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Abstract  22 
  23 
     Animal behavior is shaped by a variety of “internal states” – partially hidden variables that 24 
profoundly shape perception, cognition, and action. The neural basis of internal states, such as 25 
fear, arousal, hunger, motivation, aggression, and many others, is a prominent focus of research 26 
efforts across animal phyla. Internal states can be inferred from changes in behavior, physiology, 27 
and neural dynamics and are characterized by properties such as pleiotropy, persistence, 28 
scalability, generalizability, and valence. To date, it remains unclear how internal states and their 29 
properties are generated by nervous systems. Here we review recent progress, which has been 30 
driven by advances in behavioral quantification, cellular manipulations, and neural population 31 
recordings. We synthesize research implicating defined subsets of state-inducing cell types, 32 
widespread changes in neural activity, and neuromodulation in the formation and updating of 33 
internal states. In addition to highlighting the significance of these findings, our review 34 
advocates for new approaches to clarify the underpinnings of internal brain states across the 35 
animal kingdom. 36 
  37 
  38 
Key Words: Internal States, Neuromodulation, Neural Circuits, Brain-Wide Activity 39 
  40 
  41 
  42 
  43 
   44 
  45 
  46 

Manuscript Click here to view linked References

https://www.editorialmanager.com/neuron/viewRCResults.aspx?pdf=1&docID=53951&rev=1&fileID=1381729&msid=f533b89c-93c6-4b0c-8faa-1bf0ffe9d3f3
https://www.editorialmanager.com/neuron/viewRCResults.aspx?pdf=1&docID=53951&rev=1&fileID=1381729&msid=f533b89c-93c6-4b0c-8faa-1bf0ffe9d3f3


2 
 

Introduction 47 
Nervous systems are in a constant state of flux, with rich internal dynamics that determine how 48 
brains respond to inputs and produce outputs. The hidden processes that underlie these dynamics 49 
can be described as “internal states”, and include arousal, motivation, emotion, and varying 50 
homeostatic needs. Internal states allow us to integrate information about our external 51 
environment and internal physiological conditions into centralized brain states, which shape how 52 
sensory information is processed and orchestrate appropriate behavioral and physiological 53 
responses (Anderson, 2016; Bolles, 1967; Tinbergen, 1951). 54 
 55 
While internal states are difficult to observe directly, they can be inferred from observations of 56 
an animal’s overt behavior and systemic physiology, or from within the brain, such as by 57 
investigating neuronal dynamics or perturbing neural function. For instance, an animal’s state of 58 
hunger can be determined based on caloric deficit and circulating hormones, or its state of 59 
aggression inferred from observing attacks elicited by conspecifics. Likewise, several recent 60 
studies have discovered consistent changes in neuronal dynamics encompassing multiple cell 61 
types and brain systems concomitant to behavioral and/or physiological state changes 62 
(Grundemann et al., 2019; Lovett-Barron et al., 2020; Xu et al., 2020). A wide variety of animals 63 
– from jellyfish to humans – appear to organize their behavior in a state-like fashion, suggesting 64 
that the neural mechanisms that underlie the generation of internal brain states are evolutionarily 65 
ancient (Nath et al., 2017; Weissbourd et al., 2021). In humans, changes in state representation, 66 
switching, and timing are thought to occur in many psychiatric and neurological diseases. Here 67 
our focus is on the study of experimentally tractable animal models; but, the ubiquity of internal 68 
states across animal species suggests that general principles found in animals will hold relevance 69 
for understanding the human condition in health and disease. 70 
            71 
Several recent technical advances have spurred remarkable progress in our ability to describe and 72 
investigate internal states in animal models. These include new and improved methods for 73 
tracking animal behavior, manipulating neurons, and analyzing population-level neural activity. 74 
Studies across a range of animal models now provide evidence that internal brain states can be 75 
controlled by the actions of small subsets of neurons, but can influence activity across broad 76 
swaths of the brain, often in parallel. Across organisms, neuromodulators have been repeatedly 77 
identified as central elements in the generation of internal states, with a wide range of circuit 78 
organizations that deploy neuromodulators in distinct manners (Bargmann, 2012; Getting, 1989; 79 
Harris-Warrick and Marder, 1991; Marder, 2012; McGinley et al., 2015b).  80 
 81 
Here, we review the behavioral classification of states, examples of the neural encoding of such 82 
states in diverse species, and the privileged role that neuromodulation plays in the formation and 83 
function of internal states. The principles discussed here derive from a large and diverse 84 
literature, growing out of psychology, neuroscience, cognitive science, biology and ethology 85 
over many decades. As we cannot provide an exhaustive accounting of this work, we instead 86 
focus on specific principles that are common across organisms and highlight recent findings that 87 
have relevance for scientists currently studying internal states.  88 
  89 
Defining internal states 90 
Internal brain states can be defined from changes in physiology, behavior, and/or brain activity. 91 
We use the term “internal state” to refer to a state that can be independently controlled and which 92 
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can occur simultaneously with other states within the same animal. For example, hunger and fear 93 
represent distinct internal states. The states that we discuss here all consist of changes in nervous 94 
system function that can be inferred from an animal’s behavior (though such inference can be 95 
challenging, since states are not entirely overt; see below). In addition, some internal states 96 
involve changes in other parts of the body. For example, hunger involves changes in gut 97 
metabolism, hormone levels, and more. These interactions between the brain and the periphery 98 
can be bi-directional. We consider these peripheral changes to be important aspects of the state. 99 
We expect that the definition of “internal state” will become more precise as the field evolves 100 
and we return to the complexities of this definition at the end of the review.  In this review, we 101 
will start by discussing characteristic features of internal states, how they can be inferred from 102 
behavioral and physiological changes, and then discuss their neuronal correlates.  103 
 104 
Features of internal states 105 
Internal states enable us to produce flexible and adaptive behavioral and physiological responses 106 
in a wide range of different settings. These internal states are stable enough to organize behaviors 107 
over long timescales, and flexible enough to facilitate adaptive (or maladaptive) responses to 108 
different circumstances or changing environments. To be both flexible and stable, internal states 109 
often possess the following features: pleiotropy, persistence, scalability, generalizability, and 110 
valence (Figure 1) (Adolphs and Anderson, 2013; Anderson, 2016; Darwin, 1872; Tye, 2018). 111 
Pleiotropy refers to the feature that each state influences multiple aspects of behavior and 112 
physiology in parallel, such as body temperature, respiration, locomotion, sensory 113 
responsiveness, and more (Figure 1). Persistence describes the ability of internal states to 114 
produce behavioral and physiological responses that outlast the termination of the stimulus that 115 
initiated the response. We do not consider individual motor actions to be states, but persistent 116 
sequences of motor actions may be classified as states. Scalability indicates the ability of these 117 
responses to scale with the magnitude of the stimulus. Generalizability refers to the degree to 118 
which an internal state can produce responses to stimuli that are distinct from the original 119 
stimulus that elicited the response. Valence describes the positive or negative affect associated 120 
with that state. Taken together, the multifaceted and flexible nature of internal states provides 121 
evolutionary advantages for organisms across the animal kingdom.  122 
  123 
A prototypical internal state: fear 124 
The above mentioned properties of internal states can be conceptualized in the context of 125 
emotion, and can be well illustrated using one of the most well studied states in neuroscience and 126 
psychology – fear (Adolphs, 2008; Dukes et al., 2021; Fanselow, 2018; Fanselow and 127 
Pennington, 2018; Janak and Tye, 2015; LeDoux and Daw, 2018; LeDoux, 2017; 2020; LeDoux 128 
and Brown, 2017; Mobbs et al., 2019; Tovote et al., 2015; Tye and Deisseroth, 2012).  For 129 
example, if you are afraid of flying on a plane, you might display a set of pleiotropic changes 130 
including an increase in heart rate, galvanic skin response, and feelings of anxiety, which persist 131 
well beyond the time in which you are exposed to the plane (stimulus).  These neural and 132 
peripheral responses might scale with the strength of the stimulus, such that they increase during 133 
turbulence, and they may generalize to other similar stimuli, such as helicopters or cars. The 134 
valence of this state is negative, causing you to avoid flying in a plane as much as possible.  135 
 136 
In laboratory settings, the internal state of fear is often investigated using classical conditioning 137 
(Pavlov, 1927) in which an animal, often a rodent, is conditioned to fear a previously neutral cue 138 
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(e.g. auditory tone) which, through training, comes to predict the occurrence of an aversive 139 
stimulus (e.g. foot shock). These      classical conditioning paradigms allow for precise control 140 
over experimental parameters and their effects on fear. In both controlled, as well as more           141 
naturalistic settings, an animal may display a wide variety of fear-related behaviors – fleeing, 142 
freezing, fighting – depending on the imminence of the threat and the shape of the environment 143 
(Fanselow, 2018; Fanselow et al., 2019; Fanselow and Lester, 1988; Perusini and Fanselow, 144 
2015). These fear behaviors demonstrate hallmark characteristics of an internal state.  For 145 
example, in rats and mice, freezing behavior scales with the magnitude of the foot shock 146 
(Fanselow and Bolles, 1979), generalizes to similar auditory cues, and can persist well beyond 147 
termination of the auditory stimulus (Quinn et al., 2002).  These behavioral readouts correspond 148 
to physiological findings, which identify neurons that are active during fear conditioning and/or 149 
expression, persist in their activity beyond termination of a fear-eliciting stimulus, generalize 150 
their activity to similar stimuli, and scale the intensity of their activity depending on stimulus 151 
magnitude (e.g. Ciocchi et al., 2010; Haubensak et al., 2010). 152 
 153 
Nevertheless, it is important to note that despite being heavily studied, fear represents one of the 154 
most hotly contested internal states, with many questions currently unanswered (see Mobbs et 155 
al., 2019 for a review of some of these issues).  For example, what are the behavioral readouts 156 
that best capture the internal state of fear? How exactly is fear distinct from other similar states, 157 
such as anxiety? Do these states lie on the same continuum, and thus, collectively represent a 158 
larger internal state of defense?  How does this internal state interact with prior experience? And 159 
finally, some have even argued that it may not be possible to truly study fear in non-human 160 
animals (LeDoux, 2020; 2021). Thus, while fear is a powerful, well-studied example of an 161 
internal state, fear also represents some of the challenges facing the field of internal states.  162 
 163 
While fear in rodents exemplifies many of the characteristics of an internal state – at both the 164 
behavioral and neurobiological level – examples of numerous behaviors influenced by internal 165 
states can be found in almost every species studied.  In the sections below, we discuss a variety 166 
of internal states across different model organisms. Like many areas of biology searching for 167 
general principles, we believe that our understanding of internal states will benefit enormously 168 
from integrating results across multiple organisms and behavioral conditions (Jourjine and 169 
Hoekstra, 2021; Katz, 2016; Laurent, 2020; Yartsev, 2017). 170 
  171 
Experimental approaches to studying internal states 172 
Investigating the neural basis of internal states requires the accurate inference of such states, 173 
extracted from measurements and manipulations of behavior, physiological parameters, and 174 
environmental context (Figure 2A). Here, we discuss different approaches for inducing and 175 
measuring internal states in a laboratory setting. 176 
  177 
Experimentally inducing need states 178 
     Many studies rely on manipulating environmental or physiological variables in order to 179 
induce      internal states. For instance, exposing animals to specific stimuli, environments, or 180 
physiological conditions has proven useful to induce binary global state changes; this includes 181 
induction of anxious states with threatening environments (Calhoon et al., 2018; Tovote et al., 182 
2015), induction of hunger with food or nutrient deprivation (Livneh et al., 2020; Sayin et al., 183 
2019; Vogt et al., 2021), and induction of thirst with water deprivation (Allen et al., 2019; 184 
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Livneh et al., 2020; Zimmerman et al., 2017) (Figure 2B). These studies often rely on single 185 
characteristic behaviors as a readout (approach versus avoidance, exploiting versus roaming, 186 
attack versus mounting), and the robustness of these need state-induced behaviors allow for 187 
averaging results across individuals. Such approaches have been useful in identifying key 188 
characteristics of deprivation-induced need- states, enabling the exploration of their 189 
neurobiological underpinnings (Sternson, 2013).      190 
 191 
Inferring internal states from overt locomotor behavior 192 
Locomotion represents a key observable variable from which internal states can be inferred. 193 
When observing locomotion over time, experimenters can classify epochs of fast-timescale 194 
actions into slower-timescale states distinguished by the probability and content of the animal’s 195 
motion (Flavell et al., 2020; Ji et al., 2021; Marques et al., 2020; Poulet and Petersen, 2008) 196 
(Figure 2C). Many organisms, including mammals, zebrafish, flies, and worms display stable, 197 
global changes in behavioral patterns such as switches between active and inactive locomotor 198 
states. Active states, characterized by longer movement trajectories, include exploration and 199 
roaming. Inactive states, characterized by little or short locomotor bouts, include idling, dwelling 200 
or exploiting (Flavell et al., 2013; Ji et al., 2021; Marques et al., 2020). These global patterns 201 
have been shown to also exist in more complex organisms, such as rodents (Grundemann et al., 202 
2019). Similar state-dependent switches in active versus passive behaviors have been described 203 
in the contexts of active sensing versus quiescence (Poulet and Petersen, 2008),  running versus 204 
resting (Keller et al., 2012), or high versus low arousal (Rodriguez-Romaguera et al., 2020).  205 
 206 
Measuring such bi-modal changes in ‘state’ can be achieved by tracking entire animals in space 207 
(Flavell et al., 2020; Ji et al., 2021; Marques et al., 2020) and measuring course locomotion 208 
parameters or spatial coverage. Movement can also be characterized in a more detailed manner, 209 
by tracking the position of the body and limbs over time to classify states; these studies are 210 
enabled by a recent proliferation of methods for tracking body posture (Box 1).  States can also 211 
be inferred from their effects on the performance of repeatable motor behaviors with trial-like 212 
structures. For instance, the response rate and reaction time to sensory stimuli can be used to 213 
infer arousal or alertness across species (Harris and Thiele, 2011; Lovett-Barron et al., 2017; 214 
Maimon, 2011; McGinley et al., 2015b; Moore and Zirnsak, 2017; Musall et al., 2019). 215 
  216 

