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Abstract—A morph is an image of an ambiguous subject
generated by combining multiple individuals. The morphed
image can be submitted to a facial recognition system and
erroneously verified with the contributing bad actors. When
submitted as a passport image, a morphed face poses a national
security threat because a passport can then be shared between
the individuals. As morphed images become easier to generate, it
is vital that the research community expands available datasets
in order to contentiously improve current technology. Children
are a challenging paradigm for facial recognition systems and
morphing children takes advantage of this disparity. In this paper,
we morph juvenile faces in order to create a unique, high-quality
dataset to challenge FRS. To the best of our knowledge, this is the
first study on the generation and evaluation of juvenile morphed
faces. The evaluation of the generated morphed juvenile dataset
is performed in terms of vulnerability analysis and presentation
attack error rates.

Index Terms—Juvenile Morphing, GAN-based Morphing,
Landmark Morphing

I. INTRODUCTION

Public acceptance and easy enrollment process make the
face the most readily accessible form of biometric. Addition-
ally, face images are relatively easy for humans to verify in-
person without the need for sophisticated verification tech-
nology, making it attractive to border security. Therefore, the
International Civil Aviation Commission (ICAO) [1] utilizes
facial recognition for it’s electronic Machine-Readable Travel
Document (eMRTD) [1]. The reliability of facial recognition
systems (FRS) is threatened by false positives, which allows
an individual to be erroneously verified by the system as
a different individual. These false positives can occur when
subjects look alike and the FRS is not precise enough to
differentiate between the individuals. Morphed images take
advantage of this vulnerability. Morphed faces are generated
by combining look-alike individuals in to an ambiguous face
image which is verified as both individuals [2]. Morphed
images of look-alikes are effective at fooling FRS, which poses
a significant security threat [2], [3]. If a bad actor submits a
morphed image to a passport enrollment system, the passport
may be shared between multiple individuals.
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Facial recognition systems perform lower on children than
adults. Michalski et al. show that commercial-off-the-shelf
(COTS) algorithms at an FMR of 0.1% in a verification setting
for juveniles result in a false match rate up to six times higher
than adults [4]. One of the major barriers to the improvement
of juvenile face recognition is the lack of publicly available
datasets dedicated to children [4]. Most FRS common in liter-
ature are trained on large publically-available datasets such as
Visual Geometry Group Face2 (VGGFace2) [5]. While these
datasets contain children’s faces, the proportion of juvenile
subjects is statistically insignificant to create reliable FRS
for children. Srinivas et al. [6] study multiple COTS and
government-off-the-shelf (GOTS) algorithms to understand the
bias FRS have against children. They were able to deduce that
in both identification and verification scenarios, children do
not perform as well as adult baselines. Similarly, the Face
Recognition Vendor Test (FRVT) [4], [7] has consistently
shown lower performance on child subjects than on adult faces.

Additionally, children are more difficult to verify in per-
son than adult subjects, creating a challenge for in-person
verification which would otherwise come naturally [8]. We
propound this crucial scenario with serious implications for
national security and child trafficking: If a bad actor attempts
to cross an international border with a child, the bad actor can
create a morphed image of the child with a look-alike and pass
the child through border security under the doppelganger’s
alias. In 2019, in the United States alone, there were over
6,000 reported cases of adults crossing a border with a minor
fraudulently labeled as their own [9]. Our work is vital to
detecting vulnerable children in these scenarios.

To the best of our knowledge, this is the first attempt to
morph juvenile subjects to create morphed faces. We generate
and evaluate 52,686 high-quality morph images utilizing two
landmark-based and one generative adversarial morph method
for children of the wide age range of 4 to 17 years old.
Examples of our generated morphs from each of our morphing
techniques can be found in Fig. I. These images present a
difficult scenario for face verification systems and can be
utilized to improve FRS models, as well as shed light on
the current dangers of morphing children’s faces. Many deep
learning models show a strong bias against children [7], by
morphing children we take advantage of this bias in order to
further fool facial recognition systems.
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Fig. 1. The bona fide subjects and morphed samples from UNCW dataset.

