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Abstract
We study first passage percolation (FPP) with stationary edge weights on Cayley
graphs of finitely generated virtually nilpotent groups. Previous works of Benjamini
and Tessera (Electron J Probab 20:1–20, 2015) and Cantrell and Furman (Groups
Geom Dyn 11(4):1307–1345, 2017) show that scaling limits of such FPP are given
by Carnot-Carathéodory metrics on the associated graded nilpotent Lie group. We
show a converse, i.e. that for any Cayley graph of a finitely generated nilpotent group,
any Carnot-Carathéodory metric on the associated graded nilpotent Lie group is the
scaling limit of some FPP with stationary edge weights on that graph. Moreover, for
any Cayley graph of any finitely generated virtually nilpotent group, any “conjugation-
invariant” metric is the scaling limit of some FPP with stationary edge weights on that
graph. We also show that the “conjugation-invariant” condition is also a necessary
condition in all cases where scaling limits are known to exist.

Mathematics Subject Classification 60K37 · 82B43
1 Introduction

1.1 Main result

First passage percolation (FPP) was introduced by Hammersley and Welsh [9] in
1965 as a model for the spread of a fluid through a porous medium. It is a random
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perturbation of a given graph distance, where random lengths are assigned to edges
of a fixed graph. For a survey on this model, the reader is invited to read [1, 11] and
the references therein.

The most studied case is when the fixed graph is Z
d and the edge weights are

i.i.d. random variables. Under suitable moment conditions on the weight distribution,
one obtains the famous shape theorem of Cox and Durrett (d = 2) [4] and Kesten
(d > 2) [11]: there exists a norm μ on R

d such that FPP on Z
d has almost surely

a deterministic scaling limit given by the normed vector space (Rd , μ). The limiting
norm μ depends on the distribution of the edge weights. It is a famous open question
to determine which possible metrics arise as FPP limits onZ

d with i.i.d. edge weights.
In particular, it is expected that the limit unit ball should be strictly convex, ruling out
trivial metrics such as �1 or �∞.

In 1995, Haggstrom and Meester [8] showed that if the assumption of i.i.d. edge
weights onZ

d is relaxed, some of the expected restrictions on the limit norm disappear.
Precisely, they showed that for any norm ρ on R

d there exist stationary edge weights
onZ

d which give a FPPmodel whose scaling limit is (Rd , ρ). In this paper, we explore
this direction for FPP in different (non-abelian) graphs.

Benjamini and Tessera [2] explored i.i.d. FPPmodels on Cayley graphs of a finitely
generated virtually nilpotent groups. This class of groups is precisely the class of
groups with polynomial growth, due to a famous theorem of Gromov, and includes
the classical example of Z

d . The question of scaling limits of such groups was first
answered in the deterministic setting by Pansu [13], who proved that, for a large class
of invariantmetrics on such groups, the scaling limit is given by aCarnot-Carathéodory
metric on a certain nilpotent Lie group.

Benjamini and Tessera prove that, undermild conditions, an i.i.d. FPP on a nilpotent
Cayley graph also has a deterministic scaling limit given by a Carnot-Carathéodory
metric on a nilpotent Lie group. Later Cantrell and Furman [3] proved an analogous
theorem for stationary edge weights. Again, in all these cases, the limit shape depends
on the distribution of the edge weights, and in the i.i.d. case, restrictions on realizable
metrics are conjectured but largely unproven.

A natural question then arises, in the spirit of Haggstrom and Meester [8]: for
stationary FPP on virtually nilpotent groups, are all possible limit shapes realizable?
What are the required symmetries for the limit metric?More explicitly, given a Cayley
graph of some finitely generated virtually nilpotent group and a Carnot-Carathéodory
metric on the associated nilpotent Lie group, do there exist stationary edge weights
which give a FPP with a scaling limit given by that Carnot-Carathéodory metric?
The goal of this paper is to provide an affirmative answer to this last question in the
nilpotent case and to obtain a similar characterization of all limit shapes of stationary
FPPs in the virtually nilpotent case (Fig. 1). Our main theorem is the following.

