Sharp complexity asymptotics and
topological trivialization for the (p, k) spiked
tensor model

Cite as: J. Math. Phys. 63, 043303 (2022); https://doi.org/10.1063/5.0070300
Submitted: 05 September 2021 - Accepted: 21 March 2022 - Published Online: 08 April 2022

Antonio Auffinger, "*' Gerard Ben Arous and Zhehua Li

COLLECTIONS

Paper published as part of the special topic on Special collection in honor of Freeman Dyson

& & @

View Online Export Citation CrossMark

Mathematical Physics

Yo
(@
®
c
| -
-]
@
ﬂ

ARTICLES YOU MAY BE INTERESTED IN

Concentration of the complexity of spherical pure p-spin models at arbitrary energies
Journal of Mathematical Physics 62, 123301 (2021); https://doi.org/10.1063/5.0070582

On the extension of the FKG inequality to n functions
Journal of Mathematical Physics 63, 043301 (2022); https://doi.org/10.1063/5.0065285

Cwikel estimates and negative eigenvalues of Schrédinger operators on noncommutative
tori

Journal of Mathematical Physics 63, 043503 (2022); https://doi.org/10.1063/5.0056289

Journal of
Mathematical Physics

B Young Researcher Award ..

MORE >>>

I Recognizing the outstanding work of early career researchers

AIP
é Publishing

J. Math. Phys. 63, 043303 (2022); https://doi.org/10.1063/5.0070300 63, 043303

© 2022 Author(s).



https://images.scitation.org/redirect.spark?MID=176720&plid=1779088&setID=406887&channelID=0&CID=653488&banID=520661581&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=1ed07a4d501c7ae4ca2baa8a1a3ca3ee9a21824f&location=
https://doi.org/10.1063/5.0070300
https://doi.org/10.1063/5.0070300
https://orcid.org/0000-0002-0345-2104
https://aip.scitation.org/author/Auffinger%2C+Antonio
https://orcid.org/0000-0001-5599-8726
https://aip.scitation.org/author/Ben+Arous%2C+Gerard
https://aip.scitation.org/author/Li%2C+Zhehua
/topic/special-collections/dyson2021?SeriesKey=jmp
https://doi.org/10.1063/5.0070300
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0070300
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0070300&domain=aip.scitation.org&date_stamp=2022-04-08
https://aip.scitation.org/doi/10.1063/5.0070582
https://doi.org/10.1063/5.0070582
https://aip.scitation.org/doi/10.1063/5.0065285
https://doi.org/10.1063/5.0065285
https://aip.scitation.org/doi/10.1063/5.0056289
https://aip.scitation.org/doi/10.1063/5.0056289
https://doi.org/10.1063/5.0056289

Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

Sharp complexity asymptotics and topological
trivialization for the (p, k) spiked tensor model

Cite as: J. Math. Phys. 63, 043303 (2022); doi: 10.1063/5.0070300 @ | @
Submitted: 5 September 2021 - Accepted: 21 March 2022 -
Published Online: 8 April 2022

Antonio Auffinger,"” () Gerard Ben Arous,”” "2 and Zhehua Li"“

AFFILIATIONS

"Northwestern University, Evanston, lllinois 60208, USA
2New York University, New York, New York 10012, USA

Note: This paper is part of the Special Collection in Honor of Freeman Dyson.

@ E-mail: tuca@northwestern.edu

 Author to whom correspondence should be addressed: benarous@cims.nyu.edu
¢ E-mail: zhehua.li@northwestern.edu

ABSTRACT

Using precise random matrix theory tools and the Kac-Rice formula, we provide sharp O(1) asymptotics for the average number of deep
minima of the (p, k) spiked tensor model. These sharp estimates allow us to prove that, when the signal-to-noise ratio is large enough, the
expected number of deep minima is asymptotically finite as N tends to infinity and to establish the occurrence of topological trivialization by
showing that this number vanishes when the strength of the signal-to-noise ratio diverges. We also derive an explicit formula for the value of
the absolute minimum (the limiting ground state energy) on the N-dimensional sphere, similar to the recent work of Jagannath, Lopatto, and
Miolane [Ann. Appl. Probab. 4, 1910-1933 (2020)].

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0070300

. INTRODUCTION

It is now well established that random smooth functions of many variables, and the landscapes they define, may be topologically complex.
This complexity may be described through topological quantities, such as the Betti numbers of their level sets, or by the number of their critical
points, which both may happen to be exponentially large (in the number of variables). These landscapes could, for instance, be the energy
or Hamiltonian landscape in statistical physics of disordered media. This question was introduced some time ago for the simplest example
of such landscapes, i.e., the Hamiltonian of spherical spin-glasses.””'’ The topological complexity of random landscapes is also relevant for
certain high-dimensional statistical estimation tasks, for instance, the landscape defined by natural empirical risks.”” The mathematical tools
to study these complexity questions are naturally given by the Kac-Rice formula, which translate the question into a random matrix problem.

We study here the case of the (p, k) spiked tensor model, introduced in Ref. 24 and defined more precisely below. This function is simply
the restriction to the sphere of the sum of a random Gaussian homogeneous polynomial of N variables and of degree p, which is probably the
simplest example of a complex random landscape, and of a degree kK monomial, which is obviously not a complex function.

More precisely, let SNfl(\/ITI) ={oeRY : YN o7 = N} be the N-sphere of radius /N and fix v; € SNfl(\/ITI). Given integers p,k > 1,
AeR,let

1
Hy(0) = =) Z Jivsin,.. iy 03, Oy - - - O, .
N2 1<ipip,.ipsN

(1.1)

AN (0w’
o

where ¢ = (01,...,0n) € sl (\/ZTI) and (]il,,-z,,,,J-P)1g,-1,___,,~PSN are independent standard Gaussian random variables. We call Hy the
Hamiltonian of the (p, k) spiked tensor model.

Note that, when p = k > 3, this function is simply the log-likelihood function for the classical spiked tensor model whose complexity has
been studied in Ref. 7, and then, the parameter A has a natural interpretation related to the signal-to-noise ratio and the sample size. When
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p =1, this function is the Hamiltonian of a pure spherical p-spin in a magnetic field, and A is then the strength of the magnetic field (up to a
normalization).
Without loss of generality, we refer to the direction of vy as the North Pole of the model, and we let

m(o) =0-vo/Ne[-1,1]

be the overlap of o with the signal vo. The aim of this paper is to investigate the landscape of the random function Hy around its ground state
energy

Ly:= min _Hy(0)
oesN1 (V)

and the overlap between its ground state and the signal,

my = (arg minassmq(\/ﬁ)HN(U)) *Vo-

For each A > 0, define

my = min{l, ((i_/%’_’)i}. (1.2)

As illustrated in the transformative work of Ros et al.”* (see also Secs. 2.3 and 2.4 in Ref. 7), in the “low-latitude” region, |m| < m,, Hy has
a rugged energy landscape, with exponentially many critical values in N, resembling the spherical p-spin spin glass models,” while in the
“high-latitude” region, |m| > m,, it resembles a convex potential. The study of phase transitions in the topology of level sets of Hy and limit
theorems for my and Ly have drawn much attention recently; see, for instance, Refs. 11, 18, 22, and 23.

