Shaping Large Population Agent Behaviors Through
Entropy-Regularized Mean-Field Games

Yue Guan!, Mi Zhou?, Ali Pakniyat3, and Panagiotis Tsiotras?

Abstract— Mean-field games (MFG) were introduced to effi-
ciently analyze approximate Nash equilibria in large population
settings. In this work, we consider entropy-regularized mean-
field games with a finite state-action space in a discrete time
setting. We show that entropy regularization provides the
necessary regularity conditions, that are lacking in the standard
finite mean field games. Such regularity conditions enable us to
design fixed-point iteration algorithms to find the unique mean-
field equilibrium (MFE). Furthermore, the reference policy
used in the regularization provides an extra means, through
which one can control the behavior of the population. We
first formulate the problem as a stochastic game with a large
population of N homogeneous agents. We establish conditions
for the existence of a Nash equilibrium in the limiting case as NV
tends to infinity, and we demonstrate that the Nash equilibrium
for the infinite population case is also an ¢-Nash equilibrium for
the N-agent regularized game, where the sub-optimality ¢ is of
order O(1/V/N). Finally, we verify the theoretical guarantees
through a resource allocation example and demonstrate the
efficacy of using a reference policy to control the behavior of
a large population of agents.

I. INTRODUCTION

Decision making in decentralized systems arises in many
applications, ranging from multi-robot task allocation [1]-
[3], swarm robotics [4]-[6], communication [7]-[9], fi-
nance [10]-[12], etc. The scalability of the solution to large
populations is an important consideration in these settings,
as the complexity of the system increases drastically with
the number of agents.

To address scalability issues, the mean field approach
was introduced in [13]-[16]. The mean-field game (MFG)
formulation reduces the interactions among agents to a game
between a representative agent and a population of infinitely
many other agents. Such a population is often referred to
as the mean field, and the solution in this limiting case is
the mean-field equilibrium (MFE). In the continuous setting,
the MFE is characterized by a Hamilton-Jacobi-Bellman
equation (HIB) coupled with a transport equation. The HIB
equation describes the optimality conditions for the policy of
the representative agent, and the transport equation captures
the evolution of the population distribution. Furthermore,
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the optimal policy computed by the representative agent
constitutes an e-Nash equilibrium when all the agents in the
finite N-population deploy this policy, for some sufficiently
large N. The existence and uniqueness of such an optimal
policy have been established in [13].

Although the discretization of continuous MFG has been
studied in prior works [17], direct analysis results for
discrete-time and finite state-action space MFG are still
relatively sparse. One of the challenges in the finite MFG
is the absence of regularity conditions regarding the mean
field [18]. That is, when the population mean field changes
slightly, the corresponding optimal policy for the represen-
tative agent could change drastically [19]. Previous works
have used Boltzmann policies [20] and projection to meshed
probability measure spaces [18] to avoid such issues. More
recent works directly introduced a relative entropy term
to the reward structure to provide regularity conditions.
The existence of stationary entropy-regularized MFE was
examined in [21]. The authors in [19] studied transient
MFGs with finite horizon. They used entropy-regularization
to stabilize the iterative algorithm and reduced regularization
over time to search for the equilibrium of the original MFG.

Different from these previous works, our work considers
the reference policy in the entropy-regularization as an extra
feature that allows us to control the behavior of a large
population. Consider the situation, for instance, where a “co-
ordinator” of a large population of agents desires to impose
a certain group behavior, but it does not have access to the
actual rewards. The agents are selfish and not concerned
about the overall performance of the population, but they
have access to their own actual rewards. If the coordinator
designs a policy and forces the whole population to adopt
it, the result could be undesirable, as such a policy will
not be informed of the actual agent rewards. Without a
reference policy, however, agents may fail to find the MFE,
or they may find a MFE that does not induce a desirable
group behavior. We argue that the entropy-regularized MFG
is a good framework to model such scenarios. Through
a resource allocation example, we show that by adjusting
the multiplier of the regularization term, we can produce a
tuneable behavior of the population that trades off between
the desirable group behavior and the cumulative rewards each
agent collects.