TABLE I
MORPH DETECTION PERFORMANCE ON OUR SIX MORPHED DATASETS.
APCER@BPCER BPCER@APCER

Morph Dataset AUC 1% 5% 0% 1% 5% 10% EER
Clarkson StyleGAN2 89.75% | 46.55% | 36.72% | 28.85% | 72.86% | 55.85% | 32.44% | 16.73%
;:3 Clarkson OpenCV 83.58% | 58.57% | 51.13% | 44.33% | 76.32% | 67.45% | 48.81% | 24.74%
5 | Clarkson Facemorpher | 83.86% | 54.85% | 47.76% | 40.29% | 75.68% | 71.13% | 52.97% | 24.70%
g UNCW StyleGAN2 97.32% | 27.22% | 13770% | 5.05% | 42.40% | 15.00% 8.51% 9.44%
A UNCW OpenCV 92.23% | 48.15% | 28.97% | 18.03% | 77.66% | 4497% | 30.17% | 14.64%
UNCW Facemorpher | 89.45% | 53.90% | 40.75% | 30.78% | 80.52% | 51.45% | 37.20% | 18.45%
Clarkson StyleGAN2 | 79.68% | 86.57% | 69.57% | 52.47% | 97.91% | 71.00% | 5539% | 27.06%
Clarkson OpenCV 69.89% | 93.15% | 75.29% | 65.60% | 99.52% | 91.77% | 78.48% | 36.12%
%"0 Clarkson Facemorpher | 70.47% | 94.52% | 74.33% | 64.718% | 97.76% | 92.00% | 80.56% | 33.54%
ﬁ UNCW StyleGAN2 92.66% | 72.35% | 29.39% | 21.44% | 71.15% | 40.94% | 26.17% | 14.55%
UNCW OpenCV 81.38% | 95.34% | 76.02% | 58.12% | 74.07% | 59.39% | 44.24% | 24.77%
UNCW Facemorpher | 81.11% | 95.59% | 73.32% | 58.88% | 73.25% | 60.01% | 45.17% | 27.29%

II. JUVENILE MORPHED FACE GENERATION

Here, we utilize our modified Facemorpher [10], OpenCV
[11], and StyleGAN?2 [12] to generate high-quality morphs.

A. Landmark-based Morphing

Landmark-based morphed image generation typically con-
sists of three steps: landmark detection, warping, and blending.
The landmark points of the two input subjects, which are
critical points on each face, are averaged together to create
a common set of landmarks. The images are then warped
towards these common landmarks and blended to create the
morphed image. The morphed images are guaranteed to have
visual similarity with both individuals because features of
the individuals are combined by averaging the input images
together. Ferrara et al. [2] was the first to expose the dangers of
morphed images in FRS by morphing high-quality images by
hand. Sarkar et al. [3] generated data from various landmark-
based algorithms such as Facemorpher [10] and OpenCV [11].

We consider two look-alike individuals for morphing. The
pair’s faces, u and v, are aligned. 68-element long pixel-
coordinates @ and © are found on each subject’s face. The
landmark coordinates are areas deemed of high importance for
morphing. Then, @ and ¥ are used to generate a mesh grid
across the image. On an element-wise basis, the coordinates of
4 and © are averaged together to create the common landmarks
coordinate, M. After warping to the common landmarks,
bilinear interpolation is performed in order to correct color

values. An affine transform is used to transmute points from 4
and ® to the 7 creating both 4, and ?,,. After warping, .,
and ¥, are averaged together. At this point, the background of
the face regions will have a heavy ghosting effect. Face region
is spliced from the background and placed onto the convex
hull of 4., to generate the final image m. Our algorithm is
modified from both Facemorpher [10] and OpenCV [11] at the
stages where the background is warped and where the convex
hull is spliced.

B. StyleGAN2 Morphing

In recent years, Generative Adversarial Networks (GANs)
have become more powerful, by creating realistic looking
images with minimal visual artifacts [12]. GAN-based morph
generation approaches use latent vectors of input images which
are then linearly combined, resulting in minimal artifacts
and producing high-quality morphs [3], [12]. Damer et al.
introduced MorGAN [13] for face morphing. They utilize their
discriminator and generator in order to learn the mappings for
the encoder and decoder. The networks are trained to generate
reconstructions from the information bottleneck. Once Mor-
GAN was trained, the latent vectors were linearly combined
to generate the morphed image.

We combine the latent code using StyleGAN2 [12] to
generate our morphed images because of the high-visual qual-
ity of their output images. While GAN-bsed approaches are
becoming more popular, literature shows that GAN-generated

Authorized licensed use limited to: West Virginia University. Downloaded on March 12,2023 at 21:25:53 UTC from IEEE Xplore. Restrictions apply.



