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Abstract—Interoperability between contact to contactless im-
ages in fingerprint matching is a key factor in the success of
contactless fingerprinting devices, which have recently witnessed
an increasing demand for biometric authentication. However, due
to the presence of perspective distortion and the absence of elastic
deformation in contactless fingerphotos, direct matching between
contactless fingerprint probe images and legacy contact-based
gallery images produces a low accuracy. In this paper, to improve
interoperability, we propose a coupled deep learning framework
that consists of two Conditional Generative Adversarial Net-
works. Generative modeling is employed to find a projection that
maximizes the pairwise correlation between these two domains in
a common latent embedding subspace. Extensive experiments on
three challenging datasets demonstrate significant performance
improvements over the state-of-the-art methods and two top-
performing commercial off-the-shelf SDKs, i.e., Verifinger 12.0
and Innovatrics. We also achieve a high-performance gain by
combining multiple fingers of the same subject using a score
fusion model.

Index Terms—contactless fingerphoto recognition, fingerprint
interoperability, coupled GAN

I. INTRODUCTION

A contact-based fingerprint biometric system can be vul-
nerable to latent fingerprints from the impression of previous
subjects, low-contrast regions due to the presence of dust
and dirt on the sensor platen, and the high risk of infec-
tion with the SARS-CoV-2 virus. Furthermore, contact-based
fingerprints also suffer from elastic deformation due to the
uneven distribution of pressure onto the platen which severely
affects the ridge patterns [1]. To address these limitations, a
contactless fingerphoto device has been proposed [2] which
does not require any specialized sensor technologies and
produces images free of elastic deformation [3]. The success
of contactless fingerphoto devices depends on their ability to
match against legacy contact-based fingerprint databases.

However, most of the previous cross-domain matching al-
gorithms are designed to improve the interoperability between
contact to contactless fingerprints using only images from a
single finger [4], [S]. In fact, very few comprehensive studies
are found in the literature on multi-finger contactless finger-

Gesellschaft fiir Informatik e.V. (GI)

Nasser Nasrabadi
Lane Department of Computer
Science and Electrical Engineering
West Virginia University
Morgantown, WV, USA
nasser.nasrabadi @mail.wvu.edu

Jeremy Dawson
Lane Department of Computer
Science and Electrical Engineering
West Virginia University
Morgantown, WV, USA
jeremy.dawson@mail.wvu.edu

photo matching. In this paper, we devise several strategies
to effectively utilize the multi-finger input from a subject for
improving interoperability.

In recent years, deep learning algorithms have been ex-
tensively used in cross-sensor fingerprint matching [S]-[8].
Many of these methods employed a Siamese-like network to
directly compare the contact-based fingerprint to a contactless
fingerphoto [5]-[7]. However, it is inherently difficult to
learn a consistent deep representation from the contactless
fingerphotos because of the perspective distortion occurring
in the peripheral areas of the fingerphotos. In addition, direct
matching using a Siamese-like network is also not efficient, as
the Siamese network is not rich enough to learn a similarity
metric in a cross-domain matching scenario.

In this study, we hypothesize that a contactless fingerphoto
and a contact-based fingerprint possess a latent similarity
in a low-dimensional feature subspace. So, to exploit this
latent similarity, we project both the fingerphoto and the
fingerprint into a common embedding subspace using a cou-
pled learning framework that uses Generative Adversarial
Networks (GANSs) [9]. The goal of the research presented in
this paper is to build a framework based on a Coupled GAN
(CpGAN) architecture [10] to find the hidden relationship
between the feature embedding of each domain for cross-
domain fingerprint matching. Likewise, the framework can
also apply to improve interoperability in intra-domain cross-
sensor matching. The main contributions of this paper are:

e A coupled GAN cross-domain (contact to contactless)
fingerprint recognition model for more accurate cross-
matching.

o A multi-finger contact-based fingerprint versus multi-
finger contactless fingerphoto matching framework for
increased interoperability during cross-matching.