Contributions: In this work, we formulate a game of N-
homogeneous agents and show that under pair-wise coupled
rewards, the state of such a system can be exactly represented
by a distribution over the state space. We then consider
the limiting infinite population game and introduce entropy



regularization to construct contractive operators to find the
unique regularized MFE. We consider a special class of
MFGs where the agents have coupled rewards but decou-
pled dynamics. For this class of MFGs, we streamline and
simplify the convergence proof of [19]. Finally, we verify
the theoretical results through a numerical example for a
resource allocation problem and demonstrate that certain
performance is not possible without entropy-regularization
and a properly selected prior.

II. PROBLEM FORMULATION

In this work we follow the notation established in [19].
Consider a large population game consisting of /N homo-
geneous agents, where typically N > 1. We define the
game through the tuple (S, A, 7,RY,..., RN, N,T). The
game is over a discrete-time with a finite horizon 7. In this
formulation, we assume that all agents share the same finite
state space S and the same finite action space A. At time
t, agent ¢ takes an action at € A and transitions from state
si to s, according to the dynamics 7, which we discuss
in more detail later. As a consequence of its own action,
as well as the actions of all other agents, agent ¢ receives
a reward Ri(s!,al,s; "), where s; * is a shorthand notation
for (s},...,si 1 st 0 s, Each agent follows a (time-
varying) Markov policy ’R’i = {mi}L,, such that at each
time step ¢, this policy is a mapping 7} : S x A — [0, 1] that
satisfies > 7 (a|s’) = 1 for all s* € S. We use II to denote
the space of admissible policies. Overloading the notation,
we denote the set of discrete time steps as 7' = {0,...,T}.

a) Dynamics: We assume that all agents have the same
decoupled dynamics 7 : S x § x A — [0,1]. The value
of T (sty1|8¢,a:) represents the probability of transitioning
from state s; to state s;y; under action a;. The function
T satisfies Y05 T(s'[s,a) = 1, forall s € Sand a €
A. In the sequel, we use the notation 7 (-|s, 7}) to denote
the distribution of agent ¢’s state at the next time step by
following the policy 7. Formally,
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Assuming that all agents start with the same initial state
distribution o and that each agent i deploys a policy 7,
we have N independent processes, where the ¢-th process
follows the dynamics
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b) Rewards: We consider the following reward struc-
ture. For each agent 4, its reward at time ¢ is defined as
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where ©; : R — R is a real-valued function, and L; is a
pairwise state-coupled reward function.
We make the following assumptions on ©; and L;.

Assumption 1. The function ©y is uniformly globally Lips-
chitz continuous in t with Lipschitz constant Ko. That is, for
allz,y € R, and forallt € T, |0:(x)—60:(y)| < Ko |z—yl.

Assumption 2. The function L; is bounded, that is, there
exists Limax such that |Li(s,a,8")| < Lmax, for all s,s" €
S,aec Aand t € T.

We can then define the maximum magnitude of the reward
as Rmax = MaX|g|<r,... |O:(T)].

Note that the reward structure in (3) is indifferent to the
ordering of the agents. As a consequence, agent i’s reward
can be computed, given only the fraction of agents at each
state. This observation motivates the aggregation of the state
of the whole system (s}, ..., s ) to an empirical distribution
of the agents’ states.

¢) Empirical distribution: For the N processes in (2),
we define the empirical distribution at time ¢ as

1 N
=2 L(st), ses, “)
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where 1, is the indicator function, i.e., 1,(y) =1if y =z,
and 0 otherwise. The empirical distribution flow is defined as
= {uN1T_ . Note that ¥ is a probability measure over
S. We denote the space of probability measures over S as
P(S). Then, M = (P(S))" " is the space of the probability
measure flows and p¥ € M.
d) Metric spaces: To establish the convergence results

later, we first present the metric spaces of the distribution
flow M and the policy space II.