Females i Males
'

1
1
1
'
20 \
1
1

o 1 0 L
0.6 0.8 1.0 1.2 14 1.6 0.6 0.8 1.0 1.2 14 16 18
FaceNet Similarity Score FaceNet Similarity Score

Fig. 2. All-to-all distribution for comparisons of subjects from the UNCW
dataset. Pairs below the distance threshold are considered look-alikes.

morphs struggle to retain the identity of the input subjects [3].
The same aligned pairs as described in the previous section are
used as v and v. They are warped toward common landmarks
in the same manner to result in the warped faces i, and ¥y,.
The face region of both warped images are spliced and pasted
onto a black background. These images are embedded to an
18 x 512 latent code. These codes are then averaged together to
construct the morphed image’s latent code. To improve final
visual quality of the morphs, custom noise is added to the
convolutional layers of StyleGAN2. This fused latent vector
is reconstructed to generate the morphed convex hull. This
face image is spliced back onto the face region of the input
images u to construct the morphed image m.

III. EXPERIMENTS AND DISCUSSIONS

Two datasets are utilized to create our morphed images, the
Clarkson University children dataset [14] and UNCW MORPH
age-progression dataset [15]. The two datasets are utilized in
order to generate a range of generated ages, with the Clarkson
dataset containing images of children ages 4-11 years old, and
a subset of the UNCW dataset containing subjects ranging
from 16-17 years old. For both datasets, the subjects are in
front of a neutral background and looking directly into the
camera. A four year old has vastly different facial features
than a 17 year old. When morphing, it is vital to morph
subjects who look-alike in order to reduce morphing artifacts.
Therefore, we preserve the integrity of the demographics of
each dataset by generating two separate morphed datasets from
the respective bona fide datasets.

UNCW dataset: From [15], we extract individuals of
age 16-17 years old. The dataset has a strong gender bias,
and our subset includes 499 male and 58 female subjects.
The images are of size 470 x 400. Compared to Clarkson
dataset, the subjects in this dataset have highly distinguishable
features, similar to adults. We use the L, distance between
the FaceNet’s embeddings of length 512 in order to generate
a similarity scores [16]. Morphs are generated within gender
groups, and similarity scores are calculated within genders.
As presented in Fig. 2, distance threshold is set at the top 5%
of the female pairs in the distribution and pairs below this
threshold are considered look-alikes. This threshold is also
applied to the male distribution. 465 subjects are accounted in
the final pairings, and per morphing method, 7,564 morphs
are generated. We refer to the generated juvenile UNCW

morph datasets using Facemorpher [10], OpenCV [11], and
StyleGAN2 [12] as UNCW Facemorpher, UNCW OpenCYV,
and UNCW StyleGAN?2, respectively.

Clarkson dataset [14] is made up of children ages 4-
11 years old. The original images are of sizes 5472 x 3648
and of good visual quality. We used a subset of the data
containing 165 subjects. The children are so young their faces
lack highly distinguishable features, thus, creating high inter-
class similarity between the subjects. Therefore, using FaceNet
we find the top 10,000 look-alike pairs and use them for
morphing. We crop the images to 512 x 512 and morph
using the Facemorpher landmark-based, OpenCV landmark-
based, and StyleGAN2 techniques. The resulting images are
512 x 512 and have no visual morphing artifacts. We refer
to these three datasets as Clarkson Facemorpher, Clarkson
OpenCV, and Clarkson StyleGAN2, respectively.

A. Vulnerability Analysis

Morphed images contain structural similarities with their
bona fide subjects. Structural Similarity Index Measure (SSIM)
[17] is calculated based on perceived similarity between
reference images rather than a pixel-to-pixel comparison.
As presented in Fig. III-A, we compare the SSIM score
between the bona fide identities and their respective morphs.
A higher SSIM score represents greater structural similarity.
The datasets show a linear correlation between the structural
similarities of bona fide identities and the morphed image.
While the Clarkson dataset’s SSIM scores trend higher than
UNCW, it has a higher variance. Meaning, the Clarkson dataset
maintained similarity better than UNCW, but shows greater
bias toward one contributing subject over another. This is due
to the greater variable face shapes in the young children in the
Clarkson dataset. Therefore, when the convex hull is placed
onto a contributing subject’s face the SSIM is biased toward
the subject used as the background of the morphed face, i.e.,
the image with stronger structural similarities.

The International Organization for Standardization (ISO)
defines Attack Presentation Classification Error Rate (APCER)
as the rate of incorrectly identified morphed images while
Bona Fide Presentation Classification Error Rate (BPCER)
is the number of bona fide images erroneously labeled as a
morph [18]. Further, we include the Mated Morph Presentation
Match Rate (MMPMR) as a means of similarity between our
morph images and its contributing subjects [19] where only
morph/bona fide pairs which have a similarity score above a
given threshold are considered:

M
MMPMR (1) = % Z { [ min S::L} > T}, 6))
m=1 T im

where M is the number of morph images, V,, is the number
of subjects contributing to a given morph, S} is the simi-
larity score between the morph m and its n'" corresponding
subject [19]. As presented in Table II, we use FaceNet [16]
and ArcFace [20] as our verifiers with 7 as the operational
verification threshold at False Match Rate (FMR) of 0.1% [21].
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Fig. 3. SSIM between scores between bona fide and morphed images for the
UNCW (left) and Clarkson (right) datasets.