« Extensive experiments on three challenging datasets, and
a comparison of the proposed CpGAN model with the
state-of-the-art methods and two top-performing commer-
cial off-the-shelf (COTS) matchers.
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Fig. 1. Some example images of contactless and contact-based fingerprint pairs. (a) A Multimodal Dataset, (b) Non-Contact Fingerprint Dataset-v1, (c) PolyU

Contactless Database.
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Fig. 2. Overview of the preprocessing steps: segmenting the skin from background, histogram equalization, rotation correction, reliability estimation, and
ROI cropping. The steps will effectively remove the differences between the contact-based fingerprints and the contactless fingerphotos such as color, size,

and orientation.

II. RELATED WORK

Several early works have been performed in the past decade
to develop novel algorithms to improve the interoperability
between contact-based fingerprint and contactless fingerphoto
sensors [4]-[6], [8]. Lin et al. [4] presented a deformation cor-
rection model to correct the deformation on the fingerphotos
for contact to contactless matching. Recently, they proposed a
multi-Siamese network [5] with a distance-aware loss function
to accurately match a fingerphoto with a contact-based finger-
print. Their framework consists of three sub-networks. Each of
the sub-networks has two inputs: fingerphoto and fingerprint.
The fingerprint representation vectors from these sub-nets are
concatenated for a more accurate cross-domain matching. A
minutiae attention network based on a Siamese architecture
and a reciprocal distance loss function was proposed in [6].
Although these networks achieved a remarkable improvement
over the state-of-the-art approaches, their application is limited
due to the challenges associated with cross-domain match-
ing. Specifically, the large intra-class variation due to the
significant differences in sensing technologies makes it more
difficult for Siamese-like networks to tackle, as the Siamese
architecture is mainly designed for learning a similarity metric
in the same domain.

In recent years, GAN architectures [9] have been widely

adopted for applications like cross-domain image genera-
tion [11] and synthetic fingerprint generation [12], [13], etc.
These techniques provide an effective way to map a source
distribution into a target distribution by learning a generator
network, G, and a discriminator network, D, using a min-
max optimization game. The conditional GAN (cGAN) was
introduced by Mirza et al. [14] where both the generator and
the discriminator are conditioned on an additional input, such
as labels, texts, or images. Liu [10] proposed a Coupled GAN,
a framework that consists of a pair of GANs, each of which
is responsible for generating images in one domain.

In our work, we employ a Coupled GAN framework which
consists of two cGANs and a multi-loss objective function.
In contrast to extracting handcrafted minutiae-based features
for direct comparison, in this method, we project both the
contactless fingerphoto and contact-based fingerprint in to
a common low-dimensional embedding subspace using the
generative modeling [9] of the coupled GAN framework for
indirect matching.

III. PROPOSED METHOD

In this section, we elaborate on our proposed method for
cross-domain fingerprint recognition. As shown in Figure 3,
the proposed method is constructed using a coupled framework
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Fig. 3. Block diagram of the proposed Coupled GAN architecture. It consists of two conditional GAN sub-networks. The generators of both GANs use the
same architecture that allows matching both domains in an embedded low-dimensional feature space.
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Fig. 4. The block diagram of the proposed score fusion model for multi-finger cross-domain matching. For each finger, we train a dedicated CpGAN verifier,
and we train another CpGAN verifier by concatenating the fingerphotos and the fingerprints of all the fingers in a channel-wise manner.

that consists of two sub-networks, where each sub-network is a
c¢GAN architecture made up of a generator and a discriminator.

A. Preprocessing

We have performed an elaborate preprocessing scheme to
reduce the variations of fingerprints from different sensors.
Figure 2 illustrates the overview of the key preprocessing
steps. First, we segmented the skin from the background
of an input image, then converted the image to grayscale
to perform histogram equalization. Afterward, an accurate
rotation correction was performed. To make sure that both
the fingerprints and fingerphotos are similar, these steps were
applied to both the fingerphotos and fingerprints.

