
Landmark Enforcement and Style Manipulation for Generative Morphing

Samuel Price*, Sobhan Soleymani*, Nasser M. Nasrabadi

West Virginia University

{swp0001, ssoleyma}@mix.wvu.edu, nasser.nasrabadi@mail.wvu.edu

Abstract

Morph images threaten Facial Recognition Systems

(FRS) by presenting as multiple individuals, allowing an

adversary to swap identities with another subject. Morph

generation using generative adversarial networks (GANs)

results in high-quality morphs unaffected by the spatial ar-

tifacts caused by landmark-based methods, but there is an

apparent loss in identity with standard GAN-based morph-

ing methods. In this paper, we propose a novel StyleGAN

morph generation technique by introducing a landmark en-

forcement method to resolve this issue. Considering this

method, we aim to enforce the landmarks of the morph im-

age to represent the spatial average of the landmarks of the

bona fide faces and subsequently the morph images to in-

herit the geometric identity of both bona fide faces. Explo-

ration of the latent space of our model is conducted using

Principal Component Analysis (PCA) to accentuate the ef-

fect of both the bona fide faces on the morphed latent rep-

resentation and address the identity loss issue with latent

domain averaging. Additionally, to improve high frequency

reconstruction in the morphs, we study the train-ability of

the noise input for the StyleGAN2 model.

1. Introduction

Generative Adversarial Networks (GANs) continue to

grow in popularity in areas such as deepfake generation: re-

alistic images generated by a deep neural network (DNN)

[14, 19, 34]. With recent developments in the realistic face

generation abilities of GANs [15, 16], the threat synthesized

images pose to personal reputation, corporate sabotage, and

national security grow concerning [19]. As such, attacks

on Facial Recognition Systems (FRS) mount as their usage

continues to grow as an integral part of national security

and law enforcement to verify identity [8]. Border secu-

rity is a key target as facial recognition is the only biomet-

ric required in electronic Machine-Readable Travel Docu-

ments (eMRTD) approved by the International Civil Avi-
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Figure 1: Subjects are warped toward the average of their

landmarks to produce a warped convex hull of each sub-

ject. The convex hulls are inverted into latent space of

StyleGAN2 using a weighted combination of perceptual

and pixel-wise losses in addition to latent and noise regular-

ization exploring three techniques for blending latent codes.

ation Commission [1]. Facial morph images have proven

a threat to FRS when submitted by a bad actor to attack

the enrollment stage of the biometric system integration

guideline set by the ICAO, passing two safeguards: image

tampering detection and identity verification [13]. A facial

morph is an artificial face image generated by blending two

or more bona fide face images of different individuals. The

contributing subjects can use the morph for verification as

FRS would find their identities indistinguishable to that of

the morph. If a morph fools both the morph detector and is

identified as the individual in question, a bad actor can cir-

cumvent these security measures. Using a GAN, our pro-

posed technique generates morphs possessing the identity

of two individuals to fool both human inspectors and FRS.

GAN-based morph generation blends the bona fide im-

ages in the latent space of the model by averaging the latent
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representations of contributing subjects [10, 33]. Improve-

ments to early face generating GANs have increased their

threat to FRS [15, 16]. Although benefiting from enhanced

visual quality, compared to other face morphing techniques,

GAN-based face morphing falls short when used to attack

FRS compared to landmark-based morphing due to a loss

of identity in the morphed images [2, 33, 37]. As presented

in Figure 1, we address this issue as we augment the la-

tent space projections of the bona fide images by blending

their landmarks before calculating their latent representa-

tions. Our landmark enforcement technique improves the

morphed face’s landmarks, being equidistant from the bona

fide subjects’ landmarks. To construct the latent represen-

tations for the bona fide subjects, we build upon inversion

methods from [6, 16, 3] by incorporating a landmark en-

forcement algorithm to preserve the blended landmarks in

the latent representation. In addition, we adapt the noise

input of our model [16] to derive an improved image inver-

sion algorithm resulting in latent codes with higher levels of

reconstruction quality.

We integrate our proposed inversion algorithm in the

StyleGAN2 to improve the morph generation. We ex-

plore the constructed latent space using Principal Compo-

nent Analysis (PCA) to enhance the blending of latent rep-

resentations and further improve the quality of the morph

images without adding additional optimization steps. This

exploration aims at addressing the known issue with latent

representation averaging which leads to morphs possessing

biased or neither bona fide identities [37]. We examine the

covariance of latent representations using PCA and replace

the latent code averaging with element-wise and vector-

wise blending of PCA projected latent codes. By applying

our image inversion algorithm and exploring latent repre-

sentation blending in the PCA domain, we generate GAN-

based morph images to fool FRS at increased rates while

maintaining high image quality to fool a human inspector.