Box 1: Methods for computational analysis of animal behavior. 217 

There has been a recent proliferation of techniques aimed at providing high throughput, 218 
automated behavioral tracking and classification. These advances in behavioral analyses 219 
have been especially aided by the expansion of computational tools. Particularly, recent 220 
technological advances in machine-vision and machine-learning have revolutionized the 221 
capacities to automatically track, classify, and decode animal behavior. Artificial deep 222 
neuronal networks are a rich addition to the field of behavioral assessment and may be 223 
the foundation of a totally new field of computational neuroethology (Datta et al., 2019). 224 
Recently developed methods to measure animal behavior in different species include 225 
Stytra (Stih et al., 2019), TRex (Walter and Couzin, 2021), Ctrax (Branson et al., 2009), 226 
JAABA (Kabra et al., 2013), Optimouse (Ben-Shaul, 2017), LEAP (Pereira et al., 2019), 227 
DeepLabCut (Mathis et al., 2018), DeepEthogram (Bohnslav et al., 2021), DeepPoseKit 228 
(Graving et al., 2019), DANNCE (Dunn et al., 2021), MARS (Segalin et al., 2021) or a 229 
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3D virtual mouse (Bolanos et al., 2021). These methods allow for tracking everything 230 
from body parts to multi-action behavioral motifs. Details of these novel approaches can 231 
be found in a number of authoritative reviews published recently (Datta et al., 2019; 232 
Mathis and Mathis, 2020; Pereira et al., 2020).       233 

Inferring internal states from higher-order behavior 234 
Beyond classifying states from coarse locomotor behavior, recent studies have also focused on 235 
extracting more complex behavioral patterns to describe internal states. While methods to track 236 
animal behavior are increasingly powerful (see Box 1), it remains challenging to analyze and 237 
understand the high-dimensional behavioral data arising from these tools (Berman, 2018; Datta 238 
et al., 2019). Towards this goal, machine learning (ML) has become key. For example, from the 239 
kinematic features extracted over long time scales, ML algorithms are able to extract and classify 240 
behavioral patterns and sequences, their variation across time and individuals, and their 241 
perturbation by drugs and disease models.  242 
 243 
One such ML approach is Motion Mapper (Berman et al., 2014) which identifies behavioral 244 
modules by low-dimensional embedding and clustering. Recent evidence testing different 245 
unsupervised approaches for behavioral mapping and clustering argues that keeping the data in 246 
as many dimensions as possible for clustering is preferable (Todd et al., 2017). Other techniques 247 
use intuitive behavior annotation by the experimenter, which allows supervised ML algorithms 248 
to quantify these behaviors (e.g. JAABA (Kabra et al., 2013)). Another approach that has also 249 
been successful is to measure multiple behavioral parameters and infer underlying state(s) using 250 
probabilistic approaches. For instance, Hidden Markov models (HMM) have been employed to 251 
infer behavioral states in many organisms (Calhoun et al., 2019; Cermak et al., 2020; Marques et 252 
al., 2020). However, these techniques rely on variables that are quantified and identified by the 253 
experimenter as being state-relevant. 254 
 255 
Making use of the temporal sequence of behavioral actions over time has been a particularly 256 
powerful approach to infer internal states (Figure 2D) (Berman et al., 2016; Luxem et al., 2020; 257 
Wiltschko et al., 2015; York et al., 2021). For example, two recent studies using this approach 258 
were able to classify the behavioral sequences that comprise the larval zebrafish’s hunting 259 
behavior from specific eye and tail movements in the context of available prey (Johnson et al., 260 
2020; Mearns et al., 2020). Another such technique, Motion Sequencing (MoSeq (Wiltschko et 261 
al., 2015)), is an ethologically-inspired behavioral analysis method. In a recent landmark study, 262 
Wiltschko et al. (Wiltschko et al., 2020) automatically and effectively deconstructed behavioral 263 
differences and similarities elicited by a panel of neuroactive and psychoactive drugs in mice. 264 
MoSeq was able to distinguish the behavioral changes elicited by the drugs, which each elicit 265 
movement reductions through different mechanisms, such as distinguishing catalepsy and 266 
sedation, and are often confused in traditional behavioral assays. MoSeq was even able to predict 267 
drug dosage. These studies reveal that temporal sequence-based approaches can capture 268 
spontaneous transitions between diverse internal states across highly variable and diverse 269 
datasets. 270 
  271 
Approaches for considering the co-existence and interactions of internal states 272 
Despite the advances discussed above, one complication is that animals can be under the 273 
influence of multiple states at once. For instance, individuals may exist in one coherent state that 274 
integrates or selects from multiple internal needs and outside stimuli. For example, individuals 275 
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may be influenced by diverse physiological and affective need states in parallel, such as thirst, 276 
hunger, fear, social isolation, and environmental conditions (availability of food, social or 277 
predator encounters). These needs and contextual changes elicit drives that compete or may be 278 
mutually reinforcing depending on the context (Duistermars et al., 2018; Eiselt et al., 2021; 279 
Thornquist and Crickmore, 2020) (Figure 2E). Together these parameters may result in 280 
integrated and complex internal states, which manifest as behavioral switches when one drive 281 
overcomes another, or may serve to generate entirely unique behavior patterns. Indeed, recent 282 
work has highlighted the overlap between distinct states such as hunger and thirst (Eiselt et al., 283 
2021; Gong et al., 2020). Interestingly, the lateral hypothalamus of the mouse has been found to 284 
be a key hub in organizing behavioral switches in response to multiple diverse internal states 285 
(Nieh et al., 2016), emphasizing the complex interactions between different need and 286 
motivational states.  287 