Due to the image capturing process of contactless fingerpho-
tos, some of the ridges of the minutiae points are quite blurry
which leads us to perform a quality assessment to discard
the bad quality images. Hence, our second preprocessing step
is only applied to the fingerphotos, which is made up of
orientation and reliability estimation. In reliability estimation,
if the edges of these fingerphoto images are not well defined,
they were excluded from the dataset. Otherwise, the algorithm
moves on to core point detection and ROI cropping. The
output size for all images was scaled to 256x256 pixels.
In addition to preprocessing, we performed normalization to

make samples align to the standard resolution, i.e., 500 DPI.
We also performed heavy data augmentation like random
rotation, horizontal flipping, and random cropping to increase
the amount of the training data.

B. Network Architecture

Our proposed CpGAN framework, as illustrated in Figure 3,
consists of two cGAN sub-networks. The fingerphoto sub-
network is dedicated to reconstructing the synthetic finger-
photo image. Similarly, the fingerprint sub-network is only
dedicated to the fingerprint reconstruction. Each cGAN sub-
network is composed of a generator and a discriminator, and
each generator is composed of an encoder and a decoder.
These two sub-networks are connected by a contrastive loss
that compares the embedded feature vectors of the two en-
coders. To optimize the network effectively, we create one
imposter pair for every genuine pair. The total loss function for
this model is given by Eqn 3. The dimension of the embedded
feature vector is 1,024.

For multi-finger matching, we propose a score fusion model,
as illustrated in Figure 4. For each finger position, we train a
dedicated CpGAN model using the fingerphoto and fingerprint
pair of that finger. Then, we train another CpGAN model by
concatenating the fingerphotos and the fingerprints of all the
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TABLE I
STATISTICS OF MULTIMODAL DATASET. IT SHOWS THE NUMBER OF
SUBJECTS AND IMAGE PAIRS AFTER PREPROCESSING STEPS ARE APPLIED.

Set Dataset Subject Finger Impression
Train Multimodal-2012 714 2106 2106
Test Multimodal-2013 286 1218 1218

TABLE II

STATISTICS OF THE NON-CONTACT FINGERPRINT DATASET-V1. WE
RESERVED THIS DATASET ONLY TO EVALUATE THE CPGAN ON
COMMERCIAL FINGERPHOTO VS CROSSMATCH GUARDIAN MATCHING.

Set  Subject
Test 129

Finger
516

Impression
516

fingers in a channel-wise manner. The output of the model
is then normalized using min-max normalization and then
averaged to produce a single score, as shown in Figure 4.

C. CpGAN Objective Function

In this study, we employ the contrastive loss function
(Leont)- It pulls the genuine pairs (i.e., inputs from the same
subject) toward each other in a common embedding subspace,
and, concurrently, pushes the impostor pairs (i.e., inputs from
different subjects) away from each other. Let aPh (2PT) is
the input fingerphoto (fingerprint), zP" (zP") is the latent
embedding of fingerphoto (fingerprint), and Y denote the label
of the input pairs. If the input pairs (2", zP") belong to the
same subject (a genuine pair), then ¥ = 0, and ¥ = 1 if
they belong to the two different subjects (an imposter pair).
The term D,,(xP", xP") represents the Lo-norm distance to
measure the similarities between the output vectors (2P, zP")
generated by mapping (2P, 2P") to their corresponding latent,
respectively. If m denotes the margin that defines a radius on
the embedding space, then the contrastive loss can be defined
by the following equation:

1
Leonst = (Y)i{max(ﬂ, (m — Dy (xPh, 2P")} 2+

1 (1)
(1-— Y)ti(xph,xp’“)?.