Our major contributions in this paper are:

• We present a novel StyleGAN2 morphing technique

by enforcing landmarks to improve geometric identity

preservation in the morph.

• We study latent space exploration in the PCA domain

to improve latent code blending by addressing identity-

imbalance issue.

• We study the influence of the noise input of our model

to improve latent representations and morph image

quality.

2. Related Work

2.1. Landmark Morphing

Facial morphing techniques split into two categories:

landmark-based and GAN-based. GAN-based morphing

operates in the latent space, whereas landmark-based mor-

phing is performed in the image domain [35, 20, 4, 5, 2].

Landmark-based morphing uses landmark predictions of

contributing subjects to warp them toward an equidistant

set of landmarks. The pixel values of the warped images

are alpha blended to complete the morph. Landmark-based

morphing has been the most effective automated morphing

threat to FRS [33]; however, the blending of pixel values

and imperfections in the landmark alignments create arti-

facts surrounding the morphed image eyes, mouth, nose,

and edges around the face due to pasting. This ghosting

effect increases the possibility of a human investigator rec-

ognizing the morph.

2.2. GAN-Based Morphing

Damer et al. [10] introduced GAN-based morphing us-

ing MorGAN to invert images into latent representations via

an encoder, averaging the faces in the latent domain, and

inputting the resultant morph latent representation into the

generator. In a study by Venkatesh et al. [33], MorGAN

morphs were shown to be limited in both image generation

quality and output size of 64×64×3. Morphs generated us-

ing MorGAN fail to pass the size standards set by the ICAO

[1] while also failing to attack the verification of FRS.

Prior techniques for GAN-based morphing projects the

average of two bona fide latent representations into the gen-

erator to synthesize the morphed image [6, 33]. The per-

formance of morphs using StyleGAN [15] significantly im-

proved when compared to ones generated using MorGAN

[10], but the performance is not comparable to landmark-

based methods. Improvements to morph generation using

StyleGAN include training encoders to estimate the latent

embeddings [24, 31] or by adding new loss functions for

optimization [37]. MIPGAN [37] proposed a hybrid ap-

proach to StyleGAN morphing by using both an encoder to

estimate the latent codes of the bona fide subjects and an op-

timization cycle to improve the averaged latent code. The

novel addition to their optimization cycle was an identity

loss function using a pre-trained FRS model [12] to balance

the identity of the morph between the bona fide subjects.

2.3. PCA For Latent Exploration

Principle Component Analysis (PCA) is widely used to

evaluate correlation between samples in a dataset [32]. The

foundation of PCA calculates the covariance matrix of the

dataset whose eigenvectors represent the variance of the en-

tire dataset. Each eigenvector represents a variable amount

of the variance of the dataset, so by removing the eigenvec-

tors in order of smallest to greatest eigenvalue, the quality

of the restored data degrades exponentially. PCA has been

used to assist in the traversal and disentanglement of the la-

tent space of GANs [22, 36]. We explore applications of

PCA for blending two latent representations for morphing.
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Figure 2: Landmarks of bona fide images (a) and (e) are warped to an equidistant set of landmarks (b) and (f). Latent

representations of the warped convex hulls are averaged, synthesized, and pasted on the background of the bona fide images

to produce morphs (c) and (e). Without landmark warping, the morph image (d) generated using [6] possess biased landmarks.

Latent representation averaging has a limited success rate as

the latent space is not a linear plane when using images not

present in the latent space [37]. By projecting the latent rep-

resentations into the PCA domain, we explore the similarity

of latent representations to improve the generated morphs.

3. Methodology

Style-based generators [15, 16] modify the latent input

approach of [14] to allow latent representations or styles

to influence individual layers of the generator network di-

rectly. As presented in Figure 3, by progressively increas-

ing the resolution of the convolutional layers, each layer

achieves influence on different features of the output image.

The early layers heavily influence the coarse features while

the later layers influence finer details of the output image.

By using a different latent code for each layer, an output

image can be generated possessing a mixture of styles rep-

resented by the different latent codes, creating a new image.