We use total variation as the metric for the probability
measure space P(X) [22]. When X is finite, the total
variation between v,v’ € P(X) is given by
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We equip both M and II with the sup metric induced by the
total variation. That is, for u, i’ € M, we define

daa(p, i) = maxdry (us, ) (5)
and for policies 7, 7" € II
dn(m, 7') = maxmax dry (m(s), m(s)) (6)

where 7:(s) € P(A) is the distribution the policy assign
over actions when an agent is at state s.

It can be shown that both (M,d ) and (II,dy) are com-
plete metric spaces.

e) Distribution induced rewards: Due to symmetry, the
state-coupled reward in (3) can be characterized through the



empirical distribution. That is,
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With this observation, we define the reward for each agent
induced by the empirical distribution ¥ as
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Lemma 1. The reward function Ri(s,a,v) in (7) is globally
Lipschitz with respect to the probability measure v € P(S),
with Lipschitz constant 2Kg Ly ax.

Proof. One can verify that, for all v,v" € P(S),
|Li(s,a,v) — Li(s,a,V")| < 2Lpaxdry (v,V) .

Then, through composition with Lipschitz function ©y, the
desired Lipschitz constant for R}(s, a,v) can be shown. [

f) Expected cumulative reward: The expected cumula-
tive reward of agent ¢ induced by the policies of the agents

(mt,...,7N) is given by

T
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where the expectation is taken over the trajectories of the
system where each agent 7 starts with the initial distribution
1o and follows policy 7¢. Each agent’s objective is to select
a policy that maximizes its own expected cumulative reward.
We therefore have the following N coupled optimization
problems:

max J4N (7t 77, i=1,...,N. 9)
miell
One of the most common solution concepts for games is

the Nash equilibrium [23].

Definition 1. A Nash equilibrium is a tuple (7'*, ... 7V*)
such that for all 1 =1,..., N,

Ji,N(,n_i7 ﬂ_—i*) S Ji’N(ﬂi*7 ,]_(_—z’>s<)7 V’]Ti c Il

Definition 2. For ¢ > 0, an e-Nash equilibrium is a tuple
(m'*, ..., 7N*) such that for all i = 1,..., N,

Ji,N(Wi’,lei*) < Ji,N(Wi*’Wfi*) +€, V’/Ti cIl. (10)

In other words, when operating at an e-Nash equilibrium,
any unilateral deviation can improve an agent’s performance
by at most e.

In this paper, we restrict our attention to identical policies
for all agents.

Assumption 3. 7! = 7/ forallt € T andi,j € {1,...,N}.

This simplifying assumption leads, in general, to a loss
in performance. Readers can refer to [24] for an example.
However, identical policy is a standard assumption in the
literature on large scale systems for reasons of simplicity and
robustness [25]. In the mean field setting, such an assumption
is needed to fully exploit the potential of the symmetric
structure in the problem formulation.

In light of Assumption 3, henceforth, we will drop the
superscripts on the policies and denote the policy used by
all agents at time ¢ as .

III. MEAN FIELD APPROXIMATION

When N approaches infinity, the limiting game constitutes
the mean field game. The mean field is defined as the
empirical distribution of the infinite population. We denote
the mean field at time ¢ as u;. Aside from describing the
infinite population, the introduction of the mean field also has
attractive computational benefits. Recall that the empirical
distribution in (4) is a random vector. To properly evaluate
the expected reward with the nonlinear function ©; in (3),
one needs the distribution of p}¥ at each time step. With a
general dynamics 7, the propagation of the distribution of
uN could be computationally expensive. On the other hand,
under the identical policy 7 used by all agents, the trajectory
of the mean field is deterministic [21]. Furthermore,
follows a simple propagation rule:

(1)

where [T (7)] is a right stochastic matrix constructed based
on (1). We refer to the time sequence p = {1, }1_, € M as
the mean field flow.

It is tempting to approximate the empirical distribution
of a finite N-population with the mean field. Indeed, as we
show in Section IV, the empirical distribution converges to
the mean field as the number of agents approaches infinity
with rate O(1/v/N).