Furthermore, we have utilized the adversarial loss [9] to
train the generators and the discriminators of both conditional
GANS . Let DP" be the discriminator of the fingerphoto cGAN
and DP" be the discriminator of the fingerprint cGAN. Now,
using the notions of Eqn 1, the adversarial loss for both of the
c¢GANSs is given as:

h . L L
Lig, = min max(Eyun.. p, () llog D" (47" |27")] +
E.p. (o) log(1 = DP"(GP" (z|z""))]],
= mén mgX[EyWNPd(y) [log DP" (yP" |xP")]+
Eznp.(2)[log(1 — D" (GP" (2[2"")))])-

Total adversarial loss is the combination of these two losses.
Here, 4" (yP") denotes the real fingerphoto (fingerprint) data.

o 2)

adv

TABLE III
COMPILED DATASET FOR PRETRAINING THE CPGAN MODEL FOR
CONTACTLESS FINGERPHOTO VS CONTACT-BASED FINGERPRINT

MATCHING.

Dataset Subject  Finger Impression
Multimodal-2009 1,098 10,907 31,297
Multimodal-2012 791 7,903 22,088

NIST 302 200 2,000 7,701
Total 2,089 20,810 61,086
TABLE IV

COMPILED DATASET FOR PRETRAINING THE CPGAN MODEL FOR
COMMERCIAL FINGERPHOTO VS CROSSMATCH GUARDIAN MATCHING.

Dataset Subject  Finger Impression
Multimodal-2009 1,098 10,907 31,297
Multimodal-2012 791 7,903 22,088
Multimodal-2013 286 2,860 16,549

Total 2,175 21,670 69,934

It is worth mentioning that 4" (yP") and the condition given
by xP" (zP") are the same.

In addition to the adversarial loss, we also employ identity
loss calculated from the latent embedding subspace of the fin-
gerphoto and the fingerprint cGAN modules. It helps to build a
more discriminative embedding subspace that further enhances
the performance of cross-domain fingerprint recognition. To
calculate the loss, we first subtract the latent embedding
vectors and then feed them into a softmax layer of two
neurons. Finally, the binary cross-entropy loss is calculated
from the outputs of the softmax layer.

The Lo loss measures the reconstruction error between the
synthesized fingerprint and the corresponding input fingerprint
image. The overall objective function of our proposed CpGAN
model is given as the summation of all the above-mentioned
losses.

Ltotal = Lcons + AlLident + )\2Ladv + )\3L27 (3)

where Aj, Ao, and A3 are the hyperparameters to control the
effect of each loss function.

IV. EXPERIMENTS AND RESULTS

In this section, we briefly describe the training datasets and
the protocol setup for our experiments. Then, we show the
efficacy of our proposed CpGAN method for cross-domain
fingerprint matching by comparing its performance with the
commercial off-the-shelf matchers and the state-of-the-art
methods such as Minutiae Attention [6]. We also explore the
effect of combining multi-fingers on interoperability using our
score fusion model.

A. Datasets

We train the CpGAN model on an in-house fingerprint
dataset called the Multimodal Dataset (2008, 2009, 2012,
2013). It consists of four subsets. The Multimodal-2012 is
a set of 791 subjects and a total of 69,934 impression pairs,
whereas, the Multimodal-2013 contains 286 subjects and a
total of 16,549 impression pairs. Each subject, in both of
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TABLE V
COMPARISON BETWEEN CPGAN AND TWO TOP-RANKING COMMERCIAL OFF-THE-SHELF MATCHERS FOR INDIVIDUAL FINGERPHOTO VS ITS
CORRESPONDING FINGERPRINT MATCHING ON THE MULTIMODAL-2013 DATASET. OUR PROPOSED CPGAN MODEL WITH U-NET BASED GENERATOR
PERFORMS SLIGHTLY BETTER THAN THE COMMERCIAL MATCHERS ON BOTH TEST IMAGES AND INDIVIDUAL FINGER POSITIONS. ADDITIONALLY,
AMONG DIFFERENT FINGER POSITIONS, THE INDEX FINGER OF BOTH HANDS PERFORMS SLIGHTLY BETTER THAN OTHER FINGERS.

