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ABSTRACT We propose a text-guided sketch-to-image synthesis model that semantically mixes style and
content features from the latent space of an inverted Generative Adversarial Network (GAN). Our goal is
to synthesize plausible images from human facial sketches and their respective text descriptions. In our
approach, we adapted a generative model termed Contextual GAN (CT-GAN) that efficiently encodes
visual-linguistic semantic features pre-trained on over 400 million text-image pairs at different resolutions
along the model. Also, we introduced an intermediate mapping network called c-Map that combines textual
and visual-based features to a disentangled latent space W+ for better feature matching. Furthermore to
maximise the computational performance of our model, we implemented a linear-based attention scheme
along the pipeline of our model to eliminate the drawbacks of inefficient attention modules that are quadratic
in complexity. Finally, the hierarchical setting of our model ensures that textual, style and content features
are synthesised based on their unique fine grained details, which result in visually appealing images.
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INDEX TERMS Contextual GAN (CT-GAN), generative adversarial network (GAN), text-guided sketch-
to-image synthesis.

I. INTRODUCTION14

A text-guided model that translates sketches to images will15

do great justice in easing the difficulty in generating images16

from sketches that may find applications in identity recog-17

nition, attribute assignment, text-guided synthesis, etc. Prior18

work [1], [2], [3] has shown exceptional performance in19

cases when colored images are synthesized from data which20

contain enough content and style that could control a model21

towards their respective real image. However, sketches can be22

seen as images that contain minimal information bounded by23

pixels that could be translated into photo-realistic images by a24

suitable generative model. Sketches might contain key struc-25

tural information that could aid in providing visual mean-26

ing, which is crucial in classifying images as valuable or27

not. However, sketches do not portray any style information28

regardless of the mode from which they are crafted, and as a29

result, it becomes pretty difficult to translate sketches to per-30

ceptually appealing images. While significant work on image31

synthesis is still ongoing due to its numerous applications,32

It is still challenging to synthesize natural-looking images33

from sketches or labels. Currently, recent methods of image34

synthesis could be fashioned as a form of text-to-image,35

The associate editor coordinating the review of this manuscript and

approving it for publication was Jiachen Yang .

FIGURE 1. Synthesised images from sketches.

image-to-image or sketch-to-image synthesis, or a combina- 36

tion of all three techniques. 37

The ability to synthesize high quality images is the core 38

goal for most generative adversarial models, and these 39
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models [4] are typically designed in a multi-stage fashion [2],40

