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Abstract
Modern high-dimensional methods often adopt the ‘bet
on sparsity’ principle, while in supervised multivariate
learning statisticians may face ‘dense’ problems with a
large number of nonzero coefficients. This paper pro-
poses a novel clustered reduced-rank learning (CRL)
framework that imposes two joint matrix regulariza-
tions to automatically group the features in construct-
ing predictive factors. CRL is more interpretable than
low-rank modelling and relaxes the stringent sparsity
assumption in variable selection. In this paper, new
information-theoretical limits are presented to reveal
the intrinsic cost of seeking for clusters, as well as the
blessing from dimensionality in multivariate learning.
Moreover, an efficient optimization algorithm is devel-
oped, which performs subspace learning and clustering
with guaranteed convergence. The obtained fixed-point
estimators, although not necessarily globally optimal,
enjoy the desired statistical accuracy beyond the stan-
dard likelihood setup under some regularity conditions.
Moreover, a new kind of information criterion, as well
as its scale-free form, is proposed for cluster and rank
selection, and has a rigorous theoretical support without
assuming an infinite sample size. Extensive simulations
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and real-data experiments demonstrate the statistical
accuracy and interpretability of the proposed method.
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1 INTRODUCTION

Modern statistical applications create an urgent need for analysing and interpreting
high-dimensional data with low-dimensional structures. This paper works in a super-
vised multivariate setting with n samples for m responses and p features (or predictors):
Y = [y1, … , ym] ∈ Rn×m and X = [x1, … , xp] ∈ Rn×p. Given a loss l0, not necessarily a negative
log-likelihood function, one can solve the following optimization problem to model the set of
responses of interest

min
B∈Rp×m

l0(XB;Y). (1)

Here, the unknown coefficient matrix B = [b1, … ,bp]T has pm unknowns, with bj summarizing
the contributions of the jth predictor to all the responses.

The modern-day challenge comes from large p and∕or m. Statisticians often prefer selecting
a small subset of features—for example, a group-𝓁1 penalty 𝜆

∑||bj||2 (Yuan & Lin, 2006) can be
added in the criterion to promote row-wise sparsity in B, which results in a more interpretable
model than using an 𝓁2-type penalty 𝜆||B||2F . However, with a largem, theremay exist few features
that are completely irrelevant to the whole set of responses. One may perform variable selection
in a transformed space rather than the original space (Johnstone & Lu, 2009), but how to find a
proper transformation to reveal sparsity is problem specific.

Perhaps a natural alternative is to make the coefficients form a relatively small number of
groups, within each of which all coefficients are forced to be equal. This is referred to as ‘equi-
sparsity’ in She (2010). In the general multivariate setup, instead of requiring a large number
of zero rows in the true signal B∗, we assume that it has relatively few distinct row patterns
b∗T(1),b

∗T
(2), … ,b∗T(q). Then, from

XB∗ = x1b∗T1 + · · · + xpb∗Tp =

(∑
j∈1

xj

)
b∗T(1) + · · · +

⎛⎜⎜⎝
∑
j∈q

xj
⎞⎟⎟⎠b∗T(q), (2)

the features sharing the same b∗(k) (1 ≤ k ≤ q) are automatically grouped, based on their contri-
butions to Y . The feature grouping is as interpretable as feature selection and can offer further
parsimony, since the latter only targets the set of irrelevant features with b∗j = 0.

The problem of how to cluster the unknown coefficient matrix to achieve the best pre-
dictability falls into supervised learning, where both Y and X are available. This is in contrast to
conventional clustering tasks for unsupervised learning that operate on a single data matrix. But
it shares the same computational challenge in large dimensions. A nice but sometimes unnoticed
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fact is that if p points form q clusters in a largem-dimensional vector space, then the clusters can
be revealed in just a q-dimensional subspace, such as the one spanned by the cluster centroids. In
real data analysis, it is not rare that the dimension of the cluster centroid space is much less than
q (even as low as 2 or 3). This motivates us to perform simultaneous dimension reduction to ease
the job of clustering.

Specifically, we propose to including an additional low-rank constraint, and the resulting
jointly regularized form provides an extension of the celebrated reduced rank regression (RRR,
Izenman, 1975). RRR assumes that the rank of the true B∗ is no more than a small number r, or
equivalently,B∗ = B1BT2 with eachBi having r columns. Once locating a proper loadingmatrixB1,
the final model amounts to fitting Y on r factors formed by XB1. Unfortunately, it is well known
that the factor construction from a large number of features lacks interpretability. Our proposal of
clustered rank reduction enforces row-wise equisparsity in B1 (or the overall coefficient matrix)
so that in extracting r predictive factors, the original features can be automatically consolidated
into q groups at the same time.

It is perhaps best to illustrate the idea on a real-world example. The yeast cell cycle data used
in Chun and Keleş (2010) studies transcription factors (TFs) related to gene expression over time.
In addition to the predictor matrix X ∈ R542×106 with 106 TFs collected on 542 genes, a response
matrix Y ∈ R542×18 containing RNA levels measured on the same genes is available at 18 time
points. A naive multivariate regression would have about 2k unknowns, and so we fit an RRR
with r = 2 and plot the loadings of the 106 TFs in Figure 1. The fact that most of the loadings
are apparently nonzero makes variable selection less effective in reducing the complexity of the
model. Indeed, because of the high-quality experimental design by biologists, quite a few TFs
seem to have effects on the gene expressions during the cell cycle process.
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F IGURE 1 Yeast cell cycle data: the loading weights, denoted by ‘×’, by fitting an RRR with r = 2. The
many noticeable nonzeros imply that a number of transcription factors have effects on the gene expressions
during the cell cycle process. Here, the 12 diamonds represent the consolidated loadings obtained by the
proposed clustered reduced-rank learning method [Colour figure can be viewed at wileyonlinelibrary.com]
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Intuitively, clustering the TFs’ loadings would offer a significant reduction of the number of
free parameters. Note that to enhance interpretability and avoid ad-hoc tuning, we force the esti-
mates within a group to be equal. A stagewise procedure performing estimation and clustering in
two distinct steps would be suboptimal; we aim to solve the problem as a whole. The diamonds
in Figure 1 show the loadings obtained by the proposed method that simultaneously groups the
features in performing dimension reduction.

Compared with the low-rank modelling, the new parsimonious model not only boosted the
prediction accuracy by 23% (over 200 repeated training-test splitswith 50% for training and 50% for
test), but also offered some meaningful TF groups. For example, that ACE2, SWI5 and SOK2 fall
into the same group and share the same set of large coefficients provides useful biological insights,
as it is well known that ACE2 and SWI5 are paralogs, meaning that they are related to each other
through a gene duplication event and are highly conserved in yeast cell cycle gene progression,
and according to Pan and Heitman (2000), with regards to nitrogen limitation, SOK2, along with
ACE2 and SWI5, is essential in the pseudohyphal growth of yeast cells. Our analysis also provides
a cluster with three TFs, namely HIR1, STP2 and SWI4, all of which are chromatin-associated
transcription factors involved in regulating the expression of multiple genes at distinct phases of
yeast cells (Lambert et al., 2010).

This paper studies simultaneous feature auto-grouping and dimension reduction, and
attempts to tackle some related challenges in methodology, theory and computation. Our main
contributions are as follows.

