
Deep Coupled GAN-Based Score-Level Fusion for

Multi-Finger Contact to Contactless Fingerprint

Matching

Md Mahedi Hasan

Lane Department of Computer

Science and Electrical Engineering

West Virginia University

Morgantown, WV, USA

mh00062@mix.wvu.edu

Nasser Nasrabadi

Lane Department of Computer

Science and Electrical Engineering

West Virginia University

Morgantown, WV, USA

nasser.nasrabadi@mail.wvu.edu

Jeremy Dawson

Lane Department of Computer

Science and Electrical Engineering

West Virginia University

Morgantown, WV, USA

jeremy.dawson@mail.wvu.edu

AbstractÐInteroperability between contact to contactless im-
ages in fingerprint matching is a key factor in the success of
contactless fingerprinting devices, which have recently witnessed
an increasing demand for biometric authentication. However, due
to the presence of perspective distortion and the absence of elastic
deformation in contactless fingerphotos, direct matching between
contactless fingerprint probe images and legacy contact-based
gallery images produces a low accuracy. In this paper, to improve
interoperability, we propose a coupled deep learning framework
that consists of two Conditional Generative Adversarial Net-
works. Generative modeling is employed to find a projection that
maximizes the pairwise correlation between these two domains in
a common latent embedding subspace. Extensive experiments on
three challenging datasets demonstrate significant performance
improvements over the state-of-the-art methods and two top-
performing commercial off-the-shelf SDKs, i.e., Verifinger 12.0
and Innovatrics. We also achieve a high-performance gain by
combining multiple fingers of the same subject using a score
fusion model.

Index TermsÐcontactless fingerphoto recognition, fingerprint
interoperability, coupled GAN

I. INTRODUCTION

A contact-based fingerprint biometric system can be vul-

nerable to latent fingerprints from the impression of previous

subjects, low-contrast regions due to the presence of dust

and dirt on the sensor platen, and the high risk of infec-

tion with the SARS-CoV-2 virus. Furthermore, contact-based

fingerprints also suffer from elastic deformation due to the

uneven distribution of pressure onto the platen which severely

affects the ridge patterns [1]. To address these limitations, a

contactless fingerphoto device has been proposed [2] which

does not require any specialized sensor technologies and

produces images free of elastic deformation [3]. The success

of contactless fingerphoto devices depends on their ability to

match against legacy contact-based fingerprint databases.

However, most of the previous cross-domain matching al-

gorithms are designed to improve the interoperability between

contact to contactless fingerprints using only images from a

single finger [4], [5]. In fact, very few comprehensive studies

are found in the literature on multi-finger contactless finger-

photo matching. In this paper, we devise several strategies

to effectively utilize the multi-finger input from a subject for

improving interoperability.

In recent years, deep learning algorithms have been ex-

tensively used in cross-sensor fingerprint matching [5]±[8].

Many of these methods employed a Siamese-like network to

directly compare the contact-based fingerprint to a contactless

fingerphoto [5]±[7]. However, it is inherently difficult to

learn a consistent deep representation from the contactless

fingerphotos because of the perspective distortion occurring

in the peripheral areas of the fingerphotos. In addition, direct

matching using a Siamese-like network is also not efficient, as

the Siamese network is not rich enough to learn a similarity

metric in a cross-domain matching scenario.

In this study, we hypothesize that a contactless fingerphoto

and a contact-based fingerprint possess a latent similarity

in a low-dimensional feature subspace. So, to exploit this

latent similarity, we project both the fingerphoto and the

fingerprint into a common embedding subspace using a cou-

pled learning framework that uses Generative Adversarial

Networks (GANs) [9]. The goal of the research presented in

this paper is to build a framework based on a Coupled GAN

(CpGAN) architecture [10] to find the hidden relationship

between the feature embedding of each domain for cross-

domain fingerprint matching. Likewise, the framework can

also apply to improve interoperability in intra-domain cross-

sensor matching. The main contributions of this paper are:

• A coupled GAN cross-domain (contact to contactless)

fingerprint recognition model for more accurate cross-

matching.