To further understand the dynamics and organization of multiple internal states, such as whether 288 
they are organized hierarchically or in parallel, it may become necessary to study animal 289 
behavior over longer time scales in naturalistic settings, where animals are exposed to multiple 290 
needs and stimuli (Burnett et al., 2019; Burnett et al., 2016; Thornquist and Crickmore, 2020). 291 
For instance, can multiple states stably co-exist, or do brains exist in a unitary state that is a 292 
combination of multiple lower-level states? Are some states more likely to “win” control over 293 
behavior compared to other states?  Such questions highlight the field’s long-standing interest in 294 
understanding distinct need-states and how they sit in a hierarchy, with each basic need emerging 295 
once a central need is met (Maslow, 1943).  In turn, these questions generate new ones - what are 296 
the rules governing the hierarchy of state control over behavior? Do different states adhere to 297 
different rules? Further experiments are required to address these interesting questions. 298 

Studying individuals to address the subjectivity of internal states  299 
A particular challenge in studying internal states arises from individuality. Past experiences, 300 
social hierarchies, contextual factors, genetic background, and hormonal influences may 301 
determine the ‘personality’ of individual animals and strongly shape how each individual reacts 302 
in common circumstances. Results from worms (Stern et al., 2017), flies (Honegger and de 303 
Bivort, 2018), zebrafish (Pantoja et al., 2016; Pantoja et al., 2020), and mice (Forkosh et al., 304 
2019) argue that the neuronal underpinnings of internal states may best be addressed by studying 305 
individuals in detail (Figure 2F).             306 
 307 
As an example of how detailed and individualized behavioral readouts may help the study of 308 
internal states, a recent study found evidence that facial expressions might represent innate and 309 
sensitive reflections of the subjective emotion state of individual mice (Dolensek et al., 2020). 310 
Employing machine-vision and ML algorithms, Dolensek et al. were able to categorize mouse 311 
facial expressions objectively and quantitatively at millisecond time scales. Notably, the authors 312 
demonstrate that the facial expressions revealed individual variability in intensity, value, and 313 
persistence of subjective emotion states (Anderson and Adolphs, 2014). Furthermore, other 314 
recent studies have found that a large fraction of the brain’s activity can be explained by 315 
movement variables, read out from the face or the body (Musall et al., 2019; Steinmetz et al., 316 
2019; Stringer et al., 2019). These results highlight how powerful each individual’s idiosyncratic 317 
behavior is in driving brain-wide activity changes, independent of task or stimulus involvement. 318 
This emphasizes the challenges of summarizing data across multiple animals without the ability 319 
to control for these variables. 320 
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 321 
In a powerful example of how prior experience can shape individual differences and contribute 322 
to variability in internal states, Remedios and Kennedy et al. (Remedios et al., 2017) found that 323 
exposure to social experience results in a shift in both a mouse’s subsequent behavior and 324 
neuronal ensemble activity in the ventromedial hypothalamus (VMH).  More specifically, naïve 325 
male mice with no prior sexual experience demonstrate a lack of aggression towards male 326 
conspecifics, which correlates with an overlap in the neural ensembles which represent male 327 
versus female conspecifics.  As males are exposed to repeated social experience, aggressive 328 
behavior emerges, coupled with a separation in the neuronal ensembles which represent male 329 
versus female conspecifics.  Interestingly, this shift to aggressive behavior and separable 330 
male/female ensembles in the VMH varies across mice, highlighting that the neural populations 331 
driving aggression are subject to plasticity and sensitive to additional factors controlling 332 
individual differences.  333 
 334 
Taken together, these findings collectively argue that experiences, as well as changes in bodily 335 
condition or physiological need, exert powerful influences on the neuronal machinery from 336 
which internal states emerge. Consequently, the internal states evoked by the same set of 337 
influences may differ depending on an individual’s history and current contextual standing. An 338 
important question for future research will be to ask how endocrine, genetic, plasticity and 339 
potentially further mechanisms may drive individual differences in internal state. It will be 340 
crucial to have individualized readouts of internal states at hand to tackle this important question.  341 
 342 
Approaches towards improved state definitions 343 
As mentioned above, internal states induce pleiotropic effects, impacting multiple behaviors and 344 
physiological paramaters in parallel. Thus, to improve and refine the description and detection of 345 
changes in internal states, integrated multidimensional analyses including behavioral but also 346 
physiological measurements may be key. The available measures, and ease of using them, vary 347 
depending on the species being studied. For instance, the transparent larval zebrafish may be 348 
useful for videography of the body (heartbeat, muscle tone, blood flow, respiratory movements), 349 
but less useful for testing circulating hormones (limited volume of blood to test). Larger animals, 350 
in contrast, can allow for chronically inserted devices that monitor metabolism and systemic 351 
physiology.       352 
 353 
Future improvements in the methods to classify behaviors and internal states will likely involve 354 
making more measurements – simultaneous posture recording, physiological measures, and 355 
descriptions of the sensory environment and individual animal history. Importantly, ensuring 356 
tools for collecting and integrating such multi-modal information are “user-friendly” will be 357 
critical in their widespread use, an essential component for the field’s understanding of a given 358 
internal state.  These approaches can provide more rigorous definitions of states that have 359 
already been extensively studied (arousal, fear, hunger) and may also reveal currently unknown 360 
‘states’ that explain trends in behavior, but do not yet have a clear label. For instance, recent 361 
studies have identified previously unrecognized connections between neural dynamics and 362 
metabolic state (Tingley et al., 2021).  Ultimately, states may be best described directly from the 363 
brain itself. We next discuss common signatures of internal states across the brains of different 364 
species. 365 
  366 
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The neural basis of internal states 367 
Internal states have the capacity to influence multiple aspects of sensation, cognition, action, and 368 
systemic physiology. Here we discuss recent work highlighting how distinct populations of 369 
neurons can generate different internal states, and the influence of such states on the rest of the 370 
nervous system. 371 
 372 
A neuronal population code of behavioral states 373 
Several recent studies across different species and brain regions have highlighted that the 374 
behavioral state of an animal can be predicted and thus read-out from the activity dynamics of 375 
neuronal populations that either span brain wide networks or dominate single brain regions. For 376 
example, a study in the rodent basolateral amygdala found that two distinct neuronal populations 377 
of principle neurons predicted the switches between exploratory versus nonexploratory defensive 378 
states (Grundemann et al., 2019). Similarly, networks of neurons encoding exploitation versus 379 
exploration states have been identified in fish (Marques et al., 2020) and worms (Ji et al., 2021). 380 
Interestingly, behavioral states can be decoded with high accuracy from the combinatorial 381 
activity of diverse molecularly defined cell types, but not from the activity of single cell types 382 
(Lovett-Barron et al., 2020; Xu et al., 2020). These and similar findings highlight that internal 383 
states are represented in neuronal population dynamics that recruit neurons across multiple 384 
different cell types, brain regions and neuromodulatory systems.  385 
  386 
Small subsets of neurons can drive state transitions 387 
As described above, internal states are represented in combinatorial and complex activity 388 
dynamics of entire neuronal populations.  Nevertheless, the use of methods to precisely activate 389 
neurons (Luo et al., 2018) has revealed that even small subsets of neurons can drive persistent 390 
brain states with influence over a variety of behavioral features in multiple different species. 391 
Dramatic examples abound in the study of rodent behavior, where optogenetic or chemogenetic 392 
activation of genetically- and anatomically-defined subsets of neurons can evoke specific 393 
behaviors and associated brain states (Anderson, 2016; Sternson, 2013; Yizhar et al., 2011). This 394 
includes the induction of behaviors associated with hunger upon stimulation of Agouti-related 395 
peptide (AGRP) neurons in the arcuate nucleus of the hypothalamus (Aponte et al., 2011; Chen 396 
et al., 2016; Krashes et al., 2011), thirst-related behavior with stimulating neurons in the lamina 397 
terminalis (Allen et al., 2017a; Augustine et al., 2018; Leib et al., 2017; Oka et al., 2015), or 398 
aggressive behaviors with stimulation of neurons in the ventromedial hypothalamus (Falkner et 399 
al., 2016; Lee et al., 2014; Lin et al., 2011), among many other examples. 400 
 401 
These experiments have revealed some important shared features of diverse state-inducing neural 402 
populations: brief activation of these cells drives persistent states, and these cells project to 403 
multiple brain regions to induce different aspects of the core brain state (Figure 3A). For 404 
instance, activation of hunger-associated AGRP neurons induces an aversive motivational state 405 
(Berrios et al., 2021; Betley et al., 2015), promoting mice to eat food when available (Aponte et 406 
al., 2011; Krashes et al., 2011). Feeding is driven by AGRP neuron projections to the 407 
paraventricular hypothalamus (PVH), lateral hypothalamus (LH), paraventricular thalamus 408 
(PVT), and bed nucleus of the stria terminalis (BNST) (Atasoy et al., 2012; Betley et al., 2013; 409 
Horio and Liberles, 2021), but also primes mice to eat more later through its projection to the 410 
PVH (Chen et al., 2019; Chen et al., 2016; Jikomes et al., 2016), increases attention to visual and 411 
olfactory food cues through projections to the PVT (Horio and Liberles, 2021; Livneh et al., 412 
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2017; Livneh et al., 2020), suppresses fear and aggressive behavior through projections to the 413 
medial amygdala (Padilla-Coreano et al., 2016), and inhibits inflammatory nociception and the 414 
effects of appetite suppressants through projections to the parabrachial nucleus (PBN) (Alhadeff 415 
et al., 2018; Essner et al., 2017). Similarly, activation of thirst-associated neurons in the medial 416 
preoptic nucleus (MPON) that project to the PVT, PVH, or LH induce drinking behavior when 417 
water is present and induce a negative motivational drive (Allen et al., 2017a; Leib et al., 2017), 418 
in addition to increasing blood pressure through the hypothalamic projections (Leib et al., 2017). 419 
Furthermore, stimulation of aggression-associated neurons in the ventrolateral division of the 420 
ventromedial hypothalamus (VMHvl) can produce defensive behaviors through projections to 421 
the anterior hypothalamus and midbrain (Wang et al., 2015), inhibit mounting behaviors and 422 
ultrasonic vocalizations through projections to the medial preoptic area (MPOA) (Karigo et al., 423 
2021), drive biting through outputs to the periaqueductal grey (PAG) (Falkner et al., 2020), and 424 
possesses a number of other output projections (Lo et al., 2019). These features allow a small set 425 
of neurons to influence a diversity of behavioral outcomes through specialized projections, a 426 
collateralization that is also present in the control of arousal (Poe et al., 2020), anxiety (Kim et 427 
al., 2013), and parenting (Kohl et al., 2018) in rodent brains.  428 
 429 
The projections of putative state-control neurons are particularly well studied in rodents, but 430 
these principles have been found across multiple model systems, where stimulation of small sets 431 
of neurons with broad projections can influence internal states (Figure 3B, C). In the compact C. 432 
elegans nervous system, the activation of one or few neurons can induce state transitions, 433 
including the initiation of roaming and dwelling by PDF- and serotonin-releasing neurons, 434 
respectively (Churgin et al., 2017; Flavell et al., 2013; Ji et al., 2021), and the induction of low 435 
arousal/sleep states by peptidergic neurons (Nath et al., 2016; Turek et al., 2016; Turek et al., 436 
2013). In Drosophila, aggression can be induced by activation of tachykinin-expressing neurons 437 
(Asahina et al., 2014), and threat displays are evoked by a small subset of anterior inferior 438 
protocerebrum neurons (Duistermars et al., 2018).  A set of male-specific P1 neurons evokes a 439 
persistent internal state of social arousal, which enhances either aggression or courtship 440 
behaviors depending on context (Anderson, 2016; Bath et al., 2014; Clowney et al., 2015; 441 
Hindmarsh Sten et al., 2021; Inagaki et al., 2014a; Jung et al., 2020; von Philipsborn et al., 2011; 442 
Zhang et al., 2016); analogous neurons in female Drosophila have also been found to promote 443 
persistent behavior (Deutsch et al., 2020). 444 
 445 
While these activation studies are informative, it is important to consider the natural dynamics of 446 
state-triggering neurons as well, which may contribute to internal states in a dynamic regime not 447 
explored by artificial stimulation (Jazayeri and Afraz, 2017; Wolff and Olveczky, 2018) (Box 2).  448 
  449 