Morphing is an extension of style mixing as the styles of

two images are blended to generate a morphed style.

We generate high-quality morph images utilizing a pre-

trained StyleGAN2 model [16]. To provide a better

identity-preservation for the morphs, equidistant landmarks

of the morph are enforced by warping the bona fide im-

ages’ landmarks before latent optimization and preserving

the warped landmarks through the addition of a landmark

loss function. To remove potential artifacts caused when

blending the exterior features of the original images (hair,

ears, accessories), we embed convex hulls of our bona fide

subjects. The projection of the morph’s latent representa-

tion is pasted onto the original subjects’ background, re-

moving exterior artifacts. PCA decomposition of latent rep-

resentations is explored to improve their blending for morph

generation. The average representation can be biased to-

ward one subject or possess neither identity [37]. We use

PCA to isolate the common variance (i.e., shared informa-

tion) to average and blend the remaining using element-wise

or vector-wise selection.

3.1. Landmark Enforcement

Each pair of facial images are first centered and cropped

to 1024× 1024× 3 due to StyleGAN2’s difficulty in recon-

structing images when faces are not properly centered [17].

Using Dlib [18], 68 landmarks are estimated for each bona

fide subject [30]. The landmarks from a pair of subjects are

averaged, generating an equidistant set of landmarks:

lt(k) =
1

2
(Mk(i1) +Mk(i2)), ∀ 1 ≤ k ≤ nl, (1)

where Mk is the estimator for landmark k, nl is the total

number of landmarks, i1 and i2 are the bona fide images,

and lt is the equidistant set of target landmarks for the syn-

thesized morphed image.

We use Delaunay Triangulation to warp each bona fide

subject’s landmarks to the equidistant set [2]. The pair of

bona fide images now share a common set of landmarks.

The artifacts caused by morphing latent representations of

the hair, clothing, and accessories are removed by cropping

out the face of the warped subjects. These convex hulls are

generated by appending the boundary points of the face to

the landmarks to create a mask [9]. Applying the generated

mask on the warped subjects, we isolate the warped faces

from the pair of bona fide images.

To enforce the landmarks through the inversion process,

we incorporate a landmark enforcement loss to preserve

them in the latent representation. Through the optimiza-

tion steps, the L2 distance between the target’s landmarks

and the current synthesized image’s landmarks is added to

the total loss. The landmark enforcement loss is defined as:

Lland =

nl
∑

k=1

(lt(k)−Mk(g))
2, (2)

where lt(k) is the target landmark k and Mk(g) is the syn-

thesized image’s landmark k. By warping the landmarks of

the bona fide subjects and enforcing them when calculating

latent representations, we produce geometrically unbiased

morph images (see Figure 2). In addition, pasting the mor-

phed masks onto the bona fide subjects’ background greatly
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Figure 3: Warped convex hulls of image i1 and i2 are inverted into their latent representations W1 and W2. The vectors

are averaged to generate morph latent vector wM,i. Latent codes W1 and W2 are put through the learned affine transform

A for each layer to produce style vectors S1 and S2. Style vectors are projected into the PCA model. The first projections

are averaged and the remaining projections are blended using element-wise maxing or vector-wise norm selection to produce

morphed style vector sM,i. Noise input B adds stochastic variation to the synthesized image.

improves the visual quality of the morph images by blend-

ing the average pixel values with that of the bona fide back-

ground.

3.2. Modified StyleGAN2 Inversion Method

Morphing in the latent space requires inverting the bona

fide subjects through the StyleGAN2 generator [6, 16, 3].

For perceptual quality assurance, we utilize the Learned

Perceptual Image Patch Similarity (LPIPS) [38]. The

LPIPS builds upon pre-trained convolutional neural net-

works (CNNs) [29] to convert extracted features into an

embedding for a given image. The target image t and the

synthesized image g are first reduced to 256× 256× 3 due

to the input size of the feature extractor. We then take the

cumulative squared distance between the embeddings of the

target and the synthesized image to calculate the perceptual

loss:
Lpert = ||E(td)− E(gd)||2, (3)

where E is the LPIPS embedding representation for the

down-sampled images, td is the down sampled target image,

and gd is the synthesized image. Due to the down-sampling

of the target and synthesized images for the perceptual loss,

some information about the details in the image is lost. We

add pixel-wise loss similar to [6], comparing the target im-

age and synthesized image. We find that perceptual loss

alone does not find the optimal embedding. The perceptual

loss assists in finding the optimal region of the latent space

whereas the pixel-wise loss improves the visual quality of

the synthesized image as shown in Figure 4. Pixel-wise loss

is defined as:

Lpix =
1

Npix

||t− g||1, (4)

where Npix is the size of the image.