[5], where intermediate layers are guided adversarially with41

discriminator modules or more sophisticated techniques that42

employ progressive training methods. A multi-stage train-43

ing process is time consuming and cumbersome, making44

it infeasible for synthesizing high-quality images with very45

high resolution. Most importantly, images contain lots of46

facial details, such as freckles, skin pores, dimples which47

cannot be obtained by merely upsampling from the lower-48

resolutions. Latest developments in generative adversarial49

networks (GANs) have presented an entirely different image50

generation paradigm that achieves exceptional quality called51

the StyleGAN [6], [7]. The generator architecture of the52

StyleGAN is crafted such that it reveals novel ways to control53

the image synthesis process. The generator starts from a54

learned constant input which adjusts the style at each con-55

volutional layer based on its dedicated latent code, therefore56

directly controlling the strength of image features at different57

scales. Noise is also injected directly into the network which58

leads to the automatic unsupervised separation of high-level59

attributes. The StyleGAN approach constructs an interme-60

diate latent space W that is linear and has a less entangled61

representation of different factors of variation [7].62

In a bid to interact with the feature-rich disentangled latent63

space of the StyleGAN model, researchers developed a GAN64

inversion technique [8], [9], [10] which inverts real images65

into StyleGAN’s latent space W , where meaningful manip-66

ulation afterward can take place. Such inversion is achieved67

by training an encoder to map real images into the W space,68

which leads to image reconstruction and semantically mean-69

ingful image editing. The hierarchical semantic property of70

the W latent space inspired the design of numerous cross-71

modal methods [10], [11], [12], for visual content creation,72

pretrained on StyleGAN generators.73

In this paper, we propose an effective application-based74

approach for text-guided sketch-to-image synthesis called75

Contextual-GAN (CT-GAN). Our model aims to imitate a76

visual-linguistic latent space that efficiently interacts with the77

latent embeddings of the StyleGANmodel, which is aimed at78

synthesizing highly-appealing images from sketches that are79

guided by textual descriptions as shown in Figure 1. We cap-80

italize on the power of a Contrastive language-image pre-81

trained model termed; CLIP [13] trained on over 400 million82

text-image pairs and a bi-directional encoder classifier model83

called BERT [14] to learn the unique attributes within each84

word and their contextual associations. We expand more on85

the benefits of the CLIP and BERT models in section 3.86

Our approach aims to achieve three main goals. The first87

aim as shown in Figure 2, combines the features of our88

GAN inversion encoder trained for sketch-to-image synthesis89

with semantic features extracted from a pre-trained CLIP90

model for every sketch and text pair. This approach is vital91

because the extracted frozen weights from CLIP added at dif-92

ferent layers, aids faster training convergence, especially for93

multi-modal training scenarios that combine different input94

types. We also compute a CLIP loss between each sketch95

and text description, respectively. Our approach is similar to 96

models that adapt some form of perceptual similarity for stan- 97

dard image-to-image generative models aimed at boosting 98

perceptual quality. Secondly, we introduced the BERT model 99

to properly identify and update the contextual associations 100

between newly derived words defined by the user and the 101

pre-trained text descriptions from the CLIP model. Finally, 102

we deviate from previous techniques that apply a less efficient 103

attention scheme and we rather adapt a novel linear-based 104

attention model that computationally ensures better feature 105

interactions at the semantic level. To elaborate on our method 106

further, we trained an encoder capable of obtaining latent 107

codes that align with the hierarchically semantic arrangement 108

of a pre-trained StyleGAN model, which is inspired origi- 109

nally by [8]. We break down our methods into three core 110

contributions. 111

• We present a visual-linguistic inversion module struc- 112

tured in a hierarchical fashion, where the inverted code 113

of a given sketch image and learned text descriptions can 114

be found in theW latent space of a StyleGAN generator. 115

• Secondly, to aid application-specific implementations, 116

we incorporated a text-based encoder module to update 117

the contextual associations between newly derived 118

text descriptions and the pretrained features of the 119

CLIP model. 120

• Finally, we eliminated the quadratic nature of pre- 121

vious attention models by adapting a more efficient 122

linear-based attention scheme which effectively permits 123

long sequence interactions on large inputs where con- 124

textual information is the key to achieve better feature 125

disentanglement. 126

II. RELATED WORK 127

Our work is closely related to the literature of text-guided 128

image-to-image translation, with emphasis on sketch-to- 129

image synthesis which is still a challenging task. Our model 130

is achieved by implementing an improved version of a 131

visual-linguistic GAN inversion model with the additional 132

benefits of a linear-based attention scheme. 133

A. TEXT-GUIDED IMAGE MANIPULATION 134

Text descriptions can be used to guide image synthesis, 135

a well structured sentence with significant phrases can be 136

encoded as unique attributes that can in-paint images. For 137

example, Li et al. [11] came up with a multi-stage network 138

with a novel text-image combination module to produce 139

high-quality results. Nam et al. [15] disentangled different 140

visual attributes by implementing a text-adaptive discrimina- 141

tor, used to provide better fine-grained feature feedback to 142

the generator. Li et al. proposed StoryGAN [16], which gen- 143

erates a series of images that are contextually consistent with 144

previously generated images and with the sequence of text 145

descriptions provided by the user. Dong et al. [17] proposed 146

an auto-encoder architecture to modify an image according to 147

a given text. Liu et al. [18] proposed a multi-modal method 148

that models the visual attributes of an image and learns how 149

to translate them through automatically generated commands. 150
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Qiao et al. [19] focused on semantic consistency by enforcing151