• A multi-finger contact-based fingerprint versus multi-

finger contactless fingerphoto matching framework for

increased interoperability during cross-matching.

• Extensive experiments on three challenging datasets, and

a comparison of the proposed CpGAN model with the

state-of-the-art methods and two top-performing commer-

cial off-the-shelf (COTS) matchers.
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a

Left Index     Left Middle       Right Index      Right Middle

Fig. 1. Some example images of contactless and contact-based fingerprint pairs. (a) A Multimodal Dataset, (b) Non-Contact Fingerprint Dataset-v1, (c) PolyU
Contactless Database.
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Fig. 2. Overview of the preprocessing steps: segmenting the skin from background, histogram equalization, rotation correction, reliability estimation, and
ROI cropping. The steps will effectively remove the differences between the contact-based fingerprints and the contactless fingerphotos such as color, size,
and orientation.

II. RELATED WORK

Several early works have been performed in the past decade

to develop novel algorithms to improve the interoperability

between contact-based fingerprint and contactless fingerphoto

sensors [4]±[6], [8]. Lin et al. [4] presented a deformation cor-

rection model to correct the deformation on the fingerphotos

for contact to contactless matching. Recently, they proposed a

multi-Siamese network [5] with a distance-aware loss function

to accurately match a fingerphoto with a contact-based finger-

print. Their framework consists of three sub-networks. Each of

the sub-networks has two inputs: fingerphoto and fingerprint.

The fingerprint representation vectors from these sub-nets are

concatenated for a more accurate cross-domain matching. A

minutiae attention network based on a Siamese architecture

and a reciprocal distance loss function was proposed in [6].

Although these networks achieved a remarkable improvement

over the state-of-the-art approaches, their application is limited

due to the challenges associated with cross-domain match-

ing. Specifically, the large intra-class variation due to the

significant differences in sensing technologies makes it more

difficult for Siamese-like networks to tackle, as the Siamese

architecture is mainly designed for learning a similarity metric

in the same domain.

In recent years, GAN architectures [9] have been widely

adopted for applications like cross-domain image genera-

tion [11] and synthetic fingerprint generation [12], [13], etc.

These techniques provide an effective way to map a source

distribution into a target distribution by learning a generator

network, G, and a discriminator network, D, using a min-

max optimization game. The conditional GAN (cGAN) was

introduced by Mirza et al. [14] where both the generator and

the discriminator are conditioned on an additional input, such

as labels, texts, or images. Liu [10] proposed a Coupled GAN,

a framework that consists of a pair of GANs, each of which

is responsible for generating images in one domain.

In our work, we employ a Coupled GAN framework which

consists of two cGANs and a multi-loss objective function.

In contrast to extracting handcrafted minutiae-based features

for direct comparison, in this method, we project both the

contactless fingerphoto and contact-based fingerprint in to

a common low-dimensional embedding subspace using the

generative modeling [9] of the coupled GAN framework for

indirect matching.

III. PROPOSED METHOD

In this section, we elaborate on our proposed method for

cross-domain fingerprint recognition. As shown in Figure 3,

the proposed method is constructed using a coupled framework
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UNet Generator (Fingerphoto, Gph) 
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Fig. 3. Block diagram of the proposed Coupled GAN architecture. It consists of two conditional GAN sub-networks. The generators of both GANs use the
same architecture that allows matching both domains in an embedded low-dimensional feature space.
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Fig. 4. The block diagram of the proposed score fusion model for multi-finger cross-domain matching. For each finger, we train a dedicated CpGAN verifier,
and we train another CpGAN verifier by concatenating the fingerphotos and the fingerprints of all the fingers in a channel-wise manner.

that consists of two sub-networks, where each sub-network is a

cGAN architecture made up of a generator and a discriminator.

A. Preprocessing

We have performed an elaborate preprocessing scheme to

reduce the variations of fingerprints from different sensors.

