
Information Maximization for Extreme Pose Face Recognition

Mohammad Saeed Ebrahimi Saadabadi, Sahar Rahimi Malakshan,

Sobhan Soleymani, Moktari Mostofa, and Nasser M. Nasrabadi

me00018, sr00033, ssoleyma, mm0251@mix.wvu.edu, nasser.nasrabadi@mail.wvu.edu

Abstract

In this paper, we seek to draw connections between the

frontal and profile face images in an abstract embedding

space. We exploit this connection using a coupled-encoder

network to project frontal/profile face images into a com-

mon latent embedding space. The proposed model forces

the similarity of representations in the embedding space by

maximizing the mutual information between two views of

the face. The proposed coupled-encoder benefits from three

contributions for matching faces with extreme pose dispari-

ties. First, we leverage our pose-aware contrastive learn-

ing to maximize the mutual information between frontal

and profile representations of identities. Second, a mem-

ory buffer, which consists of latent representations accumu-

lated over past iterations, is integrated into the model so it

can refer to relatively much more instances than the mini-

batch size. Third, a novel pose-aware adversarial domain

adaptation method forces the model to learn an asymmet-

ric mapping from profile to frontal representation. In our

framework, the coupled-encoder learns to enlarge the mar-

gin between the distribution of genuine and imposter faces,

which results in high mutual information between different

views of the same identity. The effectiveness of the proposed

model is investigated through extensive experiments, evalu-

ations, and ablation studies on four benchmark datasets,

and comparison with the compelling state-of-the-art algo-

rithms.

1. Introduction

With the advancement of technology and increasing de-

mand for security, biometrics are among the most essential

and surfed applications of computer vision [25]. Among

biometric traits, the face has received particular attention

since it is naturally exposed, offers better hygiene in the ac-

quisition, and can be acquired in an unconstrained setting

without direct participation of the user [23]. Face Recogni-

tion (FR) has been a major interest in computer vision for

many years, and FR methods have advanced significantly

over the years [23]. Classical FR techniques are mainly

Figure 1. (Top) Two pairs of positive samples are fed to the

coupled-encoder (ff (.) and fp(.)). Each color in the contrastive

space presents a distinct identity. Black arrows demonstrate the at-

traction between two representations, and the red arrows increase

the distance. Solid and dashed circles represent profile and frontal

representations, respectively. Due to the memory buffer, the num-

ber of instances in the contrastive space is more than the mini-

batch size. (Bottom) Illustrating the distance distributions between

positive (shown in blue) and negative (shown in orange) pairs. Our

optimization improves the similarity between the different views

of the same identity while increasing the distance between differ-

ent identities.

based on extracting hand-crafted features, and the primary

concern is extracting features with high intra-class compact-

ness, and inter-class separability [2].

Modern approaches address this issue by incorporating

learning models based on the Convolutional Neural Net-

works (CNNs) [35]. CNNs have demonstrated extraordi-

nary performance in FR; however, their performance dras-

tically degrades for profile views [56]. There are four pri-

mary issues with profile face images as compared to frontal

images: 1) self-occlusion, 2) background distraction, 3)

shift in the distribution of data, and 4) inaccuracy in the

alignment due to the lack of accurate landmarks [4, 38].

There are two mainstream approaches for profile-to-frontal

FR. The first approach handles pose variation by extract-

ing pose-invariant features [21, 45]. The second approach

estimates the frontal view of a given profile face and then
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Figure 2. With memory, for each sample in mini-batch B, we can

have different contrastive pairs and calculate the loss with the sam-

ples which are not in the current mini-batch. Different colors refer

to representation of different identity in the dataset

utilizes it for the recognition task [40, 15].

In the first approach, Softmax with a cross-entropy loss

is mainly adopted to supervise a deep classifier. Although

Softmax promotes the separability of representations, pro-

vided features are insufficiently discriminative in practi-

cal FR problems [45]. To address this issue, pioneering

works of [35, 48, 37] employ sample-to-sample comparison

as their loss functions to reduce the intra-class variations.

However, most of the recent FR methods mainly focus on

the sample-to-prototype comparison, and they improve the

discriminative power of representations by applying several

margin penalties on the Softmax loss function [21, 45]. De-

spite the remarkable performance, a common issue of these

approaches is that FR datasets contain a large number of

identities, and only a few identities are presented in each

mini-batch, which complicates finding an optimal decision

boundary [12]. Increasing the mini-batch size may alleviate

the problem. However, it does not guarantee performance

improvement [16, 53], and it may not be possible (due to

the memory constraints). Moreover, shortcomings such as

sensitivity to noisy labels [55], likelihood of poor margin

[9], and convergence difficulty on the networks with small

embedding feature size [18] have led to diminishing gener-

alization.

