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ABSTRACT
Using precise random matrix theory tools and the Kac–Rice formula, we provide sharp O(1) asymptotics for the average number of deep
minima of the (p, k) spiked tensor model. These sharp estimates allow us to prove that, when the signal-to-noise ratio is large enough, the
expected number of deep minima is asymptotically finite as N tends to infinity and to establish the occurrence of topological trivialization by
showing that this number vanishes when the strength of the signal-to-noise ratio diverges. We also derive an explicit formula for the value of
the absolute minimum (the limiting ground state energy) on the N-dimensional sphere, similar to the recent work of Jagannath, Lopatto, and
Miolane [Ann. Appl. Probab. 4, 1910–1933 (2020)].

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0070300

I. INTRODUCTION
It is now well established that random smooth functions of many variables, and the landscapes they define, may be topologically complex.

This complexity may be described through topological quantities, such as the Betti numbers of their level sets, or by the number of their critical
points, which both may happen to be exponentially large (in the number of variables). These landscapes could, for instance, be the energy
or Hamiltonian landscape in statistical physics of disordered media. This question was introduced some time ago for the simplest example
of such landscapes, i.e., the Hamiltonian of spherical spin-glasses.3,9,10 The topological complexity of random landscapes is also relevant for
certain high-dimensional statistical estimation tasks, for instance, the landscape defined by natural empirical risks.20 The mathematical tools
to study these complexity questions are naturally given by the Kac–Rice formula, which translate the question into a randommatrix problem.

We study here the case of the (p, k) spiked tensor model, introduced in Ref. 24 and defined more precisely below. This function is simply
the restriction to the sphere of the sum of a random Gaussian homogeneous polynomial of N variables and of degree p, which is probably the
simplest example of a complex random landscape, and of a degree kmonomial, which is obviously not a complex function.

More precisely, let SN−1(
√
N) = {σ ∈ RN : ∑N

i=1σ
2
i = N} be the N-sphere of radius

√
N and fix v0 ∈ SN−1(

√
N). Given integers p, k ≥ 1,

λ ∈ R, let

HN(σ) =
1

N
p−1
2

∑
1≤i1 ,i2 ,...,ip≤N

Ji1 ,i2 ,...,ipσi1σi2 . . . σip −
λN
k
(
σ ⋅ v0
N
)
k
, (1.1)

where σ = (σ1, . . . , σN) ∈ SN−1(
√
N) and (Ji1 ,i2 ,...,ip)1≤i1 ,...,ip≤N are independent standard Gaussian random variables. We call HN the

Hamiltonian of the (p, k) spiked tensor model.
Note that, when p = k ≥ 3, this function is simply the log-likelihood function for the classical spiked tensor model whose complexity has

been studied in Ref. 7, and then, the parameter λ has a natural interpretation related to the signal-to-noise ratio and the sample size. When
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p = 1, this function is the Hamiltonian of a pure spherical p-spin in a magnetic field, and λ is then the strength of the magnetic field (up to a
normalization).

Without loss of generality, we refer to the direction of v0 as the North Pole of the model, and we let

m(σ) = σ ⋅ v0/N ∈ [−1, 1]

be the overlap of σ with the signal v0. The aim of this paper is to investigate the landscape of the random functionHN around its ground state
energy

LN := min
σ∈SN−1(

√
N)
HN(σ)

and the overlap between its ground state and the signal,

mN := (argminσ∈SN−1(√N)HN(σ)) ⋅ v0.

For each λ > 0, define

mλ := min
⎧⎪⎪
⎨
⎪⎪⎩

1, (
(p − 2)

√
p

λ
√
p − 1

)

1
k ⎫⎪⎪
⎬
⎪⎪⎭

. (1.2)

As illustrated in the transformative work of Ros et al.24 (see also Secs. 2.3 and 2.4 in Ref. 7), in the “low-latitude” region, ∣m∣ ≤ mλ, HN has
a rugged energy landscape, with exponentially many critical values in N, resembling the spherical p-spin spin glass models,2 while in the
“high-latitude” region, ∣m∣ ≥ mλ, it resembles a convex potential. The study of phase transitions in the topology of level sets of HN and limit
theorems formN and LN have drawn much attention recently; see, for instance, Refs. 11, 18, 22, and 23.

Here, we focus on providing a better understanding of the model in the presence of a strong signal, that is, when λ in (1.1) is large. In this
case, low energy level sets of Hamiltonian HN will go through a phenomenon called “topology trivialization,” a term pioneered by Fyodorov
and Le Doussal16 and discussed in Fyodorov’s remarkable work.14,15 In short, for λ large, one does not expect exponentially many critical
values of HN with energy near the ground state energy LN . Instead, as λ increases, the location of ground state energy starts to align with the
signal (the North Pole in Fig. 1). Furthermore, near the ground state energy, the landscape should only have a finite number of critical values.
In this paper, we confirm the existence of such a phase (the trivialization phase) for the (p, k)-spiked model.

We will now describe our results. Let ∇ and ∇2 denote the spherical gradient and Hessian with respect to the standard metric on
SN−1(

√
N). For open sets M ⊆ [−1, 1] and E ⊆ R, we denote the total number of critical points of HN that have overlap with v0 in M and

whose critical values are in NE by
CrtN(M,E) := ∑

σ∈SN−1(
√

N),∇HN(σ)=0
1{σ⋅v0/N∈M} ⋅ 1{HN(σ)/N∈E}

FIG. 1. The landscape of HN(σ) on SN−1. v0 is the North Pole, m = ⟨σ, v0⟩/N. The spikes around the equator represent numerous local maxima (minima) that are possibly
exponential in N in the “low-latitude” region ∣m∣ ≤ mλ, where mλ is defined in (1.2). When m ≥ mλ, there are only a few critical points on a parallel m = m∗.
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and the corresponding number of critical points of index l = 0, . . . ,N − 1 by

CrtN,l(M,E) := ∑

σ∈SN−1(
√

N),∇HN(σ)=0
1{σ⋅v0/N∈M} ⋅ 1{HN(σ)/N∈E}1{i(∇2HN)=l}.

Here, the index i(⋅) is the number of negative eigenvalues of the corresponding matrix. When l = 0, CtrN,0(M,E) counts the number of local
minima that have overlap with v0 inM and whose critical values are in NE.

Letm∗ := m∗(λ) be the largest solution of
λmk

√
p
=

m2
√
1 −m2

(1.3)

on (0, 1]. Suchm∗ exists when λ ≥ λ(1)(p, k) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

0, k = 1, 2,
¿
Á
ÁÀp
(k − 1)k−1

(k − 2)k−2
, k > 2.

. Set

x∗(λ) := −
λmk
∗

k
−

√

p(1 −m2
∗).

Our three main theorems explain the existence of the trivialization phase. In the first result, we provide sharp asymptotics of the average
number of critical values. For λ sufficiently large, they remain of constant order, not diverging with N. Furthermore, in this regime, all critical
values are, with probability going to one, local minima.

Theorem 1.1. LetM be an open interval of (−1, 1) and E be a bounded open interval on R such that

supE < −2
√

p − 1
p
− ∣

1
p
−
1
k
∣λ. (1.4)

There exists c > 0 such that for any λ ≥ c, there exists a constant C = C(λ, p, k) that does not depend onM and E such that

lim
N→∞

E[CrtN,0(M,E)] = lim
N→∞

E[CrtN(M,E)] =
⎧⎪⎪
⎨
⎪⎪⎩

C > 0 if x∗(λ) ∈ E andm∗(λ) ∈M,

0 otherwise.

Remark 1.2. The role of (1.4) is to make sure we are counting critical values at the bottom of the landscape, the region that want to study.
If we remove condition (1.4), critical values near zero (and of diverging order) will provide the main contribution of CrtN(M,R).

The constant C in Theorem 1.1 is explicit, and we can further consider its asymptotics when λ→∞.

Theorem 1.3. Let C(λ, p, k) > 0 be the constant given in Theorem 1.1. Then, for any p ≥ 3 and k ≥ 1,

lim
λ→∞

C(λ, p, k) = 1.