the synthesised images to have the same semantics with152

the input text description. However, most of the text-based153

image manipulation methods with significant performance154

are basically based on the multi-stage framework. Deviating155

from previous methods, we propose a novel framework that156

achieves image generation and manipulation without multi-157

stage processing.158

B. GAN INVERSION159

It is arguable to infer that a generative model is as good as its160

latent space. Most importantly, a properly disentangled latent161

space will be more useful for multi-modal synthesis. GAN162

inversion was first introduced by Zhu et al. [20], and in their163

approach, the latent space is trained on various image outputs164

from which a pre-trained GAN most accurately reconstruct165

a known image. Motivated by their method, recent works166

have used StyleGAN [7] for this task as well. Generally,167

inversion methods either directly optimize the latent vector to168

minimize the error for the given image [21], [22], [23], train169

an encoder model to map images to the latent space [24], [25],170

or use a hybrid approach by combining both aforementioned171

methods [8]. Typically, techniques performing optimization172

are superior in reconstruction quality to a learned encoder173

mapping, but require a longer training time.174

Our encoder can efficiently embed a given face image175

into the extended StyleGAN latent space that comprises of176

both text and sketch images, which we represent as W+.177

Some concurrent works improve GAN inversion with bet-178

ter reconstruction like Gu et al. [26] who employs multiple179

latent codes to recover an image, Pan et al. [27] optimizes180

the parameters of the generator together with the latent181

code, while Karras et al. [7] and Abdal et al. [28] focused182

on inverting StyleGAN models by exploiting the layer-wise183

noises. One important issue omitted by most inversion meth-184

ods is that they merely consider reconstructing the target185

image at the pixel level without considering the computa-186

tional efficiency. Therefore, in this work, we argue that the187

dependence on the pixel-wise reconstruction loss as themajor188

metric to evaluate a GAN inversion method is not necessarily189

efficient or the best approach. Instead, we studied the proper-190

ties of the inverted code obtained at the semantic level and191

proposed a richer visual-linguistic module coupled with a192

linear-based attention scheme.193

C. ATTENTION TECHNIQUES194

The inclusion of attention modules to a network encour-195

ages it to focus on specific aspects of an input by weight-196

ing the important parts more than irrelevant parts. Hence,197

attention plays a major impact on improving language198

and vision applications [29], [30], [31]. A very popular199

method was introduced by AttnGAN [32] which builds upon200

StackGAN++ [2] and incorporates attention into a multi-201

stage feature-refinement pipeline. Their mechanism allows202

the network to synthesize fine-grained details based on203

relevant words in addition to the global sentence vector.204

SEGAN [33] proposed an attention competition module to 205

focus only on the key-words instead of designing an attention 206

weight for each word in the sentence. They achieved this by 207

introducing an attention regularization term [34], [35] that 208

only keeps the attention weights for visually important words. 209

ControlGAN [36] achieved both text-to-image generation 210

and visual attribute manipulation such as category, texture, 211

and color by changing the description without affecting other 212

content. They proposed a word-level spatial and channel- 213

wise attention driven generator which allows the generator to 214

synthesize image regions corresponding to the most relevant 215

words. They also showed how a word-level discriminator 216

can provide the generator with fine grained training signals 217

that disentangles different visual attributes by exploiting the 218

correlation between words and image sub-regions. Indeed 219

attention mechanisms are beneficial to GAN models, but the 220

quadratic computational and memory complexities of most 221

attention mechanisms have limited their scalability for mod- 222

eling long sequences. In this paper, we propose a preferable 223

linear-based attention mechanism that approximates softmax 224

attention which yields only linear time and space complexity 225

as opposed to quadratic solutions. As compared to traditional 226

attention mechanisms, our method performs the attention 227

operation linearly, while also storing adequate contextual 228

information. 229

III. MODEL ARCHITECTURE 230

In our work, we ensure that the derived latent space of 231

the image and text pairs are properly disentangled in order 232

to encourage the augmentation of different facial attributes 233

assigned to each subject. To build such a visually-linguistic 234

model, we combined the efficiency of different seman- 235

tic rich models that compete with state-of-the-art. Firstly, 236

we adapted a hierarchical structure of visual-linguistic fea- 237

tures derived from a sketch-based image encoder that is 238

trained inversely [8] to a common latent space we define as 239

W+ for both text and image features. We also introduced a 240

computational and semantic efficient attention model that is 241

linear-based whichmaintains the semantic similarity between 242

text and image pairs. We chose the Multi-Modal CelebA- 243

HQ [37] dataset comprising over 60,000 unique identities 244

and 40 facial attributes as a basis for training our model. The 245

sketches used for our model are curated from a collection of 246

human drawn sketches of unique individuals from different 247

ethnic backgrounds. 248

A. VISUAL-LINGUISTIC MODEL 249

In our work, we propose a hierarchy of encoded 250

visual-linguistic features that computes the contextual sim- 251

ilarity between images and text pairs extracted at different 252

down-sampled resolutions. The contextual similarity between 253

each pair of text and image is computed for different layers of 254

the model, as shown in Figure 2. Since our design direction 255

is focused on a multi-modal problem where text is used to 256

guide sketch-to-image synthesis, we incorporated a set of 257

linear-based attention models that ensure the local contextual 258

similarity between image regions and specific words are 259
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FIGURE 2. The GAN architecture. The structure shows the linear attention-based encoder coupled with a style-GAN generator. Our proposed
model encodes a hierarchy of visual features derived from the input sketch image at different resolutions to match the defined style layers of
the Style-GAN architecture. Visual features from the visual encoder φ(x) in green are concatenated with visual features (orange), which are
extracted from the pre-trained CLIP vision encoder at different layers represented as Exi (φ(x) ∗ CLIP(h)) per layer. A contextual intermediate
network (c-Map) maps combined textual and visual features to the disentangled latent space W+ of the Style-GAN model to synthesise a high
resolution image.