Box 2:  Challenges and caveats for the manipulation of state-triggering neurons. 450 
Optogenetic, chemogenetic, and thermogenetic techniques can allow for targeted 451 
manipulation of state-promoting neurons, but these approaches may not reproduce the 452 
natural dynamics of these cells recorded in vivo. While some molecularly-defined 453 
subpopulations of neurons show concerted neural activity that can be reasonably 454 
approximated with optogenetic perturbations (i.e.: mouse AGRP neurons; (Betley et al., 455 
2015; Chen et al., 2015; Mandelblat-Cerf et al., 2015)), other populations show complex 456 
dynamics within a molecularly-defined subpopulation (i.e. mouse VMHvl neurons 457 
(Falkner et al., 2014; Karigo et al., 2021; Remedios et al., 2017)). In addition, state-458 
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triggering neurons may fluctuate on various timescales, from slow tracking of 459 
homeostatic features (Sternson, 2013; Zimmerman et al., 2017) to faster activity of 460 
arousal-associated neurons, which can track bias in behavioral (i.e. reaction time) and 461 
physiological (i.e. pupil diameter) measures (Maimon, 2011; McCormick et al., 2020; 462 
McGinley et al., 2015b). Manipulating the activity of neurons across fast and slow 463 
timescales, while accounting for their potentially different effects (Hong et al., 2018; 464 
Otchy et al., 2015; Wolff and Olveczky, 2018), remains a challenge. In addition, many 465 
neurons with state-related activity may not necessarily be able to evoke the same state 466 
upon stimulation (Lovett-Barron et al., 2017). 467 

With these caveats in mind, we should be critical about whether or not artificial 468 
activation appears to trigger seemingly “normal” behavioral manifestations of internal 469 
states. Are many manipulations sufficiently natural enough, or constrained by the 470 
properties of downstream circuits to remain within the relevant neural population space 471 
(Jazayeri and Afraz, 2017; Wolff and Olveczky, 2018)? Are conventional manipulations 472 
of neuromodulatory cell types routinely achieving saturating effects on downstream 473 
populations (Coddington and Dudman, 2018)? Are our measurements too coarse to 474 
discern the difference between natural and unnatural triggered states (eg., measuring 475 
effects through neuron spike rates, overt behavior, or cortical EEG, for example), and 476 
would more nuanced measurements resolve these distinction (eg., measuring effects 477 
through ionic conductance, context-dependent ethograms, or manifold of population 478 
dynamics)? 479 

In general, a better capacity to precisely match and perturb aspects of natural 480 
activity should reveal which components of neural dynamics are important or 481 
dispensable for the initiation, persistence, and multiplexing of internal states. 482 