In the second approach, FR process is separated into two

tasks: identity-preserving face generation and frontal face

recognition. Among face generation modules, the Gener-

ative Adversarial Networks (GANs) have received special

attention [40, 15]. Despite the remarkable results concern-

ing image quality and human perception, GANs add high-

frequency components to the synthesized images, which

negatively affects the recognition process [46]. Besides,

from the optimization perspective, profile-to-frontal face

generation is an intrinsically ill-posed problem, and multi-

ple frontal faces exist for each profile face [14]. Also, there

are several other nuisance factors in face images, including

expression, illumination, and the quality of images. These

factors result in a large gap between features of real and

synthesized frontal faces in the identity metric space, which

significantly deteriorates the final performance [46].

In this paper, we hypothesize that profile and frontal

faces have latent connection in an abstract embedding

space. We exploit this hidden connection in the embedding

domain using a deep coupled model consisting of dedicated

networks for the profile and frontal views of the face. These

two networks share the same discriminative latent embed-

ding, see Fig. 1. Using the proposed Pose-Aware Con-

trastive learning (PAC), we enforce the agreement of the

features by maximizing the lower bound of the mutual in-

formation between the representations of the same identity

[39]. In this manner, the model aims to pull closer the repre-

sentations from pairs of the same identity compared to rep-

resentations of different identities [17]. PAC also helps the

model to implicitly benefit from hard negative/positive in-

stances [17]. Hard samples are close to the decision bound-

ary in the embedding space, and emphasizing them in train-

ing leads to faster convergence, and better generalization

[35]. Also, we leverage Pose-Aware Contrastive with Mem-

ory buffer (PACM), a simple yet effective way to help the

loss utilize a massive number of identities’ representations

without increasing the mini-batch size.

Aiming to further reduce the gap between the profile

and frontal images in the embedding space, we employ

our proposed Pose-Aware Adversarial Domain Adaptation

(PADA) learning approach to enforce the model to learn

an asymmetric mapping from profile to frontal representa-

tion. Our experiments, evaluations, and ablations studies

show that the proposed framework achieves notable perfor-

mance in learning pose-invariant discriminative representa-

tions. Contributions of this paper can be summarized as

follows:

• A novel profile-to-frontal face recognition model is de-

veloped, which utilizes a pose-aware contrastive learn-

ing to maximize the mutual information between the

profile and frontal representations from the same iden-

tity in an embedded space.

• A novel pose-aware domain adaptation approach is de-

veloped to enforce the agreement of features from dif-

ferent poses.

• A novel approach is proposed to learn pose-agnostic

representations from a larger number of instances than

the mini-batch size in a multiview setting.

2. Related Works

Deep learning has been applied to various applications

since its advent [7, 29, 30, 1, 34, 27, 28]. Biometric has been

one the most surfed area due to the availability of large-

scale datasets which can be either in the form of signals or

images. Among biometric traits, the face has received spe-

cial attention. In this section, we briefly summarize recent

attempts in FR.
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2.1. Deep Face Recognition

The availability of computing power has made CNN

the primary tool in computer vision [23]. During the past

decade, the introduction of new network architectures, ac-

cessibility to large-scale datasets, and modifications of the

loss functions have led to significant achievements in deep

FR [23, 5]. Along with other supervised deep learning

frameworks, Softmax with a cross-entropy loss is of the

most popular criterion for FR [17]. Intrinsically, features

provided by the Softmax have angular distribution [7, 48].

Studies have shown that considering angular distance in-

stead of Euclidean distance significantly improves the FR

performance [45, 48]. Based on this characteristics, mul-

tiple training paradigms have been proposed to adapt vari-

ous kinds of margins to the Cosine based embedding space

[45, 48, 21]. Sample-to-sample loss functions are also well

stablished in deep FR [37, 48, 35]. Sun et al. [37] combined

the identification and Margin Contrastive Loss (MCL) loss

for having a more powerful supervisory signal. In [35],

Schroff et al. presented the Triplet loss, which forces the

representations of a triplet to be discriminative. To increase

intra-class compactness, Wen et al. [48] introduced the

Center loss in which the model learns a center for each

class. They used it in combination with the Softmax loss

to keep representations from collapsing to zero.

