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ABSTRACT: We report the development of an open-source
experimental design via Bayesian optimization platform for multi-
objective reaction optimization. Using high-throughput exper-
imentation (HTE) and virtual screening data sets containing high-
dimensional continuous and discrete variables, we optimized the
performance of the platform by fine-tuning the algorithm
components such as reaction encodings, surrogate model
parameters, and initialization techniques. Having established the
framework, we applied the optimizer to real-world test scenarios for
the simultaneous optimization of the reaction yield and enantioselectivity in a Ni/photoredox-catalyzed enantioselective cross-
electrophile coupling of styrene oxide with two different aryl iodide substrates. Starting with no previous experimental data, the
Bayesian optimizer identified reaction conditions that surpassed the previously human-driven optimization campaigns within 15 and
24 experiments, for each substrate, among 1728 possible configurations available in each optimization. To make the platform more
accessible to nonexperts, we developed a graphical user interface (GUI) that can be accessed online through a web-based application
and incorporated features such as condition modification on the fly and data visualization. This web application does not require
software installation, removing any programming barrier to use the platform, which enables chemists to integrate Bayesian
optimization routines into their everyday laboratory practices.

■ INTRODUCTION
Reaction optimization is essential to synthetic chemistry.
Typically, an optimization campaign requires the exploration
of reaction conditions consisting of multiple categorical and
continuous reaction variables, such as catalyst, additive,
solvent, temperature, etc. In a synthetic chemistry laboratory,
a common optimization strategy involves searching the
literature for similar reactions to select components that are
anticipated to give a higher chance of success, testing one
factor/variable at a time (OFAT or OVAT) to isolate the effect
of a single component, and studying the structure−activity
relationship to predict better conditions. This approach has
served chemists well for reaction optimization, but it neglects
interactions between variables that are essential in searching
for the global optimum.
Another viable strategy to determine the optimal conditions

is to evaluate all possible combinations of the search space. For
example, recent advances in high-throughput experimentation
(HTE) have allowed chemists to rapidly screen up to
thousands of reactions in parallel.1,2 However, the number of
possible reaction condition configurations scales exponentially
as reaction variables vary from tens to thousands of
components. As a result, given limited time and material
resources, evaluating the entire condition space is often
inefficient from an economic and environmental standpoint.

The simultaneous improvement of multiple reaction
objectives adds another layer of complexity to the existing
multidimensional challenge in reaction optimization.3 In fact,
many optimization problems in chemistry, both in academia
and the chemical industry, require simultaneous optimization
of two or more reaction objectives.4 Examples of these
objectives are yield, selectivity (regio-, site-, enantio-, chemo-),
cost, environmental sustainability, and properties of products.
An example of multi-objective optimization in chemistry is
shown in Figure 1A.5 In many cases, there is no single solution
to multi-objective optimizations such as this one. Instead,
locating a set of nondominated optimal conditions, or the
Pareto front, requires balancing the tradeoffs in the objectives.6

In other words, the improvement of one objective is sometimes
only possible at the expense of other objectives, which makes
the identification of global maxima in a condition search space
much more challenging.
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In the last decade, data science and machine learning
methods have been applied to address numerous challenges in
synthetic chemistry, such as multistep synthetic planning,7−9

prediction of reaction outcomes,10,11 automated synthesis,12−14

and drug design and discovery.15,16 There have also been
important advances in applying machine learning methods to
reaction optimization,17,18 building off of data science tools
such as partial or full factorial design of experiments
(DOE).19−22 Recently, our group developed experimental
design via Bayesian optimization (EDBO), a platform for
Bayesian reaction optimization for chemical synthesis (Figure
1B).18 Bayesian optimization (BO) is a global optimization
algorithm that can interpolate response surfaces by evaluating
only a small subset of total possible combinations, thus
minimizing requirements to generate a large number of
experimental observations.23,24

