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ABSTRACT We propose a text-guided sketch-to-image synthesis model that semantically mixes style and
content features from the latent space of an inverted Generative Adversarial Network (GAN). Our goal is
to synthesize plausible images from human facial sketches and their respective text descriptions. In our
approach, we adapted a generative model termed Contextual GAN (CT-GAN) that efficiently encodes
visual-linguistic semantic features pre-trained on over 400 million text-image pairs at different resolutions
along the model. Also, we introduced an intermediate mapping network called c-Map that combines textual
and visual-based features to a disentangled latent space YW+ for better feature matching. Furthermore to
maximise the computational performance of our model, we implemented a linear-based attention scheme
along the pipeline of our model to eliminate the drawbacks of inefficient attention modules that are quadratic
in complexity. Finally, the hierarchical setting of our model ensures that textual, style and content features
are synthesised based on their unique fine grained details, which result in visually appealing images.

INDEX TERMS Contextual GAN (CT-GAN), generative adversarial network (GAN), text-guided sketch-
to-image synthesis.

I. INTRODUCTION

A text-guided model that translates sketches to images will
do great justice in easing the difficulty in generating images
from sketches that may find applications in identity recog-
nition, attribute assignment, text-guided synthesis, etc. Prior
work [1], [2], [3] has shown exceptional performance in
cases when colored images are synthesized from data which
contain enough content and style that could control a model
towards their respective real image. However, sketches can be
seen as images that contain minimal information bounded by
pixels that could be translated into photo-realistic images by a
suitable generative model. Sketches might contain key struc-
tural information that could aid in providing visual mean-
ing, which is crucial in classifying images as valuable or
not. However, sketches do not portray any style information
regardless of the mode from which they are crafted, and as a
result, it becomes pretty difficult to translate sketches to per-
ceptually appealing images. While significant work on image
synthesis is still ongoing due to its numerous applications,
It is still challenging to synthesize natural-looking images
from sketches or labels. Currently, recent methods of image
synthesis could be fashioned as a form of text-to-image,
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FIGURE 1. Synthesised images from sketches.

image-to-image or sketch-to-image synthesis, or a combina-
tion of all three techniques.
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The ability to synthesize high quality images is the core
goal for most generative adversarial models, and these
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models [4] are typically designed in a multi-stage fashion [2],
[5], where intermediate layers are guided adversarially with
discriminator modules or more sophisticated techniques that
employ progressive training methods. A multi-stage train-
ing process is time consuming and cumbersome, making
it infeasible for synthesizing high-quality images with very
high resolution. Most importantly, images contain lots of
facial details, such as freckles, skin pores, dimples which
cannot be obtained by merely upsampling from the lower-
resolutions. Latest developments in generative adversarial
networks (GANSs) have presented an entirely different image
generation paradigm that achieves exceptional quality called
the StyleGAN [6], [7]. The generator architecture of the
StyleGAN is crafted such that it reveals novel ways to control
the image synthesis process. The generator starts from a
learned constant input which adjusts the style at each con-
volutional layer based on its dedicated latent code, therefore
directly controlling the strength of image features at different
scales. Noise is also injected directly into the network which
leads to the automatic unsupervised separation of high-level
attributes. The StyleGAN approach constructs an interme-
diate latent space WV that is linear and has a less entangled
representation of different factors of variation [7].

In a bid to interact with the feature-rich disentangled latent
space of the StyleGAN model, researchers developed a GAN
inversion technique [8], [9], [10] which inverts real images
into StyleGAN’s latent space VV, where meaningful manip-
ulation afterward can take place. Such inversion is achieved
by training an encoder to map real images into the WV space,
which leads to image reconstruction and semantically mean-
ingful image editing. The hierarchical semantic property of
the W latent space inspired the design of numerous cross-
modal methods [10], [11], [12], for visual content creation,
pretrained on StyleGAN generators.

In this paper, we propose an effective application-based
approach for text-guided sketch-to-image synthesis called
Contextual-GAN (CT-GAN). Our model aims to imitate a
visual-linguistic latent space that efficiently interacts with the
latent embeddings of the StyleGAN model, which is aimed at
synthesizing highly-appealing images from sketches that are
guided by textual descriptions as shown in Figure 1. We cap-
italize on the power of a Contrastive language-image pre-
trained model termed; CLIP [13] trained on over 400 million
text-image pairs and a bi-directional encoder classifier model
called BERT [14] to learn the unique attributes within each
word and their contextual associations. We expand more on
the benefits of the CLIP and BERT models in section 3.