The noise input (B in Figure 3) to the StyleGAN2 [16]

generator is responsible for finer details or texture of the

synthesized image [15]. Optimization can be performed us-

ing a constant noise input generated before the optimization

steps [6] while only training for the optimal latent code. An

alternative would be to train for a noise input along with

the latent code. This leads to the noise incorporating too

much information about the original subject, depreciating

the quality of the latent code for morph generation. A noise

regularization loss was introduced by Karras et al. [16] to

allow the noise to be trained along side the latent code while

restraining the noise from learning structural information

from the image. This regularization term forces each noise

input to be a normally distributed signal:

Li,j = (1/r2i,j
∑

x,y

ni,j(x, y)ni,j(x− 1, y))2

+(1/r2i,j
∑

x,y

ni,j(x, y)ni,j(x, y − 1))2,
(5)

where ni,j denotes noise map i, j of noise input B, ri,j is

the resolution of noise map i, j, Li,j is the regularization

term for noise map i, j, and (x, y) represents the spatial lo-

cation. The noise regularization loss is defined as:

Lnoise =
∑

i,j

Li,j . (6)
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Figure 4: (a) Bona fide image. Synthesized images using

either pixel-wise loss (b) or perceptual loss (c) produces a

non-optimal latent representation. Combining these losses

(d) improves the overall quality of the synthesized image.

To prevent the latent code of each layer from going be-

yond the scope of the latent space, ultimately effecting the

morph-ability of two subjects’ latent codes, an L2 penalty is

applied to the latent codes [3]. We weight the latent magni-

tude regularization penalty by a factor of 10−1, allowing for

an accurate, but editable, latent representation to be found:

Llat =

√

1

Nw

(W )2, (7)

where Nw is the size of latent code W (18× 512 = 9216).

The total synthesis loss function is defined as:

Lsyn = Lpert + λ1Lpix + λ2Lnoise + λ3Llat + λ4Lland,
(8)

where λ1, λ2, λ3, and λ4 are the scalar parameters for the

individual losses.

3.3. Influence of Noise

Noise optimization is not the intended goal when opti-

mizing for the latent space. The noise adds stochastic vari-

ation to the synthesized image, improving the visual quality

of the image. Learning a complementary noise input while

optimizing the latent code does assist in converging the loss

early during training; however, our goal is finding the opti-

mal latent code. Our work parallels that of [7] in that to find

the optimal latent representation, the latent code and noise

input must be trained separately. Removing noise from the

optimization loop results in local minimas. We begin train-

ing for both the noise and latent representation until Ts step

at which point we remove the contents of each noise input,

removing the noise’s effect on the synthesized image. Dur-

ing the remaining steps, the latent representation for recon-

structing the bona fide image is learned without the influ-

ence of noise, improving the reconstruction of the warped

convex hulls (Figure 5). Our modified inversion algorithm

improves the learning of both coarser and finer details of

the bona fide image. We note that without noise the synthe-

sized images lack texture, increasing human detectability.

After blending latent representations, we input noise gener-

ated for a random normal distribution when reconstructing

the morph images to apply texture to the morph images.

Figure 5: Bona fide images (a) compared to the synthesized

images when training with noise (b) and without noise (c).

3.4. Morphing in PCA Domain

Morphs generated by averaging latent representations of

bona fide subjects creates a high-quality image, but the

identity of the morph is not guaranteed to be equidistant of

the bona fide subjects [37, 25]. This is primarily due to the

bona fide images not existing in the constructed latent space

of the model. We explore the identity imbalance problem of

latent-based morphing using PCA. Latent codes are not di-

rectly inputted into the convolutional layers of the network.

Learned affine transforms convert the latent vectors w into

true style vectors s that influences the weights of the con-

volutional layer (see Figure 3). This linear transformation

changes the values and the dimensionality of the latent code

to match the dimensionality of the layer. Unlike the latent

codes of which we have 18, there are a total of 26 style vec-

tors. This is due to the additional convolutional layers of the

model used to convert the feature maps into an image [16].