learned. In Figure 3a, we break down the linearised attention260

model to highlight its true benefits. In a structural sense261

as described in Figure 2, we extracted encoder embeddings262

into the latent StyleGAN latent space W+. The embeddings263

are scaled to a single vector of 512-dimensional vectors.264

In addition, our technique can easily be plugged into any265

generative adversarial model without heavily impacting the266

overall computational complexity.267

B. GAN INVERSION MODULE268

To build an efficient GAN model that leverages on269

visual-linguistic features that synthesize plausible images,270

we must encode a defined set of input pairs to a latent271

space that semantically maps style and content efficiently.272

Such a latent space is achieved by inverting the features of273

an input image to a latent space of a fixed GAN model.274

To implement such a framework, we adapted the StyleGAN275

model because it offers the best of image quality at high276

resolutions and a wider diversity that covers the full spec-277

trum of facial attributes [38]. GAN inversion basically means278

the reverse mapping of a given image x into a latent space279

of an already trained GAN model. However, plugging in a280

new visual or text encoder into an already trained Style-281

GAN generator comes with a unique set of issues. Firstly,282

the StyleGAN model is broken down into different sections283

classified by three main semantic levels of detail, namely:284

coarse, medium and fine layers [7], [9]. Secondly, the Style-285

GAN model encodes a style distribution in a hierarchical286

setting where subsequent semantic affine [9], [39] layers287

(18 layers in this case) are grouped based on their unique fine288

grained details [7]. To cater to these two requirements of the289

StyleGAN model for semantic style interactions, we propose 290

a novel encoder model. Our proposed encoder, similar to 291

the methods applied in [38], [40] encodes a hierarchy of 292

features derived from the input image at different resolutions 293

to match the defined style layers of the StyleGAN architec- 294

ture. In section 3.5, we describe a contextual intermediate 295

mapping network; c-Map that combines textual and visual 296

features from an encoder model Ex(·) to the latent space W 297

of the StyleGANmodel. To further encourage better semantic 298

mixing, we initialize the new latent space W+ with features 299

from the StyleGAN model. Hence, our encoder is trained to 300

learn visual-linguistic information using an efficient attention 301

scheme. The final semantic output is represented as: 302

Ex(x, h) = (φ(x) ∗ CLIP(h))+ w, (1) 303

where φ(x), h and w denotes the input image embeddings, 304

features from the CLIP model, and the average of StyleGAN 305

latent embeddings, respectively. We use ‘‘∗’’ to represent the 306

concatenation operation. The training process is given as: 307

LEw = ‖y− Gw(x, h)‖22 + λ1‖V (y)− V (Gw(x, h))‖ 308

+ λ2‖φ(y)− φ(Gw(x, h))‖ − λ3E[Dv(Gw(x, h))], 309

(2) 310

LDw = λ1E[Dv(Gw(x, h))]− λ2E[Dv(y)] 311

+
λ3

2
E‖∇xDv(Gw(x, h))‖22, (3) 312

We use D(·), V (·) and φ(·) to represent discriminator, 313

perceptual and style loss, while λ represents adjustable 314

hyper-parameters, more detail on losses is described in 315
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section 4. y represents the reference image, we also rep-316