However, EDBO can only perform single-objective opti-
mization, and limited effort thus far has been reported for the
application of active learning strategies like BO to the
simultaneous optimization of multiple objectives in synthetic
chemistry.25−27 Aspuru-Guzik and co-workers developed
Chimera2 and Gryffin,28 packages for multi-objective opti-
mization that combine the concepts of a priori scalarizing with
lexicographic approaches. The same group, in collaboration

with Hein, Sigman, and Merck, later demonstrated its utility in
autonomous process optimization of stereoselective Suzuki−
Miyaura coupling.29 The group of Jensen and Jamison also
applied multi-objective BO to a computer-proposed multistep
synthesis of small molecule sonidegib on an automated robotic
flow platform.30 However, these tool are less accessible to
nonexperts and lack valuable functionality such as the ability to
visualize output predictions and modify condition space during
the course of an optimization campaign. Recently, the Vlacho
group developed NEXTorch,31 a toolkit that implements BO
routines through PyTorch.32 However, its application in multi-
objective optimization was only demonstrated using a search
space consisting of continuous variables.
These important advances notwithstanding, for these tools

to be integrated with the current synthetic chemistry practices,
it is essential to develop machine learning surrogate models
that are not only tuned, validated, and tested on synthetic
experimental chemistry data but also provide improved
accessibility and functionality tailored to reaction optimiza-
tion.33 For example, enhancements related to augmentation of
the condition space on the fly (adding or removing reaction
condition configurations), data visualization, and access to the
predictive estimates of the surrogate models can enable the
adoption of Bayesian tools in chemistry. Furthermore, the

Figure 1. (A) Example of a multi-objective optimization problem in chemistry. R1 = pyrrole fragment, R2 = imidazole fragment or Br.5 (B) Previous
workflow: single-objective experimental design via Bayesian optimization (EDBO). (C) Current workflow: multi-objective reaction optimization
framework using EDBO+ through its web application.
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requirement of prior coding knowledge is a major obstacle for
most synthetic chemists to apply BO in their day-to-day
laboratory activities.
Herein, we report EDBO+, an open-source multi-objective

active learning platform based on Bayesian theory, and its
accompanying web application (https://www.edbowebapp.
com/) (Figure 1C). Several features have been incorporated
into EDBO+ including the ability to modify the reaction
condition space during an optimization campaign (see the
Supporting Information) and the inclusion of visualizations of
model predictions and uncertainties. The online platform can
be accessed through a web browser, removing the requirement
for any software installation, which would allow users with
limited programming experience to adopt single- and multi-
objective BO. In this work, we use HTE and virtual screening
data sets to optimize the performance of EDBO+ by fine-
tuning the algorithm components such as reaction encodings,
surrogate model parameters, and initialization techniques. We
then apply EDBO+ to a real-world test case�a Ni/
photoredox-catalyzed enantioselective cross-electrophile cou-
pling of styrene oxides with two different aryl iodide substrates.

■ RESULTS AND DISCUSSION
General Workflow. The general workflow for EDBO+

begins with input from the synthetic chemist on identifying (a)
the reaction condition space (e.g., catalysts, temperatures, and
concentrations) that will be explored in the optimization
campaign, (b) the featurization for categorical variables (i.e.,
mathematical representation of the reaction components), (c)
the objectives and accompanying thresholds to be optimized,
and (d) the number of experiments to be evaluated in parallel
per round (batch size). This initial search space can be
modified at any stage of the optimization (expanding or
reducing the number of components to consider). Once these
are defined, EDBO+ will suggest an initial set of experimental
conditions (following an initialization method, see the
Optimizer Development Section). After completing the
suggested experiments in the laboratory, the chemist
introduces the outputs of these experiments (e.g., yields and
selectivities) back into the platform. EDBO+ builds a
regression model using the experimental data and predicts
the target objectives for all the remaining untested conditions
included in the reaction condition space. Next, an acquisition
function ranks the untested conditions based on model
predictions and recommends the next set of conditions for
experimental evaluation to close the active learning cycle.
Iterations of the active learning cycle will increase the accuracy
of the regression predictions by providing EDBO+ with more
experimental observations, ultimately improving the predic-
tions of the surrogate model. This workflow can be executed
through either a command-line interface or a web-based
application for single- and multi-objective optimizations.
Optimizer Development. To optimize the performance