Our approach aims to achieve three main goals. The first
aim as shown in Figure 2, combines the features of our
GAN inversion encoder trained for sketch-to-image synthesis
with semantic features extracted from a pre-trained CLIP
model for every sketch and text pair. This approach is vital
because the extracted frozen weights from CLIP added at dif-
ferent layers, aids faster training convergence, especially for
multi-modal training scenarios that combine different input
types. We also compute a CLIP loss between each sketch
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and text description, respectively. Our approach is similar to
models that adapt some form of perceptual similarity for stan-
dard image-to-image generative models aimed at boosting
perceptual quality. Secondly, we introduced the BERT model
to properly identify and update the contextual associations
between newly derived words defined by the user and the
pre-trained text descriptions from the CLIP model. Finally,
we deviate from previous techniques that apply a less efficient
attention scheme and we rather adapt a novel linear-based
attention model that computationally ensures better feature
interactions at the semantic level. To elaborate on our method
further, we trained an encoder capable of obtaining latent
codes that align with the hierarchically semantic arrangement
of a pre-trained StyleGAN model, which is inspired origi-
nally by [8]. We break down our methods into three core
contributions.

« We present a visual-linguistic inversion module struc-
tured in a hierarchical fashion, where the inverted code
of a given sketch image and learned text descriptions can
be found in the W latent space of a StyleGAN generator.

o Secondly, to aid application-specific implementations,
we incorporated a text-based encoder module to update
the contextual associations between newly derived
text descriptions and the pretrained features of the
CLIP model.

o Finally, we eliminated the quadratic nature of pre-
vious attention models by adapting a more efficient
linear-based attention scheme which effectively permits
long sequence interactions on large inputs where con-
textual information is the key to achieve better feature
disentanglement.

Il. RELATED WORK

Our work is closely related to the literature of text-guided
image-to-image translation, with emphasis on sketch-to-
image synthesis which is still a challenging task. Our model
is achieved by implementing an improved version of a
visual-linguistic GAN inversion model with the additional
benefits of a linear-based attention scheme.

A. TEXT-GUIDED IMAGE MANIPULATION

Text descriptions can be used to guide image synthesis,
a well structured sentence with significant phrases can be
encoded as unique attributes that can in-paint images. For
example, Li et al. [11] came up with a multi-stage network
with a novel text-image combination module to produce
high-quality results. Nam et al. [15] disentangled different
visual attributes by implementing a text-adaptive discrimina-
tor, used to provide better fine-grained feature feedback to
the generator. Li et al. proposed StoryGAN [16], which gen-
erates a series of images that are contextually consistent with
previously generated images and with the sequence of text
descriptions provided by the user. Dong et al. [17] proposed
an auto-encoder architecture to modify an image according to
a given text. Liu et al. [18] proposed a multi-modal method
that models the visual attributes of an image and learns how
to translate them through automatically generated commands.
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Qiao et al. [19] focused on semantic consistency by enforcing
the synthesised images to have the same semantics with
the input text description. However, most of the text-based
image manipulation methods with significant performance
are basically based on the multi-stage framework. Deviating
from previous methods, we propose a novel framework that
achieves image generation and manipulation without multi-
stage processing.

B. GAN INVERSION

It is arguable to infer that a generative model is as good as its
latent space. Most importantly, a properly disentangled latent
space will be more useful for multi-modal synthesis. GAN
inversion was first introduced by Zhu et al. [20], and in their
approach, the latent space is trained on various image outputs
from which a pre-trained GAN most accurately reconstruct
a known image. Motivated by their method, recent works
have used StyleGAN [7] for this task as well. Generally,
inversion methods either directly optimize the latent vector to
minimize the error for the given image [21], [22], [23], train
an encoder model to map images to the latent space [24], [25],
or use a hybrid approach by combining both aforementioned
methods [8]. Typically, techniques performing optimization
are superior in reconstruction quality to a learned encoder
mapping, but require a longer training time.

Our encoder can efficiently embed a given face image
into the extended StyleGAN latent space that comprises of
both text and sketch images, which we represent as Wy.
Some concurrent works improve GAN inversion with bet-
ter reconstruction like Gu et al. [26] who employs multiple
latent codes to recover an image, Pan ef al. [27] optimizes
the parameters of the generator together with the latent
code, while Karras et al. [7] and Abdal et al. [28] focused
on inverting StyleGAN models by exploiting the layer-wise
noises. One important issue omitted by most inversion meth-
ods is that they merely consider reconstructing the target
image at the pixel level without considering the computa-
tional efficiency. Therefore, in this work, we argue that the
dependence on the pixel-wise reconstruction loss as the major
metric to evaluate a GAN inversion method is not necessarily
efficient or the best approach. Instead, we studied the proper-
ties of the inverted code obtained at the semantic level and
proposed a richer visual-linguistic module coupled with a
linear-based attention scheme.