A. Representative Agent

perr = pe [T ()],

Before tackling the large population game with N agents,
we consider the limiting infinite population case via spec-
ifying the behaviour of the representative agent. Since the
effect of dynamic uncertainties on all agents takes the same
form, the mean field flow p can be solely generated from
the representative agent’s dynamics and its policy. Assuming
that the mean field flow p is known and fixed, this yields a
standard MDP (S, A, T, R,,). The state space, action space
and the transitions of the induced MDP come directly from
the original game. The reward induced by the mean field p
is given by

Ry,t(sa a) =0y (Lt(s, a, Mt))

The representative agent can then maximize its expected
cumulative reward given the mean field flow p as follows:

12)
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Note that the optimal policy obtained depends on . We use
the operator B,p : M — II to denote the mapping from the
mean field flow to an optimal policy of the induced MDP!:
T = Bopt, (1) - (14)
When all agents deploy the policy 7 of the representa-
tive agent, a new mean field flow is induced and can be
propagated via (11) starting from p. We use the operator
Bprop : I = M to denote this propagation. That is,
= Bprop () . (15)
The mean field equilibrium (MFE) is defined as a consis-
tent pair of (7*, u*) € IT x M such that

7" = Bopt (l‘*) g

The existence of such consistent pair can be established
through a Brouwer’s fixed point argument [26]. One may
attempt to use fixed-point iterations to find a solution to (16).
Unfortunately, the composed mean-field equilibrium operator
I' = Bprop © Bopt is only non-expensive and not contractive,
in general. One may refer to the examples and the proof of
this statement in [19].

1 = Bypop (7). (16)

IV. ENTROPY-REGULARIZED MEAN FIELD GAMES

Entropy regularization techniques have been used exten-
sively to stabilize learning algorithms and to reduce maxi-
mization bias [27]-[29]. The extra entropy cost introduced to
the reward structure prevents abrupt policy changes between
iterations. In the context of mean field games, entropy-
regularization stabilizes the system such that a small change
in the mean field flow does not cause an abrupt change in
the optimal policy of the representative agent, thus inducing
a contractive MFE operator.

Given a reference policy p € II such that pi(als) > 0
forall t € T,s € S, and a € A, we introduce an entropy
regularization term to (13) as follows:

JIE (i p) (17)
T

Z (Ru,t(sta at) - %log m(at'St))} ,
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where 8 > 0 is the inverse temperature, and it is a design
parameter. The reference policy can encode any preference
one has about the population behavior. When no such infor-
mation encoding is needed, one can simply use a uniform
prior. When 3 is small, the regularization term in (17) is
dominant, and 7 approaches the reference p. When £ is large,
the agent is allowed to diverge from the reference policy to
increase the rewards collected. As a consequence, the optimal
m approaches a greedy policy produced by B,y as in (14).

n general, Bopt is a set-valued function, since the optimal policy of an
MDP needs not be unique. One may refer to [19] for more details.

A. Optimization for the Regularized MDP

It can be shown that the unique optimal policy that
solves maxy J X" (; p) is given by the following (weighted)
Boltzmann distribution [27]

7KL (a]s) = —— py(als) exp [BQK% (s, a: )]

18
705) (18)

where Z;(s) is the normalization factor, and the entropy-
regularized state-action value function Q7 can be obtained
from the LogSumExp recursion:

Qi (s,a;p) = Ryu(s,a)
+ 50, T(s'ls.a) ($10g Y2, prlals) exp [BQLY, 1 (s.asp)] )

with the boundary condition Q) 7-(s, a; p) = Ry 7 (s, a). Let
the entropy-regularized policy optimization be described by
the operator B}fplg! s+ M — IL. We can then define the
entropy-regularized MFE (ER-MFE) operator T;" : M —
M as

TEY = Bprop 0 Bot 5 (19)

The regularized equilibrium is then defined as follows.