Theorem 1.3 confirms the existence of the trivialization phase for the (p, k) spiked tensor model. It is believed that as λ→∞, the
deterministic potential becomes stronger and the landscape should approach a convex potential with a unique minimum located exactly at
the signal vector v0; see Ref. 24. Closest to our setting is the recent work of Belius et al.,5 which deals with the mean number of critical points
for mixed spherical spin glass models with an external field.

Our third result verifies that indeed the ground state and the ground state energy align with the signal once λ is large enough.

Theorem 1.4. For any integers p ≥ 3 and k ≥ 1, there exists c > 0 such that for λ > c, the following holds:

lim
N→∞

1
N
mN = m∗(λ) almost surely (1.5)

and

lim
N→∞

1
N
LN = −

λmk
∗(λ)
k

−

√

p(1 −m2
∗(λ)) almost surely. (1.6)
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Aword of comment is needed here. Theorem 1.4 was first conjectured and proposed in the article of Ros et al.,24 where the authors studied
the number of local minima of HN via a replica theoretic approach. The above formulas are not expected to be true when λ is small (see Refs.
17 and 24 and Remark 1.8) for any choices of (p, k). In the case p = k, the (p, k) spiked tensor model has a log-likelihood interpretation as
tensor principle component analysis (PCA). This interpretation was used by Jagannath, Lopatto, and Miolane to derive asymptotic formulas
for the ground state energy for all values of λ. Theorem 1.4 is an extension of Theorem 1.2 in Ref. 18 for p ≠ q and λ sufficiently large, although
the method of the proof is different.

Let us now explain where Theorems 1.1, 1.3, and 1.4 come from. They will follow from the main technical contribution of this paper,
which is the derivation of O(1) asymptotics of E[CrtN (M,E)] in the large N limit. Exponential asymptotics of E[CrtN(M,E)] were
determined in Ref. 7 in the case k ≠ p. Define S̃p,k : (−1, 1) × (−∞,−

√
2)→ R as

S̃p,k(m, y) :=
1
2
log((1 −m2

)(p − 1)) +
2 − p
2p

y2 −
λmk

p

¿
Á
ÁÀ2(p − 1)

p
y −

λ2m2k−2

2p2
(p + (1 − p)m2

) − I1(−y), (1.7)

where

y = y(x,m) :=
px − (1 − p/k)λmk
√
2p(p − 1)

(1.8)

and

I1(z) = ∫
z
√

2

√
t2 − 2dt for z ≥

√
2, I1(z) =∞ for z <

√
2.

The next two results do not require any assumptions on λ.

Theorem 1.5. Let M be an open interval of (−1, 1) such that M̄ ⊂ (−1, 1) and E be a bounded open interval on R such that sup
E < −2

√
p−1
p − ∣

1
p −

1
k ∣λ; then, as N →∞,

E[CrtN,0(M,E)] =

√
2h(yo)(

√
p(1 −m2

o)
− 3

2 − λ(k − 1)mk−2
o J(mo, yo))

(
√
y2o − 2 − yo)p

√

∣∂yyS̃p,k(mo, yo)g′′(mo)∣
eNS̃p,k(mo ,yo)(1 + o(N)), (1.9)

where

h(y) = ∣
y −
√
2

y +
√
2
∣

1
4

+ ∣
y +
√
2

y −
√
2
∣

1
4

,

J(m, y) = exp
⎛
⎜
⎝
−
⎛
⎜
⎝

λ2

2p2
m2k−2

(p(1 −m2
) +m2

) +
λmky
2p

¿
Á
ÁÀ2(p − 1)

p

⎞
⎟
⎠

⎞
⎟
⎠
,

Ẽm :=
√

p
2(p − 1)

(E − λmk
(
1
p
−
1
k
)), ∀m ∈M,

yo := yo(mo), yo(m) = argmaxy∈ ¯̃Em S̃p,k(m, y),

and
mo := argmaxm∈M̄ g(m), g(m) = S̃p,k(m, yo(m)).

Theorem 1.5 naturally leads to the following corollary.

Corollary 1.6. LetM and E be the same as in Theorem 1.5; then,

lim
N→∞

1
N

logE[CrtN,0(M,E)] = sup
m∈M̄

sup
y∈Ẽm

S̃p,k(m, y). (1.10)
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Remark 1.7. The function Sp,k(m, x) := S̃p,k(m, y(x,m)) describes the exponential behavior ofE[CrtN(M,E)]with respect to the dimen-
sion N, and it is called the annealed complexity, a function of m ∈ [−1, 1] and x ∈ R such that for any Borel sets M ⊂ [−1, 1] and E ⊂ R,

sup
m∈Mo ,x∈Eo

Sp,k,0(m, x) ≤ lim inf
N→∞

1
N

logE[CrtN,0(M,E)]

≤ lim sup
N→∞

1
N
E[CrtN,0(M,E)] ≤ sup

m∈M̄,x∈Ē
Sp,k,0(m, x). (1.11)

We now mention one important remark. Looking at Theorems 1.1, 1.3, and 1.4, it is natural to ask how large λ needs to be so the model
is in the trivialization phase. This leads to the notion of a trivialization threshold, which we define as the real number λ∗ such that (1.5) and
(1.6) hold for all λ > λ∗ and fail for all λ < λ∗.

For the (p, k)-spiked tensor, the remark below provides partial information on λ∗.

Remark 1.8 (trivialization threshold). Recallmλ from (1.2). Let

λ(2)(p, k) = inf{λ ≥ λ(1)(p, k) : m∗(λ) ≥ mλ},

FIG. 2. Sp,k(m, x∗(λ))1m∈[0,mλ] with different values of p, k, and λ. The numbers in the legends are values of λ. In each of the panels and for each m ∈ [0, 1], the
values of Sp,k(m, x∗(λ))1m∈[0,mλ] decrease as λ increases. For p = 3, k = 1, λ(1)

= 0, λ(2)
= λtr = 1.732. For p = 3, k = 2, λ(1)

= 0, λ(2)
= λtr = 2.449. For p = 3, k = 3,

λ(1)
= λ(2)

= 3.464, λtr = 3.619. For p = 4, k = 3, λ(1)
= 4, λ(2)

= λtr = 4.243. (a) p = 3, k = 1. (b) p = 3, k = 2. (c) p = 3, k = 3. (d) p = 4, k = 3.
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and define

λtr = inf{λ ≥ λ(2)(p, k) : sup
0≤m≤mλ

Sp,k(m, x∗(λ)) ≤ 0 and (1.12)

Sp,k(m, x∗(λ))1m∈[0,mλ] is a decreasing function of λ on [λ
(2)
(p, k),∞)}. (1.13)

Our Proof of Theorem 1.4 shows that (1.5) and (1.6) hold for all λ > λtr , that is,

λtr ≥ λ∗.

We expect that the opposite inequality λtr ≤ λ∗ also holds, and therefore, λtr = λ∗. Indeed, we expect that (1.12) implies (1.13) and that (1.5)
and (1.6) fail for λ < λtr . Figure 2 shows a plot of the annealed complexity for various values of λ. For the spiked tensor model (p = k > 2), it
has been shown in Refs. 7 and 18 that λ(1) = λ(2) < λtr .

We finish this Introduction mentioning a few related results and a brief description of the rest of this paper. First, the study of models
such as the (p, k) spiked tensor along the direction of high-dimensional statistical inference was initiated by Montanari and Richard.22 For
the readers who are particularly interested in Tensor PCA and the spiked matrix-tensor model, we refer the reader to Refs. 18, 21, 22, and
24–26 and the references therein. A prototypical inference model called spiked matrix-tensor model, which is closely related to the case of
k = 2 and p ≥ 3, was extensively studied in Refs. 21, 25, and 26. In a recent paper by Maillard, Ben Arous, and Biroli, the complexity study
(using the replicated Kac–Rice approach) is extended to current machine learning models, such as random generalized linear models and
neural networks.