of EDBO+ (e.g., initialization methods, featurization techni-
ques, and acquisition function), we selected two high-
dimensional screening data sets: (a) Pd-catalyzed Suzuki−
Miyaura coupling34 and (b) Pd-catalyzed C−H arylation18 as
ground truth. The condition space for these two data sets
consists of a combination of continuous (e.g., temperature and
concentration) and categorical (e.g., solvent, base, and ligand)
variables. The Pd-catalyzed Suzuki−Miyaura cross cou-
pling35,36 data set involves the reaction of indazole-containing
boronic acid and 6-bromoquinoline, in which the objectives are

to maximize the conversion and selectivity simultaneously
(Figure 2A).34 Heteroaromatic biaryls are attractive scaffolds

due to their prevalence in bioactive molecules,37,38 but their
preparation via cross coupling is often accompanied by
homocoupling, protodeboronation, and protodehalogenation,
as captured in the selectivity objective.39−41 This data set
consists of 352 data points, including 11 ligands, 4 solvents,
and 8 bases.
The second HTE data set consists of 1728 total conditions

(12 ligands, 4 solvents, 4 bases, 3 temperatures, and 3
concentrations) for the Pd-catalyzed C−H arylation of N1-
methyl-1H-imidazole-4-carbonitrile and 1-bromo-2-fluoroben-

Figure 2. Overview of the Pd-catalyzed Suzuki−Miyaura coupling
data set. (A) Schematic representation of the reaction and its
components along with the desired and side products. aconversion =
(total product)/(total product + remaining starting material)*100%,
bselectivity = (desired product)/(total products)*100%. (B) Ground
truth scatter plots for the two objectives in this reaction (product
conversion and selectivity) color-coded by (left) ligand and (right)
solvent. The dashed gray lines show the connections for the set of
“noninferior” solutions in the objective space (Pareto optimal
solutions). (C) Experimental conditions for labeled experiments in
(B).
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zene (see ref 18). In this case, we set the optimization goal to
be finding reaction conditions that maximize reaction yield
while minimizing the overall cost of the reaction. To extend
the range of applicability, we also tested the performance of
EDBO+ against a virtual-experimentation data set built for
nucleophilic substitution reactions,42 which exclusively con-
tains continuous variables (see the Supporting Information).
Using all three data sets, we found that optimal optimization

performance can be achieved using a Gaussian process
surrogate model and q-Expected HyperVolume Improvement
(q-EHVI) as the acquisition function (see the Supporting
Information).43 q-EHVI has been shown to maximize the
hypervolume of predicted experimental outputs with respect to
the Pareto and is intrinsically formulated to be efficient for
batch sampling. Independent of the featurization methods
used, q-EHVI is found to be optimal when compared to other
common acquisition functions such as upper confidence bound
(UCB) and ε-greedy (see the Supporting Information). It
requires fewer experiments to find the optimal values and
achieves the highest rate of hypervolume expansion at the end
of the optimization campaign. The hypervolume indicator is
one of the most used set-quality indicators in multi-objective
optimization problems since it allows evaluation of the
performance of optimizers by considering the diversity, spread,
and proximity of the collected experimental values to the
Pareto front.
Next, we compared the performance of EDBO+ for the

