2022 IEEE International Joint Conference on Biometrics (IJCB) | 978-1-6654-6394-2/22/$31.00 ©2022 IEEE | DOI: 10.1109/1)CB54206.2022.10007929

Robust Ensemble Morph Detection with Domain Generalization

Hossein Kashiani, Shoaib Meraj Sami, Sobhan Soleymani, Nasser M. Nasrabadi
West Virginia University

{hk00014, sms00052, ssoleyma}@mix.wvu.edu, nasser.nasrabadimail.wvu.edu

Abstract

Although a substantial amount of studies is dedicated to
morph detection, most of them fail to generalize for morph
faces outside of their training paradigm. Moreover, recent
morph detection methods are highly vulnerable to adver-
sarial attacks. In this paper, we intend to learn a morph
detection model with high generalization to a wide range
of morphing attacks and high robustness against different
adversarial attacks. To this aim, we develop an ensemble
of convolutional neural networks (CNNs) and Transformer
models to benefit from their capabilities simultaneously. To
improve the robust accuracy of the ensemble model, we em-
ploy multi-perturbation adversarial training and generate
adversarial examples with high transferability for several
single models. Our exhaustive evaluations demonstrate that
the proposed robust ensemble model generalizes to several
morphing attacks and face datasets. In addition, we vali-
date that our robust ensemble model gain better robustness
against several adversarial attacks while outperforming the
state-of-the-art studies.

1. Introduction

Face recognition systems are built upon the hypothe-
sis that the face is uniquely linked to the identity. When
it comes to face verification scenarios, morph attacks are
potential threats due to their capacity to break this unique
connection. Face morph attacks are particularly dangerous
for border security since a morphed passport photo allows
unauthorized entry to be unnoticed. Through this loop-
hole, a criminal can apply for a passport using a morphed
face. Face morphing is an image manipulation technique
in which two faces are blended together to form a morphed
image of high quality. At the time of passport enrollment,
the passport photo can be easily manipulated with a mor-
phing attack without the requirement of advanced passport
forgery technologies. Therefore, face recognition systems
rely highly on the morph attack detection.

A typical assumption in morph detection studies [43, 9,
2, 1] is that the source and target data are independent and

Figure 1: Domain shift between different morphing at-
tacks in different datasets, including FERET [39], FRLL
[18, 42], FRGC [40], and AMSL [36]. Morphs correspond
to landmark-based morphing methods such as Facemorpher
[41] and WebMorph [17] and GAN-based morphing meth-
ods such as MIPGAN [53] and StyleGAN?2 [42].

identically distributed (i.i.d.) [44, 6, 15]. This assumption
neglects the domain shift challenge in the real world (Figure
1). As aresult, when applied to out-of-distribution samples,
a learning agent that is only trained on source data often
performs much worse. The domain shift issue may be miti-
gated to some extent by including some data from the target
domain, but this is a non-trivial task since preparing image
annotations is both costly and time-consuming. Moreover,
despite the remarkable success of deep CNNs in face recog-
nition systems, they are known to be susceptible to another
type of attack known as adversarial attack. An adversarial
attack attempts to generate an adversarial example with in-
distinguishable and purposeful perturbations, forcing CNNs
to an incorrect prediction. In this regard, the vulnerability
of morph detection systems to adversarial examples have
serious consequences.

In this study, we develop an ensemble of deep mod-
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els trained on a morph source domain to improve domain
generalization. It should be noted that neural networks
mostly do not attain perfect performance owing to the over-
whelming number of local minima. In other words, neu-
ral networks might fall into a variety of local minima. As
a result, individual neural networks do not operate opti-
mally in various areas of the feature space, and the er-
rors do not have a large positive correlation between them
[23]. To address this issue, we adopt an ensemble of
well-trained neural networks. Our evaluations demonstrate
that the ensemble learning can partly mitigate the domain
shift challenge. In this respect, we study an ensemble
model, which comprises of a ViT B-16 Transformer [22],
ViT L-32 Transformer [22], and a noise-aware Inception
ResNet network [26, 49]. Noise-aware Inception ResNet
network is built upon Venkatesh er al., [49] with an In-
ception ResNet backbone. Domain generalization needs
translation equivariance, local receptive fields, weight shar-
ing, and long-range dependencies. Integration of CNN and
Transformer models can incorporate these objectives at the
same time. Therefore, we propose an ensemble model to
include the strengths of both CNN and Transformer archi-
tectures [49, 26, 22, 46, 28] simultaneously.