resent the synthesized output image X̂ from the generator317

as Gw(x, h), to identify the features from the encoder that318

is made up of the input sketch x, sketch image features h319

from CLIP’s vision encoder and the combined text and image320

features from the embedded space w.321

C. VISUAL-LINGUISTIC SIMILARITY322

A contextual feature space of sentences and image pairs col-323

lectively initiates the bases for a potential text-guided image324

synthesis model. Such visual-linguistic embeddings aim to325

capture the intrinsic similarity between image and textual fea-326

tures. In our approach, we capitalize on the similarity between327

texts and images features to which we translate into a latent328

space W+ of the StyleGAN model. Our strategy is aimed at329

improving the visual perceptual appeal of synthesized images330

for difficult visual inputs like sketches with textual descrip-331

tion. To achieve state-of-the-art performance, we utilized a332

visual-linguistic encoder trained on over 400 million image-333

text pairs, called Contrastive Language-Image Pre-training334

(CLIP) [13], [41]. A CLIPmodel is trained to predict possible335

(image, text) pairings. To improve performance, CLIP maxi-336

mizes the cosine similarity of the image and text embeddings337

of the N real (image, text) pairs in the batch while mini-338

mizing the cosine similarity cos(x, t) of the embeddings of339

the N 2
− N incorrect pairings. In Figure 6 and 7, we pro-340

vide visually appealing results and compelling quantitative341

results. For image synthesis, using a pretrained generator and342

a pre-trained text encoder for the two-fold goal, we define the343

optimization problem as:344

w∗ = argmin
w
‖w− Ex(Gw(x, h))‖22 , (4)345

we obtain an inverted latent code w as the initialization for346

the optimization, using the inversion module [38]. Gw(x, h)347

represents latent embeddings wwhich is a combination of the348

image x and CLIP pre-trained embeddings h.349

D. TEXT ENCODER350

Every facial sketch is associated with a textual descriptions351

generated from a corpus of texts which are based on unique352

attributes of the Multi-Modal-CelebA-HQ [38], [42] dataset.353

To build such a text-guided model, we used BERT to learn354

the unique attributes within each word and their contextual355

associations. BERT relies on a transformer-attention mecha-356

nism that learns the contextual relationships between words357

in a text. The input to the encoder for BERT is a sequence of358

tokens (words), which are first converted into vectors and then359

processed into the neural network. Semantic vectors indicated360

as t ∈ DD×T from text descriptions are extracted [14] where361

all of the sub-words in an input sentence are mapped to a362

set of embeddings, Et . Each embedding t ∈ Et is com-363

puted as the sum of a token embedding, specific to the sub-364

words. The input embeddings Et are then passed through a365

multi-layer Transformer network that builds a contextualized366

representation of the sub-words. Pre-training is done using367

a combination of two language modeling objectives: Firstly,368

a masked language modeling where some parts of the 369

input tokens are randomly replaced with a special token 370

(i.e., [MASK]), and the model needs to predict the identity 371

of those tokens. Secondly, a sentence prediction where the 372

model is given a sentence pair and trained to classify whether 373

they are two consecutive sentences from a document. Finally, 374

an output layer and objective are introduced and fine-tuned on 375

the task data from pre-trained parameters [14], [32]. We com- 376

pute the similarity between these features; text wt and image 377

wv embeddings from the latent space. Hence, the multi-modal 378

similarity is learned by the given expression: 379

LEt =
L∑
i=1

‖wv − wt‖22. (5) 380

where wv,wt ∈ RL×C , are the features obtained from the 381

image and text embeddings; wv = Ex(x, h) and wt = Et (·). 382

All features are of the same shape for L layers, each with a 383

c-dimensional latent embedding. 384

E. CONTEXTUAL MAPPING 385

A mapping scheme is necessary to transfer the embeddings 386

from both image and text pairs. In our case, we imple- 387

mented a contextual mapper (c-Map) that translates con- 388

textual features into a latent embedding; f : Z −→ W , 389

of semantic vectors derived from abstracted data. We also re- 390

scaled the images and then extracted the local feature matrix 391

from the last layer of the image encoder Ex(·), which we 392

feed to the c-Map network. The mapping network mimics 393

a small convolutional network, which gradually reduces the 394

spatial size using a set of 2-strided convolutions followed 395

by LeakyReLU activations [9], [43] and a series of fully 396

connected layers to ensure the model is aware of the inher- 397

ent information between text and images, which is crucial 398

for feature disentanglement as shown in Figure 3. A fully 399

connected layer learns features from all the combinations 400

of the features of the previous layer, while a convolutional 401

layer relies on local spatial coherence with a small recep- 402

tive field (3 × 3 kernel, in most cases). We then added 403

the fully connected layers to address the problem of shared 404

weights in conventional architectures, which prevents the 405

convolutional layers from generating subtle variations in dif- 406

ferent spatial zones which are needed to produce realistic 407

images. 408

Furthermore, our approach stands out from previous tech- 409

niques because in the design of our mappingmodel, we payed 410

attention to the shortcomings of current contextual encoders 411

that operate at a pixel-to-pixel correspondence [9], [10]. 412

An encoder that operates at a pixel-to-pixel correspon- 413

dence will be subject to locality bias, which is a major 414

limitation when handling non-local transformations [44]. 415

In our approach, we implemented a model that operates 416

at a global level where multi-modal synthesis is easier to 417

achieve. Since StyleGAN provides a layer wise represen- 418

tation, our mapping framework can sample style vectors 419

defined byW ∈ R512 which makes hierarchical style mixing 420

efficient. 421

98282 VOLUME 10, 2022



U. Osahor, N. M. Nasrabadi: Text-Guided Sketch-to-Photo Image Synthesis

FIGURE 3. Linear-based attention module: A new sequence P ∈ Rl∗d with fixed (constant) length is introduced as an input which is referred to
as the pack attention. A second scheme is implemented on the input sequence Ex ∈ Rl∗d called the unpack attention. The image to the right
depicts contextual matching mechanism of our model. The concatenated features from the vision and text-based encoder, result in a
visual-linguistic embedding that is fed to the generator model.