Theorem 1 Let � be a finitely generated virtually nilpotent group with generating set
S, and let E be the edge set of the corresponding Cayley graph. Let d� be a Carnot-
Carathéodory metric on the associated graded Lie group G∞. If � is conjugation
invariant, then there exist stationary weights w : E → R≥0 such that the associated
metric space (�, T ) satisfies
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Fig. 1 A portion of the Cayley
graph of H(Z) with respect to
the generating set [X , Y , Z ].
Source: Wikipedia; image by
Gabor Pete. Colors are for visual
contrast only (color figure
online)

(
�,

1

n
T

)
−−−→
n→∞ (G∞, d�)

in the sense of pointed Gromov–Hausdorff convergence.

To make the theorem more concrete, let us consider the example of the Heisenberg
group, the simplest nonabelian nilpotent group. The integer Heisenberg group H(Z)

has presentation

〈X ,Y , Z |[X ,Y ] = Z , [X , Z ] = [Y , Z ] = 1〉,

and can be realized as the subgroup

⎧⎨
⎩
⎡
⎣1 a b

1 c
1

⎤
⎦ : a, b, c ∈ Z

⎫⎬
⎭

of GL3(R). It sits as a cocompact lattice inside the real Heisenberg group H(R), the
group of real upper triangular matrices with 1 s on the diagonal. Given any norm �

on the subspace

V :=
⎧⎨
⎩
⎡
⎣ a

c

⎤
⎦ : a, c ∈ R

⎫⎬
⎭

of the Lie algebra of H(R), there exists a metric called the Carnot-Carathéodory
metric d� on H(R) associated to � (see “Appendix A”). So in the special case of the
Heisenberg group, our theorem is as follows:
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Theorem 2 Let � be any norm on V , d� the associated Carnot-Carathéodory metric
on H(R). Then, given any Cayley graph of H(Z), there exist stationary edge weights
w : E → R≥0 (E the edge set of the Cayley graph) such that the resulting FPP metric
T is such that

(
H(Z),

1

n
T

)
−−−→
n→∞ (H(R), d�)

in the sense of pointed Gromov–Hausdorff convergence.

1.2 Definitions, notations, and background

We now provide the definitions and the setup for Theorem 1. Let � be a finitely
generated virtually nilpotent group, and let S be a finite generating set. The Cayley
graph associated to (�, S) is the graph with vertex set � and edge set E := {{g, gs} :
g ∈ �, s ∈ S}. For an element g ∈ �, set

|g| := inf{n ≥ 0 : ∃s1, . . . , sn ∈ S ∪ S−1 such that s1 · · · sn = g},

and denote by d the word metric

d(x, y) := |x−1y|

on �. Note that d is a left-invariant metric on �. If γ is an edge path in E , we will
denote by |γ | the number of edges in γ . Thus we have

d(x, y) = inf{|γ | : γ is a path from x to y}.

Letw be a random functionw : E → [0,∞).We callw(e) theweight of the edge e.
The collection of weightsw is called stationary if the distribution is invariant under the
left action of �, that is, for every finite collection of edges f1, . . . , fk ∈ E and every
g ∈ �, the joint distributions of (w( f1), . . . , w( fk)) and (w(g−1 f1), . . . , w(g−1 fk))
are equal. Theweights are called ergodic if the underlying probability space is ergodic,
that is, if all �-invariant events have probability 0 or 1.

For an edge path γ = ( f1, . . . , fk), we define

T (γ ) :=
k∑

i=1

w( fi )

and for two x, y ∈ � we define the passage time from x to y to be

T (x, y) := inf{T (γ ) : γ is a path from x to y}.