In addition, to robustify our ensemble model against ad-
versarial perturbations, we first generate adversarial exam-
ples with high transferability in a black-box setting. To
this end, we generate a wide range of adversarial pertur-
bations with different methods such that our adversarial ex-
amples fool different morph detection methods in a white-
box setting. Then, we robustify our ensemble model us-
ing multi-perturbation adversarial training [25] . With the
multi-perturbation adversarial training, we enforce the out-
put of the proposed ensemble model to remain nearly within
an [, ball of every training sample to enhance robust ac-
curacy while keeping favorable clean accuracy. Our major
contributions in this papers are:

* We integrate CNN and Transformer models and pro-
pose an ensemble model for morph detection that
highly generalizes to a wide range of morphing attacks.

* We craft highly transferable adversarial examples for
multi-perturbation adversarial training to improve the
adversarial robustness of our ensemble models.

e We carry out extensive evaluations on different
datasets to prove the generalization capability and ad-
versarial robustness of our ensemble model.

2. Related Works
2.1. Morph Detection

Morph attack detection methods are divided into single
and differential morph detection. In the single morph detec-
tion, the detector only aims to detect the potential morphed

image for final classification. This corresponds to morph
detection during the passport application, when the appli-
cant uploads his passport picture. On the other hand, differ-
ential morph detection utilizes an additional trusted image
of the real subject for its detection. To be more specific, it
makes a comparison between the potential morphed image
and the trusted reference image.

Recently, deep learning models have been widely used
for morph detection. Authors in [6] employ a conditional
generative network (cGAN) for differential face morph at-
tack detection. The cGAN learns to implicitly extract iden-
tities from the morphed image conditioned on the trusted
reference image. Aghdaie er al. [3] exploit wavelet do-
main analysis to explore spatial frequency information for
morph detection. They train a CNN-based morph classifier
on the decomposed wavelet sub-bands of the morphed and
bona fide images. Authors in [49] propose a deep multi-
scale context aggregation model to capture residual morph-
ing noise. The pre-trained AlexNet [30] is then utilized to
compute the textural features of the residual morphing noise
for morph attack detection. Recently, Damer ef al. [14] in-
troduce a synthetic-based development dataset for morph
attack detection to address the legal issues of utilizing bio-
metric information.

2.2. Domain Generalization and Ensemble models

Machine learning paradigms [37, 35, 4, 38, 34] are built
upon the assumption that training and test data have the
same probability distributions. When this hypothesis is
even marginally broken, as most real-life settings, a signif-
icant drop in performance can be observed. Domain gen-
eralization aims to address this issue and mainly covers the
events in which the target source is unavailable during the
training phase. In this respect, ensemble learning is inves-
tigated for domain generalization. Domain-specific neural
networks [57], and weight averaging [8] are a number of
domain generalization-based ensemble learning studies. In
ensemble learning, we seek to learn several instances of
the same model with different initializations, or we learn
different explicit models. In this respect, Xu et al. [51]
demonstrate that naively integrating diverse training distri-
butions from different source domains can contribute to out-
of-distribution generalization. In our study, domain gen-
eralization from a single source domain is targeted using
different state-of-the-art explicit deep learning models. We
construct our ensemble model from CNN and Transformer
models since the integration of these models enables us to
capture long-term and short-term connections in the visual
data.

2.3. Adversarial Robustness

While face recognition is improved significantly over re-
cent years thanks to the breakthroughs in deep learning, the
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Figure 2: Our proposed ensemble model consists of three single models: ViT B-16 Transformer, ViT L-32 Transformer, and
noise-aware ResNet. The single models is pre-trained on morphed face images.

face recognition models are prone to adversarial perturba-
tions [56]. This shortcoming is severe since certain ad-
versarial perturbations created by the white-box attacks can
fool other unrelated models owing to the adversarial trans-
ferability phenomenon [27]. One of the most thoroughly
benchmarked defenses against adversarial attacks is adver-
sarial training [47, 12], in which a CNN model is trained on
adversarial examples generated by itself. Despite the con-
siderable improvement in adversarial learning, recent works
on biometrics mostly rest on developing robust face recog-
nition [56], face identification [21], and face verification
systems [29]. However, in the case of the morphed im-
ages, it has received far less attention to generate adversarial
examples and benchmark their robustness against adversar-
ial perturbations. To alleviate this threat, we augment the
training dataset of the target model with multi-adversarial
perturbations transferred from different pre-trained models.