Set Finger Train  Test Network Proposed CpGAN | Verifinger 12.0 Innovatrics
Position Images Images AUC(%) EER(%) | AUC(%) EER(%) | AUC(%) EER(%)

ResNet-18 | 99.55 2.38

Test All 2106 1218 U-Net 99.59 2.38 96.73 4.83 98.64 4.33
DenseNet | 99.45 2.38

2 423 228 99.60 2.23 97.86 1.93 99.25 2.30

3 362 215 U-Net 98.92 4.19 96.91 3.82 98.93 2.38

Individual 4 310 192 98.92 5.21 97.35 5.40 96.53 9.96

7 404 230 99.55 2.17 97.40 3.20 99.41 2.76

8 350 193 99.17 4.66 96.99 4.51 98.89 4.88

9 257 160 98.41 5.63 93.90 8.33 96.67 8.46

TABLE VI pairs from 320 individual fingers. We employed the standard

COMPARISON BETWEEN THE SCORE FUSION MODEL AND THE
COMMERCIAL OFF-THE-SHELF MATCHER ON MULTI-FINGERPHOTOS VS
MULTI-FINGERPRINTS MATCHING.

#of Finger Train Test Score Fusion Innovatrics
Fingers Position Images Images| AUC(%) EER(%)|AUC(%) EER(%)
2 2,3 263 174 | 99.70 1.72 98.96 3.03
2 34 209 146 | 99.52 2.74 97.64 8.86
2 7.8 239 160 | 99.76 1.87 99.99 0.00
2 89 183 111 99.68 2.70 99.99 0.00
3 2,3,7 185 145 99.88 1.38 97.55 2.92
3 2,34 166 119 | 99.90 1.68 97.29 2.92
3 3,7,8 158 117 99.99 0.00 99.99 0.00
4 2,3,78 139 98 100.0 0.00 100.0 0.00

these datasets, has a varying number of fingers from a total of
six available fingers: right index (2), right middle (3), right
ring (4), left index (7), left middle (8), and left ring (9).
The contact-based set consists of 800x750-sized fingerprints
with a resolution of 500 PPI and the contactless set consists
of fingerphotos of size 512x512 with similar resolution to
fingerprints. In contrast, the Multimodal-2009 contains only
a total of 31,297 fingerprint images and the Multimodal-2008
contains only finger roll images.

In our first experiment, we tested our CpGAN model for
contact to contactless matching on the Multimodal dataset.
Table I shows the statistics of the Multimodal Dataset. Due
to rigorous image quality assessment, a significant number of
bad-quality images were excluded. To pretrain the proposed
model, we also built a compiled dataset, shown in Table III.
In addition, for multi-finger matching, we combine two, three,
and four individual fingers of a subject (see Table VI).

To further evaluate the cross-matching performance of our
proposed framework on a commercial fingerphoto device and
the Crossmatch Guardian fingerprint, we employed another in-
house dataset called the Non-Contact Fingerprint Dataset-v1.
Table II shows the statistics of the dataset. A total of 516
impression pairs are available from the left index (7), left
middle (8), left ring (9), and left little (10) finger.

To comparatively evaluate the performance of our proposed
framework, we also tested our model on the PolyU dataset [4].
It has a total of 2,880 contact to contactless impressions

experimental settings [4], [6], [8], i.e., 160 fingers each with
12 impression pairs are set for training, and the remaining
160 fingers, each with 6 impression pairs, are set for testing.
Figure 1 depicts a set of samples of these three aforementioned
datasets.

B. Implementation Details

We implement the U-Net architecture [15] as the generator
for both the fingerphoto and the fingerprint cGAN modules.
In the experiment on a held-out validation set, we empirically
set the hyper-parameter \; = 10, A = 1 and A3 = 1. We
employ the Adam optimizer [16] with an initial learning rate of
0.0002. We use the ReLU activation for the generator and the
Leaky ReLU [17] with a slope of 0.20 for the discriminator.
Due to the lack of a large training dataset, it is very hard
to train the whole network directly for convergence. So, we
pretrain both of the fingerprint cGAN modules of our Coupled
GAN framework using a compiled dataset (see Table III) like a
Siamese framework by sharing their weights. We then employ
this pretrained cGAN module to initialize both the fingerprint
and the fingerphoto cGAN modules of the proposed CpGAN
framework.