C. ATTENTION TECHNIQUES

The inclusion of attention modules to a network encour-
ages it to focus on specific aspects of an input by weight-
ing the important parts more than irrelevant parts. Hence,
attention plays a major impact on improving language
and vision applications [29], [30], [31]. A very popular
method was introduced by AttnGAN [32] which builds upon
StackGAN++ [2] and incorporates attention into a multi-
stage feature-refinement pipeline. Their mechanism allows
the network to synthesize fine-grained details based on
relevant words in addition to the global sentence vector.
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SEGAN [33] proposed an attention competition module to
focus only on the key-words instead of designing an attention
weight for each word in the sentence. They achieved this by
introducing an attention regularization term [34], [35] that
only keeps the attention weights for visually important words.
ControlGAN [36] achieved both text-to-image generation
and visual attribute manipulation such as category, texture,
and color by changing the description without affecting other
content. They proposed a word-level spatial and channel-
wise attention driven generator which allows the generator to
synthesize image regions corresponding to the most relevant
words. They also showed how a word-level discriminator
can provide the generator with fine grained training signals
that disentangles different visual attributes by exploiting the
correlation between words and image sub-regions. Indeed
attention mechanisms are beneficial to GAN models, but the
quadratic computational and memory complexities of most
attention mechanisms have limited their scalability for mod-
eling long sequences. In this paper, we propose a preferable
linear-based attention mechanism that approximates softmax
attention which yields only linear time and space complexity
as opposed to quadratic solutions. As compared to traditional
attention mechanisms, our method performs the attention
operation linearly, while also storing adequate contextual
information.

IlIl. MODEL ARCHITECTURE

In our work, we ensure that the derived latent space of
the image and text pairs are properly disentangled in order
to encourage the augmentation of different facial attributes
assigned to each subject. To build such a visually-linguistic
model, we combined the efficiency of different seman-
tic rich models that compete with state-of-the-art. Firstly,
we adapted a hierarchical structure of visual-linguistic fea-
tures derived from a sketch-based image encoder that is
trained inversely [8] to a common latent space we define as
Wy for both text and image features. We also introduced a
computational and semantic efficient attention model that is
linear-based which maintains the semantic similarity between
text and image pairs. We chose the Multi-Modal CelebA-
HQ [37] dataset comprising over 60,000 unique identities
and 40 facial attributes as a basis for training our model. The
sketches used for our model are curated from a collection of
human drawn sketches of unique individuals from different
ethnic backgrounds.

A. VISUAL-LINGUISTIC MODEL

In our work, we propose a hierarchy of encoded
visual-linguistic features that computes the contextual sim-
ilarity between images and text pairs extracted at different
down-sampled resolutions. The contextual similarity between
each pair of text and image is computed for different layers of
the model, as shown in Figure 2. Since our design direction
is focused on a multi-modal problem where text is used to
guide sketch-to-image synthesis, we incorporated a set of
linear-based attention models that ensure the local contextual
similarity between image regions and specific words are
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FIGURE 2. The GAN architecture. The structure shows the linear attention-based encoder coupled with a style-GAN generator. Our proposed
model encodes a hierarchy of visual features derived from the input sketch image at different resolutions to match the defined style layers of
the Style-GAN architecture. Visual features from the visual encoder ¢(x) in green are concatenated with visual features (orange), which are
extracted from the pre-trained CLIP vision encoder at different layers represented as Ey; (¢(x) + CLIP(h)) per layer. A contextual intermediate
network (c-Map) maps combined textual and visual features to the disentangled latent space VW of the Style-GAN model to synthesise a high

resolution image.

learned. In Figure 3a, we break down the linearised attention
model to highlight its true benefits. In a structural sense
as described in Figure 2, we extracted encoder embeddings
into the latent StyleGAN latent space WW,.. The embeddings
are scaled to a single vector of 512-dimensional vectors.
In addition, our technique can easily be plugged into any
generative adversarial model without heavily impacting the
overall computational complexity.

B. GAN INVERSION MODULE

To build an efficient GAN model that leverages on
visual-linguistic features that synthesize plausible images,
we must encode a defined set of input pairs to a latent
space that semantically maps style and content efficiently.
Such a latent space is achieved by inverting the features of
an input image to a latent space of a fixed GAN model.
To implement such a framework, we adapted the StyleGAN
model because it offers the best of image quality at high
resolutions and a wider diversity that covers the full spec-
trum of facial attributes [38]. GAN inversion basically means
the reverse mapping of a given image x into a latent space
of an already trained GAN model. However, plugging in a
new visual or text encoder into an already trained Style-
GAN generator comes with a unique set of issues. Firstly,
the StyleGAN model is broken down into different sections
classified by three main semantic levels of detail, namely:
coarse, medium and fine layers [7], [9]. Secondly, the Style-
GAN model encodes a style distribution in a hierarchical
setting where subsequent semantic affine [9], [39] layers
(18 layers in this case) are grouped based on their unique fine
grained details [7]. To cater to these two requirements of the
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StyleGAN model for semantic style interactions, we propose
a novel encoder model. Our proposed encoder, similar to
the methods applied in [38], [40] encodes a hierarchy of
features derived from the input image at different resolutions
to match the defined style layers of the StyleGAN architec-
ture. In section 3.5, we describe a contextual intermediate
mapping network; c-Map that combines textual and visual
features from an encoder model E,(-) to the latent space W
of the StyleGAN model. To further encourage better semantic
mixing, we initialize the new latent space W, with features
from the StyleGAN model. Hence, our encoder is trained to
learn visual-linguistic information using an efficient attention
scheme. The final semantic output is represented as:

Ex(x, h) = (¢(x) * CLIP(h)) + W, (1

where ¢(x), h and w denotes the input image embeddings,
features from the CLIP model, and the average of StyleGAN
latent embeddings, respectively. We use ““x” to represent the
concatenation operation. The training process is given as:

Lg, = [y — Gy, DII3 + 21 [V() — V(Gy(x, )
+2200(y) — ¢(G(x, )| = A3E[D(Gy(x, h))],
(@)
Lp,, = ME[DW(Gy(x, h)] — 22E[Dy(y)]

A3
+ 7]EIIVXDV(GW()€, i3, 3
We use D(:), V(-) and ¢(-) to represent discriminator,

perceptual and style loss, while A represents adjustable
hyper-parameters, more detail on losses is described in
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section 4. y represents the reference image, we also rep-
resent the synthesized output image X from the generator
as Gy(x, h), to identify the features from the encoder that
is made up of the input sketch x, sketch image features h
from CLIP’s vision encoder and the combined text and image
features from the embedded space w.

C. VISUAL-LINGUISTIC SIMILARITY

A contextual feature space of sentences and image pairs col-
lectively initiates the bases for a potential text-guided image
synthesis model. Such visual-linguistic embeddings aim to
capture the intrinsic similarity between image and textual fea-
tures. In our approach, we capitalize on the similarity between
texts and images features to which we translate into a latent
space W, of the StyleGAN model. Our strategy is aimed at
improving the visual perceptual appeal of synthesized images
for difficult visual inputs like sketches with textual descrip-
tion. To achieve state-of-the-art performance, we utilized a
visual-linguistic encoder trained on over 400 million image-
text pairs, called Contrastive Language-Image Pre-training
(CLIP) [13], [41]. A CLIP model is trained to predict possible
(image, text) pairings. To improve performance, CLIP maxi-
mizes the cosine similarity of the image and text embeddings
of the N real (image, text) pairs in the batch while mini-
mizing the cosine similarity cos(x, t) of the embeddings of
the N> — N incorrect pairings. In Figure 6 and 7, we pro-
vide visually appealing results and compelling quantitative
results. For image synthesis, using a pretrained generator and
a pre-trained text encoder for the two-fold goal, we define the
optimization problem as:

w* = argmin [w — Ex(Gu(x. I3 @)

we obtain an inverted latent code w as the initialization for
the optimization, using the inversion module [38]. G, (x, h)
represents latent embeddings w which is a combination of the
image x and CLIP pre-trained embeddings 4.

D. TEXT ENCODER

Every facial sketch is associated with a textual descriptions
generated from a corpus of texts which are based on unique
attributes of the Multi-Modal-CelebA-HQ [38], [42] dataset.
To build such a text-guided model, we used BERT to learn
the unique attributes within each word and their contextual
associations. BERT relies on a transformer-attention mecha-
nism that learns the contextual relationships between words
in a text. The input to the encoder for BERT is a sequence of
tokens (words), which are first converted into vectors and then
processed into the neural network. Semantic vectors indicated
as t € DP*T from text descriptions are extracted [14] where
all of the sub-words in an input sentence are mapped to a
set of embeddings, E;. Each embedding ¢t € E; is com-
puted as the sum of a token embedding, specific to the sub-
words. The input embeddings E; are then passed through a
multi-layer Transformer network that builds a contextualized
representation of the sub-words. Pre-training is done using
a combination of two language modeling objectives: Firstly,
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a masked language modeling where some parts of the
input tokens are randomly replaced with a special token
(i.e., [MASK]), and the model needs to predict the identity
of those tokens. Secondly, a sentence prediction where the
model is given a sentence pair and trained to classify whether
they are two consecutive sentences from a document. Finally,
an output layer and objective are introduced and fine-tuned on
the task data from pre-trained parameters [14], [32]. We com-
pute the similarity between these features; text w, and image
w, embeddings from the latent space. Hence, the multi-modal
similarity is learned by the given expression:

L
Le, =) lwy —wil3. )
i=1

where w,, w; € RE*C are the features obtained from the
image and text embeddings; w, = Ey(x, h) and w; = E;(-).
All features are of the same shape for L layers, each with a
c-dimensional latent embedding.

E. CONTEXTUAL MAPPING

A mapping scheme is necessary to transfer the embeddings
from both image and text pairs. In our case, we imple-
mented a contextual mapper (c-Map) that translates con-
textual features into a latent embedding; f : Z2 — W,
of semantic vectors derived from abstracted data. We also re-
scaled the images and then extracted the local feature matrix
from the last layer of the image encoder E,(-), which we
feed to the c-Map network. The mapping network mimics
a small convolutional network, which gradually reduces the
spatial size using a set of 2-strided convolutions followed
by LeakyReLU activations [9], [43] and a series of fully
connected layers to ensure the model is aware of the inher-
ent information between text and images, which is crucial
for feature disentanglement as shown in Figure 3. A fully
connected layer learns features from all the combinations
of the features of the previous layer, while a convolutional
layer relies on local spatial coherence with a small recep-
tive field (3 x 3 kernel, in most cases). We then added
the fully connected layers to address the problem of shared
weights in conventional architectures, which prevents the
convolutional layers from generating subtle variations in dif-
ferent spatial zones which are needed to produce realistic
images.