In Sec. II, we prove Theorem 1.5. We first show that the deep minima dominate the total number of critical points in Proposition 2.1.
This result allows us to transform the problem of computing the mean number of deep minima into a problem of computing the mean Euler
characteristic of level set for which we could use tools from random matrix theory to compute the characteristic polynomial of a deformed
Gaussian Orthogonal Ensemble (GOE).

In Sec. III, we prove Theorems 1.1 and 1.3 where we study the mean number of deep minima (minima near the bottom of the energy
landscape) and its asymptotic as λ→∞.

In Sec. IV, we analyze the ground state energy and prove Theorem 1.4. We first provide in Proposition 4.1 an upper bound of the ground
state energy by restricting to energies with fixed latitudem, a method that was used18 in the case of k = p. A matching lower bound is given in
Proposition 4.2 by exploring the supremum of the annealed complexity near the bottom of the energy landscape.

II. PROOF OF THEOREM 1.5
The (normalized) GOE of sizeN (denoted byWN) is a real symmetric randommatrix (Wij)1≤i,j≤N such that {Wij}1≤i≤j≤N are independent

zero mean normal random variables with E[W2
ij] =

1
N and E[W2

ii] =
2
N .

We will work with the rescaled Hamiltonian f on the unit sphere SN−1,

f (σ) :=
HN(
√
Nσ)

√
N

= − ∑
1≤i1 ,i2 ,...,ip≤N

Ji1 ,i2 ,...,ipσi1σi2 . . . σip −
λ
√
N

k
⟨σ, v̂0⟩k, (2.1)

where v̂0 := v0 ∈ SN−1. Then,
CrtN(M,E) = ∑

σ∈SN−1 ,∇ f (σ)=0
1{σ⋅v̂0∈M} ⋅ 1{ f (σ)/√N∈E},

and the corresponding number of critical points of index l = 0, . . . ,N − 1 is given by

CrtN,l(M,E) = ∑
σ∈SN−1 ,∇ f (σ)=0

1{σ⋅v̂0∈M} ⋅ 1{ f (σ)/√N∈E}1{i(∇2 f )=l}.

Proposition 2.1. LetM and E be the same as in Theorem 1.1. Then, for any l ≥ 1,

lim sup
N→∞

1
N

logE[CrtN,l(M,E)] < sup
m∈M̄,x∈Ē

Sp,k(x,m). (2.2)

We postpone the proof of this proposition to the end of this section. We now show how to prove Theorem 1.5.

Proof of Theorem 1.5. Since f is a Morse function almost surely, let

SN(M,E) := {σ ∈ SN−1 : f (σ) ∈
√
NE, σ ⋅ v̂0 ∈M}.
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Then, its Euler characteristic ϕ(SN(M,E)) can be computed in terms of the numbers of critical points as follows:

ϕ(SN(M,E)) =
N−1
∑
l=0
(−1)l+2CrtN,l(M,E).

Using Proposition 2.1, as N →∞, we have

E[CrtN,0(M,E)] ∼ E[CrtN(M,E)] ∼ E[ϕ(SN(M,E))]. (2.3)

Therefore, it suffices to compute the asymptotic of the mean Euler characteristic E[ϕ(SN(M,E))]. Applying Formula 12.4.4 in Ref. 1 (see also
Eq. (6.22) in Ref. 4), we have

E[ϕ(SN(M,E))] = ∫
σ⋅v0∈M

E[det∇2 f (σ) ⋅ 1{ f ∈√NE} ∣ ∇ f = 0]ϕ∇ f (σ)(0)dσ, (2.4)

where ϕ∇ f (σ)(0) is the density of∇ f (σ) at 0.

Let ωN−2 =
(N−1)π

N−1
2

Γ( N+1
2 )

be the surface area of the N − 2 dimensional unit sphere; using the data in Lemma A.1, we get

∫
σ⋅v0∈M

E[det∇2 f (σ) ⋅ 1{ f ∈√NE} ∣ ∇ f = 0]ϕ∇ f (σ)(0)dσ

=
ωN−2

√
N

(2π)
N
2 p

N−1
2
∫
M
∫
E
(1 −m2

)
N−3
2 exp(−

N
2
(λ2m2k−2

(1 −m2
)/p + (x + λmk

/k)
2
))GN(x,m)dxdm,

where

GN(x,m) = (2(N − 1)p(p − 1))
N−1
2 E[det(WN−1 −

√
N

√
N − 1

θeN−1eTN−1 −
√
N

√
N − 1

yIN−1)], (2.5)

θ = θ(m) :=
λ(k − 1)mk−2

(1 −m2
)

√
2p(p − 1)

, (2.6)

and

y = y(x,m) :=
√

p
2(p − 1)

(x − (1/p − 1/k)λmk
). (2.7)

Using Lemmas A.3 and A.6, we can express G using Hermite polynomials (see Definition A.2),

GN(x,m) = (−1)N−1(p(p − 1)/2)
N−1
2 (hN−1(

√
Ny) + 2

√
NθhN−2(

√
Ny)).

It follows that E[CrtN(M,E)] = I + II, where

I =
ωN−2

√
N(−1)N−1(p − 1)

N−1
2

2N−
1
2 π

N
2

∫
M
dm(1 −m2

)
N−3
2

×∫
E
dx exp(−

N
2
(λ2m2k−2

(1 −m2
)/p + (x + λmk

/k)
2
))hN−1(

√
Ny)

and

II =
ωN−2N(−1)N−1(p − 1)

N−1
2

2N−
3
2 π

N
2

∫
M
dm(1 −m2

)
N−3
2

×∫
E
dx exp(−

N
2
(λ2m2k−2

(1 −m2
)/p + (x + λmk

/k)
2
))θhN−2(

√
Ny).

We consider term I first. Using the Hermite function ϕN−1 (see Definition A.2),
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I =
ωN−2N

1
2 (−1)N−1(2N−1(N − 1)!

√
π)

1
2

2N−
1
2 π

N
2
√
p − 1

∫
M
dm(1 −m2

)
− 3

2

×∫
E
dx exp(

N
2
(y2 + log(1 −m2

)(p − 1) − λ2m2k−2
(1 −m2

)/p − (x + λmk
/k)

2
))ϕN−1(

√
Ny). (2.8)

For anym ∈M and x ∈ E, y = y(x,m) < −
√
2. Using Lemma A.8 and letting h̃(y) =

√
2h(y)√
y2−2−y , as N →∞, we have

I ∼
ωN−2N

1
2 (2N−1(N − 1)!

√
π)

1
2

√
4π
√
2N2N−

1
2 π

N
2
√
p − 1

∫
M
dm(1 −m2

)
− 3

2

×∫
E
dx exp(

N
2
(y2 + log(1 −m2

)(p − 1) − λ2m2k−2
(1 −m2

)/p − (x + λmk
/k)

2
− 2I1(−y)))h̃(y)

∼
(N − 1)π

N−1
2 N

1
4
√
(N − 1)!

Γ(N+12 )2
N
2 +

5
4 π

N
2 +

1
4
√
p − 1

∫
M
∫
E
(1 −m2

)
− 3

2 h̃(y(x,m)) exp(NSp,k(x,m))dxdm

∼
N

2
√
2π
√
p − 1∫M∫E

(1 −m2
)
− 3

2 h̃(y(x,m)) exp(NSp,k(x,m))dxdm.

Substituting y for x, as N →∞, we have

I ∼
N

2π√p∫M∫Ẽm
(1 −m2

)
− 3

2 h̃(y) exp(NS̃p,k(m, y))dydm, (2.9)

where Ẽm :=
√

p
2(p−1)(E − λm

k
( 1p −

1
k)).