T is a random pseudo-metric on � and the pseudo-metric space (�, T ) is called first
passage percolation or FPP on �. Taking expectations we see that ET also gives a
metric on �; if w is stationary, then this metric is left-invariant.
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Let N be a finite index normal torsion-free nilpotent subgroup of �. Such a sub-
group is constructed in Propostion 6 in “Appendix B”. We denote the abelianization
N/[N , N ] of N by Nab. This is a finitely generated abelian group, and so its torsion
elements form a finite subgroup Nab

tor . We define Nab
f ree := Nab/Nab

tor .
There is a graded nilpotent Lie group G∞ associated to � (via N ), and a certain

subalgebra of its Lie algebra, which we denote by gab, is equipped with a natural
isomorphism Nab ⊗ R ∼= gab. Each norm � on gab determines a metric d� on G∞
which is called the Carnot-Carathéodory metric associated to �; conversely, every
Carnot-Carathéodory metric on G∞ comes from a unique norm on gab. More explicit
descriptions and constructions of these objects can be found in “Appendix A”, as well
as [3].

Lastly, there is a construction which plays a central role in our proof, which asso-
ciates a norm on gab to a metric on �. Since | · | is a symmetric subadditive function on
� (i.e. |ab| ≤ |a| + |b| for all a, b ∈ �), and hence a symmetric subadditive function
on N , it induces a symmetric subadditive function on Nab

f ree
∼= Z

d via the quotient

map N → Nab
f ree, x 
→ xabf ree:

|y|ab := inf
x∈N ,xabf ree=y

|x |.

As a symmetric subadditive function on Nab
f ree

∼= Z
d , |·|ab is asymptotically equivalent

to a unique seminorm on R
d ∼= Nab

f ree ⊗ R ∼= Nab ⊗ R. That is, there is a unique

seminorm ‖ · ‖ on Nab ⊗ R such that

‖y‖ − |y|ab = o(y)

where the in the little-o notation we may take any norm on Nab ⊗ R to measure y.
Similarly, assuming our weights are integrable,ET (1, ·) is also subadditive, and hence
it induces a subadditive fuction T̃ on Nab

f ree which is asymptotically equivalent to a

unique seminorm � on Nab ⊗ R.
The conjugation action of� on N induces an action of� on Nab⊗R, hence induces

an action on the set of norms on Nab ⊗ R. We call a norm on Nab ⊗ R conjugation-
invariant if it is invariant under this action. The conjugation action is discussed further
in Sect. 4, but in the case that � itself is already nilpotent, the action is trivial, and
hence in this case all norms on Nab ⊗ R are conjugation invariant. In Sect. 4 (see
Proposition 4), we also show that conjugation-invariance is a necessary restriction,
that is, if� is a norm associated to an invariant metric (such as ET when each T (x, y)
is integrable), then � is necessarily conjugation-invariant.

In the notations above, it is known that (G, d‖·‖) is the scaling limit of (�, d) [13]
and that (�, T ) almost surely has scaling limit (G∞, d�) for many choices of edge
weights [2, 3]. Theorem 1 above shows that any Carnot-Carathéodory d� as in (A.1)
is the scaling limit of some stationary FPP model on any Cayley graph of �, so long
as � is conjugation-invariant.
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1.3 Proof strategy and organization of the paper

The following theorem of Cantrell and Furman [3] provides a starting point for us:

Theorem 3 [3] Let w be ergodic stationary weights such that T is bi-Lipschitz to d,
that is, there exist 0 < k < K < ∞ such that

kd(x, y) ≤ T (x, y) ≤ Kd(x, y)

for all x, y ∈ � almost surely. Let � be the norm on gab associated to the metric
ET on �, and let d� be the Carnot-Carathéodory metric on G∞ associated to �, as
above. Then almost surely

(
�,

1

n
T

)
−−−→
n→∞ (G∞, d�) (1.1)

is the sense of pointed Gromov–Hausdorff convergence.

Remark 1 The fact that the norm�we describe above is the same norm constructed in
[3] is perhaps not obvious except in the case that � = N is torsion-free with torsion-
free abelianization. A proof that the two constructions do give the same answer is
given in “Appendix B”.

Remark 2 We take the identity as the base point in the above pointed Gromov–
Hausdorff convergence. We omit the base point in our notation throughout the
paper.