Figure 2 illustrates the overview of the key preprocessing

steps. First, we segmented the skin from the background

of an input image, then converted the image to grayscale

to perform histogram equalization. Afterward, an accurate

rotation correction was performed. To make sure that both

the fingerprints and fingerphotos are similar, these steps were

applied to both the fingerphotos and fingerprints.

Due to the image capturing process of contactless fingerpho-

tos, some of the ridges of the minutiae points are quite blurry

which leads us to perform a quality assessment to discard

the bad quality images. Hence, our second preprocessing step

is only applied to the fingerphotos, which is made up of

orientation and reliability estimation. In reliability estimation,

if the edges of these fingerphoto images are not well defined,

they were excluded from the dataset. Otherwise, the algorithm

moves on to core point detection and ROI cropping. The

output size for all images was scaled to 256x256 pixels.

In addition to preprocessing, we performed normalization to

make samples align to the standard resolution, i.e., 500 DPI.

We also performed heavy data augmentation like random

rotation, horizontal flipping, and random cropping to increase

the amount of the training data.

B. Network Architecture

Our proposed CpGAN framework, as illustrated in Figure 3,

consists of two cGAN sub-networks. The fingerphoto sub-

network is dedicated to reconstructing the synthetic finger-

photo image. Similarly, the fingerprint sub-network is only

dedicated to the fingerprint reconstruction. Each cGAN sub-

network is composed of a generator and a discriminator, and

each generator is composed of an encoder and a decoder.

These two sub-networks are connected by a contrastive loss

that compares the embedded feature vectors of the two en-

coders. To optimize the network effectively, we create one

imposter pair for every genuine pair. The total loss function for

this model is given by Eqn 3. The dimension of the embedded

feature vector is 1, 024.

For multi-finger matching, we propose a score fusion model,

as illustrated in Figure 4. For each finger position, we train a

dedicated CpGAN model using the fingerphoto and fingerprint

pair of that finger. Then, we train another CpGAN model by

concatenating the fingerphotos and the fingerprints of all the
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TABLE I
STATISTICS OF MULTIMODAL DATASET. IT SHOWS THE NUMBER OF

SUBJECTS AND IMAGE PAIRS AFTER PREPROCESSING STEPS ARE APPLIED.

Set Dataset Subject Finger Impression

Train Multimodal-2012 714 2106 2106
Test Multimodal-2013 286 1218 1218

TABLE II
STATISTICS OF THE NON-CONTACT FINGERPRINT DATASET-V1. WE

RESERVED THIS DATASET ONLY TO EVALUATE THE CPGAN ON

COMMERCIAL FINGERPHOTO VS CROSSMATCH GUARDIAN MATCHING.

Set Subject Finger Impression

Test 129 516 516

fingers in a channel-wise manner. The output of the model

is then normalized using min-max normalization and then

averaged to produce a single score, as shown in Figure 4.

C. CpGAN Objective Function

In this study, we employ the contrastive loss function

(Lcont). It pulls the genuine pairs (i.e., inputs from the same

subject) toward each other in a common embedding subspace,

and, concurrently, pushes the impostor pairs (i.e., inputs from

different subjects) away from each other. Let xph (xpr) is

the input fingerphoto (fingerprint), zph (zpr) is the latent

embedding of fingerphoto (fingerprint), and Y denote the label

of the input pairs. If the input pairs (xph, xpr) belong to the

same subject (a genuine pair), then Y = 0, and Y = 1 if

they belong to the two different subjects (an imposter pair).