Suzuki−Miyaura data set using different featurization methods:
(a) one-hot encoding (OHE), which creates a new variable for
each categorical feature, (b) quantum mechanics-based
features from density functional theory (DFT) calculations,
and (c) chemical informatics-based features using Mordred
featurization.44 To visualize the distribution of the objective
values for this reaction, we color-coded the data points in
Figure 2B according to the two categorical variables in this data
set: ligands (left panel) and solvents (right panel). Interest-
ingly, we observe that no single ligand dominates the Pareto
front (see Figure 2B,C). From an algorithm design standpoint,
this allows us to test the performance of EDBO+ on data that
can be represented either as discrete or continuous, depending
on the featurization. On the other hand, methanol (MeOH)
appeared to populate the Pareto front as the optimal solvent
for this transformation.
For each of the three featurization methods, we completed

five optimization campaigns starting from different initial
experimental conditions. First, we analyzed the distribution of
conversion and selectivity values at each step of the
optimization campaigns (Figure 3A). The left panels in Figure
3A show the evolution of the objective values in each of the
five optimization runs, and the right panels indicate the density
of the objective values after completing these campaigns (after
30 experiments). The density plots obtained using the random
sampling (Figure 3A, in green) show that, in the absence of a
predictive model, there is a high probability of finding low yield
and selectivity values in this data set. In contrast, the
probability of obtaining optimal conditions (with higher
yield and selectivity) is increased when using EDBO+ sampling
and DFT featurization (see blue density plots in Figure 3A).
We observe this trend for all three featurization methods and
in all three data sets (see the Supporting Information).
To obtain a deeper understanding of the algorithm’s

performance when using different featurization methods, we
measured the hypervolume covered by the collected

Figure 3. Optimizer performance as a function of the featurization
method. (A) Conversion and selectivity values at each step of the
optimization campaigns when using DFT featurization (in blue) and
random sampling (in green) are shown in the left panels, while the
right panels show their corresponding distribution of conversion and
selectivity over the 30 experiments collected for each run. Different
color shades are used to distinguish the five different optimization
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experimental values at each optimization step (Figure 3B). In
addition, we tracked the minimum distance from any collected
experimental output to the high-tradeoff experimental value (in
the knee region of the Pareto front, see ref 45) as well as the
maximum values for conversion and selectivity collected at
each step of the optimization. We found that DFT-encoded
features provide slightly improved performance over other
featurization methods, suggesting experimental conditions with
optimal conversion and selectivity values (above 90%) in
earlier stages compared to the optimizations using OHE and

Mordred featurization. This is consistent with the single-
objective optimization results previously obtained with
EDBO.18 We also note that the DFT featurization displays
the lowest variance (difference between the upper and lower
bounds at each step, highlighted by the shaded regions in
Figure 3B), showing its robustness against the selection of the
initial experiments.46

Another important consideration in the success of
optimization is the choice of the initial conditions to start
the optimization campaign. We illustrate the impact of the
initialization method using the Pd-catalyzed C−H arylation
data set (see ref 18). The values for yield and cost for this HTE
data set are presented in Figure 4A. We tested the performance
of the algorithm when the optimization campaigns are
initialized using the centroidal Voronoi tessellation (CVT),
Latin hypercube sampling (LHS), and random sampling
methods. We assessed the performance of the different
methods and batch sizes using the dominated hypervolume

Figure 3. continued

campaigns. (B) Normalized hypervolume, minimum distance to
tradeoff experimental values, highest conversion, and selectivity as a
function of the collected experimental values, averaged over five runs
with seeded initialization. The solid lines indicate the average, and the
shaded areas represent the upper and lower values at each stage of the
optimization campaign.

Figure 4. Model performance for the Pd-catalyzed C−H arylation data set. (A) Overview of the objective (yield and cost) values; the dashed lines
highlight the Pareto front. The different ligands are color-coded, while different symbols are used to distinguish between solvents. (B)
Hypervolume covered by the experimental values collected at each stage of the optimization campaign when using different initialization methods
and batch sizes. (C) Mean absolute error (MAE) for the different initialization methods and batch sizes. (D) Distribution of yield (in blue) and
cost (in red) values at each optimization step when initializing the optimizations using the different sampling methods.