Definition 3. The entropy-regularized mean field equilibrium
(ER-MFE) is a consistent pair (7% (BE*) € TI x M such

that 7.(.KL* — Bg{pItJﬁ(MKL*) and MKL* — Bprop(ﬂ-KL*)-

In the sequel, we establish the existence and uniqueness
of the ER-MFE. The main goal is to show that the ER-MFE
operator FgL is contractive if the inverse temperature 3 is
selected properly. The following derivation is more direct
and easier to demonstrate than the one reported in [19]. The
reason is that we are restricting ourselves to the case when
the agents have decoupled dynamics. This case allows us
to individually analyze the trajectory of each agent. As a
consequence, the cross disturbance analysis for the e-Nash
argument is streamlined, since a single agent’s deviation from
the optimal policy does not directly impact the empirical
distribution of the rest of the population. In addition, the
decoupled dynamics gives us an expression for the Lipschitz
constant of Bp,.p, while no such explicit formula for this
constant is provied in [19].

B. Convergence Analysis

We first establish the Lipschitz continuity of the operators

Byrop and B 5 in the following Lemmas.

Lemma 2. For all ©, 7' € II, we have that

dm (Bprop (7T)7 Bprop(ﬂ—/)) < Kprop dn (7T, 77/)7 (20)
where .
_ 1SIdst - 1)
Kprop = ST=1 21
Proof. See the Appendix. O

The following two Lemmas are adopted from the results
in [19].



Lemma 3 ( [19]). Under Assumptions 1 and 2, the entropy-
regularized Q-function QEL is Lipschitz with respect to p,
that is,

max
t,s,a

Qul (5,01 p) — Qi (5,a50)| < KB daa (1, 10)

Furthermore, KgL = maxXo<¢<T Kéﬂ;, where Ké{% is de-

fined via
pmax €xXP(2Bmax (T+1) Rmax K&5's 4 1)

Pmin
(22)
with boundary condition Kg = 2Kg Lmax, and pmax =
maxy s q Pr(als) > 0, pmin = ming s 4 p(als) > 0.

KQ t — 2K®Lmax +

Lemma 4 ( [19)). Under Assumption 1,
regularized operator BXL opt IS Lipschitz, that is,

dH (Bopt ﬁ( ) Bopt [5( )) < Koptﬁ d./\/l (,ufvﬂl)v

where,

the entropy-

|A‘(|A| — 1)Bpmax KKL

KK
2pmm

opt,8

(23)

The Lipschitz continuity in Lemma 4 guarantees that a
small change in the mean field can only result in a small
change in the optimal policy. With the Lipschitz constants of
Bprop and l’)’opt 3. We arrive at the following result regarding
the selection of 3 to ensure convergence.

Theorem 1. The entropy-regularized mean-field equilibrium

(ER-MFE) operator FEL = Bprop © prlgy 3 Is contractive for
202 1

pmaX|A|(“’4| - 1) K KDYOP

Proof. Choosing 3 as in (24) Kpop KR opt.p < 1. Conse-
quently, the ER-MFE operator T';" in (19) is contractive. [J

f < min {5max,

C. Error Bounds on the Mean Field Approximations

To motivate the proof of error bounds on the mean field
approximation, we first present the following lemma, which
characterizes the asymptotic convergence of the empirical
distribution flow 1"V to the mean field flow p as the number
of agents N approaches infinity.

Lemma 5. Suppose a mean field flow u is induced by
the representative agent with policy w. Let pY denote the
empirical distribution of an N-agent system, where all agents
deploy the same policy . Then, for all t € T,

B dre (. m)] = 0( 7).

Proof. Since the dynamics is decoupled and all agents apply
the same policy, the N processes in (2) are i.i.d. The
convergence rate is then a result from the L? weak law of
large numbers [30]. For details see the Appendix. O

(25)

Next, we show that the ER-MFE =* for the infinite
population game is an e-Nash equilibrium for a finite V-
agent regularized game.