The term Dw(x
ph, xpr) represents the L2-norm distance to

measure the similarities between the output vectors (zph, zpr)
generated by mapping (xph, xpr) to their corresponding latent,

respectively. If m denotes the margin that defines a radius on

the embedding space, then the contrastive loss can be defined

by the following equation:

Lconst = (Y )
1

2
{max(0, (m−Dw(x

ph, xpr)}2+

(1− Y )
1

2
Dw(x

ph, xpr)2·
(1)

Furthermore, we have utilized the adversarial loss [9] to

train the generators and the discriminators of both conditional

GANs. Let Dph be the discriminator of the fingerphoto cGAN

and Dpr be the discriminator of the fingerprint cGAN. Now,

using the notions of Eqn 1, the adversarial loss for both of the

cGANs is given as:

L
ph
adv = min

G
max
D

[Eyph
∼Pd(y)[logD

ph(yph|xph)]+

Ez∼Pz(z)[log(1−Dph(Gph(z|xph)))]],

L
pr
adv = min

G
max
D

[Eypr
∼Pd(y)[logD

pr(ypr|xpr)]+

Ez∼Pz(z)[log(1−Dpr(Gpr(z|xpr)))]]·

(2)

Total adversarial loss is the combination of these two losses.

Here, yph (ypr) denotes the real fingerphoto (fingerprint) data.

TABLE III
COMPILED DATASET FOR PRETRAINING THE CPGAN MODEL FOR

CONTACTLESS FINGERPHOTO VS CONTACT-BASED FINGERPRINT

MATCHING.

Dataset Subject Finger Impression

Multimodal-2009 1,098 10,907 31,297
Multimodal-2012 791 7,903 22,088

NIST 302 200 2,000 7,701

Total 2,089 20,810 61,086

TABLE IV
COMPILED DATASET FOR PRETRAINING THE CPGAN MODEL FOR

COMMERCIAL FINGERPHOTO VS CROSSMATCH GUARDIAN MATCHING.

Dataset Subject Finger Impression

Multimodal-2009 1,098 10,907 31,297
Multimodal-2012 791 7,903 22,088
Multimodal-2013 286 2,860 16,549

Total 2,175 21,670 69,934

It is worth mentioning that yph (ypr) and the condition given

by xph (xpr) are the same.

In addition to the adversarial loss, we also employ identity

loss calculated from the latent embedding subspace of the fin-

gerphoto and the fingerprint cGAN modules. It helps to build a

more discriminative embedding subspace that further enhances

the performance of cross-domain fingerprint recognition. To

calculate the loss, we first subtract the latent embedding

vectors and then feed them into a softmax layer of two

neurons. Finally, the binary cross-entropy loss is calculated

from the outputs of the softmax layer.

The L2 loss measures the reconstruction error between the

synthesized fingerprint and the corresponding input fingerprint

image. The overall objective function of our proposed CpGAN

model is given as the summation of all the above-mentioned

losses.

Ltotal = Lcons + λ1Lident + λ2Ladv + λ3L2, (3)

where λ1, λ2, and λ3 are the hyperparameters to control the

effect of each loss function.

IV. EXPERIMENTS AND RESULTS

In this section, we briefly describe the training datasets and

the protocol setup for our experiments. Then, we show the

efficacy of our proposed CpGAN method for cross-domain

fingerprint matching by comparing its performance with the

commercial off-the-shelf matchers and the state-of-the-art

methods such as Minutiae Attention [6]. We also explore the

effect of combining multi-fingers on interoperability using our

score fusion model.

A. Datasets

We train the CpGAN model on an in-house fingerprint

dataset called the Multimodal Dataset (2008, 2009, 2012,

2013). It consists of four subsets. The Multimodal-2012 is

a set of 791 subjects and a total of 69, 934 impression pairs,

whereas, the Multimodal-2013 contains 286 subjects and a

total of 16, 549 impression pairs. Each subject, in both of
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TABLE V
COMPARISON BETWEEN CPGAN AND TWO TOP-RANKING COMMERCIAL OFF-THE-SHELF MATCHERS FOR INDIVIDUAL FINGERPHOTO VS ITS

CORRESPONDING FINGERPRINT MATCHING ON THE MULTIMODAL-2013 DATASET. OUR PROPOSED CPGAN MODEL WITH U-NET BASED GENERATOR

PERFORMS SLIGHTLY BETTER THAN THE COMMERCIAL MATCHERS ON BOTH TEST IMAGES AND INDIVIDUAL FINGER POSITIONS. ADDITIONALLY,
AMONG DIFFERENT FINGER POSITIONS, THE INDEX FINGER OF BOTH HANDS PERFORMS SLIGHTLY BETTER THAN OTHER FINGERS.