• A novel clustered reduced-rank learning (CRL) framework is proposed, which imposes joint
matrix regularizations through a convenient SV formulation. It relaxes the assumption of
sparsity and offers improved interpretability compared with vanilla low-rank modelling. The
concurrent dimension reduction substantially eases the task of clustering in high dimensions.

• Universal information-theoretical limits reveal the intrinsic cost of seeking for clusters, as well
as the benefit of accumulating a large number of responses in multivariate learning, which
seems to be largely unknown in the literature before.

• Tight error bounds are shown for CRL beyond the standard likelihood setup and justify its
minimax optimality in some common scenarios. These nonasymptotic results are strikingly
different from those for sparse learning and are the first of their kind. Our theoretical studies
favour CRL over variable selection when the numbers of relevant features and irrelevant fea-
tures are of the same order, or when the number of responses is greater than or equal to the
number of features up to a multiplicative constant.

• An efficient optimization-based algorithm is developed, which performs simultaneous sub-
space pursuit and clustering with guaranteed convergence. The resulting fixed-point estima-
tors, although not necessarily globally optimal, achieve the desired statistical accuracy under
some regularity conditions.

• A predictive information criterion is proposed for joint cluster and∕or rank selection. Its brand
new model complexity notion differs from existing information criteria, but has a rigorous
theoretical support in finite samples. A scale-free form is further proposed to bypass the noise
scale estimation.

The rest of the paper is organized as follows. Section 2 describes in detail the clus-
tered reduced-rank learning framework to automatically group the predictors in building
a predictive low-rank model. Section 3 shows some universal minimax lower bounds and
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tight upper bounds of CRL, from which one can conclude that CRL enjoys minimax
optimality if the number of clusters is at most polynomially large in the rank. The obtained
rates differ substantially from the standard results assuming sparsity, and interestingly, hav-
ing a large number of responses seems to be a blessing. Section 4 develops an iterative
and easy-to-implement algorithm by linearization and block coordinate descent (BCD), where
Procrustes rotations and clusterings are performed repeatedly with guaranteed convergence.
A new predictive information criterion, together with its scale-free form, is proposed for model
selection in the context of clustered rank reduction. Section 5 shows some real data analysis.
We conclude in Section 6. The appendices provide all technical details and more computer
experiments.

Notation and symbols. The following notation and symbols will be used. Given a differen-
tiable f , we use ∇f to denote its gradient, and f is called 𝜇-strongly convex if f (𝜼′) ≥ f (𝜼) +⟨∇f (𝜼), 𝜼′ − 𝜼⟩ + 𝜇||𝜼′ − 𝜼||22∕2,∀𝜼, 𝜼′, and L-strongly smooth if f (𝜼′) ≤ f (𝜼) + ⟨∇f (𝜼), 𝜼′ − 𝜼⟩ +
L||𝜼′ − 𝜼||22∕2, ∀𝜼, 𝜼′. In particular, f (𝜼) = ||𝜼 − y||22∕2 is 1-strongly convex. For any A,B ∈ Rn×m,
we denote by ⟨A, B⟩ the inner product of A, B. Given A ∈ Rn×m, A+ denotes its Moore–Penrose
inverse, rank(A) denotes its rank, and when n = m, 𝜎max(A) denotes its maximal eigenvalue. We
use A[i, j] to represent the (i, j)th element in A and A[i, :] (or A[:, i]) to represent the ith row
(or column) of A. Some conventional matrix norms of A are as follows: ||A||F denotes the Frobe-
nius norm, ||A||2 the spectral norm, ||A||∗ the nuclear norm, and ||A||2,∞ = max1≤j≤p ||aj||2 for
A = [a1, … ,ap]T . The constants denoted byC, c are not necessarily the same at each occurrence.
Finally, a ≲ bmeans a ≤ cb up to a multiplicative positive constant c, and a ≍ bmeans a ≲ b and
b ≲ a.

2 CLUSTERED REDUCED RANK REGRESSION

This section focuses on the quadratic loss commonly used in multivariate regression,

l0(XB;Y) = ||Y − XB||2F∕2.
The discussions in this important case will lay out a foundation for computation and theoretical
analysis in later sections regarding a general loss.

Motivated by Section 1, rather than assuming that most features are irrelevant to the
responses, we propose to enforce row-wise equisparsity in B so that we can group the features
in modelling Y . Sparsity is just a special case of equisparsity, and clustering the nonzero values
can gain further parsimony. Meanwhile, we would like to regularize the multivariate model with
low rank, making it possible to project the data into a much smaller subspace to reveal the row
patterns of B.

To mathematically formulate the problem, we use ||b|| to denote the number of distinct ele-
ments in vector b, and ||B||2, the number of distinct rows of B. Then, our clustered reduced-rank
learning (CRL) involves the minimization of the loss criterion with two constraints rank(B) ≤
r, ||B||2, ≤ q. The joint regularization formulation poses significant challenges in both computa-
tion and theory.

A trick to decouple the two intertwined constraints is to write B = SVT with V an m × r
column-orthogonal matrix. The ‘SV’ formulation will be used in optimization as well. Since
S = BV , we get ||S||2, = ||B||2, and thus an equivalent CRL problem with separate constraints
on S and V :
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min
S∈Rp×r ,V∈Rm×r

||Y − XSVT||2F s.t. VTV = I, ||S||2, ≤ q. (3)

In Equation (3), q (1≤ q≤ p) controls the number of feature groups, and r (r ≤m) is the dimension
of the subspace to pursue coefficient clustering. The joint tuning of the regularization parameters
q and r is an important task, too, and a data-adaptive solution with theoretical support will be
given in Section 4.2. Let V = [v1, … , vr] and S = [s1, … , sr]. We call si (1 ≤ i ≤ r) the clustering
vectors. An intercept term 1𝜶T can be added to the loss to help control the scale of clustering
vectors. Equivalently, for regression, one can simply centre Y , X columnwise in advance. We also
suggest standardizing the predictors beforehand, as done in other regularization methods like
LASSO and ridge regression, unless all the predictors are on the same scale.

We discuss a special case of Equation (3) to provide a more intuitive understanding on
the mathematical problem, which can also be used to develop a sequential estimation pro-
cedure. Letting r = 1, Equation (3) becomes mins∈Rp,v∈Rm ||Y − XsvT||2F s.t. ||v||22 = 1, ||s|| ≤

q. Reparametrize s = ds◦ with d ∈ R and s◦ satisfying ||Xs◦||2 = 1. Simple algebra shows that
the problem is minimized at d = ⟨Xs◦vT ,Y⟩ and v = YTXs◦∕||YTXs◦||2. Therefore, Equation (3)
reduces to (4) when r = 1:

max
s◦∈Rp

s◦T(XTYYTX)s◦ s.t. s◦TXTXs◦ = 1, ||s◦|| ≤ q. (4)

Without the last constraint, Equation (4) is a generalized eigenvalue decomposition problem.
The regularization enforces equisparsity in estimating the generalized eigenvector. Although
Equation (4) is intuitive, Equation (3) is much more amenable to optimization.

The regularization admits other variants via the SV formulation. For example,withB = SVT =
s1vT1 + · · · + srvTr , one can pursue equisparsity in each component sivTi or si:

min
S∈Rp×r ,V∈Rm×r

‖‖Y − XSVT‖‖2F s.t. VTV = I, ||si|| ≤ qe, 1 ≤ i ≤ r. (5)

This rankwise CRL allows each feature to belong tomore than one cluster as r > 1. In comparison,
the constraint in Equation (3) offers a uniform control. Unless otherwisementioned,wewill focus
on the row-wise problem (3), but our algorithm applies to both.