Here, we focus on providing a better understanding of the model in the presence of a strong signal, that is, when A in (1.1) is large. In this
case, low energy level sets of Hamiltonian Hy will go through a phenomenon called “topology trivialization,” a term pioneered by Fyodorov
and Le Doussal'® and discussed in Fyodorov’s remarkable work.'”'” In short, for A large, one does not expect exponentially many critical
values of Hy with energy near the ground state energy Ly. Instead, as A increases, the location of ground state energy starts to align with the
signal (the North Pole in Fig. 1). Furthermore, near the ground state energy, the landscape should only have a finite number of critical values.
In this paper, we confirm the existence of such a phase (the trivialization phase) for the (p, k)-spiked model.

We will now describe our results. Let V and V> denote the spherical gradient and Hessian with respect to the standard metric on
sh-! (\/ITI ) For open sets M € [-1,1] and E € R, we denote the total number of critical points of Hy that have overlap with vo in M and
whose critical values are in NE by

Crty(M,E) := > gy /Nem} * Lty (o) /NeE}
aeSNfl(\/N),VHN(a):O

,\/ﬂt‘i PO '¢

FIG. 1. The landscape of Hy(c') on S'=". vy is the North Pole, m = (g, v)/N. The spikes around the equator represent numerous local maxima (minima) that are possibly
exponential in N in the “low-latitude” region |m| < m,, where mj is defined in (1.2). When m > my, there are only a few critical points on a parallel m = m..
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and the corresponding number of critical points of index /= 0,...,N — 1 by

Crty(M,E) = > 1gvg/Nemy * 1ty (0)/NeE} L{i(v2Hy ) =1} -
0eSN-1(+/N),VHy (0)=0

Here, the index i(+) is the number of negative eigenvalues of the corresponding matrix. When I = 0, Ctrn,0(M, E) counts the number of local
minima that have overlap with vy in M and whose critical values are in NE.
Let my := my (1) be the largest solution of

)Lmk_ m? 13
N (1.3)
0, k=1,2,

on (0,1]. Such m. exists when A > A(l)(p,k) = (k- l)k—l . Set
P55 k>2.
(k-2)

k
x4 (1) := —MZ* -\/p(1-m?).

Our three main theorems explain the existence of the trivialization phase. In the first result, we provide sharp asymptotics of the average
number of critical values. For A sufficiently large, they remain of constant order, not diverging with N. Furthermore, in this regime, all critical
values are, with probability going to one, local minima.

Theorem 1.1. Let M be an open interval of (-1,1) and E be a bounded open interval on R such that

supE < —24 /P;l—’;—;{‘l (1.4)

There exists ¢ > 0 such that for any A > ¢, there exists a constant C = C(A, p, k) that does not depend on M and E such that

C>0 if x<(1) € Eandm. (L) € M,

lim E[Crtyo(M,E)] = lim E[Crty(M,E)] =
N—’°°[ wo )] N—’°°[ v )] {0 otherwise.

Remark 1.2. The role of (1.4) is to make sure we are counting critical values at the bottom of the landscape, the region that want to study.
If we remove condition (1.4), critical values near zero (and of diverging order) will provide the main contribution of Crty (M, R).

The constant C in Theorem 1.1 is explicit, and we can further consider its asymptotics when A — oo.
Theorem 1.3. Let C(A,p, k) > 0 be the constant given in Theorem 1.1. Then, for any p > 3 and k > 1,

Alim C(A,p,k) =1.

Theorem 1.3 confirms the existence of the trivialization phase for the (p, k) spiked tensor model. It is believed that as A — oo, the
deterministic potential becomes stronger and the landscape should approach a convex potential with a unique minimum located exactly at
the signal vector vo; see Ref. 24. Closest to our setting is the recent work of Belius et al.,” which deals with the mean number of critical points
for mixed spherical spin glass models with an external field.

Our third result verifies that indeed the ground state and the ground state energy align with the signal once A is large enough.

Theorem 1.4. For any integers p > 3 and k > 1, there exists ¢ > 0 such that for A > ¢, the following holds:

. 1
A}LngoﬁmN =my«(A) almostsurely (1.5)
and
1 Amk (A
NILIEONLN =- mk( ) _ p(1-m2(1)) almostsurely. (1.6)
J. Math. Phys. 63, 043303 (2022); doi: 10.1063/5.0070300 63, 043303-3
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A word of comment is needed here. Theorem 1.4 was first conjectured and proposed in the article of Ros et al.,”* where the authors studied
the number of local minima of Hy via a replica theoretic approach. The above formulas are not expected to be true when A is small (see Refs.
17 and 24 and Remark 1.8) for any choices of (p, k). In the case p = k, the (p, k) spiked tensor model has a log-likelihood interpretation as
tensor principle component analysis (PCA). This interpretation was used by Jagannath, Lopatto, and Miolane to derive asymptotic formulas
for the ground state energy for all values of A. Theorem 1.4 is an extension of Theorem 1.2 in Ref. 18 for p + g and A sufficiently large, although
the method of the proof is different.

Let us now explain where Theorems 1.1, 1.3, and 1.4 come from. They will follow from the main technical contribution of this paper,
which is the derivation of O(1) asymptotics of E[Crty (M,E)] in the large N limit. Exponential asymptotics of E[Crty(M,E)] were
determined in Ref. 7 in the case k # p. Define S, : (=1,1) x (—00,-v/2) - Raas

- 1 2- Ak | 2(p-1)  A2mP?
Spik(m,y) := Elog((lfmz)(pfl))nL%)}f% (Pp )yf ;’;2 (p+(1fp)m2)711(7y), (1.7)
where
px— (1 -p/k)Am*
y=y(em) = —o"t— (1.8)
2p(p-1)
and

Il(z):f\;\/tz—zdt for z>v2, L(z)=c0 for z<\/2.
2

The next two results do not require any assumptions on A.