   483 
  484 
Internal states influence neurons across the brain  485 
While internal states can be initiated by small subsets of neurons, their broad effects on behavior 486 
and systemic physiology suggest that states can have wide-ranging influence over the nervous 487 
system. Across model systems, internal states have been found to influence broad swaths of the 488 
brain—findings made possible through the application of optical and electrical techniques for 489 
large-scale cellular-level recording of neurons across multiple brain regions in behaving animals 490 
(Ahrens and Engert, 2015; Engel and Steinmetz, 2019; Lin et al., 2022; Urai et al., 2022).  491 
 492 
One class of internal state that has been studied extensively is a state of arousal associated with 493 
movement, where awake animals transition between periods of overt movement and/or enhanced 494 
alertness and periods of relative quiescence. In C. elegans, motor activity drives a large number 495 
of neurons across the head ganglia (Hallinen et al., 2021; Ji et al., 2021; Nguyen et al., 2016), 496 
while extended quiescence broadly suppresses activity (Nichols et al., 2017). In Drosophila, 497 
locomotion or tethered flight increases the activity of neurons across multiple brain regions 498 
(Aimon et al., 2019; Mann et al., 2021) including identified neurons with roles in visual 499 
processing (Chiappe et al., 2010; Hindmarsh Sten et al., 2021; Kim et al., 2017a; Kim et al., 500 
2015; Maimon et al., 2010; Strother et al., 2018; Suver et al., 2012), and motor control (Ache et 501 
al., 2019). During zebrafish swimming, whole-brain imaging has revealed broad engagement of 502 
neurons across the forebrain, midbrain, and hindbrain (Ahrens et al., 2012; Chen et al., 2018; 503 
Dunn et al., 2016; Lovett-Barron et al., 2020; Naumann et al., 2016), with widespread 504 
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suppression of neurons during quiescence (Andalman et al., 2019; Mu et al., 2019). In behaving 505 
mice, locomotion and/or movement of the face or limbs influences the activity of neurons across 506 
multiple regions of dorsal neocortex (Allen et al., 2017b; Kauvar et al., 2020; Makino et al., 507 
2017; Niell and Stryker, 2010) and subcortical areas (Musall et al., 2019; Steinmetz et al., 2019; 508 
Stringer et al., 2019), even including the axons of retinal ganglion cells (Liang et al., 2020; 509 
Schroder et al., 2020). Overall, an animal’s brain displays dramatic and widespread neural 510 
activity changes during movement versus quiescence. 511 
 512 
Despite the convenience of measuring locomotion alone, states of high arousal can occur without 513 
overt movements of the limbs or face (Lovett-Barron et al., 2017; McGinley et al., 2015a; 514 
Reimer et al., 2014; Vinck et al., 2015). Therefore, it remains to be seen whether the neural 515 
dynamics in a rapidly moving animal reflect the internal state of the animal (McGinley et al., 516 
2015b), efference copy-like feedback of motor actions (Ji et al., 2021; Kim et al., 2017a; Kim et 517 
al., 2015; Schneider et al., 2014), or a combination thereof (Liu and Dan, 2019; McGinley et al., 518 
2015b; Reimer et al., 2014; Vinck et al., 2015). In cases where large populations of neurons 519 
could be recorded simultaneously, these locomotion/arousal-associated behavioral states are 520 
characterized by the evolution of a low-dimensional population state (Ahrens et al., 2012; Ji et 521 
al., 2021; Kato et al., 2015; Mu et al., 2019; Stringer et al., 2019). Whether such states appear at 522 
the cellular level in larger primate brains remains presently unknown, but there is evidence for 523 
broadly synchronized brain regions in humans (Fox et al., 2005; Raichle, 2015).  524 
 525 
In addition to locomotion-related arousal, need states such as hunger and thirst are also shown to 526 
modulate large-scale neural activity. Hunger influences multiple aspects of Drosophila behavior 527 
(Kim et al., 2017c), through modulation of olfactory neurons (Ko et al., 2015; Root et al., 2011), 528 
gustatory neurons (Inagaki et al., 2014b), motor-control neurons (Jourjine et al., 2016; Yu et al., 529 
2016), and other central brain populations (Inagaki et al., 2012; Krashes et al., 2009; Park et al., 530 
2016; Tsao et al., 2018; Yapici et al., 2016). In zebrafish larvae, food restriction biases fish 531 
towards hunting behavior (Johnson et al., 2020), with hunger increasing the activity of 532 
serotonergic neurons in the raphe (Filosa et al., 2016) and caudal hypothalamus (Wee et al., 533 
2019b), potentially by sensitizing visually responsive neurons in the optic tectum (Filosa et al., 534 
2016; Yokogawa et al., 2012). In mice, hunger can influence cue-evoked activity in association 535 
cortices, amygdala, and brainstem (Burgess et al., 2016; Calhoon et al., 2018; Gong et al., 2020; 536 
Livneh et al., 2017; Livneh et al., 2020; Lutas et al., 2019). 537 
 538 
One particularly informative study (Allen et al., 2019) examined the impact of thirst state on a 539 
mouse’s performance in a water-motivated behavioral task. Using large-scale 540 
electrophysiological recordings from populations of neurons across dozens of brain regions, the 541 
authors found that the state of thirst was widely encoded as a low-dimensional population state. 542 
This state influences both spontaneous and cue-evoked neural activity – largely increasing the 543 
rates and durations of task-responsive neurons (Figure 3D). Notably, thirst-related dynamics 544 
across multiple brain regions – but not all – were reinstated by optogenetic activation of 545 
dehydration-sensitive neurons in the subfornical organ. This suggests that both natural and 546 
optogenetic induction of an internal state can influence the activity of neurons throughout the 547 
brain, but subtle differences in the set of influenced brain regions distinguish between the two 548 
conditions. Whether natural or optogenetically-evoked thirst states produce comparable 549 
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subjective experiences for the animal, or are capable of modulating the same set of behaviors, is 550 
presently unclear. 551 
            552 
As techniques for large-scale recording in freely-moving animals advance (Cong et al., 2017; 553 
Grover et al., 2020; Ji et al., 2021; Juavinett et al., 2019; Kim et al., 2017b; Nguyen et al., 2016; 554 
Steinmetz et al., 2021), we expect that investigators will find that other internal states also exert a 555 
brain-wide influence, including those that evolve over longer timescales (Hrvatin et al., 2020; 556 
Stern et al., 2017) or whose classification is more complex, including parental behavior (Carcea 557 
et al., 2021; Kohl et al., 2018; Marlin et al., 2015; Wu et al., 2014), emotional regulation 558 
(Anderson and Adolphs, 2014; Dolensek et al., 2020), and the multiple effects of social 559 
deprivation (Anneser et al., 2020; Matthews et al., 2016; Tunbak et al., 2020; Zelikowsky et al., 560 
2018). 561 
            562 
It remains to be seen whether such brain-wide concerted activity patterns are important for the 563 
execution of state-dependent behavior, or are a mere consequence of shared activity across 564 
recurrently connected circuits that span multiple brain regions. This could be tested in future 565 
studies by independently manipulating state-dependent population activity in different brain 566 
regions and measuring the effects on state-dependent behaviors and activity in other regions. To 567 
understand these mechanisms, better knowledge of how the cellular actions of neuromodulators 568 
collectively produce global brain state-dynamics is needed. 569 
  570 
A central role for neuromodulation 571 
Perhaps the largest unifying factor identified in the control of distinct internal states and their 572 
impact on behavior is the role of neuromodulators (Bargmann, 2012; Bargmann and Marder, 573 
2013; Flavell et al., 2013; Harris-Warrick and Marder, 1991; Kennedy et al., 2014; Marder, 574 
2012; Nusbaum and Blitz, 2012; Taghert and Nitabach, 2012; Zelikowsky et al., 2018).   575 
 576 
Neuromodulators occupy an ideal position with respect to the control of internal states – they 577 
modulate synaptic and cellular function over long time scales due to their impact on biochemical 578 
signaling and ion channel function, they can titrate their effects via magnitude of modulator 579 
release, and they can act locally as well as send far-reaching diffuse signals across multiple brain 580 
regions (van den Pol, 2012). This makes them prime candidates for the flexible, scalable, and 581 
persistent control of behavior – key requirements for an internal state. 582 
  583 
Foundational principles discovered in reduced invertebrate circuits 584 
While much of this review focuses on the nervous systems of animals amenable to behavioral 585 
study of internal states, it is important to recognize that much of our understanding of 586 
neuromodulation derives from the study of invertebrate circuits in reduced preparations - 587 
including the stomatogastric ganglion of crustaceans, the swimming central pattern generator of 588 
the mollusc, the motor system of the leech, the abdominal and buccal ganglia of the sea slug 589 
Aplysia, and others (Bargmann, 2012; Bargmann and Marder, 2013; Getting, 1989; Harris-590 
Warrick and Marder, 1991; Kristan and Calabrese, 1976; Marder, 2002; 2012; Marder and 591 
Calabrese, 1996; Marder and Thirumalai, 2002; Nusbaum and Blitz, 2012; Taghert and Nitabach, 592 
2012). The experimental access of these circuits, often exhibiting complex and flexible rhythmic 593 
dynamics in vitro, enable detailed electrophysiological and biochemical analysis of functioning 594 
neural networks across states of experimentally-induced modulation.  595 
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 596 
Pioneering studies using these preparations have established that neuromodulators are capable of 597 
switching functional networks between different modes of population activity ((Dickinson et al., 598 
1990; Eisen and Marder, 1984; Getting, 1989; Getting and Dekin, 1985; Nusbaum and 599 
Beenhakker, 2002; Nusbaum et al., 2001; Powell et al., 2021), through extrinsic and local 600 
sources of neuromodulation (Katz, 1998; Katz and Frost, 1995; 1996; Katz et al., 1994) that act 601 
upon membrane excitability and synaptic transmission (Katz et al., 1994; Martin et al., 1997; 602 
Nadim and Bucher, 2014). These neuromodulators exert their effects on multiple neurons and 603 
networks in parallel (Brezina, 2010; Harris-Warrick and Johnson, 2010; Harris-Warrick and 604 
Marder, 1991; Marder, 2012; Schwarz et al., 1980; Taghert and Nitabach, 2012), and each 605 
neuron or synapse is subject to modulation by multiple sources, often with converging effects on 606 
common intracellular signaling pathways and ionic conductances (Flamm et al., 1987; Hempel et 607 
al., 1996; Kintos et al., 2016; Swensen and Marder, 2000; 2001). 608 
 609 
While we cannot fully discuss the breadth and influence of this literature here, we would like to 610 
emphasize how its influence has greatly shaped subsequent work on state-dependent behavior 611 
and neuromodulation in larger animals. As we will discuss in the remainder of this section, these 612 
pioneering studies identified themes that are present across small and large circuits alike, and 613 
raise still-unanswered questions about how to interpret the complexity and behavioral 614 
significance of heavily modulated networks (Getting, 1989; Marder, 2012). 615 
 616 
Neuromodulatory systems possess a Fan-In/Fan-Out organization 617 
Most ascending neuromodulatory systems display a characteristic organization in which a 618 
relatively small group of neuromodulator-producing neurons receives diverse synaptic inputs and 619 
sends diffuse projections to many brain regions (Figure 4) (Ren et al., 2018; Saper et al., 2010; 620 
Weissbourd et al., 2014). This gives rise to a “fan-in” organization where signals converge onto 621 
the neuromodulator-producing neurons and a “fan-out” organization in which the modulators 622 
impact many downstream brain regions. This fan-out organization of neuromodulatory systems 623 
is observed at the anatomical level in diverse organisms (Figure 5A). For example, in C. elegans 624 
the serotonergic neuron NSM releases serotonin at non-synaptic neurosecretory terminals that 625 
are apposed to the nerve ring – the main neuropil of the worm’s brain (Nelson and Colon-Ramos, 626 
2013). In zebrafish, oxytocin neurons project from the hypothalamus to influence multiple 627 
regions across the forebrain, midbrain, brainstem, and spinal cord (Herget et al., 2017; Lovett-628 
Barron et al., 2020; Wee et al., 2019a). In mice, multiple monoaminergic neuron types project 629 
across the brain (Ren et al., 2019; Schwarz et al., 2015). These are just a few of many examples. 630 
This overall organization likely allows neuromodulatory systems to encode the brain state’s by 631 
integrating multiple inputs, and exert coordinated control by broadly influencing multiple brain 632 
regions simultaneously.  633 
 634 
A notable alternative to this organization is local processing distributed across multiple sites, 635 
controlled by single (Zelikowsky et al., 2018a, see “Theme 1” below), or multiple neuropeptide 636 
systems. Such distributed effects could be far more prominent than is currently appreciated, 637 
driven by widespread expression of neuropeptides and receptors, which has been observed in C. 638 
elegans (Taylor et al., 2021) and in mammalian striatum (Castro and Bruchas, 2019) and 639 
neocortex (Smith et al., 2019). See Theme #1 below for more on this topic.      640 
  641 
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Volume transmission allows neuromodulatory systems to signal diffusely and over long 642 
timescales 643 
Another feature of neuromodulatory systems that may endow them with a specialized ability to 644 
control internal states is their action through volume transmission. Decades ago, electron 645 
microscopy studies of neurons that release biogenic amines, such as dopamine, serotonin, and 646 
norepinephrine, revealed that these cells often display putative active zones at non-synaptic 647 
varicosities along their axons (Calas et al., 1974; Descarries and Mechawar, 2000; Descarries et 648 
al., 1996). These observations, which have also been made for dense core vesicle release sites in 649 
neuropeptide-releasing neurons, suggest that these transmitters can be released extrasynaptically 650 
(Oti et al., 2021; Persoon et al., 2018; van de Bospoort et al., 2012). In the case of neuropeptides, 651 
release from dendrites has even been observed (Ludwig and Leng, 2006). Many of these 652 
transmitters also function at classical synapses and the degree to which they act via synaptic 653 
versus extrasynaptic volume transmission varies by brain region (Moukhles et al., 1997). In 654 
invertebrate systems, extrasynaptic release sites for amines and neuropeptides are also widely 655 
observed (White et al., 1986). In addition, these transmitters can be released into circulating 656 
fluid, which allows them to act as neurohormones (Kravitz, 2000; Reiter et al., 2014; White et 657 
al., 1986). 658 
 659 
Extrasynaptic release of neuromodulators could allow these transmitters to diffuse and persist in 660 
brain tissue, which might allow for long timescale modulation of target cells. Indeed, the 661 
receptors and transporters for these transmitters are commonly localized microns or tens of 662 
microns away from active zones (Callado and Stamford, 2000; Liu et al., 2021). Measurements 663 
of extracellular amines and neuropeptides, via voltammetry and newer fluorescent sensors 664 
(Sabatini and Tian, 2020), support the view that neuromodulators persist in extracellular space 665 
for 100s of milliseconds to many seconds (Bunin and Wightman, 1998; Callado and Stamford, 666 
2000; Park et al., 2011). Work in this area has been most extensive for dopamine and, while 667 
recent results support the idea that dopamine can act through volume transmission, the presence 668 
of dopamine at levels sufficient to activate its receptors likely only occurs over a micron away 669 
from an active zone during synchronous release from multiple nearby active zones (Beyene et 670 
al., 2019; Jan et al., 1979; Liu et al., 2021). Estimates of neuropeptide diffusion based on photo-671 
uncaging suggest potentially longer-range diffusion (Banghart and Sabatini, 2012). Further 672 
studies using recently developed neuromodulator sensors will more precisely clarify these 673 
dynamics, which may be critical to internal state control. 674 