3. Proposed Framework

Ensemble learning integrates several single models to
boost the performance, improve generalization, and miti-
gate the overfitting challenge in comparison to base mod-
els. A single model can converge to a local minima. How-
ever, an ensemble of single models with different initialized
weights, individual loss functions, and individual gradient
backpropagations can provide a guaranteed and faster con-
vergence to the global minima [23]. This is because dif-
ferent single models usually do not make the same mis-
takes. Inspired by ensemble learning, we construct our
model from the state-of-the-art individual CNN and Trans-
former models. The CNNs are built with the inherent in-

ductive bias of locality. The scale-invariance can also be
provided in CNNs by the multi-scale features, which can be
computed by varying kernel sizes and dilation rates in the
intra- or inter-layer convolutions of the CNN hierarchical
structure [52]. Furthermore, CNNs take into account local
correlations among neighboring pixels in order to capture
local features, which results in the locality attribute. While
Transformer models lack precious inductive biases in visual
feature extraction, they model long-range dependencies in
visual data. To incorporate the inductive bias and model
long-range dependencies, we build our ensemble model by
means of integrating the Transformer and CNN models in
an ensemble model as depicted in Figure 2.

3.1. Inception-ResNet Morph Classifier

The RGB residual morphing noise is demonstrated to
be effective for morph detection [49]. Residual morphing
noise usually exists in high-frequency patterns of the mor-
phed face images. The high-frequency patterns are the fine
irregularities in the morphed face images that can model
the morphed manipulation and be useful for morph de-
tection. As the morphing artifacts are random and non-
deterministic, we learn a CNN denoiser to calculate the
residual artifacts for morph attack detection task. The CNN
denoiser is composed of 15 dilated convolutions with 3 x 3
kernel sizes and growing dilation factors as [49] for multi-
scale contextual information aggregation. At each stage,
the output of each convolution is divided into two branches:
an identity branch with a scale layer and a batch normal-
ization branch. These two branches are then combined to-
gether and fed to a leaky RELU and an adaptive normaliza-
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tion [10] to finally calculate the residual morphing artifacts.
Given the calculated residual morphing artifacts, we utilize
the Inception-ResNet-V1 model [45] for morph detection.
In this paper, we call this model the noise-aware ResNet
model.

3.2. Transformer Classifier

Due to their capability in capturing long-term dependen-
cies between different regions of the data, Transformers are
considered in many tasks such as object recognition, image
classification, and face recognition. Morph detection prob-
lem can also benefit from this capability since long-term
dependencies between different regions in facial images can
provide important information. We leverage from the ViT
B-16 and ViT L-32 [22] Transformers for morph detection
task in our ensemble model.

Tokenization A ViT Transformer applies attention to
small patches of input images instead of pixels. To be
more specific, ViT divides a 2D image € R¥*W >3 into
R x R flattened patches  ; € RN (% *3) uniformly, where
(H x W), R?%, 3, and N stand for spatial dimensions of
the input image and patches, three RGB channels, and the
number of total patches, respectively. It is worth noting that
ViT underperforms for both extremely small and large patch
sizes since the former induce too much computational cost,
while the latter cannot encode the low-level context in the
input images. The first layer of ViT projects the flattened
patches (also called patch tokens) into latent D-dimensional
embeddings [22]. To learn about the structure of the in-
put data, a positional embedding is added to the flattened
patches which contains information about the location of
patches. An extra classification token z.,ss iS also ap-
pended to the embedded patches. The content of this classi-
fication token interacts with all the remaining patch tokens
in the self-attention module, accumulating data for the even-
tual classification [22]. With this structure, nearby patches
contain more comparable position embeddings, and the em-
beddings of patches in the same row or column are identi-
cal. Thus, the ViT utilizes the latent position embedding
to consider distances within the input image patches. The
resulting vector corresponding to different patch tokens is
then fed into the transformer encoders. Note that the x4
in the Transformer encoder finally results in y output [22].

Encoder Block: Each block of a Transformer encoder is
composed of a feed-forward network (FFN) and a multi-
headed self-attention module (MSA). The hidden layer of
the FFN is constructed from a two-layer multi-layer percep-
tron as well as a Gaussian Error Linear Unit (GELU) non-
linearity layer. Around each sub-layer, residual shortcuts
are adopted, which are preceded by a layer normalization

(LN). The encoder of ViT works as follows:

y = & + FFN(LN(&)), (1)

& = x + MSA(LN(z)), )

where x and y are the out of tokenization phase and the final
output class, respectively. A series of encoders component
constitutes a Transformer encoder.

Multi-Head Self-Attention: Multi-head attention ex-
tends single-head self-attention to encompass various com-
plicated connections among distinct image patches. The
self-attention mechanism is a fundamental building block of
Transformers that systematically simulates the relationship
between all pixels in an image by giving a pairwise atten-
tion score between every two patch tokens in the terms of
global contextual information. To this end, the embeddings
of R x R pixel patches, xf, are mapped to three learnable
matrices: query (Q € RVN+1XC) key (K € RV+1XC) "and
value (V € RN+1XC) Then, the self-attention mechanism
is defined as:

Attention(Q,K,V) softmax(QKT )V 3)
b 9 m )
where dj, is the dimension of K matrix. This single self-
attention process is performed for each head in parallel in
the MSA module. Then, the output of various head units is
concatenated along the channel dimension.