2.2. Pose Robust Face Recognition

Although near-frontal FR is considered a solved prob-

lem in common cases, FR in extreme poses, where enrolled

faces in the gallery and the probe images have large pose

disparity, has still remained a difficult effort [42]. There

are two main approaches to cope with profile-to-frontal

FR [14, 13, 22, 26]. One major research avenue is based

on synthesizing a frontal face from its profile input and

then utilizing the synthesized frontal face for recognition

[14, 13, 32, 52, 40]. Despite the satisfactory results, this

approach has a handful of intrinsic drawbacks. First, the

problem of recovering a face’s canonical view from its pro-

file pair is under-defined [56, 14]. Second, since the frontal

faces should be generated first in order to train the classi-

fier, end-to-end training of the generator and classifier is

unattainable [42].

Another main line of inquiry for profile-to-frontal FR

is to learn pose-agnostic mapping. For instance, Masi et

al. [22] used 3D rendering to synthesize multiple views

of a profile image. These images were used to train pose-

specific deep feature extractors. Then, features from all net-

works are fused to construct the final prediction. DREAM

[4] is based on finding a mapping between profile and

frontal embeddings. The authors hypothesized a gradual

connection from profile to frontal representation. They uti-

lized a residual mapping that adds pose-adaptive residuals

to the features extracted from profile faces. Meng et al.

[26] disentangled pose and identity representations by map-

ping face to identity and landmark subspaces. To disen-

tangle identity from the pose, Yin et al. adopted a multi-

tasking framework [51]. PF-cpGAN [38] seeks to learn

pose-agnostic representation by employing face frontaliza-

tion as a sub-task.

Although these methods have shown promising results,

there is still a significant performance gap for faces with

extreme poses in unconstrained conditions [56]. In compar-

ison, our proposed coupled-encoder benefits from PACM

and PADA losses. They encourage coupled-encoder to map

the faces with the same identity to close representations and

faces with different identities to representations far from

each other. In addition, the memory buffer elevates the effi-

ciency of proposed contrastive learning by looking at a rela-

tively much larger number of identities than the mini-batch

size.

3. Proposed Method

We introduce a coupled-encoder architecture to map the

profile and frontal face images to a shared embedding space.

PACM and PADA losses force the coupled-encoder to learn

pose-agnostic representations. Our model incorporates a

massive number of instances to PACM loss function. For

example, on a single NVIDIA TITAN X GPU and the mini-

batch size of 32, the coupled-encoder calculates the loss be-

tween more than 6000 distinct instances, which is beneficial

for contrastive learning to maximize the mutual information

between two different views of the face images of an iden-

tity [44]. Furthermore, PADA loss improves the compatibil-

ity of representations by forcing the profile encoder to map

the off-angle faces close to its frontal pairs.

3.1. Pose-Aware Contrastive Learning

Our proposed profile-to-frontal FR framework is based

on recent information-theoretic techniques for contrastive

representation learning [44, 39]. During training, we aim

to maximize the mutual information between profile and

frontal face images from the same identity (positive pair)

and minimize the mutual information between face images

with different identities (negative pairs). During testing, we

make the decision considering the distance between repre-

sentations of a pair of face images in the embedding space.

The first step during training is to select face images that

represent the same identity but distinct views. Then, each

image in positive pair is employed to choose instances that

represent distinct identities and views. For example, given a

profile face image, we should pick negative frontal instances

and vice versa. Then, these pairs of frontal and profile face

images are used to train two deep encoders.

Given a training set D = Df

⋃

Dp,

Df : {(xf,i, yf,i)}
Nf

i=0 and Dp : {(xp,i, yp,i)}
Np

i=0 rep-

resent profile and frontal subsets of dataset, respectively.
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Figure 3. A mini-batch (B) of frontal and profile faces is fed into the coupled-encoder. This model provides representations with high

mutual information (high similarity in the embedding space) for genuine pairs and far distant representations for the imposter pairs. Here,

positive pairs are shown in the same color. Without memory buffer, the contrastive loss is calculated within the mini-batch (two negative

samples for each image). However, memory buffer provide K negative samples, K > B, for each sample. Red-dashed arrows show the

gradient back-propagation. The pose-aware adversarial domain adaptation (PADA) loss only affects the profile encoder.