Theorem 1.5. Let M be an open interval of (=1,1) such that M c (-1,1) and E be a bounded open interval on R such that sup

_ p=l |1 _ 1y,
E< =2 - |P k)t,then,asN»oo,

V() (VB(L ) = Ak Dt (o))

_ N ) (1 4 o(N)), (1.9)
(V72 =2 = 10 )p\/101 Sy (10, 0)g" (mo)|

E[CrtN,o(M, E)] =

where
y=V2|" |y+ V2]
h = + S
») ‘)’Jr\/z y—\/f
K e 0y MY | 2= 1)
](m,y)—eXp(—(zpzm (p(l—m)+m)+7 =)
3 p k1 1))
En=q/7"—=|E-Am'|--—]) VmeM,
VZ(P—I)( (p k
Yo :=Yo(Mo), Yo(m) = argmax ;- Sp,k(m,y)’
and

m, := argmax,, i g(m), g(m) =S, x(m,y,(m)).
Theorem 1.5 naturally leads to the following corollary.

Corollary 1.6. Let M and E be the same as in Theorem 1.5; then,

1 -
lim — log E[Crtn,o(M,E)] = sup sup S, x(m,y). (1.10)
N—eo N meM yek,,

J. Math. Phys. 63, 043303 (2022); doi: 10.1063/5.0070300 63, 043303-4
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Remark 1.7. The function S, (m, x) := S, x(m,y(x,m)) describes the exponential behavior of E[Crty (M, E)] with respect to the dimen-
sion N, and it is called the annealed complexity, a function of m € [-1,1] and x € R such that for any Borel sets M c [-1,1] and Ec R,

sup  Spro(m,x) < linii;}f% log E[Crtn,o(M,E)]

meMP°,xeE°® N
1
<limsup —E[Crtyo(M,E)] < sup Spio(m,x). (1.11)
N—oo N meM,xEE

We now mention one important remark. Looking at Theorems 1.1, 1.3, and 1.4, it is natural to ask how large A needs to be so the model
is in the trivialization phase. This leads to the notion of a trivialization threshold, which we define as the real number A such that (1.5) and
(1.6) hold for all A > A, and fail forall A < A..

For the (p, k)-spiked tensor, the remark below provides partial information on A..

Remark 1.8 (trivialization threshold). Recall m1) from (1.2). Let

A® (p,k) = inf{)t > A0 (p,k) : me(A) > m,l},

0.0 1 0.00 1
-0.5 —0.05 A
Z-10 z
b % -0.10 4
2 _
5 15 g
8 S -0.15 4
E 2.0 E
™ m
w
g 25 g —0-20 4
c m
m
-3.0 —0.25 A
—35 -0.30
T T T T T T T T T ! T T T T T T
overlap m overlap m
(a) (B)
0.00
0.01
-0.05 -
= 0.00 ~—— — =
g e £
£ -001 \_}/ g 010
[=] [=]
w w
3 b
= —0.02 1 = —0.15 -
g — 347 g
o 357 ]
003 — 387 —0.20 1
- 377
-0.04 — 387 Z0.25 -
T T T T T T T T : T T T T T T T T T
0.0 01 0.2 0.3 0.4 0.5 0.6 0.7 0.0 01 0.2 03 0.4 0.5 0.6 0.7 0.8
overlap m overlap m
(© (D)

FIG. 2. Spx(m, X« (A))1mefom, With different values of p, k, and A. The numbers in the legends are values of A. In each of the panels and for each m € [0, 1], the
values of S (m, X« (1)) mepom,] decrease as A increases. Forp = 3,k = 1,10 = 0,4 =}, = 1.732.Forp = 3,k =2, AV = 0,A) =} = 2.449. Forp =3,k = 3,
2D =A@ = 3464, 1 =3.619. Forp =4,k =3, A =4 1@ =), =4243. (a)p=3,k=1.(0)p=3,k=2.(c)p=3,k=3.(d)p=4,k=3.
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Ay = inf{/l > )L(Z)(p,k) ¢ sup Spk(m,x4(1)) <0and (1.12)
0<m<m,
Spk (1, %4 (X)) 1 sef0,m,] is @ decreasing function of A on [/\(2) (p,k), o0 )} (1.13)

Our Proof of Theorem 1.4 shows that (1.5) and (1.6) hold for all A > A, that is,
Atr > A*.

We expect that the opposite inequality As < A, also holds, and therefore, A, = A+. Indeed, we expect that (1.12) implies (1.13) and that (1.5)
and (1.6) fail for A < A Figure 2 shows a plot of the annealed complexity for various values of A. For the spiked tensor model (p = k > 2), it
has been shown in Refs. 7 and 18 that A(')) = 1) < },,.

We finish this Introduction mentioning a few related results and a brief description of the rest of this paper. First, the study of models
such as the (p, k) spiked tensor along the direction of high-dimensional statistical inference was initiated by Montanari and Richard.”” For
the readers who are particularly interested in Tensor PCA and the spiked matrix-tensor model, we refer the reader to Refs. 18, 21, 22, and
24-26 and the references therein. A prototypical inference model called spiked matrix-tensor model, which is closely related to the case of
k=2 and p > 3, was extensively studied in Refs. 21, 25, and 26. In a recent paper by Maillard, Ben Arous, and Biroli, the complexity study
(using the replicated Kac-Rice approach) is extended to current machine learning models, such as random generalized linear models and
neural networks.

In Sec. II, we prove Theorem 1.5. We first show that the deep minima dominate the total number of critical points in Proposition 2.1.
This result allows us to transform the problem of computing the mean number of deep minima into a problem of computing the mean Euler
characteristic of level set for which we could use tools from random matrix theory to compute the characteristic polynomial of a deformed
Gaussian Orthogonal Ensemble (GOE).

In Sec. I1I, we prove Theorems 1.1 and 1.3 where we study the mean number of deep minima (minima near the bottom of the energy
landscape) and its asymptotic as A — oo.

In Sec. IV, we analyze the ground state energy and prove Theorem 1.4. We first provide in Proposition 4.1 an upper bound of the ground
state energy by restricting to energies with fixed latitude m, a method that was used'® in the case of k = p. A matching lower bound is given in
Proposition 4.2 by exploring the supremum of the annealed complexity near the bottom of the energy landscape.

Il. PROOF OF THEOREM 1.5

The (normalized) GOE of size N (denoted by W) is a real symmetric random matrix (Wj; such that { Wy are independent

)lsz‘,jgN }lsiSjSN
zero mean normal random variables with IE[W;] = % and IE[ W,zl] = %

We will work with the rescaled Hamiltonian f on the unit sphere SV,

MWN,
k

flo):= TUN == > Jiipiy0i Gy - - Gy = (0,%0)", (2.1)

1<y iz ip<N

where ¥ := vo € SV L. Then,

Crin(M.E) = 30 Lgwem " Loy /e
0eSN-1LV f(0)=0

and the corresponding number of critical points of index [ = 0,...,N — 1 is given by

CrtN,l(M,E) = Z l(ﬂ‘floeM} . l{f(g)/\/ﬁsE}l{i(sz)=l}'
0eSN-1LV f(0)=0

Proposition 2.1. Let M and E be the same as in Theorem 1.1. Then, for any [ > 1,

limsupilogE[CrtN,l(M,E)]< sup  Spi(x,m). (2:2)
N—oo N meM,xeE

We postpone the proof of this proposition to the end of this section. We now show how to prove Theorem 1.5.