3.3. Fusion

To construct our ensemble model, we train a FFN to com-
pute the matching scores of all single models in the fusion
phase. For this goal, we capture score z; from the output of
each model ¢ € 1,2, 3. Since the large scores which belong
to a certain model can dominate the others and force them
to be small, the scores of single models are first normalized
as follows :

~ esir

“ir = Zj ezii’ L=
where Z;;, is the normalized score of a single model. Finally,
the normalized scores of all single models are ensembled for
final classification as follows:

1,2,3, “)

y =FFN[Z1p; ... Zip), 5)

where FFN denotes a two-layer feed forward network with
hidden layers of 256 and 2 units. The FC layers are also ac-
tivated with a RELU function. Note that, during the train-
ing, we randomly set a limited number of these scores to
zero to cope with the overfitting.
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3.4. Multi-Perturbation Adversarial Training

Adversarial training is one of the main types of defense
against adversarial attacks that aims to train moderately ro-
bust DNNs with adversarial examples [47]. In adversarial
training, we require to delicately set the perturbation level
e for the generation of adversarial examples in the training
phase. Using small values of € in adversarial training fails to
generate hard adversarial examples, and consequently, the
final trained model would lack adversarial robustness. On
the other side, large values of € would improve the adver-
sarial robustness at the cost of a significant clean accuracy
drop. As such, we need to tune the perturbation level € to
strike the right balance between robust and clean accuracy.
Moreover, the adversarially trained models with a certain
type of adversarial perturbation are still vulnerable to other
types of adversarial attacks [47]. To cope with this issue, we
adopt ensemble-based multi-perturbation adversarial train-
ing. To this end, we augment training data with a wide range
of adversarial perturbations. In a white-box setting, we fool
each single models and generate adversarial examples with
different perturbation level e. It is worth highlighting that
several types of adversarial attacks are included in order to
improve the network robustness.

To improve the effectiveness of our adversarial train-
ing, we require to craft the adversarial examples with high
transferability. Conventionally, the adversarial examples
can fool the white-box models more easily compared to the
black-box models. The adversarial perturbations generally
do not transfer well to the black-box models with differ-
ent topologies [27]. Transferability, which allows adversar-
ial examples to transfer to networks of unknown structures,
makes adversarial examples even more harmful. To address
this challenge and generate highly transferable adversarial
examples, we utilize the model-based ensembling Attack
[32]. In this approach, we assume that if an adversarial ex-
ample succeeds in fooling several models, it can also fool
black-box models with high probability [32]. With that in
mind, we produce adversarial examples for an ensemble of
single models in a white-box setting by optimizing the fol-
lowing equation:

argmax,. — log ((Z a;J; (x*)) : 1y) + M (z,27),
i=1

(6)
where z, y, and n denote the input image, the ground-
truth class, and the number of single models. In addition,
Ji, «; and d indicate the output of a single model, en-
semble weights, and the distance between input and per-
turbed images. This optimization results in the alignment
of the decision boundaries of the individual models. There-
fore, the crafted adversarial example would have higher
transferability in the black-box setting. Equipped with

these highly transferable adversarial examples, we employ
multi-perturbation adversarial training over single models.
To be more specific, we apply this optimization (Equa-
tion 6) to several untargeted adversarial attacks to craft
highly transferable adversarial images and utilize them in
the adversarial training of the ensemble model. These at-
tacks include fast gradient sign method (FGSM) [24], ba-
sic interactive method (BIM) [31], Random initialization
FGSM (RFGSM) [48], projected gradient method (PGD),
[33], PGDL [33], Trade-off PGD (TPGD) [54], Auto-PGD
(APGD) [11], APGD-Targeted (APGDT) [11], SmoothFool
[13], and AutoAttack [11].

4. Evaluations

We benchmark the generalization performance of the
proposed ensemble model on a wide range of unseen morph
attacks. In a real-world scenario, the morphing technology
used by a criminal attacker may be novel and unknown. As
such, it is reasonable to evaluate morph detection methods
on several "unseen” datasets to obtain an accurate represen-
tation of how the network performs. To this end, a wide
range of target domains are employed in our investigations.
To assess network performance, we rely on the Area Un-
der the Receiver Operating Characteristic Curve (AUC), At-
tack Presentation Classification Error Rate (APCER), and
Bona fide Presentation Classification Error Rate (BPCER),
which are the standard measures for morph attack detec-
tion. APCER stands for Attack Presentation Classification
Error Rate or the rate at which morphs are incorrectly cate-
gorized as bona fides. BPCER, on the other hand, is the rate
at which bona fide images are wrongly identified as morphs
[44].