Remark 3 Cantrell and Furman don’t require the random metric T to come from edge
weights but require it to be inner (see “Appendix B”) in addition to being bi-Lipschitz
to d. On the other hand, if T comes from edge weights which are uniformly bounded
above (implied by the bi-Lipschitz condition on T ), then T is inner, so the above
statement is implied by the main theorem of [3]. Thus our theorem shows that the
collection of scaling limits of FPPs coming from stationary edge weights on a fixed
Cayley graph is no smaller than the collection of scaling limits of stationary inner
metrics which are bi-Lipschitz to d.

Remark 4 In “Appendix C”we provide a step that was omitted in the proof of Theorem
3 in [3]. It guarantees that the convergence in (1.1) is indeed in Gromov–Hausdorff
sense. See Remark 8 for more details.

In view of Theorem 3 and the correspondence between Carnot-Carathéodory
metrics and norms on gab, in order to prove Theorem 1, it suffices to prove:

Theorem 4 Let � be a finitely generated virtually nilpotent group with generating set
S, and let E be the edge set of the corresponding Cayley graph. Let � be a norm on
Nab ⊗ R which is conjugation-invariant. Then there exist ergodic stationary weights
w : E → R such that T is bi-Lipschitz to d, and such that the subadditive function on
Nab

f ree induced by ET (1, ·) is asymptotically equivalent to �.
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Proof of Theorem 1 given Theorem 4 Let d� be a Carnot-Carathéodory metric on G∞
and suppose that the associated norm � on gab is conjugation-invariant. Given any
Cayley graph of �, use Theorem 4 to choose ergodic stationary weights w such that
the resulting T is bi-Lipschitz to d and such that the norm on gab associated to the
metric ET on � is equal to �. Applying Theorem 3 to w then gives

(
�,

1

n
T

)
−−−→
n→∞ (G∞, d�)

in the sense of pointed Gromov–Hausdorff convergence, as desired. ��

Thus, ourmain theorem is reduced to the problemof constructing stationaryweights
which induce a given norm � on gab. Haggstrom and Meester [8] give a construction
for inducing the correct norms in the Z

d case, and in the simplest case, the core
of our work is “lifting” the Haggstrom-Meester construction from the abelianization
of the finitely generated nilpotent group to the group itself, and then checking that
everything goes through. Therefore, to give an idea of the construction we start by
proving Theorem 4 in this simplest case—namely, the case that � = N is a torsion-
free nilpotent group with torsion-free abelianization, and the generating set S projects
to the standard generating set of Z

d ∼= Nab = �ab. As mentioned above, in this case
conjugation-invariance does not play a role, and any norm� is attainable. This is done
in the next two sections.

In Sect. 4, we discuss the restriction of conjugation-invariance and the nontrivial
subtleties that arise when treating the general virtually nilpotent case. The rest of the
main body of the paper is then dedicated to proving Theorem 4 in full generality. In
particular, this involves understanding a virtually abelian “almost-abelianization” of
�, and then again “lifting” a construction from the “almost-abelianization” to �. In
order to accommodate all possible Cayley graphs as well as the slightly non-abelian
nature of the “almost-abelianization”, the general construction has a “coarser” flavor
than the original construction and requires some non-trivial modifications.

“Appendix A” provides more background on the associated graded nilpotent Lie
group and Carnot-Carathéodory metrics. “Appendix B” shows that the construction
at the end of Sect. 1.2 coincides with the construction in Cantrell-Furman’s theorem
[3]. In “Appendix C”, we review the notion of Gromov–Hausdorff convergence and
we also provide a missing step in Cantrell-Furman’s theorem so that it guarantees
Gromov–Hausdorff convergence.

2 Construction of the edge weights when 0 is nilpotent and
torsion-free with torsion free abelianization

Assume that � = N is a finitely generated torsion-free nilpotent group with torsion-
free abelianization. Moreover, assume that S = {s1, . . . , sd} is such that the image
of S under the quotient map � → �ab is a basis, and we choose an isomorphism
�ab ∼= Z

d such that S maps to the standard basis for Z
d . In this and the next section
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we prove the result of Theorem 41 under these extra assumptions, which then implies
the result of Theorem 1 under these extra assumptions, as shown above.