Theorem 2. Consider an ER-MFE (7*
7 € II, we have

w*). Then, for all

1
— 26
m)’ (20)

where J*N (7, 70*) is the value induced when agent i applies
policy 7 and all other agents apply policy 7*.

JN Gm ><J§£V<w*m*>+0(

Before we present the proof for Theorem 2, we first es-
tablish the convergence of the deviated empirical distribution
to the optimal mean field.

The N-agent trajectory under the optimal policy 7* is
given by si ., ~ T(-|si,m;(s}) for i = 1,...,N.
Without loss of generality, we let agent 1 deviate from 7*
by selecting the policy 7. The trajectory of the deviated N-
agent system with agent 1 following 7 and all other agents
following 7* is given by sy, ~ T( - [s;,7(5})), and
Sioy ~ T(- 8,7 (5)), for i = 2,...,N. For both the
optimal system and the deviated system, the agents’ initial
distributions are .

Lemma 6. Let iV denote the empirical distribution flow
induced by agent 1 deviating to T while all other N-1 agents
following the optimal policy 7*. Then, [il¥ converges to the
optimal mean field (if. Furthermore, for all t € T,

- X 1

e ary ()| = ()
Proof. The deviated empirical distribution is given by

1 1

A () = 5 DO LL(5) = () + 1 L),
k=1 k=2

Due to the decoupled dynamics, ¥ follows the same distri-
bution as st for k = 2,..., N. Then, the expected difference

between the deviated emp1rica1 distribution and the original
optimal mean field can be bounded as

B (s) ~ i (s)]

<]E’ s(3D)

+]E’—Z]1 )’

<1+O<1)+170(1)
- N VN N VN/'
The second term in (27) corresponds to the scenario of N —1
agents all applying the optimal policy 7*. By Lemma 5, we
obtain the presented convergence rate. Finally, from (28), we

have
=E Y | (s), 15 (s)]
sES

i)l = 0( ).

(28)

E [dTV (ﬂiv,/j:)]

=> E i (s)

seS

(29)



which yields the desired result. O

Now, we are ready to provide a proof for Theorem 2 using
cross disturbance analysis similar to [13].

Proof of Theorem 2. For the N-agent system, the value of
agent 1 induced by its policy deviation is bounded as
T

~ ~ o~ o~ 1 %(G/trgl)
JeN G ) =E {R A — —log 1.
i (o) =B [RaG i) — s

o a = o L w(aldh) 1
<EY Ro (317 7)) — log -0t +0(—=)
t=0

pr(aels}) VN
(30)

d . s 1 7} (ay|s} 1
< EZ I:Rt(siaﬁtnut) - Blog W} +O(ﬁ)

=0
(31
1

= Jgr (1%, 7) +O(ﬁ>' 32)

In (30), we used the convergence result in Lemma 6 and the
Lipschitz continuity of R; to replace i)Y with p}. To arrive
at (31), we used the optimality of 7* for the regularized
MDP induced by u*.

Up to this point, we have shown that the difference
between the value of the deviated N-agent system and the
optimal value of the infinite population system is bounded
by O(1/v/N). Next, we show that the value of the finite
N-agent system under the identical optimal policy 7* for all
agents is also O(1/v/N)-close to the optimal value of the
infinite population system.

1
0g

1 W?(atsi)}
B

T
TN (n* 1) = E {R st ply
KL ( ) Z t( t T s My ) pt(at‘si)

t=0

e L s | o 1
§IEZ Rt(st,wt,,ut)—ﬁlogi +O(—)

2 pilarls))

Jxr (7, ) 4+ O(\/%),

where the inequality is a result of the Lipschitz continuity
of R; and the convergence rate in Lemma 5. One can also
lower bound J&i (7*,7*) and get

JE{L{V(W*,F*) - JKL(TF*,W*)‘ = (’)(\/%)
Combining (32) and (33), we can show that
1
7R
Since all agents are homogeneous, the same result applies to
all agents, thus completing the proof. O

(33)