The latent vector applied to the previous layer is inputted

into the affine transform of these conversion layers, which

generates addition style vectors. We project the transformed

latent codes (styles) to the PCA domain. The eigenvalues

calculated from the variance of the styles decay rapidly as

shown in Figure 6 in the right graph. With the improved

eigenvectors, we explore ways to morph the style represen-

tations by only averaging projections on a first portion of

the eigenvectors and varying the blending of the remaining

eigenvectors, producing morphed style vectors sM,i. Differ-

ent amounts of variance are averaged to explore importance

of high variance information in the latent representations.

As presented in Figure 3, we construct the PCA space us-

ing styles from embedded convex hulls. The total number of

eigenvectors depends on the style vector we are projecting.

Therefore, instead of a fixed number of eigenvectors used

for averaging, we consider a percentage of eigenvectors p.
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Figure 6: Eigenvalue proportions for principal components

of the sample latent vectors (a) and sample style vectors (b).

We project each style vector into our pre-calculated PCA

space, and consider the projection values using the first p
of eigenvectors. The first projections for a given morph pair

are averaged to evenly blend the lower variance information

of the two styles. For the projections from the remaining

eigenvectors, we blend them using either the element-wise

maxing or the L2 norm vector-wise selection to blend the

higher variance information.

For element-wise maxing, the goal is to mix the pro-

jected values without changing their value to address the

identity loss when averaging the whole vector. For each

style, blending is performed element-wise through the re-

maining projected values of a given pair to generate a new

vector containing the maximum values between the two.

We select the greater projected values between the two

styles. The averaged and maxed vectors are added to-

gether, making the new morph style for the given pair. Our

element-wise max blending is defined as:

αM,i,j =

{

1

2
(α1,i,j + α2,i,j) if j ≤ pe

max(α1,i,j , α2,i,j) else
, (9)

where α1,i,j and α2,i,j are subject 1’s and subject 2’s ith

style vector projection values onto the jth eigenvector of

this style, vi,j , respectively and e is the total number of

eigenvectors. Then, the reconstructed morphed style vec-

tor sM,i is given by: sM,i =
∑

j αM,i,jvi,j .

The L2 norm selection technique uses a vector-wise se-

lection as opposed to the element-wise selection. Where

element-wise max aims to keep the original projected val-

ues, vector-wise norm keeps original projected style vec-

tors. Keeping the entire projected vector preserves the pro-

jection of a known style vector. This removes error pro-

duced when traversing through the latent space by blend-

ing two different vectors. After computing the projection of

the remaining eigenvectors, we compute the L2 norm of the

projected style vectors. We select the projected style vector

with the largest L2 norm and concatenate it to the averaged

projection. Our vector-wise norm selection blending is de-

Figure 7: Synthesized images after PCA projection using

(a) 2%, (b) 10%, and (c) 20% of the eigenvectors for coarse

(top), intermediate (middle), and finer styles (bottom).

fined as:

αM,i,j =







1

2
(α1,i,j + α2,i,j) if j ≤ pe

α1,i,j else if ||P ∗

i (s1,i)||2 > ||P ∗

i (s2,i)||2

α2,i,j else

,

(10)

where P ∗

i (s1,i) =
∑e

j=pe+1
αM,i,jvi,j .

4. Experiments

We apply our morphing technique on images from the

Face Recognition Grand Challenge (FRGCv2) dataset [23]

and the Face Research London Lab (FRLL) dataset [11].

From the FRGC dataset, we select a subset of pairings used

in [37] containing 374 bona fide subjects generating 747

morphing pairs to ensure the pairings are comparable to

previously published work. We use 102 bona fide subjects

from the FRLL dataset and 1140 morphing pairs adapted

from [26]. We note that the FRLL images are smaller than

1024× 1024. The bona fide subjects are upsampled before

finding their latent representations.

4.1. Training Paradigm

LPIPS is calculated using the VGG16 [29]. Target and

synthesized images are reduced to 256 × 256 × 3 due to

the input size of the VGG16 feature extractor. We apply

an Adam optimizer with beta values β1 at 0.9 and β2 at
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Figure 8: Bona fide images (a) and (d) compared to our

StyleWarp morphs (b) and morph using PCA norm selec-

tion at p = 10% (c) generated from the FRGCv2 dataset

(top row) and the FRLL dataset (bottom row).

0.999 over 1000 iterations to minimize our loss function

8. We increase the learning rate linearly from 0 to 0.1 for

the first 50 steps of optimization and decrease the learning

rate using a cosine schedule over the last 600 steps [16].