C. Performance Evaluation on Individual Fingerprint Match-
ing

As shown in Table V, our proposed CpGAN model ob-
tains an area under curve (AUC) score of 99.59% on the
Multimodal-2013 Dataset which is 2.95% higher than Verifin-
ger 12.0 and 0.96% higher than Innovatrics. It also achieves
an equal error rate (EER) score which is 50.72% and 45.03%
lower than Verifinger 12.0 and Innovatrics matchers, respec-
tively. In our work, we have experimented with several gen-
erator architectures such as ResNet-18 [18], U-Net [15], and
DenseNet [19]. However, the performance of these different
generators is almost similar. Furthermore, Table V verifies that
the proposed CpGAN performs better than the commercial
matchers on individual finger positions. For example, on the
left ring finger, we achieve an AUC score that is 4.80% higher
than Verifinger 12.0 and 1.79% higher than Innovatrics.

Authorized licensed use limited to: West Virginia University. Downloaded on March 12,2023 at 22:01:40 UTC from IEEE Xplore. Restrictions apply.



TABLE VII
COMPARISON WITH THE COMMERCIAL OFF-THE-SHELF MATCHERS FOR INDIVIDUAL FINGERPHOTO VS GUARDIAN FINGERPRINT MATCHING ON THE
NON-CONTACT FINGERPRINT DATASET-V1. OUR PROPOSED CPGAN MODEL OUTPERFORMS THE COMMERCIAL MATCHERS ON BOTH THE TEST SET
AND THE INDIVIDUAL FINGER POSITIONS.

Set Finger  Test Network Proposed CpGAN | Verifinger 12.0 Innovatrics
Position Images AUC(%) EER(%) | AUC(%) EER(%) | AUC(%) EER(%)

ResNet-18 | 97.33 6.59

Test All 516 UNET 97.37 6.59 94.65 11.12 97.07 6.90
DenseNet | 97.13 6.59

7 129 98.76 3.88 97.46 4.96 98.73 345

.. 8 129 97.41 4.65 94.52 8.76 96.88 6.83

Individual | 129 | UNet | 9g18 543 | 9621 693 | 9811 598

10 129 92.05 15.50 88.01 21.01 93.15 13.12

TABLE VIII TABLE X

COMPARISON WITH COMMERCIAL OFF-THE-SHELF MATCHERS ON THE
NON-CONTACT FINGERPRINT DATASET-V1 FOR MULTI-FINGER
COMMERCIAL FINGERPHOTOS VS MULTI-FINGER GUARDIAN
FINGERPRINTS MATCHING PROVES THAT THE PROPOSED SCORE FUSION
MODEL PERFORMS BETTER THAN THE COMMERCIAL MATCHERS IN ALL
MULTI-FINGER COMBINATION. THE BEST PERFORMANCE IS ACHIEVED
FROM FOUR FINGER MATCHING.

Number of Finger Test |Proposed Score Fusion Innovatrics
Fingers Position Images| AUC(%) EER(%) |AUC(%) EER(%)
2 7.8 129 99.02 2.86 98.77 2.86
2 8,9 129 98.61 3.39 98.47 3.39
2 9,10 129 97.98 5.12 97.94 5.12
3 7,8,9 129 99.14 2.63 98.95 2.63
3 89,10 129 98.73 3.31 98.66 3.31
4 7,8,9,10 129 99.24 2.17 99.18 2.17
TABLE IX

COMPARISON BETWEEN THE CPGAN AND THE STATE-OF-THE-ART
METHODS ON THE POLYU DATASET. OUR PROPOSED CPGAN MODEL
OUTPERFORMS OTHERS AT A SIGNIFICANT MARGIN. IT ACHIEVES 8.9%
LOWER EER SCORE THAN THE PREVIOUS BEST MINUTIAE ATTENTION