Remark 1 Alternative formulations of CRL. Given a positive definite matrix 𝚪 of size m × m,
consider a weighted criterion: min(S,V)∈Rp×r×Rm×r Tr{(Y − XSVT)𝚪(Y − XSVT)T} s.t. VTV =
I, ||S||2,C ≤ q. Then, for B = SVT𝚪1∕2, we have rank(B) ≤ r and ||B||2,C = ||S||2,C. Applying
the SV representation to B gives an equivalent problem (with S, V redefined)

min
(S,V)∈Rp×r×Rm×r

1
2
||Y𝚪1∕2 − XSVT||2F s.t. VTV = I, ||S||2,C ≤ q. (6)

Equation (6) is of the same form of Equation (3) with an adjusted response matrix.
Another related projected form directly measures discrepancy in the projected space:

min
(S,A)∈Rp×r×Rm×r

1
2
||YA − XS||2F s.t. (YA)TYA = nI, ||S||2, ≤ q, (7)

where we assume r ≤ rank(Y). Let 𝚺Y = YTY∕n = UDUT with the diagonal matrix D
containing rank(Y) nonzero eigenvalues, W = D1∕2UTA, and B = SWTD1∕2UT . Because
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||YA − XS||2F = Tr{(Y − XB)𝚺+
Y (Y − XB)T} + nr − n rank(Y) (cf. Lemma A.8), rank(B) ≤ r,

and B, S have the same row patterns, we see that the projected form simply amounts to
taking 𝚪 = 𝚺+

Y . Popular choices of 𝚪 are based on the covariance matrix of Y . See She et al.
(2020) for a proposal to account for dependence in the case of a general loss. A further topic
is to estimate the high-dimensional covariance matrix and mean matrix jointly, but it is
beyond the scope of the current paper and we regard 𝚪 as known. Then, based on Equation
(6), one simply needs to ‘whiten’ Y by Y𝚪

1
2 beforehand.

Remark 2 Pairwise-difference penalization. An alternative idea, following She (2010) and Chi and
Lange (2015), is to penalize the pairwise row-differences of B = [b1, … ,bp]T :∑

1≤j<j′≤p
P(||bj − bj′ ||2; 𝜆),

where P is a sparsity-inducing function. This type of regularization is, however, not of our
primary interest, due to its computational burden, suboptimal error rate and difficulties in
parameter tuning. See Appendix A.5 and Theorem A.3 for more details.

Remark 3 Unsupervised learning. Supervised learning is the focus of our work, but when there
is a single data matrix Y ∈ Rn×m, we can set X = I in Equation (3) to cluster its rows
for unsupervised learning. (Substituting YT for Y offers clustered PCA as an alterna-
tive to sparse PCA.) Similar to the derivation in the rank-1 case, we can evaluate the
optimal V to get minS∈Rn×r ||S||2F∕2 − ||YTS||∗ s.t. ||S||2, ≤ q, or max||S◦||F=1 ||YTS◦||2∗∕2
s.t. ||S◦||2, ≤ q via S = dS◦. (In the more general supervised setup, we can show that S
solvesminS∈Rp×r ||XS||2F∕2 − ||YTXS||∗ s.t. ||S||2, ≤ q.) Because ||YTS||∗ = Tr{(STYYTS)1∕2},
CRL’s clustering vectors depend on Y through its sample inner products only. One can
then introduce a kernel CRL by substituting a positive semi-definite K for YYT . The
desired clusters can still be obtained by solving the SV-form problem, with a suitable
pseudo-response constructed from the kernel matrix. Let us consider two special cases to
contrast the unsupervised CRL with some related methods. (a) No data projection, that
is, r = m. Then we can show that K-means is an algorithm to solve the problem (cf.
Section 4.1). Modern implementations of K-means make good use of seeding and can
obtain a decent solution in low dimensions, which will assist the optimization of CRL,
owing to its low-rank nature. Of course, as K-means operates in the input space, it can
be ineffective for large m. (b) No equisparsity regularization. In this case, CRL reduces to
spectral clustering (cf. Appendix B.1). Giving up the equisparsity regularization simplifies
the computation significantly, but spectral clustering, as well as other similarity-motivated
procedures, performs dimension reduction and clustering in two distinct steps. It would
be less greedy to perform both steps simultaneously. In Section 4, we will see that the
CRL algorithm can integrate clustering and subspace learning to solve the problem as
a whole.

3 NONASYMPTOTIC STATISTICAL ANALYSIS OF
CLUSTERED REDUCED-RANK LEARNING

Rigorous theoretical guarantees must be provided to justify the proposed clustered rank reduc-
tionmethod. There is a big literature gap to fill in this regard. For example, howmany samples are
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needed for signal recovery by adopting the new notion of structural parsimony? In which situa-
tions will pursuing equisparsity be advantageous over performing variable selection? Is it always
necessary to obtain a globally optimal solution in the nonconvex setup? The answers to these
questions seem to be largely unknown.

In this section, we go beyond the regression setup and consider a loss l0(XB;Y) that is defined
on the systematic component XB with Y as parameters. Here, B is unknown and X and Y are
observed, and so we occasionally omit the dependence on Y . Assume that l0 is differentiable with
respect to XB. Our tool for tackling a general loss is the generalized Bregman function (She et al.,
2021): given a differentiable function 𝜓 ,

𝚫𝜓 (𝜶, 𝜷) ∶= 𝜓(𝜶) − 𝜓(𝜷) − ⟨∇𝜓(𝜷),𝜶 − 𝜷⟩. (8)

If 𝜓 is also strictly convex, 𝚫𝜓 (𝜶, 𝜷) becomes the standard Bregman divergence denoted
by D𝜓 (𝜶, 𝜷) (Bregman, 1967). A simple example is D2(𝜶, 𝜷) ∶= ||𝜶 − 𝜷||22∕2, associated
with 𝜓 = || ⋅ ||22∕2, and its matrix version is D2(A,B) = ||vec(A) − vec(B)||22∕2 = ||A − B||2F∕2.
In general, 𝚫𝜓 (𝜶, 𝜷) may not be symmetric, and we define its symmetrized version by 𝚫𝜓 (𝜶, 𝜷)
∶= (𝚫𝜓 (𝜶, 𝜷) + 𝚫𝜓 (𝜷,𝜶))∕2.

Introducing the notion of noise in the non-likelihood setup is another essential component,
since l0 may not correspond to a distribution function. We define the effective noise associated
with the statistical truth B∗ by

E = −∇l0(XB∗;Y). (9)

So having a zero-mean noise means that the risk vanishes at the statistical truth, assuming we
can exchange the gradient and expectation. In a canonical generalized linear model (GLM) with
cumulant function b(⋅) and g = (∇b)−1 as the canonical link (cf. Appendix A), the (unscaled) loss
can be represented by −⟨Y , XB⟩ + b(XB), and by matrix differentiation,

E = Y − g−1(XB∗) = Y − E(Y),

orE = Y − XB∗ in regression.Unless otherwise specified,we assume that vec(E) is a sub-Gaussian
random vector with mean zero and scale bounded by 𝜎 (namely, all marginals ⟨vec(E),
𝜶⟩ satisfy ||⟨vec(E),𝜶⟩||𝜓2 ≤ 𝜎||𝜶||2, ∀𝜶 ∈ Rp, where || ⋅ ||𝜓2 = inf{t > 0 ∶ E exp[(⋅∕t)2] ≤ 2}, cf.
van der Vaart & Wellner, 1996). Note that the components of E need not be independent.
Sub-Gaussian noises are typical in regression and classification problems, since Gaussian
and bounded random variables are sub-Gaussian. Yet sub-Gaussianity is not critical for our
analysis.