The ramp-down duration was increased from 250 steps to

400 due to early convergence during optimization. Avoid-

ing over-fitting and finding local optima are addressed us-

ing latent noise and FaceNet verification. Gaussian noise,

N(0, 1), is applied to the latent code during the first 250

steps at a reducing rate for the first 750 steps to improve

latent exploration. We set Ts equal to 400, removing the

noise input’s influence on the latent code for the remaining

600 steps. Pixel-wise loss leads to the synthesized image

becoming smooth; we weight pixel-wise loss by a factor of

0.05 to prevent smoothing over the output image. Land-

mark enforcement loss only enforces the landmarks of the

synthesized image; it is weighted by a factor of 10−4 to in-

crease the influence of perceptual and pixel-wise loss over

the landmark enforcement. B is initialized with a Gaussian

N(0, 1). In our total synthesis loss (Equation 8), we set λ1

to 0.05, λ2 to 105, λ3 to 0.1, and λ4 to 10−4.

4.2. PCA Training

Our PCA model is trained using style vectors of a self-

procured dataset of convex hulls. We organize the dataset of

styles by vectors totally 26 matrices of style vectors. Each

matrix is used to train a separate PCA model for each style

vector. Training a unique model for each style vector is es-

sential due to the varying dimensions of the style vectors.

Additionally, each style vector contains different informa-

tion pertaining to the bona fide image; we desire to morph

individual styles and not uncorrelated sets of styles. In Fig-

ure 7 we show the effect of style-based PCA decomposi-

Table 1: Single detector performance (left) and

MMPMR% (right) on FRGCv2 dataset.

Method
APCER @ BPCER EER MMPMR

1% 5% 10% % %

Landmark [2] 36.46 19.84 12.33 11.17 91.49

MIPGAN [37] 55.19 41.56 29.22 17.54 78.00

Our StyleWarp 91.86 72.96 64.83 33.56 79.85

PCA Max p = 80% 93.09 70.33 54.73 26.60 79.79

PCA Max p = 70% 94.15 69.95 51.06 26.61 80.59

PCA Max p = 60% 97.56 72.86 56.10 27.66 79.65

PCA Max p = 50% 94.83 69.83 59.48 28.16 79.12

PCA Max p = 40% 96.50 65.97 48.72 26.13 78.85

PCA Max p = 30% 83.46 59.03 44.78 24.41 78.25

PCA Norm p = 80% 89.24 64.26 46.39 25.95 80.66

PCA Norm p = 70% 83.24 68.11 43.24 25.23 80.79

PCA Norm p = 60% 91.18 78.24 66.12 30.56 79.80

PCA Norm p = 50% 93.54 78.46 66.77 26.77 78.92

PCA Norm p = 40% 97.16 76.99 65.34 30.94 77.28

PCA Norm p = 30% 95.12 74.80 60.70 28.69 74.36

tion by projecting sets of styles onto a varying amount of

eigenvectors while projecting the other styles onto a fixed

number of eigenvectors. The styles representing coarser in-

formation (top) quickly restore the structural features of the

original image whereas the styles representing finer infor-

mation (bottom) quickly restore correct skin tone.

4.3. Results

We first evaluate our morphs on a single-morph de-

tector to evaluate their performance as a stand-alone im-

age compared to published morphing methods. The de-

tector is a pre-trained FaceNet [28] model with an addi-

tional fully connected layer appended to the end. We train

the fully connected layer to classify the input as a real

or morph image. The detector is trained on morphs from

both landmark-based and StyleGAN2-based techniques us-

ing a self-procured dataset. We compare the performance

of landmark-based morphs [2, 21], alternative GAN-based

morphs [37, 26], our latent averaging morphs (StyleWarp),

and morphs using PCA at varying thresholds. We apply

these techniques on the FRGCv2 dataset [23] (Table 1)

and the FRLL dataset [11] (Table 2). Vulnerability anal-

ysis is conducted on differential FaceNet verifier [28] us-

ing Mated Morph Presentation Match Rate (MMPMR) [27].

MMPMR is computed by comparing the similarity score of

each morph to an image of both contributing bona fide sub-

jects. The minimum similarity scores are compared to a

fixed threshold to classify each attack as successful or un-

successful. We use a False Acceptance Rate (FAR) of 10−3.