Similarly,

II =
2λωN−2N

√
N − 1(−1)N−1(p − 1)

N−2
2 (k − 1)

2Nπ
N
2
√
p
√
N − 1

×∫
M
∫
E
(1 −m2

)
N−1
2 mk−2 exp

⎛

⎝
−
N
2
⎛

⎝

λ2

p
m2k−2

(1 −m2
) + (x +

λmk

k
)

2
⎞

⎠

⎞

⎠
hN−2(

√
Ny)dxdm

=
λωN−2N

√
(N − 2)!π

1
4 (k − 1)(−1)N−1

√

p(2π)N
∫
M
dmmk−2

(p − 1)
N−2
2 (1 −m2

)
N−1
2

×∫
E
dx exp

⎛

⎝
−
N
2
⎛

⎝

λ2

p
m2k−2

(1 −m2
) + (x +

λmk

k
)

2

− y2
⎞

⎠

⎞

⎠
ϕN−2(

√
Ny).

When N is large enough,
√

N
N−1 y < −

√
2, so by Lemma A.8,

ϕN−2(
√
Ny) ∼ (−1)N−2

e−(N−1)I1(−
√

N
N−1 y)

√

4π
√
2(N − 1)

h̃
⎛

⎝

√
N

N − 1
y
⎞

⎠
.

Therefore, as N →∞,

II ∼ −
λN(k − 1)
2
√
2pπ ∫M

dm(p − 1)
N−2
2 (1 −m2

)
N−1
2 mk−2

∫
E
dxh̃
⎛

⎝

√
N

N − 1
y(x)
⎞

⎠
LN(m, x),

where

LN(m, x) = exp
⎛

⎝
−
N
2
⎛

⎝

λ2

p
m2k−2

(1 −m2
) + (x + λmk

/k)
2
− y2 +

2(N − 1)
N

I1
⎛

⎝
−

√
N

N − 1
y
⎞

⎠

⎞

⎠

⎞

⎠
.

Let z =
√

N
N−1 y(x); then,

L̃N(m, z) := ((p − 1)(1 −m2
))

N−1
2 LN(m, x) = exp(−(N − 1)S̃p,k(m, z))JN(m, z),
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where

JN(m, z) = exp
⎛
⎜
⎝
−
λ2

2p2
m2k−2

(p(1 −m2
) +m2

) +
λmkz
p

¿
Á
ÁÀ2(p − 1)

p
(N − 1)

⎛

⎝
1 −

√
N

N − 1
⎞

⎠

⎞
⎟
⎠
.

Substituting z for x, as N →∞, we have

II ∼ −
λ(N − 1)(k − 1)

2pπ ∫
M
dmmk−2

∫
Ẽm,N

dzh̃(z) exp((N − 1)S̃p,k(m, z))JN(m, z),

where Ẽm,N =
√

N
N−1 Ẽm.

Since Ẽm is precompact, 1Ẽm,N
(z)JN(m, z) converges to 1Ẽm(z)J(m, z) uniformly onm ∈M and z ∈ Ẽm. Therefore, as N →∞,

II ∼ −
λ(N − 1)(k − 1)

2pπ ∫
M
dmmk−2

∫
Ẽm
dyh̃(y) exp((N − 1)S̃p,k(m, y))J(m, y). (2.10)

Combining Eqs. (2.9) and (2.10), we get Eq. (1.9) from the Laplace method. ◻

We end this section with the Proof of Proposition 2.1.

Proof of Proposition 2.1. Applying the Kac–Rice formula (Theorem 12.1.1 in Ref. 1) to the Hamiltonian (2.1), we have

E[CrtN,ℓ(M,E)] = ∫
σ⋅v0∈M

E[∣det∇2 f (σ)∣ ⋅ 1{ f ∈√NE,i(∇2 f )=l} ∣ ∇ f = 0]ϕ∇ f (σ)(0)dσ. (2.11)

Set
AN,ℓ(σ) = E[∣det∇2 f (σ)∣ ⋅ 1{ f ∈√NE,i(∇2 f )=l} ∣ ∇ f = 0].

We now show that for any σ with σ ⋅ v0 ∈M ⊆ (mλ, 1) and E satisfying (1.4), for ℓ ≥ 1, we have

1
N

logAN,ℓ(σ) = o(
1
N

logAN,0(σ))

uniformly in σ. Looking at (2.5)–(2.7) and using Lemma A.1, it suffices to show there exists η > 0, independent of y ∈ E, such that

E[∣det(M − θeN−1eTN−1 − yIN)∣1{λℓ ≤ y}]
E[∣det(M − θeN−1eTN−1 − yIN)∣1{λ0 ≤ y}]

≤ exp(−Nη). (2.12)

Let LN be the empirical spectral measure of the matrixM − θeN−1eTN−1, λℓ(θ) be its ℓth smallest eigenvalue, and μ denote the semi-circle
law. For δ > 0, consider the event

BN(δ) = {∣∫ log ∣x − y∣dLN(x) − ∫ log ∣x − y∣dμ(x)∣ > δ}.

By Ref. 6 and an application of eigenvalue interlacement, there exist ϵ > 0 so that for all N sufficiently large,

P(BN(δ)) ≤ e−ϵN
2

.

Now, writing
∣det(M − θeN−1eTN−1 − yIN)∣ = ∫ log ∣x − y∣dLN(x),

note that there exists C > 0 so that E ∫ log ∣x − y∣dLN(x) ≤ exp(CN) and a positive constant C′ such that for N large enough,

E[∣det(M − θeN−1eTN−1 − yIN)∣1{λℓ ≤ y}] = E[∣det(M − θeN−1e
T
N−1 − yIN)∣1{λℓ ≤ y}1{BN(δ)}]

+ E[∣det(M − θeN−1eTN−1 − yIN)∣1{λℓ ≤ y}1{B
c
N(δ)}]

≤ eN(δ+∫ log ∣x−y∣dμ)P(λℓ ≤ y) + e−ϵN
2+C′N . (2.13)

At the same time, we also have the lower bound

E[∣det(M − θeN−1eTN−1 − yIN)∣1{λ0 ≤ y}] ≥ e
N(−δ+∫ log ∣x−y∣dμ)P(λ0 ≤ y)(1 − e−ϵN

2

). (2.14)

J. Math. Phys. 63, 043303 (2022); doi: 10.1063/5.0070300 63, 043303-9

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

Thus, for N large enough, we obtain for all y ∈ E,

E[∣det(M − θeN−1eTN−1 − yIN)∣1{λℓ ≤ y}]
E[∣det(M − θeN−1eTN−1 − yIN)∣1{λ0 ≤ y}]

≤ exp(N2δ −
ϵ
2
N2
)
P(λℓ ≤ y)
P(λ0 ≤ y)

. (2.15)

On the other hand, by our choice of E, there exists κ > 0 such that y < −
√
2 + κ for all y ∈ E. By an application of the large deviation principle

for the extreme eigenvalues of rank one perturbation of GOE (Ref. 8, Theorem 2.13), there exists ρ > 0 depending only on κ so that

P(λℓ ≤ y)
P(λ0 ≤ y)

≤ exp(−Nρ). (2.16)

Plugging (2.16) into (2.15), we find that there exists η > 0 so that for N large enough and all y ∈ E, bound (2.12) is satisfied. This completes the
proof of the proposition. ◻

III. THE MEAN NUMBER OF DEEP MINIMA
In this section, we prove Theorems 1.1 and 1.3.

Proof of Theorem 1.1. If x∗(λ) ∈ E andm∗(λ) ∈M, we prove Theorem 1.1 by deriving an explicit formula for the constant C(λ, p, k) as
follows:

lim
N→∞

E[CrtN(M,E)] = C(λ, p, k) =

√
2(
√
p(1 −m∗)−

3
2 − λ(k − 1)mk−2

∗ )h(y∗)

p(
√
y2∗ − 2 − y∗)

√

∣∂yyS̃p,k(m∗, y∗)g′′(m∗)∣
, (3.1)

where

y∗ := y∗(m∗), y∗(m) =
λmk

2
√
p

p − 2
√
2(p − 1)

−
p

√
2(p − 1)

¿
Á
ÁÀ
(
λmk

2
√
p
)

2

+ 1, (3.2)

g(m) = S̃p,k(m, y∗(m)), and h(⋅) and I1(⋅) are defined in Theorem A.7.
Otherwise, we show that S̃p,k(mo, yo) < 0 in Eq. (1.9). Therefore,

lim
N→∞

E[CrtN(M,E)] = 0.