This section focuses on row-wise equisparsity ||B||2, . It turns out that the two measures|| ⋅ ||2, and rank(⋅) can effectively bound the stochastic terms arising from CRL. Because
it is be difficult in present-day applications to tell whether the sample size, relative to the
problem dimensions, is large enough to apply asymptotics, all of our investigations will be
nonasymptotic.

3.1 Universal minimax lower bounds

The first question one must answer is how small the error could be under equisparsity with pos-
sibly low rank. We derive new minimax lower bounds to address the question. Let I(⋅) be an
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arbitrary nondecreasing function with I(0) = 0, I ≢ 0; some particular examples are I(t) = t and
I(t) = 1t≥c.

Theorem 1 Assume Y|XB∗ follows a distribution in the regular exponential family with dispersion
𝜎2 with l0 the associated negative log-likelihood function (cf. Appendix A for details). Define a
signal class by

B∗ ∈ (q, r) = {B ∈ R
p×m ∶ ||B||2, ≤ q, rank(B) ≤ r}, (10)

where p ≥ q ≥ r ≥ 2, r(q ∧ rank(X) +m − r) ≥ 4. Let b, 𝜁 be any integers satisfying

𝜁∑
i=0

(
r
i

)
(b − 1)i ≥ q, (11)

with b ≥ 2, 1 ≤ 𝜁 ≤ r, and define a complexity function

P(q, r) = (q +m)r + p{log(er) − log log q}. (12)

Assume for some 𝜅 > 0

𝚫l0(0,XB)𝜎2 ≤ 𝜅||B||2F∕2, ∀B ∈ (q, r). (13)

Then there exist positive constants c, c′, depending on I(⋅) only, such that

inf
B̂

sup
B∗∈(q,r)

E

{
I
(||B∗ − B̂||2F/[

c𝜎2
{
(q +m)r +

p log q
b2𝜁

}/
𝜅

])}
≥ c′ > 0, (14)

where B̂ denotes an arbitrary estimator. In particular, under 8 ≤ q ≤ exp(r),

inf
B̂

sup
B∗∈(q,r)

E
[
I
(||B∗ − B̂||2F∕{c𝜎2P(q, r)∕𝜅})] ≥ c′ > 0. (15)

A more complete theorem including minimax lower bounds for both the estimation error||B̂ − B∗||F and prediction error ||XB̂ − XB∗||F is presented in Appendix A.1, from which one can
see that the size of 𝜙 ∶= q1∕r plays a vital role in determining the final error rate. These results
are the first of their kind and provide useful guidance in the context of equisparsity. Our proof is
nontrivial and makes use of q-ary codes in information theory (Pellikaan et al., 2017), as well as
some useful facts of the generalized Bregman functions for GLMs.

The regularity condition (13) is not restrictive. For regression and logistic regression, the con-
dition is implied by 𝚫l0(0,XB)𝜎2 ≤ ||XB||2F∕2 and 𝚫l0(0,XB) ≤ ||XB||2F∕8 respectively. The bound
in Equation (14) is general, while Equation (15) is perhaps more illustrative: when q≤ exp(r) and
𝜅 ≤ c n,

E
[||B∗ − B̂||2F] ≥ c𝜎2P(q, r)∕n, and P

[||B∗ − B̂||2F ≥ c𝜎2P(q, r)∕n
]
> c0 > 0,

by setting I(t) = t and I(t) = 1t≥c respectively. Therefore, in the scenario of q being polyno-
mially large in r, that is, q ≤ rc for some constant c, no estimator can beat the error rate
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P(q, r) ≍ (q + m)r + p log q in a minimax sense. Interestingly, when m is a constant, the rate
reduction compared to pm is not significant, whereas having a large number of response variables
is (perhaps surprisingly) a blessing for pursuing equisparsity.

3.2 Upper error bounds of CRL

Can we approach the optimal error rate using a particular estimator? This part shows that CRL is
a legitimatemethod, andmore importantly, pursuing its globally optimal solutions is unnecessary
in many cases. Rather, finding a fixed point of CRL, defined by Equations (16) and (17) below,
would suffice for regular problems.

Let r∗ = rank(B∗) and q∗ = ||B∗||2, . Given a differentiable l0, define
G𝜌(B;B−) = l0(XB;Y) − 𝚫l0(XB,XB−) + 𝜌D2(B,B−), (16)

where 𝜌, representing the inverse stepsize, is an algorithm parameter to be chosen. Then, for all
fixed points defined by

B̂ ∈ argmin
B∶||B||2,≤q,rank(B)≤r G𝜌(B;B−)|B−=B̂, (17)

a nonasymptotic error bound can be derived by calculating the metric entropy of the associated
manifolds and using the Stirling numbers of the second kind.

Theorem 2 Let r ≥ r∗, q ≥ q∗ and B̂ be any fixed point satisfying Equation (17) for some 𝜌 > 0.
Define

Po(q, r) = {q ∧ rank(X) +m}r + (p − q) log q. (18)

Assume 𝜌 > 0 is chosen so that

𝜌D2(B1,B2) ≤ (2𝚫l0 − 𝛿D2)(XB1,XB2) + K𝜎2Po(q, r), ∀Bi∶ rank(Bi) ≤ r, ||Bi||2, ≤ q (19)

for some 𝛿 > 0 and sufficiently large K ≥ 0. Then, B̂ satisfies

E
[||XB̂ − XB∗||2F] ≲ K𝛿 ∨ 1

𝛿2
{𝜎2(q ∧ rank(X) +m)r + 𝜎2(p − q) log q + 𝜎2}. (20)

It is not difficult to see that when l0 is 𝜇-strongly convex, the following matrix restricted
eigenvalue condition implies Equation (19) with K = 0:

𝜌||B1 − B2||2F ≤ (2𝜇 − 𝛿)||X(B1 − B2)||2F , ∀Bi∶ rank(Bi) ≤ r, ||Bi||2, ≤ q. (21)

When q is small, Equation (21) is applicable to large-p designs. Similar regularity conditions are
widely used in compressed sensing, variable selection and low rank estimation (Bickel et al., 2009;
Candès & Plan, 2011; Candès & Tao, 2007).

Let q = 𝜗q∗, r = 𝜗r∗ with 𝜗 ≥ 1. When 𝜗, 𝛿 and K are treated as constants and 𝜎 = 1, from
Equation (20), the prediction error bound is of the order

{q∗ ∧ rank(X) +m}r∗ + (p − q∗) log q∗, (22)
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ignoring all trivial multiplicative∕additive terms. The rate distinguishes CRL from various sparse
learning methods in the literature.

Remark 4 Computational feasibility. The fact that the fixed-point solutions, although not nec-
essarily globally or even locally optimal, can have provable guarantees offers a feasible
computation of the nonconvex CRL optimization problem in regular cases.