Furthermore, our approach stands out from previous tech-
niques because in the design of our mapping model, we payed
attention to the shortcomings of current contextual encoders
that operate at a pixel-to-pixel correspondence [9], [10].
An encoder that operates at a pixel-to-pixel correspon-
dence will be subject to locality bias, which is a major
limitation when handling non-local transformations [44].
In our approach, we implemented a model that operates
at a global level where multi-modal synthesis is easier to
achieve. Since StyleGAN provides a layer wise represen-
tation, our mapping framework can sample style vectors
defined by W € R>!? which makes hierarchical style mixing
efficient.

VOLUME 10, 2022



U. Osahor, N. M. Nasrabadi: Text-Guided Sketch-to-Photo Image Synthesis

IEEE Access

Add & Norm

Feed Forward Layer

Stacked
Attention

o Layer
Features

Linear based Attention Module

Encoder
Visual Features

BERT
Text Features

8x8x12
1x1x512

Generator
Network

3x1x512
2x1x512

1x1x512
1x1x512

1x1x512
1x1x512

Fully
Connected

Contextual Map Structure

FIGURE 3. Linear-based attention module: A new sequence P R!*d with fixed (constant) length is introduced as an input which is referred to
as the pack attention. A second scheme is implemented on the input sequence Ex € R/*9 called the unpack attention. The image to the right
depicts contextual matching mechanism of our model. The concatenated features from the vision and text-based encoder, result in a

visual-linguistic embedding that is fed to the generator model.

F. LINEAR ATTENTION MODULE
Despite the wide adaptation of attention modules for
long-range dependency modeling, attention still has a serious
drawback; It produces a quadratic solution in both time and
memory cases and as a result, the memory and computational
complexities of the entire attention module are quadratic.
Such computational drawbacks makes the algorithm much
slower than a linear-based model and effectively forbids the
application of attention on large inputs or visual-linguistic
applications where the contextual information is key to
achieve better feature disentanglement. Therefore, to address
the shortfall, we applied a novel approach by using a linear
nested method similar to [45]. At the core of their method,
they decoupled the regular attention function into two nested
attention operations, both of which have linear efficiency.
A new sequence with fixed (constant) length is introduced as
an input which is referred to as the pack attention. Formally,
if P € R denotes the extra input sequence with fixed
length / and d as the dimension. The pack attention first packs
context sequence C to the output pack attention Yp with P as
the query sequence, given as:

Yp = Attn(P, C). 6)
We note that since the length of P is a constant /, the complex-
ity of pack attention is O(Im), which is linear with respect to
m. To unpack the sequence back to the length of the original
query sequence X, a second scheme is implemented on the
input sequence X, given as:

Yx = Atn(X, Yp). @)
We also incorporated a position-wise feed-forward network
and layer normalization, with a final derivation given as:

X', P’ = LayerNorm((FFN (X, P, C)), P). ®)

To match the attention conventions to the rest of our model,
we represent X' := E, € R"*? and P := P € R as the
outputs of the feed forward FFN(-). The attention model is
illustrated in Figure 2 and 3.
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G. TARGET ATTRIBUTE SELECTION

To effectively extract the attributes of a text description, it’s
important to identify the keywords within the sentence that
describe a subject of interest. In our case, we focused on
facial features derived from sketches or images. Our goal in
general was to use the text descriptions to guide style and
content based features from a GAN inverted latent space [8],
[9], [38]. In an image synthesis setting, most facial attributes
can at least be classified into high and low level features (hair
color, freckles, skin color, etc), which should be sufficient to
compose a human face without heavily altering the identity
of the subject [7]. In our approach, we use the StyleGAN’s
hierarchical generator arrangement of style and content to
mix semantic fragments of both text and images features to
synthesize a face [7], [38]. We extracted disentangled features
from an inverted latent space YW at a specified feature size.
To aggregate attribute-specific style and content features from
the GAN layers, we implemented a text-guided mix strategy
by separating the features into w, as the visual feature and w;
as the textual embedding. In general, the layers of the Style-
GAN model can be segmented into high-level styles such as
face shape, earring, eye glasses and head pose, layers in the
middle control the hairstyle, hair color and facial expression.
The final layers control skin color, age gender and other
stochastic fine-grained details.

IV. LOSS FUNCTIONS

In this section, we give a detailed description of the different
loss functions used in our model. Overall, our loss functions
catered to perceptual appeal, identity preservation, visual-
linguistic similarity and proper feature matching with the
StyleGAN generator.