Set
Finger Train Test

Network
Proposed CpGAN Verifinger 12.0 Innovatrics

Position Images Images AUC(%) EER(%) AUC(%) EER(%) AUC(%) EER(%)

Test All 2106 1218
ResNet-18 99.55 2.38

96.73 4.83 98.64 4.33U-Net 99.59 2.38

DenseNet 99.45 2.38

Individual

2 423 228

U-Net

99.60 2.23 97.86 1.93 99.25 2.30
3 362 215 98.92 4.19 96.91 3.82 98.93 2.38

4 310 192 98.92 5.21 97.35 5.40 96.53 9.96
7 404 230 99.55 2.17 97.40 3.20 99.41 2.76
8 350 193 99.17 4.66 96.99 4.51 98.89 4.88
9 257 160 98.41 5.63 93.90 8.33 96.67 8.46

TABLE VI
COMPARISON BETWEEN THE SCORE FUSION MODEL AND THE

COMMERCIAL OFF-THE-SHELF MATCHER ON MULTI-FINGERPHOTOS VS

MULTI-FINGERPRINTS MATCHING.

# of Finger Train Test Score Fusion Innovatrics

Fingers Position Images Images AUC(%) EER(%) AUC(%) EER(%)

2 2,3 263 174 99.70 1.72 98.96 3.03
2 3,4 209 146 99.52 2.74 97.64 8.86
2 7,8 239 160 99.76 1.87 99.99 0.00

2 8,9 183 111 99.68 2.70 99.99 0.00

3 2,3,7 185 145 99.88 1.38 97.55 2.92
3 2,3,4 166 119 99.90 1.68 97.29 2.92
3 3,7,8 158 117 99.99 0.00 99.99 0.00
4 2,3,7,8 139 98 100.0 0.00 100.0 0.00

these datasets, has a varying number of fingers from a total of

six available fingers: right index (2), right middle (3), right

ring (4), left index (7), left middle (8), and left ring (9).

The contact-based set consists of 800x750-sized fingerprints

with a resolution of 500 PPI and the contactless set consists

of fingerphotos of size 512x512 with similar resolution to

fingerprints. In contrast, the Multimodal-2009 contains only

a total of 31,297 fingerprint images and the Multimodal-2008

contains only finger roll images.

In our first experiment, we tested our CpGAN model for

contact to contactless matching on the Multimodal dataset.

Table I shows the statistics of the Multimodal Dataset. Due

to rigorous image quality assessment, a significant number of

bad-quality images were excluded. To pretrain the proposed

model, we also built a compiled dataset, shown in Table III.

In addition, for multi-finger matching, we combine two, three,

and four individual fingers of a subject (see Table VI).

To further evaluate the cross-matching performance of our

proposed framework on a commercial fingerphoto device and

the Crossmatch Guardian fingerprint, we employed another in-

house dataset called the Non-Contact Fingerprint Dataset-v1.

Table II shows the statistics of the dataset. A total of 516

impression pairs are available from the left index (7), left

middle (8), left ring (9), and left little (10) finger.

To comparatively evaluate the performance of our proposed

framework, we also tested our model on the PolyU dataset [4].

It has a total of 2,880 contact to contactless impressions

pairs from 320 individual fingers. We employed the standard

experimental settings [4], [6], [8], i.e., 160 fingers each with

12 impression pairs are set for training, and the remaining

160 fingers, each with 6 impression pairs, are set for testing.

Figure 1 depicts a set of samples of these three aforementioned

datasets.

B. Implementation Details

We implement the U-Net architecture [15] as the generator

for both the fingerphoto and the fingerprint cGAN modules.

In the experiment on a held-out validation set, we empirically

set the hyper-parameter λ1 = 10, λ2 = 1 and λ3 = 1. We

employ the Adam optimizer [16] with an initial learning rate of

0.0002. We use the ReLU activation for the generator and the

Leaky ReLU [17] with a slope of 0.20 for the discriminator.