Specifically, regardless of the choice of the loss, G𝜌 always has a simple quadratic form
in terms ofB, which gives rise to an iterative update of the coefficientmatrix. Similar results
can be shown for (S, V ) obtained by alternative optimization; see Theorem A.2 in Remark
A.2. Section 4.1 designs an efficient algorithm on the basis of linearization and BCD.

Remark 5 Error rate comparison. To clarify the theoretical meaning of Equation (22), we make
an error-rate comparison between CRL and some commonly used estimators in regression
with 𝜎 = 1 (assuming all regularity conditions are met). First, assuming that X has full col-
umn rank, the ordinary least squares has E||XB̂ − XB∗||2F = mp. With no rank reduction
(r∗ = q∗), Equation (22) gives (q∗ +m)q∗ + (p − q∗) log q∗, which is ≲ mp when the num-
ber of responses is larger than the number of feature groups. Of course, if r∗ < q∗, CRL
can achieve a much lower error rate. Comparing Equation (22) with (p +m)r∗ by low-rank
matrix estimation (Bunea et al., 2011), we see that CRL does a substantially better job if the
number of clusters does not grow exponentially with the rank, namely, q∗ ≪ exp(r∗).

Variable selection gives another important means of regularization. If B∗ =
[b∗1, … ,b∗p]T is row-wise sparse with s∗ = |{j ∶ b∗j ≠ 0}|, the prediction error by means of
variable selection is of the order (Lounici et al., 2011)

s∗m + s∗ log p. (23)

The comparison between Equations (23) and (22) shows no clear winner: for the
degrees-of-freedom terms, (rank(X) ∧ q∗ +m)r∗ ≤ q∗r∗ +ms∗ ≲ s∗m, while for the ‘infla-
tion’ terms, (p − q∗) log q∗ is typically larger than s∗ log p. But two scenarios draw our
particular attention:

(i) “many responses”∶ m ≥ cp (ii) “linear sparsity”∶ s∗ = cp

where c is a positive constant. In either situation, CRL is advantageous over variable
selection.

Concretely, in case (i), s∗m + s∗ log p ≍ s∗m, while from s∗ ≥ q∗ ≥ r∗, we have s∗m ≥

r∗m ≥ r∗q∗ and s∗m ≫ (log q∗)(p − q∗), and so s∗m + s∗ log p ≳ {q∗ ∧ rank(X) +m}r∗ +
(p − q∗) log q∗. In case (ii), s∗ log p ≍ p log p ≥ (p − q∗) log q∗ and the same conclusion
holds. In other words, when the number of responses is greater than the number of features
up to a multiplicative constant, or when the number of relevant features and the number of
irrelevant features are of the same order, CRLhas a lower error ratewith rigorous theoretical
support.

Remark 6 Minimax optimality. One may be curious if the upper error bound of CRL could match
the universal minimax lower bound. Notably, under the mild conditions q∗ ≤ rank(X) and
q∗ ≪ exp(r∗) (and so q∗ log q∗ ≪ q∗r∗), Equation (22) becomes

(q∗ +m)r∗ + p log q∗,
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which is exactly the rate shown at the end of in Section 3.1. So at least for canonical GLMs
with q∗ polynomially large in r∗, CRL does enjoy minimax rate optimality.

Of course, the previous discussions assume that q and r are specified so that they are
not too large relative to q∗ and r∗, respectively. In general, the data-adaptive tuning to be
introduced in Section 4.2 still ensures Equation (22).

To the best of our knowledge, Theorem 3 is the first nonasymptotic statistical analysis of the
set of CRL’s fixed points in nonconvex optimization. One might ask whether the error rate can be
further improved by pursuing a global CRL estimator. The following theorem shows that this is
not the case, but the regularity condition (19) gets relaxed to some extent.

Theorem3 Let B̂ be an optimal CRL solutionwith r ≥ r∗ and q ≥ q∗.Assume that there exists some
𝛿 > 0 such that

𝚫l0(XB1,XB2) ≥ 𝛿D2(XB1,XB2), ∀Bi∶ ||Bi||2, ≤ q, rank(Bi) ≤ r. (24)

Then E[||XB̂ − XB∗||2F] ≲ 1
𝛿2
{𝜎2(q ∧ rank(X) +m)r + 𝜎2(p − q) log q + 𝜎2}.

Unlike Equation (19) in Theorem2, Equation (24) uses𝚫l0 (in place of twice of its symmetrized
version) and does not involve 𝜌. The conclusion of Theorem 3 can be extended to an oracle
inequality (Donoho & Johnstone, 1994), and these 𝓁2-recovery results can be used to give some
estimation error bounds under proper regularity conditions. Corollary 1 gives an illustration.

Corollary 1 Let l0 be 𝜇-strongly convex. Then for any B ∶ rank(B) ≤ r, ||B||2, ≤ q,

EDl0 (XB̂,XB∗)||2F ≲ EDl0(XB,XB∗) + 𝜎2

𝜇
{(q ∧ rank(X) +m)r + (p − q) log q} + 𝜎2

𝜇
. (25)

Furthermore, assume ||XB||2F∕n ≥ 𝛿||B||22,∞,∀B∶ rank(B) ≤ (1 + 𝜗)r∗, ||B||2, ≤ 𝜗q∗2 for
some 𝛿 > 0, and r = 𝜗r∗, q = 𝜗q∗, 𝜗 ≥ 1, q∗ > 1. Then with probability at least
1 − C exp{−c(m + rank(X))},

||B̂ − B∗||22,∞ ≤
c0𝜗2𝜎2

n𝛿𝜇2
{(q∗ ∧ rank(X) +m)r∗ + (p − q∗) log q∗} (26)

for some constants c0, c,C > 0.

The RHS of Equation (25) offers a bias-variance tradeoff and as a result, CRL applies to B∗

with just approximate equisparsity and∕or low rank. The (2, ∞)-norm error bound Equation
(26) implies faithful cluster recovery with high probability, if the signal-to-noise ratio is prop-
erly large: minb∗j⋅≠b∗k⋅ |avgl b∗2jl − avgl b∗2kl |∕𝜎2 > 2𝜁 . Here, avgl b∗2jl is the average of b

∗2
j1 , … , b∗2jm and

𝜁 = c0𝜗2

𝛿𝜇2
{ (p−q∗) log q∗

nm
+ r∗(q∗∧rank(X))

nm
+ r∗

n
}. Then, from the bound on ||B̂ − B∗||22,∞, we know that

for q = q∗, B̂ exhibits the same row clusters as does B∗, and for q > q∗, B̂ refines the clustering
structure of B∗.

4 COMPUTATION AND TUNING

In this section, we develop an efficient optimization-based CRL algorithm with implementation
ease and guaranteed convergence. We also propose a novel model comparison criterion and pro-
vide its theoretical justification from a predictive learning perspective, without assuming any
infinite sample-size or large signal-to-noise ratio conditions.
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4.1 Algorithm design

In this part, we discuss how to solve the CRL problem with q and r fixed. CRL poses some
intriguing challenges in optimization: the problem is highly nonconvex, l0 is not restricted to the
quadratic loss or a negative log-likelihood function, and the equisparsity and low-rank constraints
are of discrete nature. These obstacles render standard algorithms inapplicable. In addition, as
p and mmay be large in real applications, the coefficient matrix B ∈ Rp×m can easily contain an
overwhelming number of unknowns. Then, how to make use of its low-rank nature to reduce the
computational cost at each iteration, whilemaintaining the convergence of the overall procedure,
is crucial in large-scale computation.