  675 
Neuromodulators stably alter neuronal excitability to control persistent internal states       676 
In addition to slow diffusion of the ligand, the long timescale action of neuromodulators is also 677 
thought to be due the fact that amines and neuropeptides primarily act through metabotropic 678 
receptors, which activate biochemical signaling pathways that remain active after receptor 679 
activation (Figure 5B, C). The activation of these pathways can modulate cellular excitability 680 
and a variety of other cellular processes. As described above, the effects of metabotropic 681 
signaling on neuronal activity have perhaps been best characterized in the stomatogastric ganglia 682 
of crustaceans, where metabotropic pathways converge onto a number of different currents to 683 
modulate neuronal excitability.  However, classical neurotransmitters can also act through 684 
metabotropic receptors, for example mGluRs, and neuromodulators can sometimes act via 685 
ionotropic receptors (Ringstad et al., 2009; Thompson and Lummis, 2006), so this feature does 686 
not fully distinguish the neuromodulatory systems from other neurotransmitters. Nevertheless, 687 
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neuromodulator-dependent activation of metabotropic signaling has been directly linked to the 688 
generation of internal states. 689 
 690 
Related to persistent internal states, neuromodulator-induced activation of metabotropic 691 
signaling is known to regulate persistent neural activity in many systems. For example, in the 692 
presence of a muscarinic agonist, current injection into mammalian layer V entorhinal neurons 693 
elicits a remarkably stable increase in firing rate that can occur in a graded manner (Egorov et 694 
al., 2002). In the presence of serotonin, spinal motoneurons display bi-stable activity 695 
(Hounsgaard and Kiehn, 1989). In Drosophila, dopamine acting through the Dop1R2 receptor 696 
and downstream potassium channels can stably alter the excitability of the dorsal fan-shaped 697 
body neurons to control sleep (Pimentel et al., 2016). In the striatum, dopamine persistently 698 
elevates the excitability of D1 receptor-expressing striatal projection neurons (Lahiri and Bevan, 699 
2020). Indeed, metabotropic regulation of firing modes appears to be a common property of 700 
neurons (Derjean et al., 2003). In vivo electrophysiological studies of thalamic and cortical 701 
contributions to arousal states also support a role for neuromodulatory systems in eliciting stable 702 
activity (McCormick, 1992; McCormick and Prince, 1986; Pape and McCormick, 1989; Steriade 703 
et al., 1993). Behavioral state-correlated activation of cholinergic and noradrenergic axons in 704 
cortex is associated with sustained depolarizations in pyramidal cells (Goard and Dan, 2009; 705 
Meir et al., 2018; Pinto et al., 2013; Polack et al., 2013). Overall, these studies provide evidence 706 
that neuromodulatory control of persistent neural activity contributes to the generation of internal 707 
states. 708 
  709 
Neuromodulators stably alter biochemical signaling to control persistent internal states 710 
Studies linking neuromodulator-induced biochemical signaling to internal states have been most 711 
extensive for the cAMP-PKA pathway. Fluorescent sensors of cAMP levels and PKA activation 712 
have revealed persistent increases in cAMP levels and downstream signaling with kinetics on the 713 
order of tens of seconds to minutes in freely-moving flies (Thornquist et al., 2021), and mice 714 
(Lee et al., 2019; Zhang et al., 2021). These kinetics have been tied to internal state generation in 715 
several organisms.  716 
 717 
One example is the set of Corazonin neurons in Drosophila, a small group of neurons controlling 718 
the animal’s drive to copulate. Graded accumulation of cAMP in these neurons over minutes 719 
during successive activity bouts can trigger a synchronous burst of network activity, or eruption, 720 
that changes the motivational state of the fly such that its copulation drive is reduced (Thornquist 721 
et al., 2021). Optogenetic elevation of cAMP levels in Corazonin neurons can elicit this state 722 
transition. Another example is from the zebrafish brainstem, where stable accumulation of 723 
evidence also occurs downstream of alpha-1B adrenergic receptors in radial glia, where 724 
noradrenaline release during successive futile actions stably increases glial calcium levels to 725 
elicit a transition to a passive behavioral state (Mu et al., 2019). Long-lasting activation of 726 
astrocytic signaling in mammalian circuits has also been linked to stable states of neural activity 727 
(Deemyad et al., 2018), suggesting that this may be a recurring mechanism for stable 728 
accumulation of persistent activity. Finally, a recent study of mating drive in male mice showed 729 
that stable increases in cAMP occur in MPOA neurons after transient hypothalamic dopamine 730 
release activated by a social encounter with a female (Zhang et al., 2021).  This then triggers a 731 
stable state of motivation to mate, whose kinetics match cAMP kinetics in MPOA neurons. 732 



17 
 

Together, these studies highlight how the timescale of biochemical signaling is closely linked to 733 
the persistence of internal states. 734 
 735 
Other stable neuronal signaling pathways also contribute to behavioral state generation. 736 
Activation of the calcium-dependent protein kinase CaMKII in Drosophila Corazonin neurons 737 
delays a motivational state change that terminates copulation until 5-7min after copulation begins 738 
(Thornquist et al., 2020). Interestingly, previous work has shown that CaMKII activation initially 739 
requires elevated calcium levels, but the activation of the 12-subunit CaMKII holoenzyme can be 740 
sustained in a calcium-independent manner through autophosphorylation of adjacent subunits, 741 
allowing for stable, minutes-long activation of the enzyme (Lisman et al., 2012; Miller and 742 
Kennedy, 1986).  Sustained activation of CaMKII in Corazonin neurons detected through 743 
fluorescent reporter imaging was shown to have a causal effect on the timing of the motivational 744 
state transition of the fly. This work demonstrates how stable biochemical pathways within 745 
neurons can influence network activity and internal states. 746 
  747 
Gene expression changes across internal states 748 

