptation
loop is done when conservation of volume is satisfied to a
given tolerance (we use 0.1%).

The one-dimensional mesh, representing the domain 0 <
z < L(t), moves as the length L(r) changes. We first update
the position of the last vertex, and then move the remaining
vertices to even out the cell lengths. The interpolation of
the discrete field representation between these two meshes
can be achieved using the Galerkin projection?'. Galerkin
projection is optimal for the L, norm, which measures energy.
Alternatively, we could replace this with a volume constraint
during interpolation. As shown in Fig. 2, the re-meshing is
done using the calculated L(t) between each time-step. The
Galerkin projection is then used to interpolate the solution to
the new mesh. For instance, if the solution on the old mesh
is u°? and on the new mesh is u"®", then the interpolation is
done as follows:

W = nlpew (uold)

new __ . new old 4old
w=mn; (Z“k (U] )

k

new __ old ,,new old
u- = Z“k n; (¢k )
k
where,

n[new(b]gld — qu@?ld(xq)
q

Here, ¢ represents the basis, 1] represents the dual basis, x, are
the quadrature points and w,, are the weights on the quadrature
points.

Calculating the length, scaling the mesh, projecting the
solution and the length adaptation (when volume lost is more
than a specified threshold) can be merged into a self-consistent
loop as shown in Algorithm 1. The neck requires sufficiently
refined mesh to capture the singularity. Hence, we start with
a coarse mesh and refine it as we approach the singularity.
The elements are labeled for refinement based on the radius
and velocity gradients. Before the next time step, the labeled
elements are then refined if necessary. This adaptive mesh
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FIG. 2. Scaling of the mesh according to L(z).

Algorithm 1: Self consistency using TSAdapt

e PreStep:
— Calculate V;11 = V; +Vy (Vp is known)
— Calculate [, = l; + (uyp * dt)
— Scale the mesh and Project the solution
— Label the cells to refine

* TSSolve: Solve the equations
TSAdapt:

— Calculate V;ey
— If(Vyieno = V1) = Accept the solution
— Else
- Reject the solution
- Adapt the length using V,,,,, and V4|

- Scale the mesh and Project the solution
- GoTo: TSSolve

¢ PostStep: Refine the labeled cells

refinement is also included in the algorithm??>?3. We use

the Portable, Extensible Toolkit for Scientific Computation
(PETSc)**% to setup and solve the system using time-stepper
(TS) object®0. The self-consistent algorithm is setup using
TSAdapt functionality of TS. We use a direct solver using LU
factorization.

Ill. RESULTS AND DISCUSSION

In this section, we discuss the verification and validation of
the numerical model presented in the previous section. Then,
we explore the pinch-off dynamics in paraffin wax.

A. \Verification and Validation

Before proceeding with the computational model, it is vital
to perform a verification test. Verification is a mathematical
exercise that can be used to examine the error evaluation
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FIG. 3. Discretization errors in velocity («), radius (#) and slope (s)
for different mesh sizes using manufactured solution.

done by the implemented code. One elegant method for
code verification is the Method of Manufactured Solution
(MMS)?7. This is a very straightforward method, where we
simply pick a non-trivial solution and add the source term
into the equation generated by applying the operator on the
solution. This way we know the exact solution of the modified
equation (original equation with the source term). Then the
error evaluation for this modified equation must be zero. The
computational model we use is verified using the MMS. The
MMS helps to eliminate coding errors and also useful to test
the discretization for problems with unknown exact solutions.
Figure 3 shows log-log plot of L, norm of the error, ||uf. —
Umms||L,» Where uy, is finite element solution and u,y, is the
manufactured solution. The velocity (x) and radius (h) are
discretized using third order polynomials, whereas slope (s) is
discretized using second order polynomial. The error reduces
by order four for u# and h, and order three for s, verifying
the correct implementation of the numerical model. The error
evaluation is done on a moving mesh with the scaling factor
of 1.0001. The MMS solution is evaluated every time-step on
a scaled mesh and compared to the solution.

TABLE 1. Physical properties of the materials used for the
simulations.

Material p (kg/m3) v (m?/s) y? (N/m)
Water 998  1.0x107° 0.0728
85% Glycerol 1223 9.2x 1075  0.066
Paraffin wax® 760  42x107° 0.028

2 Surface tension value at liquid-air interface.
b Wax properties are at 100° C.
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For the validation of our computational model, we use
the experimental results by Zhang and Basaran'!. One
crucial parameter to validate is the evolution of the droplet
length with time. Because the calculation of the length is
implicitly involved in the numerical model as explained in
Algorithm 1. Figure 4 illustrates the comparison of the
numerical simulation result with the experimental data. The
length (L) is non-dimensionalized by the inlet radius (h).
The time axis shows the time-distance from the pinch-off.
The comparison presented is for water and (85%) glycerol
solution. The viscosity, density, and surface tension are given
in Table I. Initially, the droplet evolves slowly because the
surface tension force is stronger than the effect of gravity. As
we add more fluid, the drop becomes heavier and eventually
the gravitational force surpasses the surface tension. The
surface tension starts to decrease the radius from the middle
section, trying to minimize the surface energy. The length
evolves much faster after the necking begins, suggesting an
increase in the advection due to increasing velocity gradients.
The primary droplet is separated when the radius is zero. The
visualization of the droplet evolution after necking is also
shown for water and (85%) glycerol. Each droplet profile is
attached to the point in the plot that corresponds to the time
away from the pinch-off. The glycerol solution shows more
elongation approaching the pinch-off time, which explains the
effect of viscosity. The strong viscous effect allows glycerol
droplet to have a long neck. In case of the water droplet,
the surface tension force is much more dominant compared
to the viscous forces approaching the singularity, resulting
a shorter neck. Another important parameter for validation
is the evolution of a minimum radius in time away from
the pinch-off. Figure 5 illustrates numerical results for the
evolution of this parameter, compared with the experimental
profiles for water and (85%) glycerol solution. The profiles
for both water and glycerol show similar evolution until a
point where the dynamics starts to become self-similar. From
this point the glycerol profile shows the influence of high
viscosity by more elongation. The minimum radius decrease
slower, which is evident by the long tail at the end of the