Proof of Theorem 1.5. Since f is a Morse function almost surely, let

Sv(ME) = {08 : f(0) e VNE, 0% € M}.

J. Math. Phys. 63, 043303 (2022); doi: 10.1063/5.0070300 63, 043303-6
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Then, its Euler characteristic ¢(Sy (M, E)) can be computed in terms of the numbers of critical points as follows:
= 1+2
$(SN(M,E)) = - (=1)""Crty (M, E).
1=0
Using Proposition 2.1, as N — oo, we have

E[Crtxo(M,E)] ~ E[Crtx (M, E)] ~ E[¢(Sx (M, E))]. 2.3)

Therefore, it suffices to compute the asymptotic of the mean Euler characteristic E[¢(Sn (M, E))]. Applying Formula 12.4.4 in Ref. 1 (see also
Eq. (6.22) in Ref. 4), we have

EOSvOMEN] = [ B[4tV £(0) 1jeummy | VS = 0]y (0o, 24

oV

where ¢y ¢(4)(0) is the density of V f (o) at 0.

N-1
Let wy— = % be the surface area of the N — 2 dimensional unit sphere; using the data in Lemma A.1, we get
2

2 p—
‘[o‘voeME[detV f(o)- l{fex/ﬁE} |Vf= 0]¢vf(g)(0)da

_ M[wﬁ(l _ m2)¥ exp(—g(lzm%_z(l -m*)/p+ (x+)tmk/k)2))GN(x»m)dde’

(@m):ip=
where
N1 N N
Gt = a0~ Dp(p 1) Bl den e - el - Ay )| @s)
Ak - l)mkfz(l - mz)
0=0(m) := (2.6)
V2p(p-1)
and
- - p —(1/p - k
y=y(x,m) := 2@_1)(x (1/p-1/k)Am ) (2.7)
Using Lemmas A.3 and A.6, we can express G using Hermite polynomials (see Definition A.2),
Gn(om) = (=D (p(p-1)/2) "7 (hy-1(VNy) + 2/ Nohy-2(VNy)).
It follows that E[Crtn (M, E)] = I + II, where
DN - 1) F N=3
I:wN—Z\/N( 1)1 N(P 1) /dm(lfmz) P
N33 M
x fdx exp(fg(lzmﬂ(ﬂ(l - mz)/p + (x + /lmk/k)z))th(\/ﬁy)
E 2
and
onoN(-D)" (p-1) 7 2y
II = NTY /A;dm(l—m)
X fdx exp(—%(kzmﬂ‘_z(l - mz)/p + (x + Amk/k)z))ehw-z(\/ﬁy).
E
We consider term I first. Using the Hermite function ¢n—1 (see Definition A.2),
J. Math. Phys. 63, 043303 (2022); doi: 10.1063/5.0070300 63, 043303-7
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N (DN (R (N - )A) e
- ZN_%rrg p-1 /I\‘/Idm(l " )

N 2 2 2k-2 2 k 2

fdx exp(—(y +log(1 - )(p— D) -Xm™*(1-m")/p- (x+)tm /k) ))(/SN_l(\/ﬁy). (2.8)

Foranym € M and x € E, y = y(x,m) < —\/2. Using Lemma A.8 and letting /i(y) = \/\/;L_(Zy_)y, as N — oo, we have

1

oy 2N%( ARSI INVAE (1 — )

Ry ey . N/ /Md (1=m)
/dxexp( (}; +10g(1— )(p—l) /12 2k— 2( _
(N—l)n TN \/(N—l)lff *% h(y(x,m)) exp(NS,x(x, m))dxdm

F(NH)ZZ 47-[2 4

2\/'71\/;)_//

) p = (x+ k) = 212(-5) ) i)

7% h(y(x,m)) exp(NS,(x, m) )dxdm.

Substituting y for x, as N — oo, we have
N nls .
I~ Zﬂ\/_ff (1-m ) h(y) exp(NS,x(m,y))dydm, (2.9)
where E,, := | /2(1> 5 (E Am (}% - %))
Similarly,
1= Ao oNVN-T(- NN~ 1(p 1) T (k-1)
N VPVN
N1 2 k\2
» foE(l _mZ)ka—Z exp(_l;]();mzkz(l _mz) + (x+ %) ))th(\/ﬁy)dxdm
-2)! % - —)N! N-2 Nl
RN ke ICSHICH il SN T
Vo)t M
N[X %o, 2 Am* ? P
x /E-dx exp(—Z(Pm (1-m")+[x+ e ¢N72(\/ﬁy).
When N is large enough, %y <=2, 0 by Lemma A.8,

-(N-D1(-/3) N
v

¢N—2(\/IT])/) ~(-1)"" TR h No1

Therefore, as N — oo,
I~- M;]\(/k_ )f m(p-1)'% (1= )+ deh(V y(x))LN(m &

where
_ N[V 5o 2 K\ 2 2(N-1) N
LN(m,x)—exp(—z(pm (1—m )+(x+)tm /k) Ty L - N2

Let z = \/ 2 y(x); then,
In(m,z) = ((p-1)(1- mz))%LN(m,x) = exp(—(N - 1)8,x(m, 2) )]n (m, 2),

63, 043303-8
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where

’N“"’Z)”"P(—?;m””(ﬁ(l—m2>+m2>+"’Zfz 2<”;><N_1>(1_ N))

Substituting z for x, as N — oo, we have

I~ —W%)ﬂ(k_l)/jwdmmk_zji;mdzﬁ(z) exp((N = 1)S,x(m,z))In(m,2),

where Enn = \/ 55 Em.

Since E,, is precompact, 13, . (2)In(m, z) converges to 1 (2)](m,z) uniformly onm € Mand z € E,.. Therefore, as N — oo,

AMN-1)(k-1 _ . .
II ~ —%/ dmm" 2[ dyh(y) exp((N— I)Sp,k(m,y))](m,y). (2.10)
pr M Eu
Combining Egs. (2.9) and (2.10), we get Eq. (1.9) from the Laplace method. m]

We end this section with the Proof of Proposition 2.1.

Proof of Proposition 2.1. Applying the Kac-Rice formula (Theorem 12.1.1 in Ref. 1) to the Hamiltonian (2.1), we have

E[Crix(M,E)] = f ) EMIE[|det V(O] 1 reumpicyrpyay | VS = o]¢vf(g)(o)da. (2.11)

Set
Ane(0) = E[|detvzf(g)y A pevmmicer ey | V. = o].