Np is the number of profile samples and Nf frontal

samples. As presented in Fig. 3, the coupled-encoder

consists of ff (.) and fp(.), which are the frontal and

profile dedicated embedding sub-networks. These two

sub-networks map the frontal and profile faces to a d-

dimensional embedding space: ff (.) : R
3×w×h → R

d and

fp(.) : R
3×w×h → R

d, respectively. For convenience, we

ignore the index i that reflects the index of the sample in

their corresponding subset. zf = ff (xf ) and zp = fp(xp)
are the representations of the frontal, xf , and profile, xp,

images generated by their corresponding encoders.

The first step toward our training paradigm is to select

pair of images with the same identity and pose disparity. To

construct our training samples, we define a genuine (posi-

tive) pairs as:

P = {(zf , zp)|yf = yp}, (1)

where yf and yp represent labeled identities of zf and zp,

respectively. In contrast, we define an imposter (negative)

pair as:

N = {(zf , zp)|yf ̸= yp}, (2)

for positive pairs, we first choose a random identity y0 as

an anchor. Then, sampling two images independently from

Df and Dp given the selected identity. Consequently, we

define the joint distribution of genuine pair as [44]:

p(zf , zp) =
∑

y0∈C

p(yf = y0)p(zf |yf = y0)

× p(yp = y0)p(zp|yp = y0)

=
∑

y0∈C

p(yf = y0, yp = y0)

× p(zf , zp|yf = yp = y0)

=
∑

y0∈C

p(zf , zp, yf = y0, yp = y0),

(3)

where C reflects the total identities presented in the dataset.

Assuming a high entropy of negative pairs and the large

number of identities, which is the case for the FR, we ap-

proximate the sampling of the negative pairs with sampling

from product of marginals [44]:

p(zf )p(zp) ≈
∑

y0∈C

∑

y
′

0
∈C

y
′

0
̸=k

p(yf = y0)p(zf |yf = y0)

× p(yp = y
′

0)p(zp|yp = y
′

0).

(4)

We aim to train ff (.) and fp(.) such that face images of

an identity in different views are mapped closely in the em-

bedding space. To this end, we maximize the mutual infor-

mation between positive pair representations by maximiz-

ing the KL divergence between Eqs. 3 and 4 [39]. Hence,

we aim to learn a function, h(.), which provides a low value

for negative pairs and high value for positive pairs [44].

h(zf , zp) = exp(
1

τ

zf · zp
||zf || · ||zp||

), (5)

h(.) reflects the cosine similarity between latent representa-

tions and τ is the temperature [11], which plays an impor-

tant role in concentration of representations in the hyper-

sphere [50, 45].

The contrastive learning aims to pull an anchor zf,i0 and

positive samples zp,i0 close in the embedding space while

pushing the anchor away from many negative samples [39]:

Lcont = −E
S

[

log
h(zf,i0 , zp,i0)

∑k

i=0 h(zf,i0 , zp,i)

]

, (6)

where S : {(zf,i0 , zp,i)}
k
i=0 is a set of k negative pairs and

one positive pair [44]. In [44], it is proven that optimal h(.)
is in direct proportion with the ratio of joint distribution and
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Table 1. Verification accuracy (%) and standard deviation for CFP-

FP over standard 10-folds. Results of the [4, 6] are copied from

[38].

Method
Frontal-Profile Frontal-Frontal

Accuracy EER Accuracy EER

PR-REM [4] 93.25(2.23) 7.92(0.98) 98.1(2.19) 1.1(0.22)

DCNN [6] 84.91(1.82) 14.97(1.98) 96.4(0.69) 3.48(0.67)

p-CNN [51] 94.39(1.17) 5.94(0.11) 97.79(0.40) 2.48(0.07)

FRN-TI [42] 95.62 - - -

DR-GAN [40] 93.41(1.17) - 97.84(0.79) -

PF-cpGAN [38] 93.78(2.46) 7.21(0.65) 98.88(1.56) 0.93(0.14)

PIM [56] 93.1(1.01) 7.69(1.29) 99.44(0.36) 0.86(0.49)

ours 95.85(1.07) 4.22(0.15) 99.37(0.4) 0.63(0.05)

product of marginals distributions: h ∝
p(zf ,zp)

p(zf )p(zp)
. Replac-

ing h(.) with the density ratio results [44]:

L
optim
cont ≥ log(k)− E

(zf ,zp)∼pzf ,zp

log

[

p(zf , zp)

p(zf )p(zp)

]

, (7)

recalling the mutual information between two random vari-

able zf and zp: I(zf ; zp) = Epzf ,zp

[

p(zf ,zp)
p(zf )p(zp)

]

. Conse-

quently, for any positive pair of frontal and profile faces:

I(zf , zp) ≥ log (k)− l
optim
cont [44]. Hence, minimizing the

contrastive loss results in maximizing the lower bound to

I(zf ; zp).
Without loss of generality, we consider the features are

normalized: ||zf || = ||zp|| = 1. Consequently, given a

mini-batch, the PAC loss for a frontal anchors is:

L
f
PAC = −

|B|
∑

i=1

log
exp( 1

τ
zf,i · zp,ai)

∑

j∈Np(i)
exp( 1

τ
zf,i · zp,j)

, (8)

where B is the mini-batch and Np(i) is a set of one positive

and many negative profile samples corresponding to zf,i.