Tt (7@om*) < Tl (7 7) + O

V. NUMERICAL EXAMPLE

In this section, a resource allocation problem is formulated
as a mean field game to verify the previous theoretical results.
Consider a resource allocation problem over the graph (S, £)
shown in Fig. 1. We use S and £ to denote the set of nodes
and edges of the graph, respectively. A large group of agents

r=1

Fig. 1. Graph for a resource allocation problem. All nodes contain self-
loops, i.e., the agent can always choose to stay at its current node.

traverses through the graph to collect the rewards assigned at
the terminal time step 7', and no running reward is assigned.
At time T, if an agent is at state 3, then it receives a reward
of 1.5. If it is at state 4, it receives a reward of 1. Otherwise,
the agent receives no reward. At the same time, the agents
are penalized for staying at a node with a large population
density. In summary, we have for the state-coupled rewards

Lr(s' a', %) = 1.51,,(s%) + 14,(s")  —

rewards at states 3 and 4

ILs'i(sk) ’
——

penalty of sharing
node with agent k

forallt=0,...,T —1.

Lt(si,ai7sk) =0,

We set the nonlinear function in (3) to ©r(z) = x2. Each
agent at state s can choose one of the adjacent states (graph
node) s’ to visit at the next time step. That is, the action
space A(s) at state s is all the states s’ such that (s, s’) € €.

If we directly use fixed-point iterations without entropy-
regularization to solve this mean field game, the algorithm
fails to converge. For the first iteration, the agents use a
policy that concentrates the whole population at node 4
for the extra reward. At the next iteration, the penalty for
staying at node 4 is high for the representative agent based
on the mean field flow from the previous iteration. The
representative agent then constructs a policy to visit node 3.
In summary, the policy found by the B,y oscillates between
reaching node 3 and reaching node 4 at T'.

Suppose now that a coordinator can send a command to the
group of agents, and it decides that both states 3 and 4 need
to be occupied by some agents, but she does not have access
to the actual rewards available to the agents at these two
nodes. Consequently, the coordinator can, at most, provide
a reference policy to guide the agents to node 3 and 4, but
the decision of which node is more rewarding to occupy
can only be made by the agents themselves. We constructed
a reference policy p that commands the agents to move to
nodes 3 and 4. For example, p(s4|s2) = p(s3|s2) = 0.5 and
p(ss5/s4) = 0.01. This reference policy promotes the agents
to move from state 2 to states 3 and 4, while discourages
agents to move from state 4 to state 5. If the reference policy
is directly applied by the agents, then the final distribution
at nodes 3 and 4 are roughly the same, which is uninformed,
as it does not reflect the difference in the rewards.

We now use the constructed reference policy to form the
entropy-regularized MFG and solve it using the operator
I‘I’EL in (19) for two different values of 5. The algorithm
converges and the population distribution over the nodes
is depicted in Fig. 2. Recall that a larger S means less
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Fig. 2. Population distribution over time. Scenario in (a) has the inverse
temperature of 8 = 3, and scenario in (b) has 8 = 0.1.

regularization in the reward structure. In Fig. 2(a), with
a large [, the agents chase mainly the rewards, and the
reference policy from the coordinator has little effect. In this
scenario, the agents concentrate at node 3 upto the point
when an additional number of agents at the same node would
result in a penalty that diminishes the reward advantage that
node 3 has over node 4. In Fig. 2(b), the value of S is
small and the reference policy dominates. The agents start
to ignore the reward advantage that node 3 has, and follow
the reference policy instead. The parameter 3 enables us to
generalize the behavior beyond these two extremes and to
cover a continuous spectrum of population behavior.

Finally, to verify Theorem 2, we fixed the last N — 1
agents’ policy to the ER-MFE, and we computed the dis-
tribution of the random vector ;. We then let the first
agent optimize the entropy-regularized MDP and compared
the difference between its newly-optimized performance and
the performance should it adopted the ER-MFE. A log-log
plot of performance gain vs. number of agents is presented
in Fig. 3. The performance gain trend is bounded by the
reference line with a slope of —0.5, which verifies our claim
of the O(1/v/N) convergence rate.
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Fig. 3. Log-log plot of performance gain by an agent unilaterally deviating
in a finite population.