We now show that for any o with ¢ - vo € M ¢ (m,, 1) and E satisfying (1.4), for £ > 1, we have
L logAne(0) = (ll A ())
N g AN, (0 —ONOg N,o(O
uniformly in ¢. Looking at (2.5)-(2.7) and using Lemma A.1, it suffices to show there exists 7 > 0, independent of y € E, such that

EU det(M - GeN_leIT,_l —yIN)|1{/\g S}/}]
E[l det(M - 961\1_1617:]_1 —yIN)ll{Ao Sy}]

< exp(-Np). (2.12)

Let Ly be the empirical spectral measure of the matrix M — fey_1e5_1, A¢ (6) be its £th smallest eigenvalue, and y denote the semi-circle

law. For & > 0, consider the event
Bn(6) = {‘/ log |x — y|dLn(x) — [ log |x — y|du(x)| > 6}.

By Ref. 6 and an application of eigenvalue interlacement, there exist € > 0 so that for all N sufficiently large,

P(By(8)) <™.

Now, writing
| det(M — Ben-1ey_, — yIN)| = f log |x — y|dLn(x),

note that there exists C > 0 so that E [ log |x — y|dLx(x) < exp(CN) and a positive constant C’ such that for N large enough,
IE[| det(M — Ben_1ex_, — yIn)[1{Ae < y}] = ]E[| det(M — Ben_1ek_, — yIn)|1{A¢ < y}l{BN(a)}]
+E[| det(M - fex-rel1 - yln)|1{Ac < y}1{B}(6)}]

< eN(5+f log |x_y|d[4)]P’(Ag < y) 4 €_€N2+C,N. (213)
At the same time, we also have the lower bound
E[| det(M — Bex-1ex-1 — yIw)[1{do < y}] > N0 PRI <y (11— ), (2.14)
J. Math. Phys. 63, 043303 (2022); doi: 10.1063/5.0070300 63, 043303-9
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Thus, for N large enough, we obtain for all y € E,

E[| det(M - fex-1e5_; - )’IN)‘I{/\€<)’}]
[|det(M Oen-1el_, — yIn)|1{Ao <y}]

P(de <y)
P(o<y)

(N26— °N ) (2.15)

On the other hand, by our choice of E, there exists « > 0 such that y < —\/2 + « for all y € E. By an application of the large deviation principle
for the extreme eigenvalues of rank one perturbation of GOE (Ref. 8, Theorem 2.13), there exists p > 0 depending only on « so that

]P’(/\e J’)

Plugging (2.16) into (2.15), we find that there exists # > 0 so that for N large enough and all y € E, bound (2.12) is satisfied. This completes the
proof of the proposition. O

lll. THE MEAN NUMBER OF DEEP MINIMA
In this section, we prove Theorems 1.1 and 1.3.

Proof of Theorem 1.1. If x. (A1) € Eand m«(A) € M, we prove Theorem 1.1 by deriving an explicit formula for the constant C(A,p, k) as

follows:
V2(/p(1-m)7 = (k= 1)m52)h(y.)
Nlim E[Crtn(M,E)] = C(A,p,k) = (\/_ = ) , (3.1)
o (V7 =27 )I0Sps(mes y)g” ()|
where
Amk p-2 p Amk )’
Vi = yu(my ),y (m) = —— - — | +1, (3.2)
2PV2p-1)  Va(p-1) N\2vP
g(m) =8, (m,y«(m)),and h(-) and I, (-) are defined in Theorem A.7.
Otherwise, we show that S, (0, ,) < 0 in Eq. (1.9). Therefore,
Nlim E[Crtn(M,E)] = 0.
A direct computation gives
. p-2 k| 2(p-1)
PN kgL L ol St SN} (3.3)
e T N p
Let A = p 2and B = %\ / 2(1’ D, ; then, By ok = Ay + B — NS
When m<m,-2> \/_ 2. Therefore, 9,3, > 0 on (—oo, \/_) and S, (m, ) is increasing.
When m > m;, — % < —/2. Therefore, Sp,k(m, -) has a unique maximum in (—oo, —\/5) at
AB-V2+B 242 b p-2 p (/\mk)z
yi(m) = =— - — ] +1 (3.4)
1-A2 2PV20p-1)  V2a(p-1) N\2vP
We then define g(m) = S, x(m, y«(m)). Plugging Eq. (3.4) into S, (m, -), we have
g(m) =1(v) = %log(l - mz) +(1- 2/mz)v2 + V2 + —log(v+ V2 + 1),
where v = 7
We compute I'(v) = 2v 1—%+ V1) Gince Y2+ +1 s decreasing, I'(v) = 0 on (0, 00) if and only if v = m and
P m v & Y i
—futa)
VT -m?
. . . . . s Ak
The maximum is achieved if and only if Eq. (1.3) holds, i.e., N/t
J. Math. Phys. 63, 043303 (2022); doi: 10.1063/5.0070300 63, 043303-10
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As mentioned in Lemma B.1, when A > max{)t<1) (p,k),A» (p,k)}, there is a unique solution m. of Eq. (1.3) such that m. > m,, and
the above computation implies that

sup  Syk(my) = sup S,x(m,ye(m)) =S,x(me,y(myi)) =0. (3.5)

my<m<ly<—/2 m<m<1

Recall that E,,, c (—oo, —\/Z) and y«(m) € E,, for any m. By Laplace’s method, as N — oo,

N 27 ooyt VERGa(m)
! 2”\/13[‘4\} N|8nyp,k(m,y*(m))|(1 ) ye(m) =2 - yu(m) p(Ng(m))d

N . VG
\/P|8w§p,k(mhy*)g”(m*)] Vre =2 s exp(Ng(m))
Vah(y)(1-m2) "

] (V-2 _}’*)\/P|ayy‘§p,k(m*’y*)g"(m*)|.

(3.6)

Similarly, we apply the Laplace method to II and get

L AN=D=1) 27 ker NBh((m)
! o \J(N—l)layyép,k(m,y*(m>>| () = 2 -y () DL D)y (m))

A= 1) i V2h(ys) exp((N = 1)g(m.))] (ma, )
p (V= —2—y*)\/|6yy§p,k(m*,y*)g”(m*)|
V2Mk = 1)mE2h(y ) (me, y4)

) P(\/)’* -2 —y*)\/|6yy3p,k(m*,y*)g”(my,)|.