F. LINEAR ATTENTION MODULE422

Despite the wide adaptation of attention modules for423

long-range dependency modeling, attention still has a serious424

drawback; It produces a quadratic solution in both time and425

memory cases and as a result, the memory and computational426

complexities of the entire attention module are quadratic.427

Such computational drawbacks makes the algorithm much428

slower than a linear-based model and effectively forbids the429

application of attention on large inputs or visual-linguistic430

applications where the contextual information is key to431

achieve better feature disentanglement. Therefore, to address432

the shortfall, we applied a novel approach by using a linear433

nested method similar to [45]. At the core of their method,434

they decoupled the regular attention function into two nested435

attention operations, both of which have linear efficiency.436

A new sequence with fixed (constant) length is introduced as437

an input which is referred to as the pack attention. Formally,438

if P ∈ Rl×d denotes the extra input sequence with fixed439

length l and d as the dimension. The pack attention first packs440

context sequence C to the output pack attention YP with P as441

the query sequence, given as:442

YP = Attn(P,C). (6)443

We note that since the length of P is a constant l, the complex-444

ity of pack attention is O(lm), which is linear with respect to445

m. To unpack the sequence back to the length of the original446

query sequence X , a second scheme is implemented on the447

input sequence X , given as:448

YX = Attn(X ,YP). (7)449

We also incorporated a position-wise feed-forward network450

and layer normalization, with a final derivation given as:451

X ′,P′ = LayerNorm((FFN (X ,P,C)),P). (8)452

To match the attention conventions to the rest of our model,453

we represent X ′ := Ex ∈ Rl∗d and P′ := P ∈ Rl∗d as the454

outputs of the feed forward FFN (·). The attention model is455

illustrated in Figure 2 and 3.456

G. TARGET ATTRIBUTE SELECTION 457

To effectively extract the attributes of a text description, it’s 458

important to identify the keywords within the sentence that 459

describe a subject of interest. In our case, we focused on 460

facial features derived from sketches or images. Our goal in 461

general was to use the text descriptions to guide style and 462

content based features from a GAN inverted latent space [8], 463

[9], [38]. In an image synthesis setting, most facial attributes 464

can at least be classified into high and low level features (hair 465

color, freckles, skin color, etc), which should be sufficient to 466

compose a human face without heavily altering the identity 467

of the subject [7]. In our approach, we use the StyleGAN’s 468

hierarchical generator arrangement of style and content to 469

mix semantic fragments of both text and images features to 470

synthesize a face [7], [38].We extracted disentangled features 471

from an inverted latent space W+ at a specified feature size. 472

To aggregate attribute-specific style and content features from 473

the GAN layers, we implemented a text-guided mix strategy 474

by separating the features into wc as the visual feature and ws 475

as the textual embedding. In general, the layers of the Style- 476

GAN model can be segmented into high-level styles such as 477

face shape, earring, eye glasses and head pose, layers in the 478

middle control the hairstyle, hair color and facial expression. 479

The final layers control skin color, age gender and other 480

stochastic fine-grained details. 481

IV. LOSS FUNCTIONS 482

In this section, we give a detailed description of the different 483

loss functions used in our model. Overall, our loss functions 484

catered to perceptual appeal, identity preservation, visual- 485

linguistic similarity and proper feature matching with the 486

StyleGAN generator. 487

A. PERCEPTUAL LOSS 488

Although the GAN loss and the reconstruction loss are used 489

to guide the generators, they fail to reconstruct perceptually 490

appealing images. Hence, we incorporated the perceptual 491

loss introduced in [1]. The perceptual loss function basi- 492

cally measures high level differences, such as content and 493

style dissimilarity, between images. We added the perceptual 494

loss using a pre-trained VGG-16 [46] network V (·). The 495
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perceptual loss calculates the L1 distance between the fea-496

tures of real and encoded images from the encoder Ew. The497

perceptual loss Lp for our proposed network is defined as:498

Lp =
∥∥∥V (y)c,w,h − V (x̂)c,w,h∥∥∥, (9)499

where V (·) is used to denote a particular layer of the VGG-16500

and c, w, and h denote the layer dimensions.501

FIGURE 4. The encoder model similarity matrix, showing confident
matches along the diagonal that indicate the similarity between the
images of interest and their appropriate text descriptions. The prediction
outputs along the diagonal is enhanced by the inclusion of the vision
section of the pre-trained CLIP model.