Before describing the algorithm design in full detail, we provide below a simplified version of
the algorithm.

Define 𝜄V(V) = 0 if VTV = I and +∞ otherwise. Similarly, 𝜄2,(S) = 0 if ||S||2, ≤ q and +∞
otherwise, and 𝜄(S) = 0 if ||si|| ≤ qe for all 1 ≤ i ≤ r and +∞ otherwise. We use 𝜄(S) to denote
𝜄2,(S) in the row-equisparsity case and 𝜄(S) in the rankwise case. The loss l0(XB;Y) is alsowritten
as l0(XSVT;Y) or l(S, V ; X , Y), often abbreviated as l0(XSVT) or l(S, V ) for convenience. The
general CRL optimization problem can be stated as

min
S∈Rp×r ,V∈Rm×r

f (S,V) ∶= l(S,V;X,Y) + 𝜄(S) + 𝜄V(V). (27)

For simplicity, assume the gradient of l0 is L-Lipschitz continuous for some L > 0:

||∇l0(𝚯1) − ∇l0(𝚯2)||F ≤ L||𝚯1 −𝚯2||F , ∀𝚯1,𝚯2. (28)
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One idea might be to apply alternating optimization directly, but it would encounter difficul-
ties when l0 is non-quadratic. Motivated by Theorem 2, we use a surrogate function to design an
iterative algorithm. Given (S−, V−), define

G𝜌(S,V;S−,V−) = l(S−,V−) + ⟨∇l0(XB−),X(B − B−)⟩
+ 𝜌

2
||B − B−||2F + 𝜄(S) + 𝜄V(V), (29)

where B− = S−(V−)T , B = SVT . The dependence of G on 𝜌 is often dropped for notational sim-
plicity. Equation (29) applies linearization on SVT as a whole to construct the surrogate, but not
on S or V individually.

Given any
(
S[0],V[0]), let (S[k],V[k]) (k ≥ 1) satisfy(

S[k],V[k]) ∈ argmin
(S,V)

G
(
S,V;S[k−1],V[k−1]), (30)

or just

G
(
S[k],V[k];S[k−1],V[k−1]) ≤ G

(
S[k−1],V[k−1];S[k−1],V[k−1]). (31)

We can show that whenever 𝜌 is chosen large enough,

f
(
S[k],V[k]) ≤ G

(
S[k],V[k];S[k−1],V[k−1]), (32)

from which it follows that f
(
S[k],V[k]) ≤ G

(
S[k−1],V[k−1];S[k−1],V[k−1]) = f

(
S[k−1],V[k−1]). A con-

servative choice is 𝜌 = L||X||22 (cf. Appendix B.1), but the structural parsimony in B[k] makes
it possible to pick a much smaller 𝜌, which is beneficial from Theorem 2. Let 𝜅̄2(q, r) sat-
isfyD2(XB1,XB2) ≤ 𝜅̄2(q, r)D2(B1,B2), forBi∶ ||Bi||2, ≤ q, rank(Bi) ≤ r. Summarizing the above
derivations gives the following computational convergence.

Theorem 4 Given any feasible initial point (S[0],V[0]), the sequence of iterates (S[k],V[k]) generated
from Equation (30) or (31) satisfies

f
(
S[k−1],V[k−1]) − f

(
S[k],V[k]) ≥ 𝜌 − L𝜅̄2(q, r)

2
||B[k] − B[k−1]||2F

for any k ≥ 1, where B[k] = S[k]
(
V[k])T . Therefore, if 𝜌 > L𝜅̄2(q, r), f

(
S[k],V[k]) is mono-

tonically decreasing, B[k] − B[k−1] → 0 as k → + ∞ and min1≤k≤K ||B[k] − B[k−1]||2F ≤
1
K
⋅

2f (S[0],V[0])
𝜌−L𝜅̄2(q,r)

, ∀K ≥ 1.

When the value of L is unknown, Equation (32) can be used for line search to get a proper 𝜌
in implementation. After some simple algebra, the optimization problem in Equation (30) is

min
S∈Rp×r ,V∈Rm×r

1
2

‖‖‖‖‖B[k−1] − XT∇l0(XB[k−1])
𝜌

− SVT
‖‖‖‖‖
2

F
+ 𝜄(S) s.t. VTV = I. (33)

Equation (33) is the unsupervised CRL problem. There is no need to solve the problem in depth
though; we use BCD to get some

(
S[k],V[k]) that satisfies (31). Let

Ỹ = B[k−1] − XT∇l0(XB[k−1])∕𝜌, W = ỸTS, L = ỸV. (34)
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First, with S held fixed, a globally optimal V can be obtained by Procrustes rotation: V = UwVT
w,

where Uw and Vw are from the SVD of W . Equivalently, V = {(WWT)+}1∕2W. The Procrustes
rotation simplifies to a normalization operationW∕||W||2 when r = 1.

Next, we solve for S given V . Using the orthogonal decomposition ||Ỹ − SVT||2F = ||L − S||2F +||ỸV⊥||2F , the problem reduces to a low-dimensional one:

min
S∈Rp×r

||L − S||2F + 𝜄(S).

Consider ||S||2,C ≤ q first. Let S=F 𝝁, where𝝁 ∈ Rq×r stores the q cluster centroids, andF ∈ Rp×q

is the associated binary membership matrix, with F[j, k] = 1 indicating that the j-row of L falls
into the kth cluster, that is, F ∈ p×q ∶= {F ∈ Rp×q ∶ F ≥ 0,F1 = 1,FTF is diagonal}. BCD can
be used to update F and 𝝁 alternatively: given F, the optimal 𝝁 is (FTF)−1FTL, while given
𝝁 = [𝝁1, … ,𝝁q]T , it suffices to solve minf∈{0,1}q,1T f=1 ||L[j, ∶] − fT𝝁||22, 1 ≤ j ≤ p, from which it
follows that F[j, c0] = 1 for c0 = argmin1≤c≤q ||L[j, ∶] − 𝝁c||22, and F[j, c] = 0 for any c ≠ c0. The
algorithm turns out to be K-means. Similarly, for the rank-wise constraint ||si|| ≤ qe (1 ≤ i ≤ r),
we just need to run K-means on each column of L to get S. State-of-the-art implementa-
tions of K-means skilfully use initialization strategies and usually give a high-quality or even
globally optimal solution in low dimensions (Bachem et al., 2016; Zhang & Xia, 2009). Of course,
other unsupervised clustering criteria and algorithms can be seamlessly integrated into the
framework.

To sum up, the CRL algorithm performs simultaneous dimension reduction and clustering
and has guaranteed convergence. Regarding the per-iteration complexity, apart from some funda-
mental matrix operations, the algorithm involves the SVD ofW and the clustering on L. Neither
is costly in computation, sinceW and L have only r columns.

4.2 Parameter tuning

CRLhas two regularization parameters q and r; once they are given, CRL candetermine themodel
structure that fits best to the data, including the cluster sizes and the projection subspace. Inmany
applications, we find it possible to directly specify these bounds based on domain knowledge,
and they are not very sensitive parameters. But for the sake of cluster and∕or rank selection, one
must carefully tune the regularization parameters in a data-adaptive manner. The goal of this
subsection is to design a propermodel comparison criterion assuming a series of candidatemodels
have been obtained (rather than developing a numerical optimization algorithm).