MODEL.
Methods EER (%)
Verifinger 12.0 19.31
Multi-Siamese CNN [5] 7.11
Minutiae Attention [6] 4.13
Proposed CpGAN 3.76

In addition, as shown in Table VI, the performance of multi-
finger fusion of our proposed score fusion model is slightly
better than the commercial matchers. As the number of fingers
from the same subject used for multi-finger fusion increases,
the performance of our score fusion model and the commer-
cial matchers also increases. In particular, we obtain perfect
verification performance (AUC=1.0 and EER=0.0) when we
combine four fingers.

We employed the Non-Contact Fingerprint Dataset-vl to
evaluate our CpGAN model on commercial fingerphotos after
pretraining it on another compiled dataset (see Table IV).
The verification performance on this dataset is illustrated
in Table VIL It has been observed that the CpGAN model
outperforms the commercial matchers by a noticeable mar-
gin based on both AUC and EER scores. In multi-finger
fusion, as observed in Table VIII, our proposed score fusion
model achieves significantly higher scores than the commercial

COMPARISON AMONG DIFFERENT NUMBER OF FINGERS CONFIRMS THAT
MULTI-FINGER MATCHING USING PROPOSED SCORE FUSION MODEL
SIGNIFICANTLY IMPROVES THE INTEROPERABILITY.

Experiment 1vl 2v2 3v3 4v4
Fingerphoto Position 2 2.3 2,3,7 2,3,7,8

Vs AUC(%) | 99.60 99.65 97.71 100.0

Fingerprint EER(%) | 2.23 1.72 1.38 0.00
Commercial photo | Position 7 7.8 78,9 7,89,10
Vs AUC(%) | 98.76  99.02 99.14 99.24
Guardian EER(%) | 03.88 02.86 02.63 02.17

matchers. Furthermore, as shown in Table IX, the experiment
of our proposed method using the PolyU [4] dataset also shows
a significant improvement over the state-of-the-art methods
such as Multi-Siamese CNN [5] and Minutiae Attention [6].
Our method achieves 8.9% lower EER score than the previous
best Minutiae Attention method [6] on the PolyU dataset.

D. Performance Evaluation on Multi-Finger Fingerprint
Matching

The impact of multi-finger on contact to contactless fin-
gerprint matching of our proposed score fusion framework is
demonstrated in Table X. Figure 5-6 illustrates the effects of
multi-finger matching based on the receiver operating charac-
teristic (ROC) and detection error trade-off (DET) curves for
different combination of multi-finger matching. From the ROC
and DET curves in Figure 5-6, we see that as the number of
fingers increases the performance of contact to contactless fin-
gerprint matching also gradually increases, and the four finger
fusion gives us the best AUC and EER scores. Therefore, the
experimental results prove that combining multiple fingers of
the same subject significantly improves the interoperability of
cross-domain fingerprint matching.

V. CONCLUSION

We proposed a new framework, CpGAN, for matching
contact to contactless fingerprints from different sensors for
improving the interoperability. We thoroughly evaluated the
proposed CpGAN model on several challenging datasets. From
our performance evaluation, we observe that our proposed Cp-
GAN model, after pretraining on a large, compiled fingerprint
dataset, achieves significantly better results than the state-of-
the-art methods presented in the literature and the commercial
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ROC and DET curve of our proposed method for contact and contactless fingerprint matching on the Multimodal 2013 Dataset.
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Fig. 6. ROC and DET curve of our proposed method for commercial fingerphotos vs Guardian fingerprint matching on the Non-Contact Fingerprint Dataset-v1.

off-the-shelf matchers. It also demonstrates the effectiveness of
implementing comprehensive data preprocessing and multiple
loss functions. Furthermore, the experiments using our pro-
posed score fusion model on multi-finger settings show further
improvement in interoperability.
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