A direct computation gives

− ∂yS̃p,k =
p − 2
p

y +
λmk

p

¿
Á
ÁÀ2(p − 1)

p
−
√
y2 − 2. (3.3)

Let A = p−2
p and B = λmk

p

√
2(p−1)

p ; then, −∂yS̃p,k = Ay + B −
√
y2 − 2.

Whenm ≤ mλ, − B
A ≥ −

√
2. Therefore, ∂yS̃p,k ≥ 0 on (−∞,−

√
2) and S̃p,k(m, ⋅) is increasing.

Whenm ≥ mλ, − B
A ≤ −

√
2. Therefore, S̃p,k(m, ⋅) has a unique maximum in (−∞,−

√
2) at

y∗(m) =
AB −

√
2 + B2 − 2A2

1 − A2 =
λmk

2
√
p

p − 2
√
2(p − 1)

−
p

√
2(p − 1)

¿
Á
ÁÀ
(
λmk

2
√
p
)

2

+ 1. (3.4)

We then define g(m) = S̃p,k(m, y∗(m)). Plugging Eq. (3.4) into S̃p,k(m, ⋅), we have

g(m) = l(v) =
1
2
log(1 −m2

) + (1 − 2/m2
)v2 + v

√
v2 + 1 − log(v +

√
v2 + 1),

where v = λmk

2
√

p .

We compute l′(v) = 2v(1 − 2
m2 +

√
v2+1
v ). Since

√
v2+1
v is decreasing, l′(v) = 0 on (0,∞) if and only if v = m2

2
√

1−m2 and

lmax = l(
m2

2
√
1 −m2

) = 0.

The maximum is achieved if and only if Eq. (1.3) holds, i.e., λmk
√

p =
m2

√
1−m2 .
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As mentioned in Lemma B.1, when λ ≥ max{λ(1)(p, k), λ(2)(p, k)}, there is a unique solution m∗ of Eq. (1.3) such that m∗ ≥ mλ, and
the above computation implies that

sup
mλ≤m<1,y<−

√
2
S̃p,k(m, y) = sup

mλ≤m<1
S̃p,k(m, y∗(m)) = S̃p,k(m∗, y∗(m∗)) = 0. (3.5)

Recall that Ẽm ⊂ (−∞,−
√
2) and y∗(m) ∈ Ẽm for anym. By Laplace’s method, as N →∞,

I ∼
N

2π√p∫M

¿
Á
ÁÀ

2π
N∣∂yyS̃p,k(m, y∗(m))∣

(1 −m2
)
− 3

2

√
2h(y∗(m))

√
y∗(m) − 2 − y∗(m)

exp(Ng(m))dm

∼
1

√

p∣∂yyS̃p,k(m∗, y∗)g′′(m∗)∣
(1 −m2

∗)
− 3

2

√
2h(y∗)

√
y∗ − 2 − y∗

exp(Ng(m∗))

=

√
2h(y∗)(1 −m2

∗)
− 3

2

(
√
y∗ − 2 − y∗)

√

p∣∂yyS̃p,k(m∗, y∗)g′′(m∗)∣
. (3.6)

Similarly, we apply the Laplace method to II and get

II ∼ −
λ(N − 1)(k − 1)

2pπ ∫
M
dm ×

¿
Á
ÁÀ

2π
(N − 1)∣∂yyS̃p,k(m, y∗(m))∣

mk−2
√
2h(y∗(m))

√
y∗(m) − 2 − y∗(m)

exp((N − 1)g(m))J(m, y∗(m))

∼
λ(k − 1)

p
mk−2
∗
√
2h(y∗) exp((N − 1)g(m∗))J(m∗, y∗)

(
√
y∗ − 2 − y∗)

√

∣∂yyS̃p,k(m∗, y∗)g′′(m∗)∣

=

√
2λ(k − 1)mk−2

∗ h(y∗)J(m∗, y∗)

p(
√
y∗ − 2 − y∗)

√

∣∂yyS̃p,k(m∗, y∗)g′′(m∗)∣
. (3.7)

It remains to show that J(m∗, y∗) = 1. This is obtained as follows. Using Eq. (1.3),

−
λ2

2p2
m2k−2
∗ (p(1 −m2

∗) +m
2
∗) +

λmk
∗y∗
2p

¿
Á
ÁÀ2(p − 1)

p

=
λmk
∗

2p
(p(1 −m2

∗) +m
2
∗)(

1
√
p(1 −m2

∗)
−

1
√
p(1 −m2

∗)
) = 0.

Combining this with Eqs. (3.6) and (3.7), we get Eq. (3.1). ◻

Proof of Theorem 1.3. Sincem∗ satisfies Eq. (1.3), as λ→∞,m∗ → 1.When k = 1 or 2, this can be obtained directly from Eq. (B1). When
k ≥ 3, by the implicit differentiation theorem, denotingm′∗ := d

dλm∗(λ), we have

mk
∗
√
p
+
λkmk−1

∗
√
p

m′∗ = (2m∗(1 −m
2
∗)
− 1

2 +m3
∗(1 −m

2
∗)
− 3

2 )m′∗

⇒
mk
∗
√
p
= m′∗(1 −m

2
∗)
− 3

2 m∗((k − 1)m2
∗ − (k − 2)).

Sincem∗ >
√

k−2
k−1 , so (k − 1)m

2
∗ − (k − 2) > 0 and thusm′∗ > 0. Therefore, as λ→∞,m∗(λ)↑1.
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We also have

y∗(m∗) =
p − 2

2
√
2(p − 1)

m2
∗(1 −m

2
∗)
− 1

2 −
p

√
2(p − 1)

¿
Á
ÁÀ m4

∗
4(1 −m2

∗)
+ 1

=
1

√
2(p − 1)

(1 −m2
∗)
− 1

2 (
p − 2
2

m2
∗ −

p
2
(2 −m2

∗))

=
1

√
2(p − 1)

(1 −m2
∗)
− 1

2 ((p − 1)m2
∗ − p). (3.8)

Therefore, as λ→∞,

y∗(m∗) ∼ −
1

√
2(p − 1)

(1 −m2
∗)
− 1

2 . (3.9)

Note that

y∗′(m) =
p − 2

2
√
2p(p − 1)

λkmk−1
−

p
√
2(p − 1)

⎛

⎝
(
λmk

2
√
p
)

2

+ 1
⎞

⎠

− 1
2 λmk

2
√
p
⋅
λkmk−1

2
√
p

.

Using Eq. (1.3), we have as λ→∞,

y′∗(m∗) =
k(p − 2)

2
√
2(p − 1)

m∗(1 −m2
∗)
− 1

2 −
kp

2
√
2(p − 1)

m3
∗

2 −m2
∗
(1 −m2

∗)
− 1

2

=
k

√
2(p − 1)

(1 −m2
∗)
− 1

2 (p − 2)m∗ − (p − 1)m
3
∗

2 −m2
∗

∼ −
k

√
2(p − 1)

(1 −m2
∗)
− 1

2 (3.10)

and

∂yyS̃p,k(m∗, y∗) =
2 − p
p
+ y∗(y2∗ − 2)

− 1
2

∼ −
2(p − 1)

p
. (3.11)

We also compute for k ≥ 1,

∂mS̃p,k = −
m

1 −m2 −
λkmk−1

p

¿
Á
ÁÀ2(p − 1)

p
y −

λ2(k − 1)
p

m2k−3
+
λ2k(p − 1)

p2
m2k−1.

For k ≥ 2,

∂mmS̃p,k = −
1 +m2

(1 −m2)
2 −

λk(k − 1)mk−2

p

¿
Á
ÁÀ2(p − 1)

p
y −

λ2(k − 1)(2k − 3)
p

m2k−4

+
λ2k(p − 1)(2k − 1)

p2
m2k−2,

∂mmS̃p,1 = 1+m2

−(1−m2)2 +
(p−1)λ2

p2 , and for k ≥ 2,

∂myS̃p,k = −
λkmk−1

p

¿
Á
ÁÀ2(p − 1)

p
.