A. PERCEPTUAL LOSS

Although the GAN loss and the reconstruction loss are used
to guide the generators, they fail to reconstruct perceptually
appealing images. Hence, we incorporated the perceptual
loss introduced in [1]. The perceptual loss function basi-
cally measures high level differences, such as content and
style dissimilarity, between images. We added the perceptual
loss using a pre-trained VGG-16 [46] network V(-). The
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perceptual loss calculates the L; distance between the fea-
tures of real and encoded images from the encoder E,,. The
perceptual loss £, for our proposed network is defined as:

'Cp — Hv(y)c,w,h _ V(ﬁ)c,w,h

I ©)

where V (-) is used to denote a particular layer of the VGG-16
and ¢, w, and & denote the layer dimensions.

She is smiling, and
young and wears lipstick.

This bald man
has arched eyebrows

026

This man is smiling and has
black hair and eyeglasses

This man has
gray hair

This person has
arched eyebrows

She is wearing earrings.
She has bushy eyebrows

026 027

FIGURE 4. The encoder model similarity matrix, showing confident
matches along the diagonal that indicate the similarity between the
images of interest and their appropriate text descriptions. The prediction
outputs along the diagonal is enhanced by the inclusion of the vision
section of the pre-trained CLIP model.

B. STYLE LOSS

The style transfer loss comprises of the content and style [1].
The content in our case is derived from the encoder model
E(-). Basically, the expectation over the entire spatial space
of the feature maps are compared with a loss function, so as
to ensure similarity. These are obtained by taking the gram
matrix G?(-) of the outputs of X and X given by:

G? = (Gi(Y)eown)Bi(X)er 1), (10)

where Qi(.) represents a filter output function, ¢’ is a trans-
posed channel form of c¢. The style reconstruction loss for
both images is thus an L; loss of each computed gram matrix:

Ly = |0l - ol an

C. IDENTITY PRESERVING LOSS

To preserve identity during the synthesis, we applied a
pre-trained Light CNN2 [47] face recognition network to
extract meaningful feature representations that improve the
identity preserving ability of the network. We calculated
the identity preserving loss Lj; as the summation of the
feature-level difference between the synthesized and the real
image, given as:

Lid = |Pu) — Pu®|3 . (12)

where we consider P;q4(-) as output features from the last fully
connected layers of Light CNN network.
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TABLE 1. Quantitative comparison of text-guided image manipulation.
We compare our method with state-of-the-art techniques; TediGAN [38],
ManiGAN [11] in terms of FID, accuracy (Acc.) and realism (Real).

Mode Method FID Acc.(%) Real.(%)
ManiGAN [11]  117.89  27.41£0.21  10.01% 0.08
CelebA TediGAN [38] 101.25 38.30+0.01  46.504 0.03
CTGAN 100.17 38.85+0.01  45.31+ 0.32

ManiGAN [11] 14339 1641+ 0.11 7.414 0.08
Non-CelebA  TediGAN [38]  129.27  40.00+ 0.21  45.414 0.08
CTGAN 138.10  42.40+ 0.14  47.41+ 0.08
ManiGAN [11] 141.51 9.01+0.11 10.414+ 0.08
Open-Text TediGAN [38] 113.57 68.01+0.30 43.2440.02
CTGAN 10642  69.17+0.10  44.81+ 0.08

D. OVERALL OBJECTIVE FUNCTION
We sum up all the loss functions defined above to compute
the overall objective given as:

Ler—6an=Lg,+Lp, + Lg, + M Lyp+r2Lsy + A3L04,
(13)

where variables A1, A2, A3 are the hyper-parameters used as a
weight factor of the different loss terms.

V. EXPERIMENTAL SETUP

We use the Multi-Modal CelebA-HQ [40] dataset for the text-
guided multi-modal image synthesis. It’s a large-scale dataset
which has a high-quality semantic segmentation map, sketch,
descriptive texts, and images with transparent background.
The text structure comprises of ten unique single sentence
descriptions for each image in CelebA-HQ [6]. For training,
we divided the dataset into 80% training and 20% test sam-
ples, respectively.

A. TRAINING

To train the StyleGAN inversion module [8], we combined
features from an image encoder and the features from the
CLIP model [13], which was trained on over 400 million
image and text pairs, as defined in Equation (1). We adapt
this technique in order to achieve better semantic mean-
ing between text and images. In retrospect, we built a
visual-linguistic encoder combined with a BERT [14] text
encoder to produce embeddings that match the latent space
W, of StyleGAN. In our design, we adapted the BERT
encoder specifically to fine tune the model newly added text
descriptions that are of interest for our model. In line with the
approach implemented in [10], we trained only the encoder
and discriminator while the generator weights are frozen.