4.1. Experimental setup

To train the single models, the input images are first pre-
processed with the MTCNN framework [55]. Faces are de-
tected, aligned, and resized to 512 x 512 using the MTCNN
framework. All training images are further augmented
with horizontal flips. Additionally, the batch generator is
weighted to mitigate the class imbalance at every iteration.
We utilize our private dataset as the source domain, which
includes about 9,052 bona fide and 1,2991 morphed images.
The target domains consist of five separate datasets, includ-
ing FERET [39], FRLL [18, 42], FRGC [40], and AMSL
[36] datasets. To train the base single models on the source
domain, we use the mini-batch stochastic gradient descent
optimization with batch size 256, and the Adam solver. The
initial learning rate is set to 5 x 1072, and it is decreased
by a factor of 2 at 20*" and 30*" epochs. In the adversar-
ial training, to strike a right robustness/accuracy balance,
the adversarial examples are crafted with ¢ = 2/255 and
e = 4/255 perturbation levels. In the test phase, the ad-
versarial attacks are produced in a white-box and black-box
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Table 1: Test datasets utilized in our experiments.

Dataset Number Name Morph Images ~ Bona fide Images
1 AMSL [36] 2175 204
2 FRLL AMSL [42] 6525 204
3 FRLL Webmorpher [42] 1221 204
4 FRLL OpenCV [42] 1221 204
5 FRLL StyleGAN [42] 1221 204
6 FRLL Facemorpher [42] 1221 204
7 FERET OpenCV [42] 529 1413
8 FERET StyleGAN [42] 529 1413
9 FERET Facemorpher [42] 529 1413
10 FRGC OpenCV [42] 964 3038
11 FRGC StyleGAN [42] 964 3038
12 FRGC Facemorpher [42] 964 3038
13 FRGC MIPGAN [53] 747 373
14 FRGC MIPGAN + PRINT AND SCAN [53] 747 376

True Morph True Morph True Morph

True Morph

Total True = 1417

@vitni @ viriw

Total True = 1458
@ vitsi6 @ Efiicicne Criss—cross

Total True = 1470
@ vrin @ Noie-awae ResNee

Figure 3: The number of morphs images that are correctly
classified as the morph class.

settings with translation-invariant FGSM (TIFGSM) [20],
Carlini and Wagner (C&W) [7], momentum iterative FGSM
(MIFGSM) [19], Square [5], Diverse Inputs Iterative FGSM
(DIFGSM) [50]. In the black-box settings, the adversarial
images are crafted using a black-box model and transfer to
the ensemble model. Our experiments in the training and
tests phases are conducted on three 12 GB TITAN X (Pas-
cal) GPUs.

4.2. Results and Analysis

To explore the generalization capability of our ensem-
ble model on a wide range of domains, we employ FERET
[39], FRLL [18, 42], FRGC [40], and AMSL [36] datasets
in our evaluations. Further, different landmark-based and
GAN-based morphing attacks are used to generate morph
images on the datasets. The landmark-based attacks in-
clude Facemorpher [42], OpenCV [42], and WebMorph
[42] and GAN-based attacks include MIPGAN [53], Style-
GAN2 [42], and Print and Scan attacks [53]. Table 1
presents the details of different test sets that are used in our
experiments.

Single Models: To create our ensemble model, several
single models based on the CNN and Transformer architec-
tures are trained individually using the source domain. To
demonstrate that the error distribution in morph detection
is not the same between different models and the proposed
ensemble model contributes to the overall performance of
morph detection, we apply each single model to the morph
images created by the StyleGAN attack [42]. Figure 3 rep-
resents the Venn diagram of morph detection between the
ViT B-16, ViT L-32, Inception-ResNet-V1 (abbreviated as
ResNet), Noise-aware ResNet, and EffitientNet Criss-cross
models. In the EffitientNet Criss-cross model, the Criss-
cross attention [28] is integrated into the EffitientNet archi-
tecture [46]. The number of true morphs detected by each
single model and both of them is provided. The results re-
veal that the errors are not totally correlated between the
single models and they do not perform similarly in different
parts of feature space. This demonstrates that the ensemble
model, which is composed of different single models, can
promote morph detection performance and generalize bet-
ter to different domains. To select the best models in the
ensemble model, we gauge the performance of the single
models on 14 different test sets (Table 1). The comparison
results in terms of AUC and APCER (@BPCER=0.1) are
reported in Table 2. The results show that in some target do-
mains such as #1, #2, #4, and #6, single models generally
perform satisfactorily. However, in most cases such as tar-
get datasets #3, #5, #7, #8, #9, #10, #11, #12, and #13, the
single models perform differently. For instance, ViT B-16,
ResNet, and Noise-aware ResNet models significantly out-
perform the other single models in target datasets #3, #5,
#9, respectively. This analysis indicates that an ensemble
model constructed from these single models could poten-
tially gain noticeable improvements in comparison with the
single models, mainly for the challenging target domains.