(3.7)

It remains to show that J(m., y+) = 1. This is obtained as follows. Using Eq. (1.3),

2 k
- (=) ) ¢ M| 22D

2p p

Ak , 5 ( 1 1 )
= 1-m, my - =0.
p W) s Ve

Combining this with Egs. (3.6) and (3.7), we get Eq. (3.1). |

Proof of Theorem 1.3. Since m, satisfies Eq. (1.3), as A — oo, my — 1. When k = 1 or 2, this can be obtained directly from Eq. (B1). When
k > 3, by the implicit differentiation theorem, denoting m’, := %m* (1), we have

mk /\km’ffl ,

\/I_’+ \/I_’ m*z(Zm,,(l—mi)_%+mi(1—mi)_%)m;

ml

VP

=l (1= m2) (k- D~ (k- 2)).

Since m >/ %, so (k—1)m% — (k—2) > 0 and thus m/, > 0. Therefore, as A — oo, m, (1)11.
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We also have
p-2 2 2\"3 p m?
* * = = * l - * - 1
y+(ms) 2 2(p—1)m( ) V2(p-1) 4(1—m§)+
1 2 ’%(P 2 5 p 2 )
= 1- * 5 M T 2 *
e ) (g
1 _1
:72(p__1)(1—mi) 2((p—1)mi—p). (3.8)
Therefore, as A — oo,
PG p——— (1-m2) 7" (3.9)
V2(p-1)

Note that

p

k\2 -3 k k-1
-2 e Am ) +1) Am* Akm
(-1

"(m) = R S Am_
(v R R B

Using Eq. (1.3), we have as A — oo,

Fmyo Kp=2) o oyt kp Mmooy
yulme) = 2(p-1) (1) 2 2(p—1)2—mi( )
___k (l_mi)—%(pr)mv(ffl)mi
V2(p-1) 2-my
k -
N_iz(p_l)(l_m*) (3.10)

and

1

o 2 — _
OpySpk (M, ys) = 2Py, (vi-2)

p
~ _M. (311)
p
We also compute for k > 1,
k-1 — 201 200,
amgpk:_ m _/\km 2(p 1)}/—A (k l)mzk_3+/1 k(p 1)m2k_1,
T l-m? P P P P
Fork > 2,
. 1+m? -D)m* 2 | 2(p-1 2(k-1)(2k - _
oy 1M [2p 1) R Dk=3)
(1-m?) p P p
2 p— —
. szk—z,
BOmmSp1 = _(llt'r'r’;)z + (P;IZ)AZ, and for k > 2,
- Memdb™t | 2(p -1
Oy Sy = R 2= 1),
p p
Using Egs. (1.3) and (3.9), we have as A — oo,
J. Math. Phys. 63, 043303 (2022); doi: 10.1063/5.0070300 63, 043303-12

Published under an exclusive license by AIP Publishing


https://scitation.org/journal/jmp

Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp
. -2 k(k-1 -
DSy (e (m)) = — (14 m2)(1 - m2) ™ - %(1 “m2) (o~ 1) — p)
— - 2 —
C(k-1)(2k-3)(1-m2) R 1)(;k DI ()™
~2(1-m?)” (3.12)
and
- ky/2(p-1 L kJ2(p -1 _1
OmySp (M, yx(my)) = %m*(l - mi) >~ %(1 - mi) 2. (3.13)
Recall that g(m) = 3, (m,y«(m)), so
g = OmmSpi + 20mySp - ¥ + Oy (v )2 +0,8, )" (3.14)

Note that Bysp,k(m*,y*(m*)) = 0; using Egs. (3.12), (3.13), (3.9), and (3.10), we know that as A — oo,

% 2\—2 2k\/2(p—1) 5 7%. _7]( o -1
g (me) ~=2(1-m) +f(1fm*) (m)@ )

20p-1) K 2yl
o)
~2(1-m?) 7 (3.15)

From the definition of A(-) in Theorem A.7 and Eq. (3.9), it is easy to see
Allnl h(yx- (m*)) =2.

To sum up, as A — oo,

(\/1_)(1 - mi)_% - Mk - l)mlf,_z)
PV () /|08 (s y g ()|
2(\/1‘:(1 —m2) = (k- 1)p(1 - mi)_%)

—pV2pe(mi )y 250 - 2(1 - m2)

C(A,p,k) ~2

~ﬁ(l—mi)_%-\/(p—l)(l—mi)% (3.16)
-1 (3.17)
O

IV. LIMITING GROUND STATE ENERGY

In this section, we prove Theorem 1.4. The proof relies on the following two propositions whose proofs are presented after the Proof of
Theorem 1.4.

Proposition 4.1. For any m € (0,1),

1 Am"
limsupE| — min Hy(0) < -Vp(1-m?). (4.1)
Nooo | Noesv-1(/R) k
Proposition 4.2.
1 11 [ X2mk
liminf— min Hy(o) > )Lm}i(f - 7) - M +pas. (4.2)
N—oo N gesv-1(V/N) 2k 4
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Proof of Theorem 1.4 assuming Propositions 4.2 and 4.1. By the Gaussian concentration inequality and Borel-Canteli lemma,

1 1
lim — min _ Hy(o)= limE| - min_ Hy(0)|as.
N—oo N gegn-1 (VN) N—oo Ngesw—l(\/ﬁ)

Therefore, it suffices to show

k(l 1) A2k
4

2,2k 2 4 _ 2
)Lm]i/Z— [ A2m? ipe VP B p(mt —4m2 +4)
4 2v/1 - m? 4(1-mk)
\/I_J(mi+m3,72) 2
= VAT T T o\ p(1-m?).
N p( )

Therefore, Eq. (4.3) holds. m]

+p. (4.3)

Using Eq. (1.3),

Now, we prove Propositions 4.1 and 4.2.

Proof of Proposition 4.1. For any m € (0,1),

1 min Hn(o) > L min _ Hy(0),
NoeSN“(\/ﬁ),a-vozm NaeSN“(\/ﬁ)
SO
1 ) 1 .
— min Hy(o)|2E| = min _Hy(o0)]|.
NU&SN_l(\/IT]),O'-VOZYn NaéSN“(\/ITT)

Since Hy is isotropic, without loss of generality, we assume vy = \/Ney and, then, conditional on on = /Nm,

k p-1
m 1 I 0i, 0i, . .. 0j
Hy(o) = _ANT N —r Z m Z Jivsing -y 7p
N 2 =0 ity =N,1<it SN=Lk#kj,je[1] Oiy, Oi, - - - Oi,

. . .\ ..
Since for different sets of (zkj )]__1, Jirsiss...i, are i.i.d, so

k
HN(O)(i) - )LNm? - VNJw..nm?
p-1

L Pl
NS (Il))zm’(l —m?) > Siveodp 000y G
1=0

1<y g, iy <N-1

where 6y = 0y /\/N(1 —m?),k e [N - 1].