B. STYLE LOSS502

The style transfer loss comprises of the content and style [1].503

The content in our case is derived from the encoder model504

E(·). Basically, the expectation over the entire spatial space505

of the feature maps are compared with a loss function, so as506

to ensure similarity. These are obtained by taking the gram507

matrix Gφ(·) of the outputs of X and X̂ given by:508

Gφ = (φi(y)c,w,h)(φi(x)c′,w,h), (10)509

where Qi(.) represents a filter output function, c′ is a trans-510

posed channel form of c. The style reconstruction loss for511

both images is thus an L1 loss of each computed grammatrix:512

Lsty =
∥∥∥Qφi (y)− Qφj (x̂)∥∥∥ . (11)513

C. IDENTITY PRESERVING LOSS514

To preserve identity during the synthesis, we applied a515

pre-trained Light CNN2 [47] face recognition network to516

extract meaningful feature representations that improve the517

identity preserving ability of the network. We calculated518

the identity preserving loss Lid as the summation of the519

feature-level difference between the synthesized and the real520

image, given as:521

Lid =
∥∥Pid (y)− Pid (x̂)∥∥22 , (12)522

where we consider Pid (·) as output features from the last fully523

connected layers of Light CNN network.524

TABLE 1. Quantitative comparison of text-guided image manipulation.
We compare our method with state-of-the-art techniques; TediGAN [38],
ManiGAN [11] in terms of FID, accuracy (Acc.) and realism (Real).

D. OVERALL OBJECTIVE FUNCTION 525

We sum up all the loss functions defined above to compute 526

the overall objective given as: 527

LCT−GAN =LEw+LDw + LEt + λ1Lp+λ2Lsty + λ3Lid , 528

(13) 529

where variables λ1, λ2, λ3 are the hyper-parameters used as a 530

weight factor of the different loss terms. 531

V. EXPERIMENTAL SETUP 532

We use theMulti-Modal CelebA-HQ [40] dataset for the text- 533

guided multi-modal image synthesis. It’s a large-scale dataset 534

which has a high-quality semantic segmentation map, sketch, 535

descriptive texts, and images with transparent background. 536

The text structure comprises of ten unique single sentence 537

descriptions for each image in CelebA-HQ [6]. For training, 538

we divided the dataset into 80% training and 20% test sam- 539

ples, respectively. 540

A. TRAINING 541

To train the StyleGAN inversion module [8], we combined 542

features from an image encoder and the features from the 543

CLIP model [13], which was trained on over 400 million 544

image and text pairs, as defined in Equation (1). We adapt 545

this technique in order to achieve better semantic mean- 546

ing between text and images. In retrospect, we built a 547

visual-linguistic encoder combined with a BERT [14] text 548

encoder to produce embeddings that match the latent space 549

W+ of StyleGAN. In our design, we adapted the BERT 550

encoder specifically to fine tune the model newly added text 551

descriptions that are of interest for our model. In line with the 552

approach implemented in [10], we trained only the encoder 553

and discriminator while the generator weights are frozen. 554

B. EVALUATION 555

We compared our proposed method with similar approaches 556

applied for text and text-guided image synthesis models such 557

as AttnGAN [32], TediGAN [38] ControlGAN [36] and 558

DFGAN [48]. For evaluation, we used techniques similar 559

to [38] to evaluate image quality, diversity, accuracy, and the 560

degree of realism. Following the previous methods [36], [49], 561

we also evaluated the quality of generated or manipulated 562

images using the Frechèt Inception Distance (FID) [50] and 563

the Learned Perceptual Image Patch Similarity (LPIPS) [51]. 564
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FIGURE 6. Sketches with compound sentences reflecting different attribute combinations.

FIGURE 7. Model comparison of images with different attribute
combinations.

Our findings indicate that the model is sensitive to649

the visual-linguistic relationship between image-word pairs.650

We used the CLIP model to confirm that the semantic651

features for our encoder model is efficient for text-guided652

synthesis [13]. In Figure 4, we compared six unique faces653

with attributes and textual descriptions. The similarity matrix654

shows confident matches along the diagonal that clearly655

FIGURE 8. Model comparison of images with different attribute
combinations.

indicate the similarity between the given image of interest and 656

the appropriate sentence. 657

B. EFFECTIVENESS OF THE ATTENTION MODEL 658

In the design of the attention model, we considered the 659

semantic-level relationship of image and word pairs for both 660

channel and spatial representation at the image sub-region 661

and pixel level. To have a better understanding of the benefits 662
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FIGURE 9. Quality of synthesised images derived from poorly drawn sketches reflecting age, gender, etc.