4.3. Ensemble Model

To find the best configuration of the ensemble model,
we conduct two ablation studies as in Table 3. In the first
study, the number of single models, as well as their combi-
nations, are ablated in the ensemble model. The soft voting
strategy is adopted to fuse different single models. More
specifically, the probability scores of the single models are
averaged in the ensemble model. For the sake of brevity,
only the best combinations are reported in Table 3. It is
observed that naively averaging the probability scores of
the single models could generally boost the generalization
of the ensemble model to different target domains. This is
largely ascribed to the lower variance in the ensemble mod-
els compared to the single models. In addition, by drawing a
comparison between different configurations of the ensem-
ble model, we observe that the ViT B-16 + ViT L-32 + N-
ResNet [22, 49] combination generally yields the best per-
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Table 2: Morph detection results for different single models in terms of AUC, APCER (@BPCER=1%), and BPCER
(@APCER=1%) metrics. N-ResNet denotes the noise-aware ResNet method [49].

& VA N o S A o 5 & oA o= o & [ ¢S

78 S E R S s 8 S s ¢

ResNet [26] 99.32 98.77 79.09 99.99 99.16 99.94 94.14 92.7 94.31 97.24 92.28 96.36 81.24 68.45

N-ResNet [26, 49] 99.63 99.46 87.4 99.95 97.71 99.83 94.51 95.02 95.88 99.65 97.07 99.61 91.68 73.91

8 EfficientNet [46, 28]  99.95 99.73 83.52 99.85 90.71 99.80 89.01 90.88 92.97 92.64 68.75 92.07 95.66 75.87
< ViT B-16 [22] 99.62 99.41 90.70 99.84 86.37 99.61 93.35 90.77 93.38 99.01 87.77 97.54 88.75 83.56
ViT L-32[22] 99.20 99.09 85.81 99.69 93.38 99.52 92.76 91.97 92.69 98.75 89.46 97.31 80.00 82.16

ResNet [26] 6.86 8.82 72.54 00.0 7.35 00.0 43.94 50.74 43.38 17.70 394 21.95 84.182 91.48

N-ResNet [26, 49] 6.37 8.33 76.96 00.0 24.01 1.96 54.91 36.51 43.94 2.40 23.86 2.50 63.80 62.23

g EfficientNet [46, 28]  0.98 343 58.33 1.47 53.92 1.47 67.72 55.41 53.07 37.12 61.68 39.10 30.29 82.71
% ViT B-16 [22] 5.74 8.85 75.51 1.47 76.92 4.09 39.50 66.91 38.75 15.04 74.68 29.77 70.95 74.43
ViT L-32 [22] 8.78 8.70 80.75 2.04 49.09 4.50 63.13 64.83 65.97 21.16 76.55 36.41 76.17 89.29

ResNet [26] 24.55 36.78 98.44 0.32 27.00 0.40 44.23 68.62 46.88 81.63 93.98 89.73 98.39 98.25

N-ResNet [26, 49] 5.97 775 70.35 0.0 30.76 1.71 39.69 61.62 3591 14.00 70.33 16.39 94.64 99.59

ﬁ EfficientNet [46, 28] .79 8.93 95.08 2.62 7242 2.86 65.97 71.64 57.08 79.56 99.37 80.80 93.17 90.62
E ViT B-16 [22] 6.86 6.86 5539 2.94 77.94 6.37 61.07 66.31 56.40 17.281 69.32 31.764 71.04 89.89
ViT L-32 [22] 13.72 20.09 69.11 6.37 57.84 9.80 44.16 62.42 40.90 20.17 70.53 41.70 89.81 86.43

Table 3: Morph detection results for different combinations of ensemble models in terms of APCER (@BPCER=1%) and
AUC metrics. N-ResNet denotes the noise-aware ResNet method [49].