Performance of our morphs on the single-morph detec-

tor shows the dissimilarity between our morphing approach

and both landmark-based and GAN-based morphing tech-

niques. The hybrid approach of our technique produces

morphs that the detector is unable to identify as successfully
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Table 2: Single detector performance (left) and

MMPMR% (right) on FRLL dataset.

Method
APCER @ BPCER EER MMPMR

1% 5% 10% % %

Landmark [21] 22.54 10.78 2.94 6.34 80.13

StyleGAN2 [26] 19.49 5.93 2.54 4.98 16.12

Our StyleWarp 38.98 27.12 12.71 9.71 53.16

PCA Max p = 80% 43.75 20.83 13.54 10.11 53.58

PCA Max p = 70% 32.95 18.18 4.55 8.57 53.17

PCA Max p = 60% 45.95 6.76 1.35 5.62 52.53

PCA Max p = 50% 38.89 9.26 1.85 6.87 51.92

PCA Max p = 40% 45.68 19.75 2.47 8.44 50.67

PCA Max p = 30% 20.87 7.83 3.48 6.99 48.33

PCA Norm p = 80% 27.16 22.22 7.41 7.37 54.00

PCA Norm p = 70% 27.93 12.61 5.41 7.14 53.67

PCA Norm p = 60% 39.78 26.88 17.20 11.91 53.42

PCA Norm p = 50% 42.59 25.00 13.89 10.05 51.17

PCA Norm p = 40% 54.87 19.51 3.66 7.30 50.42

PCA Norm p = 30% 61.25 20.00 8.75 8.59 45.08

compared to landmark and other StyleGAN-based meth-

ods. This performance increase is related to the increased

image quality of our morphs compared to the other meth-

ods. Performance reduction between the FRGCv2 and the

FRLL datasets is related to the pairings used to morph.

MMPMR results from our StyleWarp method perform bet-

ter than both alternative StyleGAN-based morphing meth-

ods [37, 26] with the PCA methods improving upon those

results. The vector-wise norm method, however, can result

in the morph becoming biased toward one subject if the ma-

jority of their projected style vectors have a larger L2 norm

as observed by the decrease in MMPMR as p decreases.

While the MMPMR results between the GAN-based and

landmark-based methods is still prevalent, our StyleWarp

and PCA morphs reduce this performance difference.

4.4. Noise Trainability

To further improve our morphs, we explore the noise in-

put of the StyleGAN2 [16] model. We observe a difference

in the facial textures of the bona fide and morphed images.

In place of inputting random Gaussian noise into the model,

we train for noise values to complement the morphed im-

age. The latent codes of a pair of warped bona fide subjects

are averaged and frozen while training for the optimal noise

input. The noise values can lead to similar artifacts found in

landmark-based morphed images [2]. For our loss, we cal-

culate the peak signal-to-noise ratio (PSNR) between both

bona fide images and the morph and scale the noise val-

ues by their root-mean-square after each optimization step.

This reduces the number of artifacts present in the morph.

In addition, the identity-bias problem is addressed using a

scalar for the PSNR values of the contributing subjects us-

ing the FaceNet [28] distance between the morph and the

contributing subjects. Our loss function is defined as:

Figure 9: Bona fide images (a) compared to morphs using

random noise (b) and trained noise (c).

Lpsnr = 20λ5 log10
255

||t1 − gm||2
− 20λ6 log10

255

||t2 − gm||2
,

(11)

where t1 and t2 are the bona fide images, gm is the synthe-

sized morph image, and λ5 and λ6 are the identity balance

scalars. We apply our algorithm over 200 steps using an

Adam optimizer with beta values β1 at 0.9 and β2 at 0.999

using the FRGCv2 pairings (examples shown in Figure 9.

The performance of these morphs against the single-morph

detector are reduced compared to our StyleWarp method;

however, performance against FRS verification improves,

with a MMMPR of 88.69%. Noise training increases the

threat GAN-based morphs pose to FRS at the cost of in-

crease single-morph detectability.

5. Conclusion

Our novel morphing method increases the threat of

GAN-based morph generation by enforcing the geometric

identity and improving the blending of latent representa-

tions. The enforcement of landmarks in the image domain

improves the performance of GAN-based morphs while

masking removes artifacts generation on the outer edges of

the images. By limiting noise during training, we improve

the calculation of latent representations of the warped con-

vex hulls to increase our morphs’ performance. We replace

latent averaging with two alternatives using PCA to address

identity loss in the morphs. Our method increases the threat

of GAN-based morphing to FRS and morph detectors.
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