Due to the lack of a large training dataset, it is very hard

to train the whole network directly for convergence. So, we

pretrain both of the fingerprint cGAN modules of our Coupled

GAN framework using a compiled dataset (see Table III) like a

Siamese framework by sharing their weights. We then employ

this pretrained cGAN module to initialize both the fingerprint

and the fingerphoto cGAN modules of the proposed CpGAN

framework.

C. Performance Evaluation on Individual Fingerprint Match-

ing

As shown in Table V, our proposed CpGAN model ob-

tains an area under curve (AUC) score of 99.59% on the

Multimodal-2013 Dataset which is 2.95% higher than Verifin-

ger 12.0 and 0.96% higher than Innovatrics. It also achieves

an equal error rate (EER) score which is 50.72% and 45.03%

lower than Verifinger 12.0 and Innovatrics matchers, respec-

tively. In our work, we have experimented with several gen-

erator architectures such as ResNet-18 [18], U-Net [15], and

DenseNet [19]. However, the performance of these different

generators is almost similar. Furthermore, Table V verifies that

the proposed CpGAN performs better than the commercial

matchers on individual finger positions. For example, on the

left ring finger, we achieve an AUC score that is 4.80% higher

than Verifinger 12.0 and 1.79% higher than Innovatrics.
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TABLE VII
COMPARISON WITH THE COMMERCIAL OFF-THE-SHELF MATCHERS FOR INDIVIDUAL FINGERPHOTO VS GUARDIAN FINGERPRINT MATCHING ON THE

NON-CONTACT FINGERPRINT DATASET-V1. OUR PROPOSED CPGAN MODEL OUTPERFORMS THE COMMERCIAL MATCHERS ON BOTH THE TEST SET

AND THE INDIVIDUAL FINGER POSITIONS.

Set
Finger Test

Network
Proposed CpGAN Verifinger 12.0 Innovatrics

Position Images AUC(%) EER(%) AUC(%) EER(%) AUC(%) EER(%)

Test All 516
ResNet-18 97.33 6.59

94.65 11.12 97.07 6.90UNET 97.37 6.59
DenseNet 97.13 6.59

Individual

7 129

U-Net

98.76 3.88 97.46 4.96 98.73 3.45

8 129 97.41 4.65 94.52 8.76 96.88 6.83
9 129 98.18 5.43 96.21 6.93 98.11 5.98
10 129 92.05 15.50 88.01 21.01 93.15 13.12

TABLE VIII
COMPARISON WITH COMMERCIAL OFF-THE-SHELF MATCHERS ON THE

NON-CONTACT FINGERPRINT DATASET-V1 FOR MULTI-FINGER

COMMERCIAL FINGERPHOTOS VS MULTI-FINGER GUARDIAN

FINGERPRINTS MATCHING PROVES THAT THE PROPOSED SCORE FUSION

MODEL PERFORMS BETTER THAN THE COMMERCIAL MATCHERS IN ALL

MULTI-FINGER COMBINATION. THE BEST PERFORMANCE IS ACHIEVED

FROM FOUR FINGER MATCHING.

Number of Finger Test Proposed Score Fusion Innovatrics

Fingers Position Images AUC(%) EER(%) AUC(%) EER(%)

2 7,8 129 99.02 2.86 98.77 2.86
2 8,9 129 98.61 3.39 98.47 3.39
2 9,10 129 97.98 5.12 97.94 5.12
3 7,8,9 129 99.14 2.63 98.95 2.63
3 8,9,10 129 98.73 3.31 98.66 3.31
4 7,8,9,10 129 99.24 2.17 99.18 2.17

TABLE IX
COMPARISON BETWEEN THE CPGAN AND THE STATE-OF-THE-ART

METHODS ON THE POLYU DATASET. OUR PROPOSED CPGAN MODEL

OUTPERFORMS OTHERS AT A SIGNIFICANT MARGIN. IT ACHIEVES 8.9%
LOWER EER SCORE THAN THE PREVIOUS BEST MINUTIAE ATTENTION

MODEL.