Symmetrically, considering profile samples as anchors:

L
p
PAC = −

|B|
∑

i=1

log
exp( 1

τ
zp,i · zf,ai

)
∑

j∈Nf (i) exp(
1
τ
zp,i · zf,j)

, (9)

there are four main advantages in using this loss function. 1)

Comparison with every negative sample within mini-batch

at the same time, denominator in Eqs. 8 and 9, 2) rather than

optimizing the angle between the representations and their

corresponding prototypes, the model directly learns the an-

gle between representations [21], 3) PAC provides the im-

plicit hard negative/positive mining to the model [17], and

4) PAC maximizes the mutual information between repre-

sentations from different views of the shared context [3].

3.2. Pose-Aware Contrastive Learning with Mem-
ory Buffer

Due to the large number of classes in FR datasets and

having a small number of identities within a mini-batch,

the conventional FR methods could not cover a large num-

ber of identities at each step of loss calculation [12]. In-

creasing the mini-batch size may alleviate the issue, but it

does not ensure the improvement in the performance, and in

many cases, due to the memory constraint, it is impractical

[16, 53]. We mitigate this issue by adopting the memory

buffer framework [50] to the loss function to benefit from

more negative instances. The memory buffer consists of the

latent representations of profile and frontal faces from past

iterations. During each learning iteration, representations

zf and zp are updated to the memory at the corresponding

instance entry:

rf,t+1 = m ∗ rf,t + (1−m) ∗ zf

rp,t+1 = m ∗ rp,t + (1−m) ∗ zp,
(10)

where rf and rp stand for features saved in frontal and pro-

file memory buffer and m is the momentum coefficient in

updating [50]. Therefore, Eq. 8 can be rewritten as:

L
f
PACM = −

|B|
∑

i=1

log
exp( 1

τ
zf,i · rp,ai)

∑

j∈NM
p (i) exp(

1
τ
zf,i · rp,j)

, (11)

where NM
p (i) represent a set of one positive and multiple

negative profile representations drawn from the memory.

Similarly:

L
p
PACM = −

|B|
∑

i=1

log
exp( 1

τ
zp,i · rf,ai

)
∑

j∈NM
f

(i) exp(
1
τ
zp,i · rf,j)

. (12)

Instances within a mini-batch form the Nf (i) and Np(i);
however, NM

f (i) and NM
p (i) are drawn from the mem-

ory and are not constrained to the mini-batch size. There-

fore, we can chose the number of negative pairs such that:

|NM
p (i)| ≫ |Np(i)| and |NM

f (i)| ≫ |Nf (i)|. Memory al-

lows us to choose different samples for every instance in

each mini-batch and not be limited to the mini-batch size

[41], see Fig. 2. Finally, the overall loss for the Pose-Aware

Contrastive with Memory buffer (PACM) is:

LPACM = L
f
PACM + L

p
PACM . (13)

3.3. Pose-Aware Adversarial Domain Adaptation
Learning

For each identity, the ideal scenario is to have an iden-

tical profile and frontal feature representations. To further

improve the similarity of these features, we adapt the idea

of adversarial adaptation [43], which aims at making the

representations of profile and frontal images as similar as

possible. To this end, we aim to fool a binary classifier

(view discriminator), which is going to be trained to dis-

tinguish between profile and frontal representations. This

mimics the policy which is used in the GANs in which the

generator tries to produce samples that are indistinguishable
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Table 2. Performance (%) comparison of our framework on Setting1 and Setting2 of Multi-PIE dataset. Last three rows represent our

results with single (first two) and couple network (last row) with 200 negative samples.