VI. CONCLUSION

In this article, an entropy-regularized mean field-game
with finite state-action space in a discrete time setting was
formulated and analyzed. We demonstrated that entropy-
regularization provides the regularity conditions that the
standard MFG lacks. The condition for a contractive entropy-
regularized mean-field equilibrium operator is presented.

Furthermore, we provided a streamlined proof for the per-
formance bound of the entropy-regularized MFE in a finite
N-agent game. Through a resource allocation example, we
demonstrated that the reference policy can be used to control
the behavior of a large population, and the parameter 3
allows us to cover a continuous spectrum of population
behaviors. Future work will involve extending the approach
to the case of two large teams of agents competing against
each other, modeled as a zero-sum game while the dynamics
of agents within each team evolves as a mean field game.

APPENDIX

Proof of Lemma 2. Consider two policies 7, 7’ € II and the
corresponding propagated mean field flows p = Bpyop ()
and p = Bprop(7'). Then, at time step ¢ + 1, we have

‘ pet( Sl) - M;+1(5/)

= ‘Zﬂt (s'|s,m) Zﬂt (s'ls, 1)
< ‘Zﬂt (8']s,me) Zut (s'ls;m)| (A
+| > ()T (< 3,7) Zut («'ls. 7| ®)

For (A), we have
®) = | (o) ST Is.0) (rlal) = wi(als)|
< Zm iT Jls.a) \ mi(als) — wi(als))]
<Zut Z\ mi(als) - i(als))|
= 22}% (s)drv(me(s), m(s)) < 2dn(m, 7).

For (B), we have
B) < 30T s, 7| () — pi(s)|

<2
Combining (A) and (B), we have

1
B Z ltes1(s

s'eS
|S](dx(, 7") + dov (e, 1))

For time step ¢ = 0, we assumed that pio = (. Consequently,
drv (o, o) = 0. Through induction, one can show that

[SI(S[" — 1)
S| -1

Since |S| > 1, it follows that (34) is an increasing sequence
of t. Consequently, we have

puls) = pi(s)| = 2dr (e, ).

dTV(,LLt+17,LL;+1) = - H;+1(5l)|

IN

dTV(MtaM;) < dn(ﬂvﬂ—/)v (34)

A (Bprop (1), Bprop (7)) = dp (p, 1) = max drv (e, 1)

_ Isls1T — )

SGE dp(m, 7).
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Proof of Lemma 5. Let the time step ¢ € T and the state
s € S be fixed. Recall that for each state s, the fraction of
the agent population in that state is given by

IREAR

ne'(s) = Z; 1Ls(st). (39)
Define X! = 1,(s!). Since the dynamics are decoupled and
all agents use the same policy, with the same initial distri-
bution 49, X! are i.i.d. random variables with mean E [X?].
As ul¥ (s) is the sample mean of X?, from the strong law of
large numbers [30], we have pf¥ (s) <= E [X!] as N —
oo. Consequently, we have that the mean field satisfies
P{u(s) —E[X!] #0} = 0. The variance of X! is then
Var(X?) = E [Xi] = (E [X])® = pu(s) (1 — pue(s)) . Here,
we regarded p(s) as a deterministic number and use the
property E[(X!)?] = E[X!] as X is an indicator function.
Furthermore,

Ellud — ey =EY" 11 (s) — pels)?

seS
1M 2
—EY | %Y (Xi-E[x1)|
SES i=1
1 . 1
<N ZVar(Xé) =N Z#t(s)(l — i (s))
s€S sES
1 1
= U= laelly) < -

By Jensen’s inequality, we have ]EH;L{V — [LtHQ < 1/VN.

Finally, and since [l — pelly < /IS| [l — pellys it
follows that

Eldrv(uf — )] = B[ 37 1 () — i (5)]

= 5Bl =ul, =0 =),

which yields the desired result. O
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