®  Zhang and Basaran
Numerical simulation

(a) Water (b) 85% Glycerol
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FIG. 4. Evolution of non-dimensional length in time approaching
the pinch-oft for (a) water and (b) 85% glycerol. The inlet radius
hg = 0.0016 m and inflow rate = 1 mL/min.
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FIG. 5. Evolution of non-dimensional radius of the narrowest
location in time approaching the pinch-off for (a) water and (b) 85%
glycerol. The inlet radius /g = 0.0016 m and inflow rate = 1 mL/min.

profile. For the water droplet, the radial shrinkage is much
faster due to small viscosity compared to the glycerol solution.
The numerical profile for glycerol agrees with the experiments
very well. For the water, the profile shows a small amount of
delay between the numerical and experimental results. This is
due to initially added artificial viscosity to increase diffusive
behavior, which is inspired from the computational model by
Eggers and Dupont!?. We increase the viscosity value initially
for the low viscosity materials, since their highly convective
nature introduces surface fluctuations. We reduce this added
diffusion to zero well before the necking begins. Hence, the
numerical profile for the water droplet starts to agree with
the experiments right where the necking begins. This added
diffusion shows no impact on the length evolution or the
pinch-off location at all.

B. Pinch-off dynamics of paraffin wax

Paraffin wax is explored as one of the potential candidate
fuels for hybrid propellant rockets®®. In the combustion
chamber of a hybrid rocket, a solid paraffin wax form a
liquid layer on its burning surface. This liquid layer, under
a high shear forcing, shows hydrodynamic instabilities that
lead to the formation of droplets. These droplets are then
entrained in the flow. Here, we explore the pinch-off dynamics
of a pendant paraffin wax droplet using our computational
model. The curvature is a chief attribute in understanding the
pinch-off dynamics in droplet formation. Figure 6 shows a
paraffin wax droplet profile at pinch-off alongside a curvature
profile. Approaching the singularity, the curvature starts to
increase. But a finite time curvature blow up happens at the
pinch-off location, where the radius is zero. As explained in
the introduction section, the fluid in a close vicinity of this
singular point is driven by very high velocity gradients. The
motion is independent of the initial and boundary conditions.
This feature is mathematically described by a self-similar
solution. The velocity derivative profile on the right in Fig. 6
shows high gradients close to singularity. Moreover, the
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FIG. 6. The curvature profile and the velocity derivative profile when
the pinch-off happens. The inlet radius g = 0.0016 m and inflow rate
= 1 mL/min.

velocity gradients change signs at the singular point location.
This suggests that the fluid above and below the pinch-off
point moves in opposite direction very quickly. This recoil
provokes surface instabilities leading to the satellite drop
formation.

However, it is also evident that the fluid motion
approaching the pinch-off is highly convective in nature. The
finite element model can approximate the solution but when
the truncated terms are getting larger, the solution becomes
unstable. Hence, the numerical scheme is augmented with a
stabilization technique when the fluid viscosity is low. There
are many options to consider for stabilization”®. We used
the Streamline Upwinding (SU) and Streamline Upwinding
Petrov Galerkin (SUPG) and found that this 1D problem can
become stable with just the SU method. The SUPG method
is better suited for problems with cross convection in 2D
or 3D. Also, the SUPG method regularizes the strong form
residual that contains second order derivatives, which can be
problematic for C° continuous elements. However, the SU
scheme just adds an artificial diffusion into the system and
is over diffusive in nature®. Therefore, we also decrease
the artificial diffusivity as we refine the mesh adaptively to
avoid adding too much diffusion. This stabilization was only
enabled for low viscosity fluids, like paraffin wax, water, etc.
High viscosity fluids like glycerol can be handled without any
stabilization.

IV. CONCLUSION

A one-dimensional numerical model is reliable for
simulating droplet formation. The present model is validated
using experimental pendant drops of water and glycerol,
which were excellently matched with simulation results.
The SU stabilization method was implemented since the
low viscosity fluids, like water and paraffin wax are highly
convective. The velocity and curvature profile was shown
for paraffin wax at the pinch-off time. The velocity
was approaching infinity at the pinch-off location with the
opposite signs suggesting that the pinch-off is followed by the
recoil and then satellite drop formation.

The current computational model can be extended to
capture the motion after pinch-off and satellite drops as well.
Understanding the volume of satellite droplets is useful in
accurately predicting the regression rate of the fuel in hybrid
rockets. Also, the present model can be improved for droplet
formation in shear environment. The droplet formation
in a turbulent environment may not be axisymmetric since
the turbulence sets the initial droplet profile’!. For non-
symmetric interfaces, where no swirling motion assumption
fails, two- or three-dimensional approaches are better, which

is also recommended by Ambraneswaran!3. However, the

droplet shape may not be assumed to be axisymmetric, the
solution in singularity region is still self-similar and follows
the analogous dynamics.
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