Setting 1 Setting 2
Method

±15◦ ±30◦ ±45◦ ±60 ±75◦ ±90◦ ±15◦ ±30◦ ±45◦ ±60 ±75◦ ±90◦

FF-GAN [52] - - - - - - 94.6 92.5 89.7 85.2 77.2 61.2

DR-GAN [40] - - - - - - 94.0 90.1 86.2 83.2 - -

FNM+Light CNN [32] 99.9 99.5 98.2 93.7 81.3 55.8 - - - - - -

CAPG-GAN [13] 99.95 99.37 98.28 93.74 87.40 77.10 99.82 99.56 97.33 90.63 83.05 66.05

TP-GAN [14] 99.78 99.85 98.58 92.93 84.10 64.03 98.68 98.06 95.38 87.72 77.43 64.64

PIM [56] 99.80 99.40 98.30 97.70 91.20 75.00 99.30 99.00 98.50 98.10 95.00 86.50

PoseFace [26] 100 99.97 99.62 98.55 96.07 90.58 - - - - - -

FFWM [47] 100 100 100 98.86 96.54 88.55 99.86 99.80 99.37 98.85 97.20 93.17

PF-cpGAN [38] 99.9 99.9 98.9 97.6 94.2 88.1 - - - - - -

Ours-single-wo PADA 100 100 99.97 99.53 97.26 91.70 99.98 99.97 99.82 99.47 97.19 91.51

Ours-single 100 100 99.97 99.63 97.50 92.65 99.95 99.83 99.70 98.97 96.64 91.79

Ours-couple 100 100 99.97 99.74 98.04 94.64 100 100 99.98 99.76 98.21 94.49

from real samples [43]. The view discriminator D classi-

fies whether a feature vector comes from a profile or frontal

image. Therefore, D should maximize cross-entropy loss

function:

LD(xp, xf , fp(.), ff (.)) =E [logD(ff (xf )]

+ E [log (1−D(fp(xp))] .
(14)

It is important to remember that for adversarial domain

adaptation learning, positive samples are used, yf = yp.

The profile encoder’s objective is to fool the view discrimi-

nator by maximizing the following:

Lencoder(xp, fp(.)) = E [logD(fp(xp)] , (15)

considering Eqs. 14 and 15, we conclude that the profile

encoder and the view discriminator play a minmax game:

LPADA = min
fp(.)

max
D

{E [logD(ff (xf )]

+ E [log (1−D(fp(xp))]},
(16)

where ff (.) is fixed during the adversarial training and fp(.)
is trained by Eq. 16. Consequently, the model learns an

asymmetric mapping from profile to frontal representation

that modifies the profile encoder to learn representations

that match the representations of frontal faces [43].

Based on the above discussion, we formulate the total

training loss function as:

Ltotal = λ1lPADA + λ2lPACM , (17)

where λ1 and λ2 are the training regularization parameters.

4. Experiments

We study the performance of the coupled-encoder on

four FR datasets. We report the results of the proposed

framework for verification and identification setup and

compare them with the state-of-the-art (SOTA) methods.

Furthermore, we investigate the impact of the number of

negative samples and effect of different terms in Eq. 17.

4.1. Training Setup

For all datasets, MTCNN [54] is considered to detect

and align faces. All the images are resized to 112×112,

and pixel values are normalized to [−1, 1]. Most of the

FR datasets are imbalanced in two aspects: 1) the number

of per identity samples, and 2) the number of profile and

frontal samples for each identity. Consequently, there is a

good chance that one of the networks learns a degenerate

solution [8]. We initialize the encoders sub-networks with

pre-trained weights on the VggFace2 dataset [5] with the

Softmax loss to mitigate this problem.

For selecting the frontal and profile pairs, we apply [33]

to the datasets to create frontal and profile subsets based on

the yaw angle. Then, face images with an absolute yaw

value less than 15◦ are considered frontal. For training

Eq. 17, the initial learning rate is set to 0.001 and is mul-

tiplied by 0.1 every ten epochs, and weight decay and mo-

mentum are 0.00001 and 0.9, respectively. The model is

trained for 20 epochs. During the training, λ1 = 0.1 and

λ2 = 1.0, and the number of negative samples is 6,000. We

adopt ResNet50 [7] as the encoder networks for the profile

and frontal views. The final feature is of size 512×7×7.

Feature maps are reshaped to form a vector of size 25,088

and passed to a fully-connected layer of size 512 to con-

struct the final representation. The last feature vectors of

encoders are enqueued to the frontal and profile memory

buffer, see Fig. 3. The view discriminator is an MLP with

two hidden layers of size 256, each followed by batch nor-

malization and leaky relu activation function. At the top of

these hidden layers, there is a single neuron with a sigmoid

activation function. The model is trained using Stochastic

Gradient Descent (SGD) with a mini-batch size of 32 on an
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NVIDIA TITAN X GPU using Pytorch [31].