B. EVALUATION

We compared our proposed method with similar approaches
applied for text and text-guided image synthesis models such
as AttnGAN [32], TediGAN [38] ControlGAN [36] and
DFGAN [48]. For evaluation, we used techniques similar
to [38] to evaluate image quality, diversity, accuracy, and the
degree of realism. Following the previous methods [36], [49],
we also evaluated the quality of generated or manipulated
images using the Frechet Inception Distance (FID) [50] and
the Learned Perceptual Image Patch Similarity (LPIPS) [51].
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FIGURE 5. Textual semantic interactions between words of sentences, to reflect the relationship between words and texts.

The accuracy of generation is evaluated by checking the level
of similarity between text and images.

1) QUANTITATIVE COMPARISON

In our experiments, we evaluate the FID score and also con-
duct a user study on accuracy and realism by selecting images
randomly from both CelebA and Non-CelebA datasets with
randomly chosen descriptions, similar to the approach in [38].
The quantitative results are shown in Table 1. Compared
with results obtained from ManiGAN [11] and TediGAN [38]
our proposed strategy achieves a better FID, accuracy, and
realism. The results obtained indicate high-quality synthetic
images, with modifications that are aligned with the given text
descriptions.

We also compared our method to the optimization tech-
nique from Karras [6], the encoder from pSp [38] and IDIn-
vert [8]. The pSp method proposes an auto-encoder train-
ing approach, where the encoder is trained alongside the
generator to generate latent codes. In IDInvert, images are
embedded into W, and then optimized over the generated
image. In our approach, we applied a linear based visual-
linguistic encoder. Table 2 presents a quantitative evaluation
measuring the different inversion methods. We computed the
structural similarity (Similarity), mean square error (MSE),
LPIPS scores as well as the ““Runtime” for each model.
Compared to other encoders, CT-GAN preserves the original
image’s perceptual similarity and subject identity.

2) QUALITATIVE COMPARISON

To analyze overall image quality, we checked different
aspects of interest applied for most attribute guided image
synthesis models. Firstly, we compared the ability of our
model to replicate the visual representation of different
user attributes against previous methods that have some
form of text or attribute guided modeling. Obtained results
shown in Figure 7 and 8 confirm that ControlGAN [36] and
DFGAN [48] produce similar results that are quite consis-
tent with the attribute descriptions when compared with our
method. However, when compared with AttnGAN [32] and
FacelD [39], we see considerable degradation in the image
attribute representation, especially for sketch based images.
Attributes like lipstick, age, and hair strands were not prop-
erly replicated in the synthesized images when compared
to our method. We can attribute the weak performance by
the nature of the generator adapted [6] and attention model.
Our model depends on the latent space of the StyleGAN
model [6], [7], [8], which contains better disentangled embed-
dings of the facial attributes.
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TABLE 2. Quantitative comparison of encoders. A comparison of our
method with state-of-the-art models; Karras [52], IDInvert [8] and
pSp [9] in terms of similarity, MSE, LPIPS, and runtime.

Method T Simalarity | LPIPS | MSE | Runtime
Karras [52] 0.77 0.11 0.02 182.01
IDInvert [§] 0.35 0.22 0.06 0.032
pSp [9] 0.19 0.19 0.03 0.105
pSp wio ID [9] 0.49 0.23 0.04 0.064
CT-GAN 0.57 0.16 0.03 0.109

VI. COMPONENT ANALYSIS

In this section, we evaluate the key components that define the
performance of the our model. We evaluate the Linear-based
attention model for the encoder as well as the visual-linguistic
impact of the BERT [14] and CLIP [13] models, respectively.
Our findings throw more light on the potential of our model
in general.

A. VISUAL-LINGUISTIC ABILITY

Our contextual model comprises of a text based encoder
[14] and a visual-linguistic encoder that encodes text [13]
and image pairs in a single shot. To get a better under-
standing on the semantic interaction within words of the
same sentence and vice versa, we used the BertViz visual-
izer [12] to reflect the semantic interactions between words
and text. We setup a comparison of two short sentences; A
and B as shown in Figure 5. Our goal is to visually show
how each word relates to a sentence both locally (within
the same sentence) and globally (of a different sentence).
Our experimental setup compares two randomly selected
sentences:

A: “The person has bags under eyes”

B: “This woman is attractive and has bags under eyes”
We see that when we choose an identity based word like
“person” in a comparison between sentences A and B, rep-
resented as A T2 B, we observe that attributes such as:
“woman”, “attractive”, “bags”, “eyes’’ show higher color
activations. This kind of relationship between different sen-
tences confirms that the association of attributes is consistent
regardless of position. In the same fashion, we compared

T3Pl

B 5 A, in this context, “is” is a linking verb used to
describe attributes. The neuron activations clearly highlight
key words; “under”, “person”, “bags”, “eyes" that indicate
the quality of semantic association required for an effective
visual-linguistic model. We further check the response of the
model to the most attended words in unseen text descriptions
(test case). We show high resolution examples in
Figure 6 and 9 to confirm that the generated images are
modified relative to the attribute words in the sentence.
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FIGURE 7. Model comparison of images with different attribute
combinations.