For our six juvenile morph datasets, FaceNet is more vulnera-
ble compared to ArcFace. In addition, the landmark morphing
datasets provide higher vulnerability compared to StyleGAN2
datasets. This observation is consistent with previous studies
on landmark- and StyleGAN-based morph generation [22].

B. Morph Detection

Differential morph detector: We use FaceNet [16] as a
verifier for our morphed images as shown in the Table 1. We
consider a positive pair a genuine image of a subject paired
with a secondary bona fide instance of the subject, while
a negative pair is a genuine image paired with a subject’s
respective morph. Verification results with a lower Area Under
the Curve (AUC) and higher APCER values indicate that the
morphs are successfully fooling the verifier. The morphed
childrens’ faces are able to fool FaceNet, with Equal Error
Rate (EER) values over 9%. Across the three methods of
morphing, StyleGAN2 consistently has a higher AUC then
the landmark-based morphs. For example, while the Clarkson
StyleGAN2 dataset has an AUC of 89.75%, the OpenCV and
Facemorpher versions of the dataset have AUC 83.58% and
83.86%, respectively. This trend implies that FaceNet is able
to differentiate between the morph and bona fide StyleGAN2
images at a higher rate than the landmark morph datasets.
These results reinforce the known issue that StyleGAN2-
generated morphs struggle to retain identity information at the
same rate as the landmark-based morphs [3].

The verification results for the landmark morph dataset are
significantly lower than FaceNet’s expected morph detection
performance. In [23], adult datasets are verified over 99%
AUC using FaceNet. The morphed child datasets results in a
significant AUC drop of approximately 16% when compared
to adults. Additionally, there is a significant difference in
performance of the verifier when comparing the older children
in the UNCW and the young children found in the Clarkson
dataset especially using the OpenCV method where the Clark-
son OpenCV dataset has an AUC of 83.58% and the UNCW
OpenCV dataset with an AUC of 92.23%.

Single morph detector: Using FaceNet [16], we train a
binary classifier with a two-node output to detect morphs. The
morph detector is trained on approximately 12,000 Facemor-
pher, OpenCV, and StyleGAN images of adult datasets. The
detector learns the common artifacts of images using these
morphing techniques. Table I shows the performance of the

TABLE II
MMPMR (%) FOR OUR SIX JUVENILE DATASETS.

Method Facemorpher | OpenCV | StyleGAN2
Clarkso FaceNet 91.31 87.98 73.82
arkSOM |+ A rcFace 90.02 83.80 62.45
FaceNet 99.32 97.87 90.40
UNCW | ArcFace | 9725 93.13 81.49

classifier on our six juvenile datasets. Similar to the differential
scenarios, StyleGAN2 is shown to have a higher AUC in
classification than the other datasets, specifically having an
AUC of 79.68% for the Clarkson StyleGAN2 dataset and
92.66% AUC for the UNCW StyleGAN2 dataset, while their
respective landmark morphs trend approximately 10% lower.
The Clarkson landmark morphs and the UNCW landmark
morphs all have APCER at BPCER=1% values above 93%,
meaning that the morphs are effective at fooling the morph
detector. In this scenario, we again observe the effects of aging
in the performance of the classifier. The Clarkson dataset has a
higher EER and lower AUC when across the methodologies.
For the OpenCV morphs, Clarkson has an EER of 36.12%
while UNCW has an EER of 24.77%. For Facemorpher, the
EER for Clarkson is 33.54% and UNCW has an EER of
27.29%. This trend continues with StyleGAN2 having an
EER of 27.06% and 14.55% for Clarkson and UNCW, which
illustrates a bias toward the older children.

IV. CONCLUSION

In this paper, we generated high-quality morphed images
from juvenile subjects. The morphed images were shown to
retain their identity while being convincing enough to fool
both single and differential morph detectors. While all datasets
are shown to be effective at fooling morph detectors, the
landmark-based morph images were more effective compared
to StyleGAN2 morphs, which is consistent with adults datasets
generated with the same methodology [3]. Across all morph
detectors, morphed children pose a more significant threat than
adult morphed datasets because of inherent bias when training
deep learning models. This illustrated the necessity of further
work to bridge the gap between facial recognition in adults
and children as juvenile morphed images remain a threat to
national security and child safety.
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