4.2. Results

CMU Multi-PIE dataset [10] includes 750,000 images

of 337 identities with variations in pose, illumination, and

expression in the controlled environment. It contains im-

ages of 15 different views from 20 illuminations in different

expressions. For fair comparison, we use neutral images in

13 views of {0◦,±15◦,±30◦,±45◦,±60◦,±75◦,±90◦},

and all the variations in illumination are included as [14].

More specifically, there are two main settings for this

dataset in the literature: Setting1 and Setting2. In both set-

tings, face images with neutral expression are used. In the

Setting1, 250 identities from session 01 of the dataset are

employed. The first 150 identities are selected for training

and the rest for testing. The test set consists of probe and

gallery sets. The galley set consists of one frontal image

per identity in neutral illumination, and the probe set con-

tains images with a yaw angle other than zero. There is no

overlap between training and testing identities. In Setting2,

face images of the 200 identities from four sessions are used

for training. The probe and gallery sets for testing are con-

structed as Setting1. In this dataset, images with zero yaw

degree are considered frontal, and all the other views are

considered profile. Following [40, 32, 14, 56, 26, 47, 38],

we fine-tune the coupled-encoder on the training sets of Set-

ting1 and Setting2, separately.

Table 2 demonstrates the performance of our model in

comparison with SOTA models on the Multi-PIE dataset

and we investigate the effect of face angle on the FR per-

formance. Almost all methods perform above 92% for pose

variation in [−60◦,+60◦]. However, beyond this range,

their performance drastically decreases. Table 2 shows that

the coupled-encoder outperforms both face frontalization

and pose-invariant feature learning algorithms for the face

with ±90◦ pose. Our framework improves [38] by almost

6%. Even without the pose-aware adversarial domain adap-

tation, the presented model achieves better results compared

to other methods (in Setting1). Considering PoseFace [26],

coupled-encoder performs better for every pose, and it out-

performs PoseFace for face images with ±90◦ pose by al-

most four percentage points. Same as Setting1, the coupled-

encoder surpasses other algorithms in Setting2. The im-

provement is more noticeable for the extreme pose of ±90◦.

The Celebrities in Frontal-Profile in the Wild (CFP)

dataset [36] includes facial images of 500 different identi-

ties with 10 frontal and 4 profile samples per identity. Fol-

lowing [36], we evaluate our method on 10-fold protocol,

and each fold consists of 350 genuine and 350 imposter

pairs. Considering results on the CFP-FP dataset in Table 1,

our framework performs better than the other SOTA meth-

ods with at least a margin of 0.23% in terms of accuracy and

1.72% improvements in terms of EER.

Figure 4. The distance distributions between positive (shown in

blue) and negative (shown in orange) pairs. In near frontal poses,

the normalized Softmax (top in each block) and the PACM (bot-

tom in each block) separate positive from negative pairs. In near-

profile, ±60◦ and ±75◦, and complete profile, ±90◦, only PACM

perfectly separates these two distributions (High mutual informa-

tion between positive pairs).

Table 3. Verification accuracy (%) for IJB-B and IJB-C dataset.

Results of the [35, 32, 4] are copied from [38]

Metohd
IJB-C(TAR@FAR) IJB-B(TAR@FAR)

0.001 0.01 0.001 0.01

GOTs [49, 24] 36.3 62.1 33.0 60.0

VGG-CNN [49, 24] 74.3 87.2 72.0 86.0

CFR-GAN [15] 74.81 86.46 73.54 85.34

FaceNet [35] 66.3 82.3 - -

FNM [32] 80.4 91.2 - -

PR-REM [4] 83.4 92.1 - -

PF-cpGAN [38] 86.1 93.8 84.21 90.02

Lin et al. [20] 89.85 95.99 87.55 95.08

SSA [19] 90.91 95.90 88.27 94.88

ours 90.05 95.70 88.35 94.87

The IJB-B [49] is challenging in the wild dataset, which

was further extended to IJB-C [24]. These datasets are of

the most challenging benchmarks for FR, containing large

pose variation and diversity in resolutions. For evaluating

on these datasets, we follow the protocol in [49, 24]. Base-

line for comparison on IJB-B and IJB-C datasets are PR-

REM [4], FNM [32], FaceNet [35], GOTs [49, 24], VGG-

CNN [49, 24], PF-cpGAN [38], CFR-GAN [15], SSA [19],

and Lin et al. [20]. Table 3 shows that coupled-encoder

improves the True Acceptance Rate (TAR) at False Accep-

tance Rate (FAR) of 0.001. Coupled-encoder performs in
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Table 4. Recognition accuracy (%) of the proposed framework on

setting1 of Multi-PIE dataset.