vy ya o5& 5§ Sa $2 s5¢& sa x93z &2
et § S8 &8 &§F &5 &F &5 &5 &F £ &F &5 &F €8
AR A A N S
ViT B-16 + ResNet 99.70 99.45 90.97 99.97 96.76 99.90 94.42 93.96 94.48 99.01 94.36 98.35 89.09 84.49
N-ResNet + ResNet 99.74 99.54 87.08 99.97 99.02 99.91 94.85 94.92 95.64 98.93 96.57 98.53 87.83 80.01
ViT L-32 + ResNet 99.69 99.39 87.39 100 98.19 99.94 95.22 94.75 95.21 98.70 93.89 97.90 84.02 80.94
ViT B-16 + ViT L-32 99.92 99.95 91.57 99.94 92.59 99.88 94.51 9275 94.69 99.32 89.85 98.02 85.22 84.54
g ViT B-16 + ViT L-32 + N-ResNet 99.91 99.87 94.10 99.97 97.47 99.89 95.45 94.90 96.08 99.84 95.58 99.47 90.23 85.61
< ViT B-16 + ViT L-32 + EfficientNet 99.97 99.92 89.60 99.96 93.53 99.90 93.89 93.35 94.85 99.40 89.21 98.53 92.30 85.89
ResNet+ N-ResNet + EfficientNet 99.85 99.75 87.78 99.95 97.91 99.88 93.89 94.43 95.27 99.36 94.91 99.12 92.87 86.57
ViT B-16 + ViT L-32 + EfficientNet +ResNet 99.73 99.52 89.74 99.98 96.47 99.91 94.43 94.32 95.23 99.43 92.42 98.90 91.98 85.95
ViT B-16 + ViT L-32 + EfficientNet + ResNet +N-ResNet ~ 99.87 99.78 92.22 99.97 97.71 99.90 94.85 94.99 95.85 99.65 94.90 99.35 92.69 86.16
ViT B-16 + ResNet 234 548 76.41 0.08 32.14 0.24 3175 50.28 35.16 17.84 59.23 29.46 76.84 80.05
N-ResNet + ResNet 3.03 5.14 68.38 00.0 14.89 00.0 28.73 37.05 2873 17.53 48.13 26.86 61.84 92.77
ViT L-32 + ResNet 524 11.55 86.89 0.16 8.26 0.24 33.64 43.85 3742 23.65 58.50 35.16 78.44 89.55
ViT B-16 + ViT L-32 119 1.57 61.75 0.40 5531 0.73 39.69 60.86 39.50 11.72 73.96 26.76 73.49 74.69
LE ViT B-16 + ViT L-32 + N-ResNet 1.74 3.50 54.62 0.32 19.80 0.65 3175 46.69 30.62 217 51.14 8.92 63.58 7429
% ViT B-16 + ViT L-32 + EfficientNet 0.22 091 75.83 0.24 52.37 0.32 3875 55.95 37.80 9.647 75.93 21.16 70.14 74.02
ResNet+ N-ResNet + EfficientNet 1.97 4.16 71.72 0.16 24.87 0.32 32.51 39.13 29.86 10.06 49.37 17.21 61.17 86.57
ViT B-16 + ViT L-32 + EfficientNet +ResNet 0.09 0.41 73.30 0.16 29.78 0.24 34.21 46.31 34.59 7.36 55.60 16.49 73.62 72.28
ViT B-16 + ViT L-32 + EfficientNet + ResNet +N-ResNet ~ 1.97 4.30 80.01 0.16 29.21 0.32 33.08 395 29.86 3.73 48.44 7.98 58.63 72.28

formance among the ensemble models with two and three
components. This evaluation also points out that the larger
number of single models would not necessarily boost the
generalization of the final ensemble model, and may only
incurs more computational costs.

In the second study, different fusion strategies are ab-
lated in Table 4. The fusion strategies include soft voting,
feature-based super learner, and score-based super learner
strategies. In our score-based super learner, we freeze the
single models and train another learner, which is a single-
layer FFN, to weigh the output scores of the single models.
Also, in our feature-based super learner, the output features
from the last FC layers of different single models are con-
catenated and fed to a two-layer FFN for final morph clas-
sification (Figure 2]). Since the ViT B-16 + ViT L-32 +

N-ResNet model relatively outperforms the other configu-
rations in Table 4, we set them as the components of the
final selected ensemble model. The comparisons indicate
that the feature-based super learner outperforms other fu-
sion strategies to some extent. From this experiment, we
can deduce that the ensemble model with ViT B-16, ViT
L-32, N-ResNet, and the feature-based super learner com-
ponents outperforms its competitor ensemble models.

4.4. Robustness

In this section, the robust accuracy of the selected ensem-
ble model is targeted. For this objective, multi-perturbation
adversarial training is employed. To benchmark the effec-
tiveness of the model-based ensembling attack [32] in the
adversarial training, we gauge the robustness of the ensem-
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Table 4: Morph detection results for the selected ensemble model (ViT B-16 + ViT L-32 + N-ResNet) for different fusion
strategies. The evaluations are in terms of APCER (@BPCER=1%) and AUC metrics.