While stable, activity-induced changes in gene expression are essential for lasting 749 
behavioral changes during long-term memory and circadian timing (Dubowy and Sehgal, 2017; 750 
Yap and Greenberg, 2018), the role of dynamic gene expression in persistent internal states is 751 
less well studied. However, changes in gene expression have been notably detected across 752 
feeding states. For example, feeding state-dependent changes in neuromodulator (Entchev et al., 753 
2015) and chemoreceptor (Sengupta, 2013) expression in C.. elegans have been linked to satiety-754 
related behavioral changes.  Similarly, food deprivation alters the expression of hundreds of 755 
genes in AGRP neurons of the hypothalamus (Henry et al., 2015). Gene expression changes in 756 
lateral hypothalamus are even associated with the onset of obesity over days (Rossi et al., 2019). 757 
 758 
Gene expression changes have also been linked to other motivational drives, for example the 759 
drive to copulate in Drosophila. Abstinence from copulation elicits an increase in activation of 760 
the neural activity-dependent transcription factor CREB in a group of neurons that form a 761 
recurrent loop (Zhang et al., 2019). The stable expression of a CREB-induced potassium channel 762 
then influences mating behavior for hours to days after animals have mated and CREB activation 763 
has subsided. Given that activity-dependent transcription is a ubiquitous feature of neuronal gene 764 
expression and that it can reflect historical patterns of neural activity in a surprisingly precise 765 
manner (Brigidi et al., 2019), it may play a similar role in the control of other drive states. Given 766 
that these activity-dependent pathways are also known to regulate structural plasticity, future 767 
work may be aimed at examining whether internal states are accompanied by structural changes 768 
in neural circuits. Overall, the links between neuromodulator-induced biochemical signaling and 769 
internal state generation are now becoming apparent, but our understanding of this relationship is 770 
still in its infancy. 771 
  772 
Emerging themes of internal state control across species 773 
Despite substantial variability amongst internal states within an organism and across different 774 
organisms, there exists a striking commonality in how some of these states are organized in the 775 
brain. Indeed, recent studies have identified several examples of common neural mechanisms 776 
that contribute to internal state control.  777 
  778 
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Theme 1: Internal states influence multiple circuits and cell types in parallel 779 
While the predominant view of internal states favors a “hub and spoke” type of “fan-out” 780 
mechanism (highlighted above), there is evidence for the control of internal states in a more 781 
distributed, parallel action manner. Here, we highlight a few key examples. 782 
 783 
Above, we highlighted how neuromodulators can act locally within a given brain region to exert 784 
control over behavior.  However, there is growing evidence that neuromodulators can exert their 785 
state-like control over behavior in a distributed manner across numerous brain regions 786 
simultaneously. For example, Zelikowsky and colleagues identified a role for the neuropeptide 787 
Tachykinin 2 (Tac2) in the control of an internal brain state produced by prolonged social 788 
isolation stress (Zelikowsky et al., 2018).  Using a multiplex approach employing a variety of 789 
loss-of-function techniques and testing multiple behaviors, the authors discovered that Tac2 790 
signaling is necessary and sufficient for the effects of social isolation to produce enhanced 791 
aggression, persistent fear, and acute fear responses.  Importantly, the authors found that each 792 
isolation-altered behavior was independently controlled by Tac2 signaling in distinct brain 793 
regions This “web-like” distributed, local circuit organization has also been shown to control 794 
additional states and systems.  795 
 796 
One prominent example is the role of the neuropeptide pigment-dispersing factor (PDF) in the 797 
control of circadian rhythms.  Indeed, PDF has been shown to coordinate the phase and 798 
amplitude of circadian rhythms through its action on separate populations of cells across the fly 799 
brain (Lin et al., 2004). Importantly, PDF operates in a distributed manner across the fly brain, 800 
providing unified and organized control over circadian rhythms in flies despite the unique effects 801 
that PDF exerts in a region-specific manner (Taghert and Nitabach, 2012). Local, distributed 802 
neuromodulation has also been recently studied in the context of rodent fear behavior, where 803 
disinhibitory interneurons in several neocortical regions have been found to be excited by local 804 
and afferent sources of the neuropeptide Gastrin-Releasing Peptide (GRP) (Melzer et al., 2021). 805 
In the auditory cortex, GRP receptor signaling facilitates auditory fear conditioning, and the role 806 
of GRP signaling in other regions remains to be investigated.  807 
 808 
Collectively, these studies highlight the potential biological benefit of a dispersed internal state, 809 
wherein separate behaviors can be controlled via distinct brain regions, yet remain in concert 810 
with each other through overarching control by a single neuropeptide system. While it is highly 811 
likely that in such examples additional signaling molecules are co-released along with these 812 
neuropeptides (see Theme 2 below), the ability of a single neuropeptide to exert large-scale 813 
effects across the brain and behavior is nevertheless striking. 814 
 815 
Recent work has also shown that single neuromodulators are capable of controlling distinct 816 
internal states in different contexts.  For example, while Tac2 has been implicated in the control 817 
of the state produced by prolonged social isolation (see above), work by Andero and colleagues 818 
has also identified a role for Tac2 signaling in the CeA in the fear state produced by exposure to 819 
footshock (Andero et al., 2016; Andero et al., 2014).  Similarly, while PDF has been implicated 820 
in the regulation of circadian rhythms (see above), additional work by Flavell and colleagues 821 
using genetic screens, quantitative behavioral analyses, and optogenetics also identified a role for 822 
PDF in the control of roaming behavior in worms (Flavell et al., 2013). This pattern of 823 
neuropeptidergic “multi-purposing” can be found in the identification of oxytocin in pair-wise 824 
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bonding (Donaldson and Young, 2008; Froemke and Young, 2021; Insel and Young, 2001), but 825 
also maternal behavior (Marlin et al., 2015), fear (Pisansky et al., 2017), and other states. 826 
Finally, in a series of seminal studies, Galanin+ neurons in the medial preoptic area were 827 
identified in the control of parental behavior in both males and females (Kohl et al., 2018; Kohl 828 
and Dulac, 2018; Wu et al., 2014), while Galanin+ neurons in the ventrolateral preotic area have 829 
been found to promote sleep and heat loss (Kroeger et al., 2018).  830 
 831 
Overall, these examples highlight diversity in function and internal state control for single 832 
neuropeptides operating across the brain to control a single state, as well as the ability of a single 833 
neuropeptide to be “repurposed” to serve in the formation of multiple internal states.  This 834 
diversity can range across brain regions and even species. Importantly, while it is tempting to 835 
assign one-to-one pairings between individual neuromodulators and internal states, this appears 836 
to be an oversimplification. In particular, neuromodulatory repurposing further reinforces the 837 
notion that neuromodulators – with their physiological properties, brain-wide networks, region-838 
specificity, and slow-release, persistent signaling properties – are ideal candidates for the control 839 
of internal states and their effects on behavior. 840 
 841 
Theme 2: Neuromodulators act in concert 842 
Many of the studies discussed in this review highlight the functional role of individual cell types 843 
and neuromodulatory transmitters, suggesting that each of these neuromodulatory systems plays 844 
a unique role in whatever state or behavior was examined. This is unlikely to be the case. One of 845 
the most salient lessons from the study of small invertebrate circuits is that neurons and synapses 846 
are modulated by multiple substances (Getting 1989; Harris-Warrick and Marder, 1991; Marder, 847 
2012), and their interactions produce emergent effects that are not easily predicted from the 848 
actions of one modulator alone (Flamm et al., 1987; Hempel et al., 1996; Kintos et al., 2016; 849 
Swensen and Marder, 2000; 2001).  850 
 851 
Why this discrepancy between the small-circuit literature and more recent studies of 852 
neuromodulatory systems? A possible reason may be the bias of common laboratory techniques. 853 
Modern studies of neuromodulation often use genetic model systems, such as those discussed 854 
extensively here (worms, flies, fish, mice), whose power comes from the specificity they afford: 855 
the ability to study a single genetically or anatomically-defined cell type, or analyze the actions 856 
of specific transmitters and receptors (Luo et al., 2018; Sabatini and Tian, 2020). In contrast, 857 
classical studies in small invertebrate circuits primarily used bath-applied neuromodulatory 858 
transmitters and hormones, allowing for the study of multiple transmitter actions. 859 
 860 
We have reason to believe, however, that an accounting for ubiquitous co-modulation will 861 
become more prominent in genetic model systems as well. For instance, in rodents, single-cell 862 
RNA sequencing has emphasized the fact that each cell expresses a large number of 863 
neuromodulatory receptors (Campbell et al., 2017; Henry et al., 2015; Kim et al., 2019; Moffitt 864 
et al., 2018; Saunders et al., 2018; Smith et al., 2019) and viral strategies allow investigators to 865 
control multiple independent cell types in the same animal (Luo et al., 2018). Furthermore, 866 
recent studies combining live functional imaging with post hoc registration to multiple gene 867 
expression markers (Bugeon et al., 2021; Lovett-Barron et al., 2017; Lovett-Barron et al., 2020; 868 
von Buchholtz et al., 2021; Xu et al., 2020) provides the opportunity to image multiple 869 
genetically-defined cell types at once. In larval zebrafish, this approach has demonstrated that 870 
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multiple neuromodulatory cell types are co-active during states of heightened alertness (Lovett-871 
Barron et al., 2017), and many hypothalamic neuropeptide-producing cell types are co-active 872 
across various homeostatic threats (Lovett-Barron et al., 2020).  873 
 874 
We believe that an appreciation of co-modulation will move the field away from the perspective 875 
of studying neural circuits as “labeled lines” – an approach so useful in the understanding of 876 
sensory systems and reflexes – and towards an understanding of modulated circuits as an 877 
emergent state produced by multiple interacting neuromodulatory effects (Getting 1989; Harris-878 
Warrick and Marder, 1991; Marder, 2012). 879 
  880 
Theme 3: State transitions engage mutually-exclusive neural populations 881 
One common mechanism in the neural encoding of global brain states is the switching between 882 
largely mutually-exclusive populations of neurons that encode opposing states. This is observed 883 
across species and brain states, including well-studied examples of sleep-state switching in 884 
mammals (Saper et al., 2010; Weber and Dan, 2016), zebrafish (Oikonomou and Prober, 2017), 885 
and invertebrates (Shafer and Keene, 2021) as well as mutually-exclusive populations of neurons 886 
encoding hunger states in the zebrafish hypothalamus (Wee et al., 2019b), and distinct 887 
populations that encode separable internal states of social engagement in the mouse (Karigo et 888 
al., 2021). 889 
 890 
The distinction between roaming and dwelling has been studied across species, where distinct 891 
neural populations produce these opposing states: exploration of large spaces in search of 892 
resources (“roaming”) versus exploiting local resources by staying in place (“dwelling”). In 893 
freely-moving C. elegans, the roaming-inducing neuropeptide PDF and dwelling-inducing 894 
monoamine serotonin (Flavell et al., 2013) recruit distinct populations of neurons that are active 895 
in a mutually-exclusive manner to promote each behavior (Ji et al., 2021) (Figure 6A). Of note, 896 
the neurons that generate these opposing neuromodulators mutually inhibit one another to 897 
generate this two-state system. Similarly, brain-wide imaging in freely-swimming zebrafish 898 
larvae (Kim et al., 2017b) also revealed a pattern of mutually-exclusive populations across the 899 
midbrain, diencephalon, and brainstem that encode long-lasting roaming and dwelling states 900 
during hunting behavior, as well as neurons that signal the transition from roaming/exploration to 901 
dwelling/feeding (Marques et al., 2020) (Figure 6B). As in C. elegans, serotonergic neurons 902 
were implicated in initiating dwelling states. Finally, population imaging in the mouse amygdala 903 
revealed that, across behavioral contexts, mutually-exclusive populations of neurons encode 904 
general states of roaming-like exploratory movement and dwelling-like defensive behaviors 905 
(Grundemann et al., 2019) (Figure 6C). 906 
 907 
Together, these studies indicate that mutually-exclusive internal states can be encoded in the 908 
opposing activity of neuronal populations. However, these “flip-flop” dynamics may not 909 
generalize to internal states that exhibit continuous variation or interactions with other states that 910 
are not mutually-exclusive. The population dynamics and switching mechanisms underlying 911 
these states are not yet well explored. 912 
  913 
Theme 4: State persistence through recurrent dynamics 914 
It has long been recognized that neural circuits with recurrent excitation might be able to 915 
generate stable neural responses to transient inputs (Joshua and Lisberger, 2015). For example, 916 
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transient motor signals that move the position of the eye are received by a recurrently-connected 917 
neural integrator circuit whose activity is persistently altered to maintain the position of the eye 918 
(Aksay et al., 2007; Miri et al., 2011). Recent work has now highlighted the importance of 919 
recurrent excitation for the generation of persistent internal states. 920 
 921 
Studies of a neural circuit that controls behavioral states in female Drosophila provide new 922 
evidence that recurrent excitation is important for the generation of internal states. Activation of 923 
pC1 neurons in female flies elicits increased female receptivity to males and increased shoving 924 
and chasing, even several minutes after the optogenetic stimulus has terminated (Deutsch et al., 925 
2020). Distinct subsets of pC1 neurons control female receptivity versus shoving and chasing 926 
behaviors. Interestingly, a brain-wide imaging approach revealed that activation of the pC1d/e 927 
neurons that control shoving and chasing induced persistent activity in many downstream brain 928 
regions, in addition to pC1 neurons themselves. A connectomic analysis showed that pC1 929 
neurons are part of a recurrently connected neural circuit, with prominent reciprocal connections 930 
to aIPg-b and aIPg-c cells, which are also interconnected with one another. As all of these cell 931 
types are excitatory (Schretter et al., 2020), this suggests that pC1 is a functionally important 932 
node in a recurrently connected circuit that elicits a persistent behavioral state. 933 
 934 
In male Drosophila, activation of a stable, recurrently active circuit also underlies behavioral 935 
state generation. Activation of the P1 interneurons elicits a minutes-long internal state that 936 
consists of elevated courtship and aggression (Clowney et al., 2015; Hoopfer et al., 2015). While 937 
P1 neurons are not persistently active during this state, a group of downstream neurons, named 938 
pCD neurons, exhibit long-lasting activation during this internal state (Figure 7A) (Jung et al., 939 
2020). Activity in these neurons is required for stable behavioral changes during the P1-induced 940 
state and transient inactivation of pCD neurons attenuates their persistent neural response to P1 941 
activation, providing evidence that continued pCD activity supports its own persistence. 942 
Transient inactivation of pCD neurons also suppresses persistent aggressive behavior elicited by 943 
recent exposure to a female fly. This study highlights how neural circuits with recurrent 944 
excitation can maintain a persistent internal state. 945 
 946 
Studies in mammals have also implicated recurrent connectivity in the control of internal states. 947 
Activation of VMHdmSF1 neurons in the ventromedial hypothalamus can elicit a state of fear or 948 
anxiety (Kunwar et al., 2015). As a group, the VMHdmSF1 neurons show persistent activation in 949 
response to social sensory cues that can evoke an anxiety state (Kennedy et al., 2020). However, 950 
the dynamics of the neurons within this population vary, with some neurons displaying 951 
immediate onset activation and others ramping slowly. Moreover, neurons in the population 952 
respond differently to different social cues. Several computational models were constructed to 953 
determine whether they could recapitulate features of the population activity. Interestingly, only 954 
the models that included recurrent connectivity and neuromodulation were able to do so, 955 
suggesting that recurrent connectivity and neuromodulation may co-occur in this circuit to 956 
support stable population dynamics (Figure 7B). It is worth noting that there is an additional 957 
similarity between P1 interneurons and VMH neurons, which is that they can both induce 958 
different behavioral states in different sensory contexts. This specific topic has been reviewed 959 
previously in Anderson, 2016.  960 
 961 
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While we note examples here of state persistence driven by recurrent circuits, persistence can 962 
also be achieved by neuromodulatory control of cellular excitability (as discussed above). It is 963 
not well understood whether these mechanisms are interdependent or used in different cases to 964 
achieve similar outcomes depending on the contexts, circuits, or timescales involved. 965 
  966 
Conclusions 967 
In this review, we have discussed our current understanding of internal states: how they are 968 
defined, measured, generated by neurons, as well as how they affect the brain and behavior. 969 
Building upon the insights from many other authoritative reviews about internal states 970 
(Anderson, 2016; Bargmann, 2012; Bargmann and Marder, 2013; Getting, 1989, etc.; Lee and 971 
Dan, 2012; Marder, 2012; McCormick et al., 2020; McGinley et al., 2015a; Taghert and 972 
Nitabach, 2012; Tye, 2018, etc.), here we have emphasized advances in the classification of 973 
internal states, the insights from studying brain-wide populations, and some of the many 974 
biological mechanisms through which neuromodulators can influence states. Importantly, we 975 
have emphasized common principles found across model species. 976 
 977 
While the field has made enormous progress, many fundamental questions about internal states 978 
and their neural basis remain unanswered or completely unexplored. How do sensorimotor 979 
circuits integrate state-relevant information to drive adaptive behavioral responses? To what 980 
extent do neuromodulators have unique versus redundant effects? Are brain-wide dynamics 981 
required for the expression of states or just a consequence of a massively interconnected brain? 982 
Why are some states controlled by a handful of neurons while others are controlled by neurons 983 
distributed across multiple brain regions?  984 
 985 
As the field resolves these mechanistic questions, it may be important to reflect on the challenges 986 
of defining internal states. How do different co-occurring states interact with each other, and 987 
would it be more useful in certain instances to simply refer to the animal’s overall state? Can 988 
states always be inferred from behavior and/or physiology? When do measurements of the brain, 989 
behavior, and physiology reflect the same underlying state and when do they reveal unexpected 990 
distinctions?  Is there a true distinction between motor actions, sequences of motor actions, and 991 
states, or does behavior simply unfold along a continuum of timescales? Can behavior in natural 992 
environments be adaptive in the absence of long timescale state organization?  993 
 994 
One key issue regarding the definition of internal states is their degree of independence.  How do 995 
we know that fear represents a unique internal state, distinct from others such as anxiety?  Is the 996 
ability to distinguish such states dependent on the tools we use for measuring their observable 997 
output?  Would we be able to further splinter internal states into smaller sub-states if we had 998 
better tools? How does selection of model organism affect our ability to isolate and define an 999 
internal state?  Given the wide variability in model organisms as well as experimental 1000 
approaches, would we benefit from a definition of internal states as they pertain to biological 1001 
relevance and their importance to survival? 1002 
 1003 
These questions and more can be addressed using the emerging methodological approaches 1004 
discussed herein, including more rigorous quantification of states using integrated datasets and 1005 
ML approaches, precise observation and control of electrical and biochemical activity across 1006 
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entire nervous systems, and better theoretical frameworks understanding the utility of internal 1007 
states. 1008 
 1009 
As with any search for common principles in biology, this field of neuroscience will benefit 1010 
greatly from studying an expanded set of animal species, challenging animals with more natural 1011 
and varied behavioral conditions, and welcoming scientists to approach these questions with 1012 
diverse views, expertise, and experiences. 1013 
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Figure 1. Features of an example internal state.  