Note that ¥-'67 = 1; therefore,

P p-1\: =
—\/NIZ(:)( l )I’i’l(l—rl’l)2 Z gi]viZ;---vip—léilé'iz"'6'ip—l

1<y gy iy <N—1

is a spherical mixed p-spin model with mixture
i P\ 2 2P p-1 2 2\ _\P 2
f(x):Z(l)m (1= m2)" " = (2 + (1= m)x)] = m?®.
1=0

By Proposition 1 in Ref. 12 (see also Theorem 1.10 in Ref. 19),

k k
E[l min HN(U):|:—A7;—\/f’(1 :—%—\/p(l—mz). o

NJESN’1 (\/ﬁ),u»vozm
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Recall that in this paper, we reserve the symbol x. for the right-hand side of Eq. (4.2), i.e.,

1 1 ) A2m2k
- +p.

= k — =
Xy /\m,k(2 p 1

The key to proving Proposition 4.2 is to identify the point at which 0, the supremum of the complexity function S, is attained. The following
proposition shows that the point lies in the high-latitude region of the sphere.

Proposition 4.3. There exists a constant 1. = Ac(p, k) such that for any 1 > A, M = (0,m,),

sup Spx(m,x+) < 0.
meM

Proof. Using the correspondence between y. and x. [see Eq. (1.8)], we have

f(m) = Sp,k(m,y*) = Sp,k(m,x*).

We will first show that f(m) has at most one critical point on M, and if it exists, it must be a local minimum of f; then, we use the results on the
pure p-spin model from Ref. 3 and Theorem 1.1 to show that f(0) < 0 and f(m,) < 0, thus deriving sup,,;;Spx(m, X+ ) = sup,,.5; f(m) < 0.
A direct computation shows that

k-1 _ 201 _ 2%-3 1V127,,2k—1
£ (m) = - _m . _ Akm 2(p l)y*_)t (k-1)m . (p 1)/\2km

m

l_mzfl(m)’

where

fi(m) =1+ Akmkzil - mz) 2(p- 1))’ . A2 (k - 1)m2k74(1 - mz) ~ (p- l)Aka2k72(1 - mz).

p p P

Letu:=u(A,m):= )lmkfz(l - mz).

Case L Ifk < p,
k [20p-1) k=1, Nm*?(1-m?)
m)=1+— w U+ u + k-p) < fa(u),
fi(m) P\ » » (k=p) < fo(u)

k 2(p-1) k-1,
u)=1+— U+ u.
f2(u) p\ » Y »

Uy = m(—k\/p— Ly« + \/kZ(P— 1)y: —2(k~ 1)P2)-

where

The larger zero of f, is

k
Recall that for fixed A, u = /\mk_z(l - mz), which is increasing with respect to m over [0, \/ k%z], sowhenl > p P:2 (L ) 2,

Umax = u(m)t) = /li(p;)\/%lz) k (1 - m,zl)

Therefore,
k=2
NN AN
Umax ~ Ak (IL) as A — oo. (4.4)
Vp-1
Note that

~ L(x —Amk(l—l))—— Amb 1-m?
N 2p-\" e k)T o P\Iz(p—w'
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When A — oo, it is observed from Eq. (1.3) that lim)_, .o m« (1) = 1, so

y*~—# as A — oo,

V2p(p-1)

and thus,
Ak

“p(k-1)

Ui ~ as A — oo. (4.5)

Combining Egs. (4.4) and (4.5), there exists Ae > 0 such that if 1 > Ae, Umax < tx, SO f1(m) crosses the m-axis at most once over [0,m, ]. Note
that f1(0) = 1 > 0, and it is continuous on [0,m, ], so f'(m) < 0 when m is small and it crosses the m-axis at most once over [0, m; ].

Case II: If k > p, then when A > 25(p - 2) 1%’ my < 1. Therefore, for any m < m),

AmZk_Z(l - mz) <.

f3(u) :1+§\ 2(pp— l)y*u+(k(p+p12)_2p)u2.

The same argument in case I also applies to case II, and we derive the same conclusion that f’(m) < 0 when m is small and it crosses the
m-axis at most once over [0, ].
This implies that

Then, we have fi(m) < f3(u), where

sup f(m) = max{f(0), f(rm)}. (4.6)

meM

Note that f(0) = ®,(y« ), where @, (-) is the annealed complexity of the p-spin spherical spin glass model; see Theorem 2.8 in Ref. 3. It is

known that ®,(-) is an increasing function on (—oo, -2 1%1) and lim,—_o®,(y) = —oo, so when 1 is large enough so that y. is smaller

than the limiting ground state energy of the p-spin spherical spin glass model, which is the unique zero of ®,(-) on (—oo, =24/ P%l ),

F(0) =®p(y+) <0. (4.7)
Asto f(m,), we know from Theorem 1.1 [more specifically, Eq. (3.5)] that when A > bR

f(my) < sup f(m) <0.

m>my
Combining this with Egs. (4.6) and (4.7), we prove this proposition. O

Proof of Proposition 4.2. Forany € > 0, let M = [0,1] and E = (=00, x. — €). It is shown in Theorem 1.1 that for fixed m < 1, §,x(m, ) is
increasing on (—o0, —x. — €). Combining this with Proposition 4.3, we see that

limsup%logE[CrtN(M,E)]: sup Sk (m, x)

N—oo meM,xeE
< supSpx(m, )
meM
<max{ sup S,x(m,y+), sup Spi(m,y.)}
me[0,my ] me[my,1]
<0.

Therefore, by Markov inequality,

P(1 min _ Hy(0) < x — e) < P(Crtn(M,E) > 1) <E[Crin(M,E)].

N gesv-1(V/N)
Then, Eq. (4.2) follows from the Borel-Cantali lemma. O
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APPENDIX A: COVARIANCE COMPUTATIONS AND SOME FORMULAS FROM RANDOM MATRIX THEORY

In this appendix, we derive the random matrices appearing in the Kac-Rice computation in Sec. I and summarize a series of tools that
we use in random matrix theory.

Lemma A.1. Let f: SN=! . R be defined in Eq. (2.1). Without loss of generality, we set 0 = en, Vo = men + V'1 — m?en—1; then,

E[f(0)] = -AVNm'/k, Var(f(e)) =1,
E[Vf(0)] = ~VNAm* V1 = m2ey_y,
Cov(f(0),Vif (0)) = Cov(Viif(0),Vif(0)) =0 for ij, k=1,2,...,N-1,
Cov(V*f, f) = —pIn-1,
Cov(Vf,Vf) = pIn-1,

Cov(Vif,Vif) =p(p - 1)(8udy + 8a0y) + p°030u for ijk, 1=1,2,...,N-1.
Denote by E4 and Covy the expectation and covariance conditional on the event A; then,

Evs@)=olf(0)] =E[f(a)],
Ey f(o)-o[ V£ (0)] = E[V*f(0)],

]E[sz(o)] = —V/NA(k - (1- mz)mkfzeN,leg_l +V/NAm* Iy_y,

k
Ef:mx[vzf(a)] = -MWN(k- l)mk_z(l - mz)eN_leZ,_l —pIN_l(\/Nx+ A\/kﬁm ) + W NmIy_1,
COVf:\/NX(Véf(U),Vilf(O')) = P(P - l)(6ik8jl + 8,-18jk) fOI' i,j, k, l: 1,2, . ,N - 1.