\)\\é A V= v~$ Sa = ‘“6’5 (N o= Q~$ O > <

D N A

Soft Voting 99.91 99.87 94.10 99.97 97.47 99.89 95.45 94.90 96.08 99.84 95.58 99.47 90.23 85.61

o Max Voting 99.74 99.63 88.92 99.96 97.77 99.86 95.71 95.32 96.29 99.83 95.08 99.37 88.30 85.11
E Score-based Super Learner ~ 99.81 99.73 93.22 99.96 97.82 99.87 95.36 94.99 96.40 99.86 96.73 99.63 91.29 86.75
Feature-based Super Learner ~ 99.91 99.83 92.08 99.98 98.08 99.89 95.83 95.78 96.70 99.78 96.48 99.69 91.86 85.81

Soft Voting 1.74 3.50 54.62 0.32 19.80 0.65 3175 46.69 30.62 2.17 51.14 8.92 63.58 74.29

% Max Voting 1.93 3.69 53.89 0.32 20.45 0.65 31.37 46.69 30.62 2.17 51.65 9.85 63.58 74.29
5 Score-based Super Learner 3.63 5.08 62.98 0.32 29.78 1.22 31.19 46.88 30.43 1.45 44.19 5.39 56.35 69.61
Feature-based Super Learner  1.70 3.21 60.19 0.16 26.43 0.40 28.16 40.26 24.76 1.97 47.09 3.42 55.55 72.04

Table 5: Comparison of the selected ensemble model and
the robust ensemble model with adversarial training. The
robust accuracy against different adversarial attacks is in
terms of AUC/APCER@BPCER=1% metrics on a subset
of FRGC MIPGAN. In black-box attacks, stronger pertur-
bation levels are utilized to generate adversarial perturba-
tions in comparison to white-box attacks.

Target DIFGSM [50] MIFGSM [19] TIFGSM[20] TPGD[54]  Squarc[5] ~ C&W[7]

Ensemble Model 84.60/93.75  80.67/96.875 83.26/95.08 71.39/97.32  74.17/100 74.80/ 100

Robust Ensemble Model ~ 88.87/87.05  91.82/59.37  89.43/84.87  96.22/30.35 94.04/59.37 91.82/59.37

‘White-Box

Ensemble Model 32.0/100 49.9/99.5 15.2/100 80.4/44.6 91.8/78.1 86.8/93.7

Robust Ensemble Model 98.0/28.1 97.6/30.8 9741473 98.6/19.2 92.9/54.9 91.5/59.8

Black-Box

Table 6: Comparison of the selected robust ensemble model
with state-of-the-art morph detection models in the FRLL
and the LMA-DRD [16] datasets. The results are in terms
of EER, and BPCER (@APCER=1% and 10%) metrics.

Target D-EER BPCER (1%) BPCER (10%)

MixFacenet - SMDD [14] 3.87 23.53 0.49
PW-MAD - SMDD [14] 2.20 26.47 0.49

5 Inception - SMDD [14] 3.17 30.39 0.49
= Denoising based method [49] 1.96 5.39 00.0
Ensemble Model 0.98 0.98 00.0

Robust Ensemble Model 0.98 0.98 00.0

la) MixFacenet - SMDD [14] 19.42 79.67 31.71
g PW-MAD - SMDD [14] 17.06 80.49 25.20
g Inception - SMDD [14] 15.11 69.92 30.89
~ Ensemble Model 13.64 72.35 17.07

ble model that has been adversarially trained. In the ro-
bustness evaluations, we utilize new adversarial attacks of
which the ensemble model is not aware. Based on Ta-
ble 5, the performance of the ensemble model against un-
seen adversarial attacks in the white-box and black-box
settings drops significantly. It is observed that the robust
ensemble model gains substantial improvements over the
baseline ensemble model against DIFGSM [50], MIFGSM
[19], TIFGSM [20], TPGD [54], Square [5] C&W [7] at-

tacks in both white-box and black-box settings. In short,
taking these results into account, we can substantiate that
the multi-perturbation adversarial training with the model-
based ensembling optimization [32] improves the robust
accuracy of our final model against several adversarial at-
tacks in white-box and black-box settings. In the last ex-
periment, we make a comparison between the proposed ro-
bust ensemble model and various state-of-the-art studies.
This experiment is also carried out to find out whether the
multi-perturbation adversarial training detrimentally hurts
the clean accuracy of the ensemble model or not. The re-
sults in Table 6 demonstrate that the proposed robust en-
semble model maintains its superior performance on clean
accuracy and also significantly surpasses the state-of-the-art
studies.

5. Conclusions

In this paper, we present a morph attack detection with
strong generalization ability to different morph attacks and
high robustness against adversarial attack. By combin-
ing CNN and Transformer models in our ensemble model,
we capture both long-term and short-term relationships
in morph images to improve domain generalization. To
strengthen the robustness of our model against adversarial
attacks, we employ multi-perturbation adversarial training
with highly transferable adversarial examples. Experimen-
tal results on several datasets demonstrate the generalization
ability and adversarial robustness of our proposed model.
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