Journal of the American Chemical Society pubs.acs.org/JACS Article

https://doi.org/10.1021/jacs.2c08592
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX

E

https://pubs.acs.org/doi/10.1021/jacs.2c08592?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c08592?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c08592?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c08592?fig=fig4&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.2c08592?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


metric (Figure 4B). On average, the LHS and CVT methods
display a higher rate of hypervolume expansion and lower
mean absolute error (MAE) than the random sampling
method (Figure 4B,C).
In Figure 4D, we show the distribution of the yield and cost

values of the experimental conditions for the different
initialization methods using three experiments per round. A
similar sampling pattern is found for all initialization methods:
(1) an exploratory phase in the first rounds of the
optimizations, collecting a wide range of objective values,
followed by (2) exploitation behavior, with a narrow
distribution of objective values closer to the optimal regions
(see Figure 4D). This indicates that the algorithm can suggest
optimal values starting from a variety of initial experiments,
showing that the combination of the q-EHVI acquisition
function with the Gaussian Process Regression (GPR)
hyperparameters provides a good balance between exploration
and exploitation. In addition, we have also tested the possibility
of reducing the number of dimensions that are varied in each
round by using the top-priority experimental conditions
suggested by EDBO+ to constrain the search space. This
approach could facilitate simpler experimental setups while still

making use of the q-EHVI acquisition function in EDBO+ (see
the Supporting Information).

Application of EDBO+. Having established an optimized
framework for EDBO+ on the HTE data sets, we sought to
apply EDBO+ to a real-world test case for the simultaneous
optimization of multiple objectives. Recently, our lab
developed an enantioselective cross-electrophile coupling of
styrene oxides and aryl iodides via the merger of nickel and
photoredox catalysis.47 This transformation generates enan-
tioenriched 2,2-diarylalcohols, which could be readily derivat-
ized into chiral 1,1-diarylalkanes, an important medicinally
relevant motif found in pharmaceuticals such as tolterodine,
sertraline, and podophyllotoxins.48−50 This reaction presented
an ideal test case of EDBO+ for the optimization of both yield
and enantioselectivity simultaneously as a yield−ee tradeoff
presented a hurdle in our previous optimization campaign. In
fact, the tradeoff between yield and stereoselectivity has been a
longstanding challenge in enantioselective reactions, yet the
two objectives must be optimized concertedly. In this study,
we selected two examples to evaluate: the first example
involves the model substrate, styrene oxide 1 and 4-
iodobenzoate 2, and the second is with a challenging heteroaryl

Figure 5. Applications of EDBO+: Ni/photoredox-catalyzed enantioselective cross-electrophile coupling of styrene oxides and aryl iodides. DFT
featurization for the ligand and OHE for other variables, CVT initialization, and three experiments per round. Gray spots show data points collected
using previously optimized conditions, and the shades of the blue spots show the progress of the optimization (darker spots represents data points
collected later in the campaign). The inset plot in (A) shows the average expected improvement values for yield and ee at each round of the
optimization.
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iodide, 2-fluoro-5-iodopyridine 4, from the scope studies. The
reaction condition space that we selected comprised 3 nickel
precatalysts, 16 bioxazoline and biimidazoline ligands, 2
additives, 3 solvents, 3 concentrations, and 2 light sources to
give a total space of 1,728 possible configurations.
We carried out multi-objective Bayesian optimization using

DFT-encoded features for the ligands, running three experi-
ments in parallel per batch, with initial experiments selected
using CVT initialization. The optimizer surpassed the
benchmark result within seven rounds of optimization (24
reactions), affording an improved yield of 80% at the same
enantioselectivity (91% ee, Figure 5A). In comparison, the
previously reported conditions for the synthesis of 3 were
identified via a one-factor-at-a-time (OFAT) method and
afforded 70% yield and 91% ee after roughly 500 experiments.
However, it is important to note that this comparison between
the number of experiments to obtain the optimal result does
not take into consideration that the optimal ligand L10 was
not available during the earliest phases of our human-driven
optimization campaign. Nevertheless, this example showcases
the potential of EDBO+ to identify conditions close to or at
the Pareto front and outperforms the previously human-drive
optimization campaign by evaluating only a small subset of the
total possible configurations.
In reaction discovery, the optimal conditions identified for