Methods EER (%)

Verifinger 12.0 19.31
Multi-Siamese CNN [5] 7.11
Minutiae Attention [6] 4.13

Proposed CpGAN 3.76

In addition, as shown in Table VI, the performance of multi-

finger fusion of our proposed score fusion model is slightly

better than the commercial matchers. As the number of fingers

from the same subject used for multi-finger fusion increases,

the performance of our score fusion model and the commer-

cial matchers also increases. In particular, we obtain perfect

verification performance (AUC=1.0 and EER=0.0) when we

combine four fingers.

We employed the Non-Contact Fingerprint Dataset-v1 to

evaluate our CpGAN model on commercial fingerphotos after

pretraining it on another compiled dataset (see Table IV).

The verification performance on this dataset is illustrated

in Table VII. It has been observed that the CpGAN model

outperforms the commercial matchers by a noticeable mar-

gin based on both AUC and EER scores. In multi-finger

fusion, as observed in Table VIII, our proposed score fusion

model achieves significantly higher scores than the commercial

TABLE X
COMPARISON AMONG DIFFERENT NUMBER OF FINGERS CONFIRMS THAT

MULTI-FINGER MATCHING USING PROPOSED SCORE FUSION MODEL

SIGNIFICANTLY IMPROVES THE INTEROPERABILITY.

Experiment 1v1 2v2 3v3 4v4

Fingerphoto Position 2 2,3 2,3,7 2,3,7,8

vs AUC(%) 99.60 99.65 97.71 100.0

Fingerprint EER(%) 2.23 1.72 1.38 0.00

Commercial photo Position 7 7,8 7,8,9 7,8,9,10

vs AUC(%) 98.76 99.02 99.14 99.24

Guardian EER(%) 03.88 02.86 02.63 02.17

matchers. Furthermore, as shown in Table IX, the experiment

of our proposed method using the PolyU [4] dataset also shows

a significant improvement over the state-of-the-art methods

such as Multi-Siamese CNN [5] and Minutiae Attention [6].

Our method achieves 8.9% lower EER score than the previous

best Minutiae Attention method [6] on the PolyU dataset.

D. Performance Evaluation on Multi-Finger Fingerprint

Matching

The impact of multi-finger on contact to contactless fin-

gerprint matching of our proposed score fusion framework is

demonstrated in Table X. Figure 5-6 illustrates the effects of

multi-finger matching based on the receiver operating charac-

teristic (ROC) and detection error trade-off (DET) curves for

different combination of multi-finger matching. From the ROC

and DET curves in Figure 5-6, we see that as the number of

fingers increases the performance of contact to contactless fin-

gerprint matching also gradually increases, and the four finger

fusion gives us the best AUC and EER scores. Therefore, the

experimental results prove that combining multiple fingers of

the same subject significantly improves the interoperability of

cross-domain fingerprint matching.

V. CONCLUSION

We proposed a new framework, CpGAN, for matching

contact to contactless fingerprints from different sensors for

improving the interoperability. We thoroughly evaluated the

proposed CpGAN model on several challenging datasets. From

our performance evaluation, we observe that our proposed Cp-

GAN model, after pretraining on a large, compiled fingerprint

dataset, achieves significantly better results than the state-of-

the-art methods presented in the literature and the commercial
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Fig. 5. ROC and DET curve of our proposed method for contact and contactless fingerprint matching on the Multimodal 2013 Dataset.
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Fig. 6. ROC and DET curve of our proposed method for commercial fingerphotos vs Guardian fingerprint matching on the Non-Contact Fingerprint Dataset-v1.

off-the-shelf matchers. It also demonstrates the effectiveness of

implementing comprehensive data preprocessing and multiple

loss functions. Furthermore, the experiments using our pro-

posed score fusion model on multi-finger settings show further

improvement in interoperability.
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