Using fear in rodents as an example, here we show how a central internal state can 

exhibit multiple features and influence a number of behavioral and physiological 

processes. Hallmark characteristics of an internal state, including persistence, scalability, 

and generalizability are illustrated at left, and pleiotropic effects associated with the state 

of fear are displayed on the right. 
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Figure 2. Approaches to infer the presence of internal states from observable 

behavior. 

A) Measuring overt behavior by tracking animal movement (examples: keypoint-based 

pose tracking in lemurs and nematodes).  

B) Inducing need states through environmental control (examples: social or caloric 

deprivation in rodents). 

C) Inferring internal state from transitions in observable movements (example: fly wing 

extension during courtship). 

D) Inferring states from the co-occurrence of multiple behavioral features (example: 

hunting states of larval zebrafish). 

E) Multiple states can interact with one another (example: a hungry rodent may show 

less fear when foraging under predation). 

F) State expression can vary across individuals (example: a rodent’s position in a social 

hierarchy influences their aggressivity and response to stress). 
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Figure 3. Collateralized projections and brain-wide influence of state-inducing 

neurons. 

A) Schematic of projections from AGRP+ hunger-promoting neurons (red) in the arcuate 

nucleus of the mouse hypothalamus.  

B) Schematic of projections from P1 social arousal-promoting neurons (red) in the fly. 

C) Schematic of projections from the serotonergic NSM neuron (red) that promotes 

dwelling states in the nematode. 

D) Stimulating thirst-promoting neurons in the lamina terminals recapitulates the effects 

of natural thirst on behavior (bottom left) and neural populations recorded in multiple 

brain regions (right; from Allen et al., 2019, publisher permission pending) 
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Figure 4. Fan-In and Fan-out organization of internal states and neuromodulatory 

neurons. 

Top: Internal states are influenced by the integration of multiple sensory, motor, and 

internal factors, and themselves influence multiple behaviors and physiological processes. 

Bottom: Similarly, many state-inducing neuromodulatory cell types integrate inputs from 

multiple brain regions, and send outputs to multiple downstream regions. 
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Figure 5. The broad reach and diverse cellular effects of neuromodulators. 

A) Examples of broadly-projecting neuromodulatory neurons in larval zebrafish (Herget et 

al., 2017), adult fly (Deng et al., 2019), and mouse (Li et al., 2018). Publisher permission 

pending. 

B) Neuromodulation can target neurons across the spatial extent of the brain, but, within 

target regions, acts at the scale of intracellular signaling. 

C) Schematics of various neuromodulatory signaling mechanisms in neurons, from rapid 

(top) to persistent (bottom). 
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Figure 6. Opposing brain states engage mutually-exclusive neural populations. 

A) Roaming and dwelling states in C. elegans are supported by opposing sets of neurons 

that mutually inhibit each other (Ji et al., 2021). 

B) Separate brain-wide populations regulate roaming versus dwelling states in hunting 

larval zebrafish (Marques et al., 2019; publisher permissions pending). 

C) Exploration versus anxiety engage different populations of neurons in the mouse 

amygdala (Grundermann et al., 2019; publisher permissions pending) 
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Figure 7. Multiple mechanisms can support the persistence of internal states. 

A) Schematics of persistent neural and behavioral responses to transient sensory stimuli. 

B) One potential mechanism for generating neuronal persistence is slowly-evolving 

biochemical signaling within neurons, which has been demonstrated to control the 

persistence of internal states in flies and mammals (Zhang et al., 2018; 2021; Thornquist 

et al., 2021). 

C) Another potential mechanism is recurrent excitation amongst interconnected neurons, 

as has been recently demonstrated to maintain persistent defensive behaviors in flies and 

rodents (Jung et al., 2019; Kennedy et al., 2020). 
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