Using Eqs. (1.3) and (3.9), we have as λ→∞,

J. Math. Phys. 63, 043303 (2022); doi: 10.1063/5.0070300 63, 043303-12

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

∂mmS̃p,k(m∗, y∗(m∗)) = − (1 +m
2
∗)(1 −m

2
∗)
−2
−
k(k − 1)

p
(1 −m2

∗)
−1
((p − 1)m2

∗ − p)

− (k − 1)(2k − 3)(1 −m2
∗)
−1
−
k(p − 1)(2k − 1)m2

∗
p

(1 −m2
∗)
−1

∼ −2(1 −m2
∗)
−2

(3.12)

and

∂myS̃p,k(m∗, y∗(m∗)) =
k
√
2(p − 1)
p

m∗(1 −m2
∗)
− 1

2 ∼
k
√
2(p − 1)
p

(1 −m2
∗)
− 1

2 . (3.13)

Recall that g(m) = S̃p,k(m, y∗(m)), so

g′′ = ∂mmS̃p,k + 2∂myS̃p,k ⋅ y
′
∗ + ∂yy(y

′
∗)

2
+ ∂yS̃p,k ⋅ y

′′. (3.14)

Note that ∂yS̃p,k(m∗, y∗(m∗)) = 0; using Eqs. (3.12), (3.13), (3.9), and (3.10), we know that as λ→∞,

g′′(m∗) ∼ −2(1 −m2
∗)
−2
+
2k
√
2(p − 1)
p

(1 −m2
∗)
− 1

2 ⋅ (
−k

√
2(p − 1)

)(1 −m2
∗)
− 1

2

+
2(p − 1)

p
k2

2(p − 1)
(1 −m2

∗)
−1

∼ −2(1 −m2
∗)
−2
. (3.15)

From the definition of h(⋅) in Theorem A.7 and Eq. (3.9), it is easy to see

lim
λ→∞

h( y∗(m∗)) = 2.

To sum up, as λ→∞,

C(λ, p, k) ∼ 2
(
√
p(1 −m2

∗)
− 3

2 − λ(k − 1)mk−2
∗ )

p
√
2y∗(m∗)

√

∣∂yyS̃p,k(m∗, y∗)g′′(m∗)∣

∼

2(
√
p(1 −m2

∗)
− 3

2 − (k − 1)
√
p(1 −m2

∗)
− 1

2 )

−p
√
2y∗(m∗)

√
2 p−1

p ⋅ 2(1 −m
2
∗)
−2

∼
1

√
p − 1

(1 −m2
∗)
− 1

2 ⋅
√
(p − 1)(1 −m2

∗)
1
2 (3.16)

= 1. (3.17)

◻

IV. LIMITING GROUND STATE ENERGY
In this section, we prove Theorem 1.4. The proof relies on the following two propositions whose proofs are presented after the Proof of

Theorem 1.4.

Proposition 4.1. For anym ∈ (0, 1),

lim sup
N→∞

E
⎡
⎢
⎢
⎢
⎢
⎣

1
N

min
σ∈SN−1(

√
N)
HN(σ)

⎤
⎥
⎥
⎥
⎥
⎦

≤ −
λmk

k
−
√
p(1 −m2). (4.1)

Proposition 4.2.

lim inf
N→∞

1
N

min
σ∈SN−1(

√
N)
HN(σ) ≥ λmk

∗(
1
2
−
1
k
) −

√

λ2m2k
∗

4
+ p a.s. (4.2)
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Proof of Theorem 1.4 assuming Propositions 4.2 and 4.1. By the Gaussian concentration inequality and Borel–Canteli lemma,

lim
N→∞

1
N

min
σ∈SN−1(

√
N)
HN(σ) = lim

N→∞
E
⎡
⎢
⎢
⎢
⎢
⎣

1
N

min
σ∈SN−1(

√
N)
HN(σ)

⎤
⎥
⎥
⎥
⎥
⎦

a.s.

Therefore, it suffices to show

−
λmk
∗

k
−

√

p(1 −m2
∗) = λm

k
∗(

1
2
−
1
k
) −

√

λ2m2k
∗

4
+ p. (4.3)

Using Eq. (1.3),

λmk
∗/2 −

√

λ2m2k
∗

4
+ p =

√
pm2
∗

2
√
1 −m2

∗
−

¿
Á
ÁÀp(m4

∗ − 4m2
∗ + 4)

4(1 −m2
∗)

=

√
p(m2

∗ +m2
∗ − 2)

2
√
1 −m2

∗
= −

√

p(1 −m2
∗).

Therefore, Eq. (4.3) holds. ◻

Now, we prove Propositions 4.1 and 4.2.

Proof of Proposition 4.1. For anym ∈ (0, 1),

1
N

min
σ∈SN−1(

√
N),σ⋅v0=m

HN(σ) ≥
1
N

min
σ∈SN−1(

√
N)
HN(σ),

so

E
⎡
⎢
⎢
⎢
⎢
⎣

1
N

min
σ∈SN−1(

√
N),σ⋅v0=m

HN(σ)
⎤
⎥
⎥
⎥
⎥
⎦

≥ E
⎡
⎢
⎢
⎢
⎢
⎣

1
N

min
σ∈SN−1(

√
N)
HN(σ)

⎤
⎥
⎥
⎥
⎥
⎦

.

Since HN is isotropic, without loss of generality, we assume v0 =
√
NeN and, then, conditional on σN =

√
Nm,

HN(σ) = −λN
mk

k
−
√
NJNN...Nmp

−
1

N
p−1−l

2

p−1
∑
l=0

ml
∑

ikj=N,1≤ik≤N−1,k≠kj ,j∈[l]
Ji1 ,i2 ,...,ip

σi1σi2 . . . σip
σik1 σik2 . . . σikl

.

Since for different sets of (ikj)
l
j=1, Ji1 ,i2 ,...,ip are i.i.d, so

HN(σ)
(d)
= − λN

mk

k
−
√
NJNN...Nmp

−
√
N

p−1
∑
l=0
(
p
l
)

1
2
ml
(1 −m2

)
p−l
2

∑
1≤i1 ,i2 ,...ip−l≤N−1

gi1 ,i2 ,...,ip−1 σ̂i1 σ̂i2 . . . σ̂ip−l ,

where σ̂k = σk/
√
N(1 −m2), k ∈ [N − 1].

Note that∑N−1
k=1 σ̂

2
k = 1; therefore,

−
√
N

p−1
∑
l=0
(
p − 1
l
)

1
2
ml
(1 −m2

)
p−l
2

∑
1≤i1 ,i2 ,...ip−l≤N−1

gi1 ,i2 ,...,ip−1 σ̂i1 σ̂i2 . . . σ̂ip−l

is a spherical mixed p-spin model with mixture

ξ(x) =
p−1
∑
l=0
(
p
l
)m2l
(1 −m2

)
p−l

xp−l = (m2
+ (1 −m2

)x)
p
−m2p.

By Proposition 1 in Ref. 12 (see also Theorem 1.10 in Ref. 19),

E
⎡
⎢
⎢
⎢
⎢
⎣

1
N

min
σ∈SN−1(

√
N),σ⋅v0=m

HN(σ)
⎤
⎥
⎥
⎥
⎥
⎦

= −
λmk

k
−
√
ξ′(1) = −

λmk

k
−
√
p(1 −m2). ◻
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Recall that in this paper, we reserve the symbol x∗ for the right-hand side of Eq. (4.2), i.e.,

x∗ := λmk
∗(

1
2
−
1
k
) −

√

λ2m2k
∗

4
+ p.

The key to proving Proposition 4.2 is to identify the point at which 0, the supremum of the complexity function Sp,k, is attained. The following
proposition shows that the point lies in the high-latitude region of the sphere.