From Lemma A.1, conditional on Vf(0) = 0, f(0) = V/Nx,

V2 f(0) /2N = 1)p(p - D) Wa—t - AN (k- D)2 (1= m*)en—ren_y

+ \/ITUN,I(—px + (1 - %)Amk). (A1)
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Definition A.2. For N € N, denote the following:
d\N -+

*a) le . .

o Hermite functions ¢y (x) = (2¥NI\/7) *hn(x)e = .

e Hermite polynomials hy (x) = & (

Lemma A.3 (Lemma 3 in Ref. 2 and Corollary 11.6.3 in Ref. 1).

E[det(Wy_; - xIy-1)] = 2" V(N -1) 7 (-1 My (VN = 1),

Using Eq. (1.8) in Ref. 13, we obtain the following proposition, which is useful for expressing determinants in terms of Hermite
polynomials.

Lemma A.4.

E[det(WN,l —feN,leIE,l + SIN—I):I

. N-1
_ ( -1 ) ﬂfie(N—l)sz fe,yz (nyl _ imnyfz)BZ\/N—liysdy. (A2)
R

N-1

Remark A.5. Setting f = 0, one can easily recover Lemma A.3 using the Fourier transform.

Lemma A.6.
E[det(WN_l 7feN_1e1Tv_1 + sIN_l)]
N-2\% /N-1
= E[det(Wyn- In-1)| - fl —— E| det|f Wn- —sIn- .
[e( N1+$N1)] f(N—l) [e( N-—2 t N_25N2):|
Proof. Combine Lemmas A.3 and A.4. O

Theorem A.7 (Plancherel-Rotach asymptotics). There exists 8 >0 such that for any € (0,8 ), we have uniformly in x

€ (—oo, —~V2- 5),

oy N
¢N(\/Nx) =(-1) ﬁ

h(x)(1+O(NTY)),

where
1 1
xX— \/5 * X+ \/5 4
h(x) = +
X+ \/E X — \/5
and
X
Li(x) = / V2 - 2dt.
V2
Proof. This lemma is the same as Lemma 7.1 in Ref. 3 and Lemma 5 in Ref. 2. O

From Theorem A.7, we derive the following lemma that we need in the Proof of Theorem 1.5.

Lemma A.8. There exists §o > 0 such that for any § € (0, 8 ), we have uniformly in y € (—oo, V2 - 8),

BN N 1) -1
on-1(VNy) = (-1) mm_y(no(rv ).

Proof. Note that limy_.co % y = y,s0 for N large enough and y ¢ (—oo, -V2- 6), we use Theorem A.7 to derive
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Pn-1 (\/N)’) Pn- 1(\/_ \/\/;}/)

—(v-nn (- )
- ()" = N y)(1+0(N*))
4m/2N N-1
e
e NI phi(=p) o~ (N-D) [, dt N B
L vt ( VN y)(1+(9(N ). (A3)
4n\/2N VN-1
Since JN
N -1
h =h 1+O(N A4
(my) »(1+o(NT)) (A4)
and
N ) e—(N—l)f,}‘/gy, /2 _2dt - ezl<—y>e@(1+O(N"))
V2 -1
=——(1+O(N (A5)
=l (o)
uniformly for y € (—oo, -V2- 8), combining Egs. (A3)-(A5), we prove Lemma A.8. O

APPENDIX B: MATHEMATICAL ANALYSIS ON THRESHOLDS
In this section, we discuss the existence and values of A, AV (p,k) and A2 (p, k).

Lemma B.1. If k < 2, then Eq. (1.3) has a unique solution on (0, 1] for any A > 0. If k > 2, then Eq. (1.3) has a solution if and only if
pgz ;;k 5. In particular, when k > 2 and A > /pgi ;)k 5, the solution on [, /2 2 1) is unique.

Proof. When k = 1,2, m can be solved explicitly from Eq. (1.3) as follows:

A2 A2
/(1 + —), k=1,

/1- P -
1/1, k=2

)lzmzk—A(]_mz)

When k > 2, let g(m) = >

. We compute

e

Therefore, Eq. (1.3) has a solution on (0,1] if and only if gmax = g(\ / %) >1lifand onlyif A >4 /p E: ;;k >. Moreover, when the solution

exists on [\ / }Z:—Z, 1], it is unique. O
In the next lemma, we study the values of A®) (p, k).

Lemma B.2. For any integers p > 3, k > 1, there exists \®) := 1®) (p, k) > 0 such that m. (1) < m, when A < A® and m. (1) > m; when
A22®.

Proof. When k = 1, from Egs. (B1) and (1.2), we derive m. (1) < m, if and only if ()Lz/p) - ("—2)”—2 - (p_j)z < 0ifand only if

(p-2) (p-2)* | 4(p-2)°
p( P VA=) Ci = )
A< .

- 2
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When k = 2, again from Egs. (31) and (1.2), we derive m. (1) < my if and only if £ + 222 % - 1> 0ifand only if

-1
A< 2vP .
I N ()
= +1/4+ 1
When k > 2, the existence of A(?) is guaranteed by the fact that m. (1) increases to 1 and m;, decreases to 0. ]

Lemma B.3. Foranyp>3and k> 1,A1 (p,k) = 1® (p,k) ifand only if p < k.

Proof. When k = 1,2, using Lemmas B.1 and B.2, we have A(") = 0 < A*)_ Therefore, from now on, we assume p, k > 3.
When p <k,
2k
moen | _ (-2 k-1
k2 (k-2)'(p-1) "~

k-1

By Lemma B.1, m)t(l)(P,k) <4/ % < my and thus A(Z) = AO)
When p > k, it suffices to show g(mw)(l,,k)) < 1. A direct computation gives

2
(p-2 1=Moey

g(m,w) k )=
(pk) p- 1 mi(‘)(p,k)

Since f(x) = 15* is increasing on [0, 1] and for each fixed p,

1 p-2 k-2 k-2
oa(mo ) = e =5 ) oo G ) ) <o)

is decreasing for k < p.
Therefore,

1
g(m/\(l)(p,k)) <g(ml(‘>(P)P)) - ﬁ . E
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