It is well known that parameter tuning is quite challenging in the context of clustering. AIC,
BIC and many other known information criteria do not seem to work well, and what makes a
sound complexity penalty term is a notable open problem. Fortunately, the statistical studies in
Section 3 shed some light on the topic. We advocate a new model penalty Po(⋅) as follows

Po(B) = {||B||2, ∧ rank(X) +m}rank(B) + {p − ||B||2,} log ||B||2, . (35)

Theorem 5 Given any differentiable loss l0, assume that vec(E) (cf. Equation 9) is sub-Gaussian
with mean zero and scale bounded by 𝜎, B∗ ≠ 0 and there exist constants 𝛿 > 0 and C ≥ 0
such that 𝚫l0(XB1,XB2) + C𝜎2Po(B1) + C𝜎2Po(B2) ≥ 𝛿D2(XB1,XB2) for all Bi. Then, any B̂
that minimizes the following criterion

l0(XB;Y) + A𝜎2[{||B||2, ∧ rank(X) +m} rank(B) + {p − ||B||2,} log ||B||2,], (36)
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where A is a sufficiently large constant, must satisfy

E[||XB̂ − XB∗||2F ∨ Po(B̂)] ≲ 𝜎2{(q∗ ∧ rank(X) +m)r∗ + (p − q∗) log q∗}.

Compared with the results in Section 3.2, Theorem 5 offers the same desired order of statisti-
cal accuracy, but involves no regularization parameters.We refer to the new information criterion
defined by Equation (36) as the predictive information criterion (PIC). Unlike most information
criteria, PIC has a nonasymptotic justification, and does not need n → + ∞ or any growth con-
ditions on p or m. The new criterion aims to achieve the best prediction accuracy, and applies
regardless of the signal-to-noise ratio.

If the effective noise has a constant scale parameter like in classification, Equation (36) can
be directly used. But some problems have an unknown 𝜎. For example, Y|XB∗ may belong to the
exponential dispersion family with a density

exp[{⟨⋅,XB∗⟩ − b(XB∗)}∕𝜙]

with respect to some base measure. For such models with dispersion, the standard practice is
to substitute a preliminary estimate 𝜎̂2 for 𝜎2 in Equation (36), but a fascinating fact is that in
some scenarios like regression (b = || ⋅ ||2F∕2), the estimation of 𝜎2 can be totally bypassed with a
scale-free form of PIC.

Recall the Orlicz 𝜓𝛼-norm (van der Vaart & Wellner, 1996) defined for a random variable
Y : ||Y ||𝜓𝛼

= inf{t > 0 ∶ E exp[(Y∕t)𝛼] ≤ 2}. Sub-Gaussian random variables have finite𝜓2-norm,
and sub-exponential random variables (like Poisson and 𝜒2) have finite 𝜓1-norm. As 𝛼 < 1,
random variables with even heavier tails are included (Götze et al., 2021).

Theorem 6 Let the loss be

l0(XB;Y) = −⟨Y,XB⟩ + b(XB), (37)

where b is differentiable, 𝜇-strongly convex and 𝜇′-strongly smooth with 𝜅 = 𝜇′∕𝜇, the domain
Ω = {𝜼 ∈ Rn×m ∶ b(𝜼) < ∞} is open, and Y takes values in the closure of {∇b(𝜼): 𝜼 ∈ Ω}.
Assume the effective noise E = Y − ∇b(XB∗) has independent, zero-mean entries eik that
satisfy ||eik||𝜓𝛼

≤ 𝜎 for some 𝛼 ∈ (0, 2] and are nondegenerate in the sense that var(eik) ≍ 𝜎2,
where 𝜎 is an unknown parameter. Suppose that the true model is not over-complex in the
sense that 𝜅Po(B∗) < mn∕A0 for some constant A0 > 0. Let 𝛿(B) = A{Po(B)∕(mn∕𝜅)} for
some constant A ∶ A < A0, and so 𝛿(B∗) < 1. Consider the following criterion

l0(XB;Y) + b∗(Y)
1 − 𝛿(B) , (38)

where b∗(⋅) = sup𝜼 ⟨⋅, 𝜼⟩ − b(𝜼) is the Fenchel conjugate of b(⋅).
Then, for sufficiently large values of A0,A, any B̂ that minimizes (38) subject to 𝛿(B) < 1

satisfies

||XB̂ − XB∗||2F ∨ Po(B̂)
𝜇2

≲
𝜅𝜎2

𝜇2
{(q∗ ∧ rank(X) +m)r∗ + (p − q∗) log q∗}

with probability at least 1 − C exp{−c(m + Po(B∗))} − C exp{−c(mn)𝛼∕2}, or 1 − C exp
{−c(m + rank(X))} − C exp{−c(mn)𝛼∕2} as q∗ > 1, for some constants C, c > 0.
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The theorem needs no restricted eigenvalue or signal strength assumptions. Some other
scale-free forms can be used based on the techniques in She and Tran (2019); see Remark A.3.

5 EXPERIMENTS

We performed extensive simulation studies which, due to limited space, are presented in the
appendices. The results show the benefits of CRL: the desired structural parsimony can be suc-
cessfully captured by simultaneous clustering and dimension reduction, and the removal of
nuisance dimensions leads to improved statistical performance and reduced computational cost.
We also tested kernel CRL on a variety of benchmark datasets (cf. Figure B.1 and Tables B.1–B.3)
and performed experiments in network community detection (cf. Figure B.2 and Table B.4). In
addition, simulation studieswere conducted to test the performance of CRLwhenmodelmisspec-
ification occurs, comparedwith LASSO, group LASSO, reduced rank regression and fused LASSO
(Tibshirani et al., 2005) (cf. Table B.5). Interested readers may refer to Appendix B for details.
Here, we use two real datasets to demonstrate the performance of CRL in supervised learning.
Our code can be found in the supplementary material.1

5.1 Horseshoe crab data

This part performs ‘model segmentation’ on a horseshoe crab dataset in Agresti (2012), to
showcase an application of CRL. The response variable is the number of male crabs residing
near a female crab’s nest, denoted by satellites, ranging from 0 to 15. The dataset records the
number of satellites for 173 female horseshoe crabs in vector y, as well as some covariates in
X , such as width, colour, weight and the intercept. Here, width refers to the carapace width
of a female crab, measured in centimetres; colour has several categories from light to dark,
and darker female crabs tend to be older than lighter-coloured ones. Following Agresti, we
removed some redundant and irrelevant predictors and used width and a dummy variable dark to
model satellites. Fitting a simple regression model to the overall data gives −10+0.5⋅ width −0.4⋅
dark.

An interesting question in statistical modelling is to study the possible existence of
latent ‘sub-populations’, across which predictors have different coefficients. To this end, we
re-characterize the problem using a trace regression (Koltchinskii et al., 2011):

yi ∼ ⟨Xi,B⟩, i = 1, … ,n (39)

where B ∈ Rn×p is a matrix of unknowns, and Xi ∈ Rn×p has all rows zero except the ith row,
which is equal toX[i, :]. For the horseshoe crab data, the 173 rows ofmatrixB give sample-specific
coefficient vectors, and the model is clearly overparameterized. CRL helps to estimate the coeffi-
cientmatrix and identify a small number of sub-models. After running the optimization algorithm
and parameter tuning, the whole sample is split to two sub-groups (q = 2). The model on the first
subset (117 observations) is

model 1: − 9.6 + 0.4 ⋅ width − 0.5 ⋅ dark, (40)

1Also available at https://ani.stat.fsu.edu/~yshe/code/CRL.zip

https://ani.stat.fsu.edu/~yshe/code/CRL.zip
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while on the second subset (56 observations), we get

model 2: − 12 + 0.7 ⋅ width + 2.1 ⋅ dark. (41)

The two resulting models are quite different. For example, for every 1-cm increase in width,
Equation (40) predicts an increase of 0.4 in the number of satellites, while Equation (41) predicts
an increase of 0.7, and the p-values associated with the two slopes are both low (<3e-4). Also,
notice the positive sign of the coefficient estimate for dark in Equation (41).