Proposition 4.3. There exists a constant λ̃c = λ̃c(p, k) such that for any λ ≥ λ̃c,M = (0,mλ),

sup
m∈M̄

Sp,k(m, x∗) < 0.

Proof. Using the correspondence between y∗ and x∗ [see Eq. (1.8)], we have

f (m) := S̃p,k(m, y∗) = Sp,k(m, x∗).

We will first show that f (m) has at most one critical point onM, and if it exists, it must be a local minimum of f ; then, we use the results on the
pure p-spin model from Ref. 3 and Theorem 1.1 to show that f (0) < 0 and f (mλ) < 0, thus deriving supm∈M̄Sp,k(m, x∗) = supm∈M̄ f (m) < 0.

A direct computation shows that

f ′(m) = −
m

1 −m2 −
λkmk−1

p

¿
Á
ÁÀ2(p − 1)

p
y∗ −

λ2(k − 1)m2k−3

p
+
(p − 1)λ2km2k−1

p2

= −
m

1 −m2 f1(m),

where

f1(m) = 1 +
λkmk−2

(1 −m2
)

p

¿
Á
ÁÀ2(p − 1)

p
y∗ +

λ2(k − 1)m2k−4
(1 −m2

)

p
−
(p − 1)λ2km2k−2

(1 −m2
)

p2
.

Let u := u(λ,m) := λmk−2
(1 −m2

).
Case I: If k ≤ p,

f1(m) = 1 +
k
p

¿
Á
ÁÀ2(p − 1)

p
y∗u +

k − 1
p

u2 +
λ2m2k−2

(1 −m2
)

p2
(k − p) ≤ f2(u),

where

f2(u) = 1 +
k
p

¿
Á
ÁÀ2(p − 1)

p
y∗u +

k − 1
p

u2.

The larger zero of f2 is

u∗ :=
1

(k − 1)
√
2p
(−k
√
p − 1y∗ +

√

k2(p − 1)y2∗ − 2(k − 1)p2).

Recall that for fixed λ, u = λmk−2
(1 −m2

), which is increasing with respect tom over [0,
√

k−2
k ], so when λ ≥ p

√
p−2
p−1(

k
k−2)

k
2 ,

umax = u(mλ) = λ
2
k (

p
√
p − 2

√
p − 1

)

k−2
k

(1 −m2
λ).

Therefore,

umax ∼ λ
2
k (

p
√
p − 2

√
p − 1

)

k−2
k

as λ→∞. (4.4)

Note that

y∗ =
√

p
2(p − 1)

(x∗ − λmk
∗(

1
p
−
1
k
)) = −

λmk
∗

√
2p(p − 1)

− p

¿
Á
ÁÀ 1 −m2

∗
2(p − 1)

.
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When λ→∞, it is observed from Eq. (1.3) that limλ→∞m∗(λ) = 1, so

y∗ ∼ −
λ

√
2p(p − 1)

as λ→∞,

and thus,

u∗ ∼ −
λk

p(k − 1)
as λ→∞. (4.5)

Combining Eqs. (4.4) and (4.5), there exists λ̃c > 0 such that if λ ≥ λ̃c, umax < u∗, so f1(m) crosses the m-axis at most once over [0,mλ]. Note
that f1(0) = 1 > 0, and it is continuous on [0,mλ], so f ′(m) < 0 whenm is small and it crosses them-axis at most once over [0,mλ].

Case II: If k > p, then when λ ≥ 2k(p − 2)
√

p
p−1 ,mλ ≤

1
2 . Therefore, for anym ≤ mλ,

λm2k−2
(1 −m2

) ≤ u2.

Then, we have f1(m) ≤ f3(u), where

f3(u) = 1 +
k
p

¿
Á
ÁÀ2(p − 1)

p
y∗u + (

k(p + 1) − 2p
p2

)u2.

The same argument in case I also applies to case II, and we derive the same conclusion that f ′(m) < 0 when m is small and it crosses the
m-axis at most once over [0,mλ].

This implies that
sup
m∈M̄

f (m) = max{ f (0), f (mλ)}. (4.6)

Note that f (0) = Φp(y∗), where Φp(⋅) is the annealed complexity of the p-spin spherical spin glass model; see Theorem 2.8 in Ref. 3. It is
known that Φp(⋅) is an increasing function on (−∞,−2

√
p−1
p ) and limy→−∞Φp(y) = −∞, so when λ is large enough so that y∗ is smaller

than the limiting ground state energy of the p-spin spherical spin glass model, which is the unique zero of Φp(⋅) on (−∞,−2
√

p−1
p ),

f (0) = Φp(y∗) < 0. (4.7)

As to f (mλ), we know from Theorem 1.1 [more specifically, Eq. (3.5)] that when λ ≥ λ̃,

f (mλ) ≤ sup
m≥mλ

f (m) ≤ 0.

Combining this with Eqs. (4.6) and (4.7), we prove this proposition. ◻

Proof of Proposition 4.2. For any ϵ > 0, letM = [0, 1] and E = (−∞, x∗ − ϵ). It is shown in Theorem 1.1 that for fixedm < 1, S̃p,k(m, ⋅) is
increasing on (−∞,−x∗ − ϵ). Combining this with Proposition 4.3, we see that

lim sup
N→∞

1
N

logE[CrtN(M,E)] = sup
m∈M̄,x∈Ē

Sp,k(m, x)

≤ sup
m∈M̄

S̃p,k(m, y∗)

≤ max{ sup
m∈[0,mλ]

S̃p,k(m, y∗), sup
m∈[mλ ,1]

S̃p,k(m, y∗)}

< 0.

Therefore, by Markov inequality,

P
⎛

⎝

1
N

min
σ∈SN−1(

√
N)
HN(σ) ≤ x∗ − ϵ

⎞

⎠
≤ P(CrtN(M,E) ≥ 1) ≤ E[CrtN(M,E)].

Then, Eq. (4.2) follows from the Borel–Cantali lemma. ◻
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APPENDIX A: COVARIANCE COMPUTATIONS AND SOME FORMULAS FROM RANDOM MATRIX THEORY

In this appendix, we derive the random matrices appearing in the Kac–Rice computation in Sec. II and summarize a series of tools that
we use in random matrix theory.

Lemma A.1. Let f : SN−1 → R be defined in Eq. (2.1). Without loss of generality, we set σ = eN , v̂0 = meN +
√
1 −m2eN−1; then,

E[ f (σ)] = −λ
√
Nmk
/k, Var( f (σ)) = 1,

E[∇ f (σ)] = −
√
Nλmk−1√1 −m2eN−1,

Cov( f (σ),∇i f (σ)) = Cov(∇2
jk f (σ),∇i f (σ)) = 0 for i, j, k = 1, 2, . . . ,N − 1,

Cov(∇2 f , f ) = −pIN−1,

Cov(∇ f ,∇ f ) = pIN−1,

Cov(∇2
ij f ,∇

2
kl f ) = p(p − 1)(δikδjl + δilδjk) + p

2δijδkl for i, j, k, l = 1, 2, . . . ,N − 1.

Denote by EA and CovA the expectation and covariance conditional on the event A; then,

E∇ f (σ)=0[ f (σ)] = E[ f (σ)],

E∇ f (σ)=0[∇
2 f (σ)] = E[∇2 f (σ)],

E[∇2 f (σ)] = −
√
Nλ(k − 1)(1 −m2

)mk−2eN−1eTN−1 +
√
NλmkIN−1,

E f=
√

Nx[∇
2 f (σ)] = −λ

√
N(k − 1)mk−2

(1 −m2
)eN−1eTN−1 − pIN−1(

√
Nx +

λ
√
Nmk

k
) + λ

√
NmkIN−1,

Cov f=
√

Nx(∇
2
ij f (σ),∇

2
kl f (σ)) = p(p − 1)(δikδjl + δilδjk) for i, j, k, l = 1, 2, . . . ,N − 1.