FIGURE 10. Identity preservation. The images represents consistency of
the subjects identity for different attributes.

of our approach, we visualized a combination of text based663

attributes to showcase the power of the attention model664

adapted.We extend our empirical experiments by implement-665

ing different ablation tests on the model to ascertain how the666

attention scheme benefits the model.667

We setup our ablation studies to check the quality of sketch668

to image synthesis in combination with different degrees of669

text-based attribute combinations. Most models depend on670

basic text allocations. However, in our approach, we show dif-671

ferent promising text combinations that verify the robustness672

of our model.673

1) GOOD SKETCHES674

We chose a collection of good sketches that will set a basis675

for comparison against ‘‘Bad’’ sketches. Good sketches in676

this case represent facial sketches that contain most of the677

facial details while the bad sketches have some missing 678

facial details. We guide the image synthesis process of each 679

sketch with different composed sentences, which we arrange 680

in different orders of complexity. Every sentence has key 681

attributes (‘‘blue hair’’, ‘‘old’’, ‘‘beards’’ and ‘‘pale face’’) 682

that can be visually identified from the results obtained. The 683

aim is to observe the performance of the model at different 684

sketch types and text complexity. As expected, the model 685

easily replicates the sketch into the expected image without 686

compromising the identity portrayed by the sketch regardless 687

of the attribute combinations used as shown in Figure 11. 688

2) BAD SKETCHES 689

As the sketches are slightly degraded, the model still main- 690

tains its ability to reproduce plausible images at high 691

quality as reflected in Figure 12. We observe that the 692

model still tries to synthesize similar identities, which 693

show the attentiveness of the model to the perceptual identity 694

of the subject. Lastly, we pay key attention to the ability of the 695

model to synthesize images and still maintain the contextual 696

meaning of the sentence for each case study. We can clearly 697

identify the subjects regardless of the poor sketch provided. 698

Our approach confirms that regardless of the sketch quality, 699

visual-linguistic property of the model is still maintained. 700

C. TEXT-GUIDED ANALYSIS 701

A combination of visual and text based features in a single 702

generative model creates a set of interesting properties that 703

need to be explored to identify the possibilities of text-guided 704
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FIGURE 11. Images synthesised from good crafted sketches.

FIGURE 12. Images synthesised from bad crafted sketches.

synthesis. In our approach, we paymore attention to sketches;705

which is a more difficult problem to solve. To understand706

the intricacies of our model, we set up a set of experiments707

to verify the robustness of our model. We looked closely708

at the ability of the model to maintain the identity of a709

given subject even when attributes are changed. We also710

use different sketch templates to analyse the models’ ability711

to synthesise images without compromising identity and712

perceptual quality.713

1) IDENTITY PRESERVATION714

The ability to reproduce similar images of the same identity is715

crucial for sketch base synthesis. In Figure 10, we showcase716

our model’s ability to reproduce identity-consistent images.717

Our results reflect the synthesised images when we change718

the subject’s attributes such as ‘‘gender’’, ‘‘age’’ and ‘‘hair719

color’’. We set up the test cases using simple and complex720

attribute combinations. A sample of the short sentences used721

are expressed below:722

Female −→ Male : ‘‘He is Asian and has short hair.’’723

Female −→ Male : ‘‘He is a young male.’’724

Female −→ Female : ‘‘She has long hair and is slim’’Over-725

all, the attributes extracted form the short sentences don’t alter726

the identity of the subjects.727

2) COMPOUND SENTENCES728

A collection of sentences could be used to synthesise images729

from sketches. To test the model’s response to sentence-based730

attributes we checked different combination of texts compris-731

ing of different attributes. We define compound sentences as732

a collection of text-based attributes that reflect ‘‘gender +733

ethnicity’’,‘‘hair + age’’, ‘‘gender + beards’’, ‘‘ beards +734

gender + age ’’, ‘‘age + ethnicity + gender ’’, etc.735

Our results confirm consistency in perceptual quality, iden-736

tity and sketch diversity. Sketch diversity in this case high-737

lights the fact that the model is able to synthesize an image738

and still represent the attributes within the specified sentence. 739

In Figure 9 we show the perceptual quality of images gener- 740

ated using some compound sentences. 741

VII. CONCLUSION 742

In our work, we showed that a text-guided sketch-to-image 743

GAN model can be visually appealing and still portray all 744

the facial attribute within an associated text description. Our 745

model leveraged on the hierarchical structure of the state- 746

of-the-art StyleGAN model to combine visual-linguistic fea- 747

tures from a properly disentangled latent space. From our 748

findings, we observe that introducing the CLIP features to 749

our framework encourage better contextual meaning to our 750

results without comprising the identity of the facial results 751

across board. We also confirm that adapting a linear-based 752

attention module aids in generating plausible images. 753
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