view

loss ±15◦ ±30◦ ±45◦ ±60◦ ±75◦ ±90◦

Joint Softmax 99.89 99.71 98.64 94.47 86.92 75.18

MCL 99.82 99.80 98.84 96.17 89.04 77.71

PAC 100 99.87 99.28 98.65 96.49 91.06

PAC+PADA 100 100 99.94 99.71 97.66 93.50

PACM+PADA 100 100 99.97 99.74 98.04 94.64

Table 5. Recognition accuracy (%) of the proposed framework on

the Setting1 for Multi-PIE dataset with varying number of negative

samples.

view

Num Negative ±15◦ ±30◦ ±45◦ ±60◦ ±75◦ ±90◦

32 100 100 99.91 99.69 97.67 93.19

100 100 100 99.97 99.56 97.97 94.12

150 100 100 99.95 99.94 97.98 94.39

200 100 100 99.97 99.74 98.04 94.64

500 100 100 100 99.61 98.01 94.61

pare with SSA [19] and [20].

4.3. Ablation studies

In this section, we analyze the effects of different terms

of our proposed framework. First, we study the impact of

the loss function’s components, i.e., pose-aware contrastive,

memory buffer, and pose-aware adversarial domain adapta-

tion on the performance. Then we report the results of a

single encoder. We report on the Multi-PIE dataset to bet-

ter illustrate the influence of shift in distribution caused by

variation in view angle, see Fig. 4. The encoders are pre-

trained ResNet50 with Softmax on the VggFace2 dataset.

We finetune them with the corresponding loss for the equal

number of iterations on the training set of Setting1. The

optimizer is SGD for all the experiments. We consider mul-

tiple learning rates for training MCL and softmax loss. The

learning rate for other experiments is chosen to be 0.001.

Also, we have to choose an appropriate margin for training

with MCL; therefore, we conduct experiments with differ-

ent margin values and best results are reported in Table 4.

From Table 4, all the losses perform similarly for the

absolute view angles less than 60◦. In our experiments, uti-

lizing PAC outperforms Softmax and MCL by almost 15%

in identification accuracy for the extreme poses of ±90◦.

At the same time, it improves the accuracy in near frontal

views, except for the ±45◦. In the cases of ±30◦ and ±45◦,

we observe that when adding the adversarial domain adapta-

tion loss, the performance is improved by 0.13% and 0.66%,

respectively. This emphasizes the role of asymmetric map-

ping in aligning profile and frontal representations.

Contrastive learning frameworks benefit from a larger

number of negative samples [44]. Thus, we expect improve-

ment by integrating the memory bank into the loss func-

tion, consistent with our experiment. In Table 5, we further

study the effect of varying the number of negative samples

on the Setting1 of Multi-PIE dataset. The performance con-

stantly improves until 200 negative samples and then satu-

rates. This saturation is due to the fact that, in the Setting1

of the Multi-PIE, only 150 identities are used for training,

and most of the 500 negative samples represent repetitive

identities. Moreover, Table 2 shows the performance of

the proposed framework with single and coupled-encoder.

As the pose disagreement between probe and gallery im-

ages increases, coupled encoder presents more improve-

ment, which emphasizes that we need a dedicated frontal

encoder to have more flexible mapping for profile faces.

5. Conclusion

In this paper, we focused on solving FR in extreme pose

scenario.We proposed a new coupled-encoder framework

with two distinct encoders that maximize the mutual infor-

mation between the embeddings of profile and frontal face

images. For this goal, we adopt a pose-aware contrastive

loss and pose-aware asymmetric training. They force the

coupled-encoder to map faces with the same identity to

close representations and faces with different identities to

the far representations. Furthermore, the memory buffer im-

proves the effectiveness of suggested contrastive learning,

by looking at a massive number of identities compared to

the mini-batch size. We conducted experiments on multiple

benchmarks, showing the capability of our approach to out-

perform SOTA methods. These performance improvements

illustrate the effect of a domain-dedicated feature extractor

and employing PACM loss on projecting images to an em-

bedding space where all the images of the same person are

close together and far from other individuals, regardless of

the view angle. Moreover, the role of each part of our loss

function is investigated in the ablation study.
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