the model substrate are often applied to a broad range of
substrates to evaluate the generality of the method. However,
the optimal conditions for one substrate do not always
translate to more complex or different variants. In our previous
study, the conditions optimized for the model reaction to
generate 3 afforded 49% yield and 76% ee for the coupling
between styrene oxide 1 and pyridyl iodide 4.48 Without
pretraining EDBO+ with prior experimental data, we
optimized the reaction of 2 within the same condition space.
We found that within 4 rounds of optimization (15 reactions),
EDBO+ identified conditions that afforded higher yield and
enantioselectivity (59% yield, 77% ee, Figure 5B). These
conditions are unique in that they feature a different ligand
(biimidazolines L10 and L11 feature the same isopropyl
substituents but vary in the aniline moiety), solvent, nickel
precatalyst, solvent, concentration, and light source when
compared to the previously optimized condition. This
presented a case where Bayesian optimization learned about
interactions between variables that would not typically be
identified in a OFAT optimization campaign.
Optimizer Features and User Interface. Given the

potential utility of this multi-objective optimization tool for
reaction development efforts, we wanted to make the algorithm
more accessible to practicing synthetic chemists. To this end,
we developed EDBOApp (https://www.edbowebapp.com), a
web application supported by a cloud-computing platform. No
prior programming or coding experience is required to use the
web application.
We also incorporated a number of functions into the

workflow to make EDBO+ amenable to human-in-the-loop
intervention and decision-making. First, the ability to modify
the condition space during an optimization campaign allows
users to alter the search space by either adding or removing
reaction components or dimensions. To illustrate this feature,
we performed optimization of the Pd-catalyzed C−H arylation
data set on a reduced ligand space, followed by expansion of
the ligand space, and compared this optimization campaign to
optimization starting with the full search space (see the

Supporting Information). Second, we added a data visual-
ization tool that shows the objective predictions and
uncertainties across all conditions throughout the optimization.
This function enables chemists to track the expected
improvement (EI) of the target objectives at any stage of the
optimization and informs when to terminate the optimization
campaign. For instance, the small average EI of yield and ee
(∼1%) toward the end of the optimization for the Ni/
photoredox coupling with styrene oxide 1 and aryl iodide 2
indicates significant diminishing return to performing addi-
tional experiments (see Figure 5a, inset).
To improve the functionality and adaptability of the

framework, we also incorporated the ability to select different
batch sizes based on constraints in experimental set up and
accessibility of material resources. Thresholds can be applied
to the objectives to prioritize one reaction objective over the
others or to focus on specific regions of the Pareto front.
Finally, previous experimental data can be imported into
EDBO+ to pretrain the surrogate model, giving the user a head
start in the optimization process. These features, available in
the EDBO+ package via command-line or graphic user
interface, are intended to provide flexibility as each individual
or process has distinct requirements.

■ CONCLUSIONS
We report the development of EDBO+, an open-source multi-
objective optimization platform, and an accompanying web
application that allows chemists to apply Bayesian optimization
methods into everyday synthetic chemistry practices. The
framework relies on building a surrogate machine learning
model by combining the predictive estimates with acquisition
functions that balance the exploration/exploitation tradeoff of
single- and multi-objective optimizations. EDBO+ was tested
on a selection of data sets that include both categorical and
continuous reaction dimensions to identify surrogate model
configurations that could be broadly applicable to optimization
problems in synthetic chemistry. In a real-world test case of a
Ni/photoredox-catalyzed enantioselective cross-electrophile
coupling of styrene oxides with aryl iodides, the optimizer
identified conditions that surpassed the originally reported
conditions within 15 and 24 experiments (for two different aryl
iodide substrates) among a total of 1728 possible conditions.
Further investigations will focus on exploring the use of
recommender systems for the expansion of the reaction
condition space and its application in autonomous process
optimization.
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