Our findings indicate that the model is sensitive to
the visual-linguistic relationship between image-word pairs.
We used the CLIP model to confirm that the semantic
features for our encoder model is efficient for text-guided
synthesis [13]. In Figure 4, we compared six unique faces
with attributes and textual descriptions. The similarity matrix
shows confident matches along the diagonal that clearly
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FIGURE 8. Model comparison of images with different attribute
combinations.

indicate the similarity between the given image of interest and
the appropriate sentence.

B. EFFECTIVENESS OF THE ATTENTION MODEL

In the design of the attention model, we considered the
semantic-level relationship of image and word pairs for both
channel and spatial representation at the image sub-region
and pixel level. To have a better understanding of the benefits
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FIGURE 9. Quality of synthesised images derived from poorly drawn sketches reflecting age, gender, etc.

FIGURE 10. Identity preservation. The images represents consistency of
the subjects identity for different attributes.

of our approach, we visualized a combination of text based
attributes to showcase the power of the attention model
adapted. We extend our empirical experiments by implement-
ing different ablation tests on the model to ascertain how the
attention scheme benefits the model.

We setup our ablation studies to check the quality of sketch
to image synthesis in combination with different degrees of
text-based attribute combinations. Most models depend on
basic text allocations. However, in our approach, we show dif-
ferent promising text combinations that verify the robustness
of our model.

1) GOOD SKETCHES

We chose a collection of good sketches that will set a basis
for comparison against “Bad” sketches. Good sketches in
this case represent facial sketches that contain most of the
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facial details while the bad sketches have some missing
facial details. We guide the image synthesis process of each
sketch with different composed sentences, which we arrange
in different orders of complexity. Every sentence has key
attributes (“blue hair”, “old”, “beards” and “pale face”)
that can be visually identified from the results obtained. The
aim is to observe the performance of the model at different
sketch types and text complexity. As expected, the model
easily replicates the sketch into the expected image without
compromising the identity portrayed by the sketch regardless
of the attribute combinations used as shown in Figure 11.

2) BAD SKETCHES

As the sketches are slightly degraded, the model still main-
tains its ability to reproduce plausible images at high
quality as reflected in Figure 12. We observe that the
model still tries to synthesize similar identities, which
show the attentiveness of the model to the perceptual identity
of the subject. Lastly, we pay key attention to the ability of the
model to synthesize images and still maintain the contextual
meaning of the sentence for each case study. We can clearly
identify the subjects regardless of the poor sketch provided.
Our approach confirms that regardless of the sketch quality,
visual-linguistic property of the model is still maintained.

C. TEXT-GUIDED ANALYSIS

A combination of visual and text based features in a single
generative model creates a set of interesting properties that
need to be explored to identify the possibilities of text-guided
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FIGURE 12. Images synthesised from bad crafted sketches.

synthesis. In our approach, we pay more attention to sketches;
which is a more difficult problem to solve. To understand
the intricacies of our model, we set up a set of experiments
to verify the robustness of our model. We looked closely
at the ability of the model to maintain the identity of a
given subject even when attributes are changed. We also
use different sketch templates to analyse the models’ ability
to synthesise images without compromising identity and
perceptual quality.

1) IDENTITY PRESERVATION
The ability to reproduce similar images of the same identity is
crucial for sketch base synthesis. In Figure 10, we showcase
our model’s ability to reproduce identity-consistent images.
Our results reflect the synthesised images when we change
the subject’s attributes such as “gender’’, “age” and ‘‘hair
color”. We set up the test cases using simple and complex
attribute combinations. A sample of the short sentences used
are expressed below:

Female — Male : “He is Asian and has short hair.”

Female — Male : “He is a young male.”

Female — Female : “She has long hair and is slim” Over-
all, the attributes extracted form the short sentences don’t alter
the identity of the subjects.

2) COMPOUND SENTENCES
A collection of sentences could be used to synthesise images
from sketches. To test the model’s response to sentence-based
attributes we checked different combination of texts compris-
ing of different attributes. We define compound sentences as
a collection of text-based attributes that reflect “gender +
ethnicity”,“hair + age”, “gender + beards”,  beards +
gender + age 7, “age + ethnicity + gender ”, etc.

Our results confirm consistency in perceptual quality, iden-
tity and sketch diversity. Sketch diversity in this case high-
lights the fact that the model is able to synthesize an image
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and still represent the attributes within the specified sentence.
In Figure 9 we show the perceptual quality of images gener-
ated using some compound sentences.

VII. CONCLUSION

In our work, we showed that a text-guided sketch-to-image
GAN model can be visually appealing and still portray all
the facial attribute within an associated text description. Our
model leveraged on the hierarchical structure of the state-
of-the-art StyleGAN model to combine visual-linguistic fea-
tures from a properly disentangled latent space. From our
findings, we observe that introducing the CLIP features to
our framework encourage better contextual meaning to our
results without comprising the identity of the facial results
across board. We also confirm that adapting a linear-based
attention module aids in generating plausible images.
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