From Lemma A.1, conditional on∇ f (σ) = 0, f (σ) =
√
Nx,

∇
2 f (σ) d

=
√
2(N − 1)p(p − 1)WN−1 − λ

√
N(k − 1)mk−2

(1 −m2
)eN−1eTN−1

+
√
NIN−1(−px + (1 −

p
k
)λmk

). (A1)
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Definition A.2. For N ∈ N, denote the following:

● Hermite polynomials hN(x) = ex
2
(− d

dx)
N
e−x

2
.

● Hermite functions ϕN(x) = (2NN!
√
π)−

1
2 hN(x)e−

x2
2 .

Lemma A.3 (Lemma 3 in Ref. 2 and Corollary 11.6.3 in Ref. 1).

E[det(WN−1 − xIN−1)] = 21−N(N − 1)
1−N
2 (−1)N−1hN−1(

√
N − 1x).

Using Eq. (1.8) in Ref. 13, we obtain the following proposition, which is useful for expressing determinants in terms of Hermite
polynomials.

Lemma A.4.

E[det(WN−1 − f eN−1eTN−1 + sIN−1)]

= (
−i

√
N − 1

)

N−1
π−

1
2 e(N−1)s

2

∫
R
e−y

2

(yN−1 − i
√
N − 1 f yN−2)e2

√
N−1iysdy. (A2)

Remark A.5. Setting f = 0, one can easily recover Lemma A.3 using the Fourier transform.

Lemma A.6.

E[det(WN−1 − f eN−1eTN−1 + sIN−1)]

= E[det(WN−1 + sIN−1)] − f (
N − 2
N − 1

)

N−2
2
E
⎡
⎢
⎢
⎢
⎢
⎣

det
⎛

⎝
WN−2 +

√
N − 1
N − 2

sIN−2
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

.

Proof. Combine Lemmas A.3 and A.4. ◻

Theorem A.7 (Plancherel–Rotach asymptotics). There exists δ0 > 0 such that for any δ ∈ (0, δ0), we have uniformly in x
∈ (−∞,−

√
2 − δ),

ϕN(
√
Nx) = (−1)N−1

e−NI1(−x)
√
4π
√
2N

h(x)(1 +O(N−1)),

where

h(x) = ∣
x −
√
2

x +
√
2
∣

1
4

+ ∣
x +
√
2

x −
√
2
∣

1
4

and

I1(x) = ∫
x
√

2

√
t2 − 2dt.

Proof. This lemma is the same as Lemma 7.1 in Ref. 3 and Lemma 5 in Ref. 2. ◻

From Theorem A.7, we derive the following lemma that we need in the Proof of Theorem 1.5.

Lemma A.8. There exists δ0 > 0 such that for any δ ∈ (0, δ0), we have uniformly in y ∈ (−∞,−
√
2 − δ),

ϕN−1(
√
Ny) = (−1)N−2

e−NI1(−y)
√
2π
√
2N

h(y)
√
y2 − 2 − y

(1 +O(N−1)).

Proof. Note that limN→∞
√

N
N−1 y = y, so for N large enough and y ∈ (−∞,−

√
2 − δ), we use Theorem A.7 to derive
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ϕN−1(
√
Ny) = ϕN−1(

√
N − 1

√
N

√
N − 1

y)

= (−1)N−2
e−(N−1)I1(−

√
N√

N−1 y)
√
4π
√
2N

h(
√
N

√
N − 1

y)(1 +O(N−1))

= (−1)N−2
e−NI1(−y)eI1(−y)e−(N−1)∫

−
√

N
N−1 y

−y
√
t2 − 2dt

√
4π
√
2N

h(
√
N

√
N − 1

y)(1 +O(N−1)). (A3)

Since

h(
√
N

√
N − 1

y) = h(y)(1 +O(N−1)) (A4)

and

eI1(−y)e−(N−1)∫
−
√

N
N−1 y

−y
√
t2 − 2dt = eI1(−y)e

y
√

y2−2
2 (1+O(N−1))

=

√
2

√
y2 − 2 − y

(1 +O(N−1)) (A5)

uniformly for y ∈ (−∞,−
√
2 − δ), combining Eqs. (A3)–(A5), we prove Lemma A.8. ◻

APPENDIX B: MATHEMATICAL ANALYSIS ON THRESHOLDS

In this section, we discuss the existence and values of λtr , λ(1)(p, k) and λ(2)(p, k).

Lemma B.1. If k ≤ 2, then Eq. (1.3) has a unique solution on (0, 1] for any λ > 0. If k > 2, then Eq. (1.3) has a solution if and only if

λ ≥
√

p (k−1)
k−1

(k−2)k−2 . In particular, when k > 2 and λ ≥
√

p (k−1)
k−1

(k−2)k−2 , the solution on [
√

k−2
k−1 , 1) is unique.

Proof. When k = 1, 2,m∗ can be solved explicitly from Eq. (1.3) as follows:

m∗(λ) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

¿
Á
Á
ÁÀ

λ2

p
/(1 +

λ2

p
), k = 1,

√

1 −
p
λ2

, k = 2.

(B1)

When k > 2, let g(m) = λ2m2k−4(1−m2)
p . We compute

g′(m) =
2(k − 2)λ2

p
(1 −

k − 1
k − 2

m2
)m2k−5.

Therefore, Eq. (1.3) has a solution on (0, 1] if and only if gmax = g(
√

k−2
k−1) ≥ 1 if and only if λ ≥

√

p (k−1)
k−1

(k−2)k−2 . Moreover, when the solution

exists on [
√

k−2
k−1 , 1], it is unique. ◻

In the next lemma, we study the values of λ(2)(p, k).

Lemma B.2. For any integers p ≥ 3, k ≥ 1, there exists λ(2) := λ(2)(p, k) > 0 such thatm∗(λ) < mλ when λ < λ(2) andm∗(λ) ≥ mλ when
λ ≥ λ(2).

Proof. When k = 1, from Eqs. (B1) and (1.2), we derivem∗(λ) ≤ mλ if and only if (λ2/p)2 − (p−2)
2

p−1
λ2
p −

(p−2)2
p−1 < 0 if and only if

λ ≤

¿
Á
Á
Á
ÁÀ

p( (p−2)
2

p−1 +

√
(p−2)4
(p−1)2 +

4(p−2)2
p−1 )

2
.
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When k = 2, again from Eqs. (B1) and (1.2), we derivem∗(λ) ≤ mλ if and only if p
λ2 +

p−2√
p−1

√
p

λ − 1 > 0 if and only if

λ ≤
2
√
p

2−p√
p−1 +

√

4 + (p−2)
2

p−1

.

When k > 2, the existence of λ(2) is guaranteed by the fact thatm∗(λ) increases to 1 andmλ decreases to 0. ◻

Lemma B.3. For any p ≥ 3 and k ≥ 1, λ(1)(p, k) = λ(2)(p, k) if and only if p ≤ k.

Proof. When k = 1, 2, using Lemmas B.1 and B.2, we have λ(1) = 0 < λ(2). Therefore, from now on, we assume p, k ≥ 3.
When p ≤ k,

⎛
⎜
⎝

mλ(1)(p,k)
√

k−2
k−1

⎞
⎟
⎠

2k

=
(p − 2)2(k − 1)
(k − 2)2(p − 1)

≤ 1.

By Lemma B.1,mλ(1)(p,k) ≤
√

k−2
k−1 ≤ m∗ and thus λ(2) = λ(1).

When p > k, it suffices to show g(mλ(1)(p,k)) < 1. A direct computation gives

g(mλ(1)(p,k)) =
(p − 2)2

p − 1
⋅
1 −m2

λ(1)(p,k)
m4

λ(1)(p,k)
.

Since f (x) = 1−x
x2 is increasing on [0, 1] and for each fixed p,

log(mλ(1)(p,k)) =
1
k
(log(

p − 2
√
p − 1

) − log(
k − 2
√
k − 1

)) + log(
k − 2
k − 1

)

is decreasing for k < p.
Therefore,

g(mλ(1)(p,k)) < g(mλ(1)(p,p)) =
(p − 2)2

p − 1
⋅
1 − p−2

p−1

(
p−2
p−1)

2 = 1.

◻
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