To getmore intuition of the two detected sub-populations, we built a decision tree using CART
(Breiman et al., 1984), which has a pretty simple structure: the prediction outcome is the second
sub-population if

(a) satellites ≥ 4 and (b) width < 28.7,

and the first if either condition is violated. Therefore, for the group of female crabs that
have at least four satellites but do not yet have an extremely large carapace in width,
Equation (41) states that being dark is actually a beneficial factor in attracting more
satellites.

5.2 Newsgroup data

The 20 newsgroup dataset, available at http://ftp.ics.uci.edu, contains about 18k documents
falling into 20 binary categories which we treat as responses. The feature matrix records
the occurrence information of a large dictionary of words. We chose p = 200 words at
random and used n = 2000 documents for training and the remaining for test. On this
dataset, CRL produced q = 50 word groups and constructed r = 16 factors. A prediction
error comparison can be made using the test data. The classification accuracy of an SVM
trained on the original 200 words is 40.8%. Using only the 16 CRL factors improves the rate
to 45.6%, while a LASSO model with 16 selected words only reaches an accuracy rate of
31.30%.

Next, we study the interpretability of the CRL model. Figure 2 plots the coefficients for three
clusters for illustration purposes. Note that we did not use any available word groups from the
literature, which may or may not be useful for modelling the responses here.

First, cluster 14, composed of words bitmap, format, graphics and image, shows a single large
coefficient in response to category 2. This is sensible, as the documentation shows that the
category corresponds to computer graphics.

Cluster 37 contains two words only, hockey and nhl. This group has two big coefficients
in magnitude, +2.25 and −1.05 for the categories of hockey and baseball respectively. So
the occurrence of these two words seems helpful for differentiating the two related sport
categories.

Finally, let us turn to cluster 11 which consists of 42 words. All its coefficients are pretty small,
varying between −0.02 and 0.01 for different responses. A careful examination of its composition
explains the mild effects: almost all are the so-called ‘stop words’, such as the, very and yours, and
removing this cluster gave almost identical results. CRLwas able to capture these essentially irrel-
evant features and group them together. To sum up, CRL contributes as a beneficial complement
to conventional variable selection.

http://ftp.ics.uci.edu
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Cluster 37: 'hockey', 'nhl' Cluster 14: 'bitmap', 'format', 'graphics', 'image' Cluster 11: 'the', 'your'... (42 words)

F IGURE 2 Newsgroup data: the coefficients of some word clusters obtained by clustered reduced-rank
learning in response to the 20 categories [Colour figure can be viewed at wileyonlinelibrary.com]

6 CONCLUSIONS

Many high-dimensional methods adopt the ‘bet on sparsity’ principle (Hastie et al., 2009), but in
real multi-response applications, statisticians often face ‘dense’ problems with such a large num-
ber of relevant features that variable selectionmay be ineffective. This paper proposed a clustered
reduced-rank learning framework to build a predictive and interpretable model through feature
auto-grouping and dimension reduction.

The joint matrix regularization formulation poses intriguing challenges in both theory and
computation. We provided universal information-theoretical limits to reveal the intrinsic cost of
seeking for clusters, as well as the benefit of accumulating a large number of response variables
in multivariate learning. The obtained error rates are strikingly different from those assuming
sparsity. Moreover, we proved that CRL, unlike the class of methods based on pairwise-difference
penalization, achieves the minimax optimal rate in some common scenarios. The remarkable
fact that the CRL estimators need not be global minimizers but just fixed points in some regular
problems paved the way for the design of an efficient optimization algorithm in the nonconvex
setup. Furthermore, a new information criterion, along with its scale-free form, was proposed
to address cluster and rank selection. Overall, our new method is as interpretable as variable
selection, and is advantageous when the numbers of relevant features and irrelevant features are
of the same order, or when the number of responses is greater than the number of features up to
a multiplicative constant.

http://wileyonlinelibrary.com


SHE et al. 931

CRL can be extended to tensors, and one possible application is model segmentation in a
multi-task setting. For example, givenY = [ỹ1, … ỹn]T ,X = [x̃1, … x̃n]T and an unknown order-3
tensorB ∈ Rp×m×n, we can fit amodel ỹTi ∼ x̃Ti B∶∶i (1≤ i≤ n) by enforcing low rank inB and equi-
sparsity along its third dimension. This can be applied to heterogeneous populations. Moreover,
our algorithm often shows a linear convergence rate for small q and r, which deserves further
study. Finally, to reduce the search cost (thereby the overall error rate), one possible way is to limit
the min∕max cluster size; a new form of regularization (convex or nonconvex) that guarantees
both interpretability and efficiency is an interesting topic that merits future research.

ACKNOWLEDGEMENTS
The authors thank the editor, associated editor and three anonymous referees for suggestions
that significantly improved the paper. We also thank Eric Chi, Fangyun Wei, Zhisheng Zhong
and Pranay Tarafdar for helpful discussions on some related topics and assistance in some real
data analysis. The first author is particularly grateful to Art Owen for his valuable comments and
encouragement. The work is partially supported by the National Science Foundation.

ORCID
Yiyuan She https://orcid.org/0000-0002-5110-3179

REFERENCES
Agresti, A. (2012) Categorical data analysis. Wiley series in probability and statiscs. Hoboken: Wiley.
Bachem,O., Lucic,M., Hassani, S.H. &Krause, A. (2016) Fast and provably good seedings for K-means. In: Proceed-

ings of the 30th international conference on neural information processing systems, NIPS’16. Curran Associates
Inc., pp. 55–63.

Bickel, P.J., Ritov, Y. & Tsybakov, A.B. (2009) Simultaneous analysis of Lasso and Dantzig selector. The Annals of
Statistics, 37, 1705–1732.

Bregman, L. (1967) The relaxation method of finding the common point of convex sets and its application to the
solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics,
7(3), 200–217.

Breiman, L., Friedman, J., Stone, C. & Olshen, R. (1984) Classification and regression trees. Monterey, CA: Taylor
& Francis.

Bunea, F., She, Y. & Wegkamp, M. (2011) Optimal selection of reduced rank estimators of high-dimensional
matrices. The Annals of Statistics, 39, 1282–1309.

Candès, E.J. & Plan, Y. (2011) Tight oracle bounds for low-rankmatrix recovery from aminimal number of random
measurements. IEEE Transactions on Information Theory, 57(4), 2342–2359.

Candès, E. & Tao, T. (2007) The Dantzig selector: satistical estimation when p is much larger than n. The Annals
of Statistics, 35(6), 2313–2351.

Chi, E.C. & Lange, K. (2015) Splitting methods for convex clustering. Journal of Computational and Graphical
Statistics, 24(4), 994–1013.
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