First, let us note that since � is nilpotent, we cannot have d = 0, and if d = 1 then
in fact � ∼= Z. (For this latter fact, let a ∈ � be such that 〈a〉[�,�] = �; then also
〈a〉 = � by Theorem 16.2.5 in [10]). It is easy to induce any norm onZ nomatter what
the finite generating set is using deterministic weights, so from here on we assume
d ≥ 2.

We are given a norm � on �ab ⊗ R ∼= R
d . We want to find weights w : E → R≥0

for � such that the subadditive function T̃ on �ab ∼= Z
d induced by ET via � → �ab

is asymptotically equivalent to �. Let B ⊂ R
d ∼= �ab ⊗ R be the unit ball of �. Note

that B is a compact, convex, and symmetric (i.e. x ∈ B implies −x ∈ B) subset of
R
d which contains an open neighborhood of 0. The construction below is a “lift” of

the construction of Haggstrom and Meester [8].
We first recall the following geometrc result from [8].

Proposition 1 There is a constant C0 depending only on d such that, for any u ∈ R
d ,

if z is a point in Z
d with minimal Euclidean distance to u, there exists a directed edge

path γ from 0 to z in the standard Cayley graph Z
d with the following properties:

1. Any point on γ is at Euclidean distance at most C0 from some point on the line
through 0 and u in R

d .
2. If a subpath of γ starts at x ∈ R

d and ends at y ∈ R
d , then 〈y − x, u〉 > 0.

3. The number of edges in γ is the least possible, i.e.
∑d

i=1 |πi (z)|, where πi : R
d →

R is projection onto the i th coordinate.

We will use the Proposition above as follows. Let {bn}∞n=1 be a countable dense
subset of the boundary of B ⊂ R

d . For each n ≥ 1, let zn be a point in Z
d with

minimum possible distance to 2n bn‖bn‖2 ∈ R
d , where ‖ · ‖2 is the standard Euclidean

norm on R
d . Let γn be the path in Z

d associated to bn from Proposition 1. In short,
these nice paths γn have the property that they (1) stay close to the straight line through
bn , and (2) they travel “monotonically forward” along bn .

We lift each of these nice paths γn to an edge path γ̄n in the Cayley graph of � that
shares similar properties. The quotient map � → �ab ∼= Z

d induces a covering map
of Cayley graphs, so just let γ̄n be the unique lift of γn starting at 1 ∈ �. Equivalently,
paths in Cayley graphs starting at the identity are naturally in correspondence with
words in the generating sets. The path γn then corresponds to a word in e1, . . . , ed ,
which we lift to a word in s1, . . . , sd , which corresponds to a path γ̄n in our Cayley
graph for �.

For each n ≥ 1, set En ⊂ E to be the set of edges of the Cayley graph of � which
share at least one vertex in common with an edge of γ̄n . Note that |En| � 2n , where
the implied constant depends on |S| but is independent of n.

Now we define a configuration of edge weights ηn : En → R+. First choose h > 0
sufficiently small so that {x ∈ R

d : ‖x‖2 ≤ h} ⊂ B. Next, choose K < ∞ sufficiently

1 Technically we prove a weaker version of Theorem 4 which still implies the conclusion of Theorem 1;
see Remark 5 below.
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large so that 1
K−2h−1·C0

≤ h and K ≥ h−1. We then define

ηn( f ) =
{ |πi (bn)|

‖bn‖22
f ∈ γ̄n, f labeled by si ,

K , otherwise

where πi is again the projection onto the i th coordinate. If x ∈ �, then we can also
define the translated configuration Txηn : xEn → R+ by Txηn( f ) = ηn(x−1 f ). The
reason for these choices will hopefully become clearer later, but in short we want the
weights along the paths γ̄n to yield fast passage times (with correct asymptotic speed)
in the direction bn‖bn‖2 . Moreover, En \ γ̄n forms a “shell” of slow weight K edges

around the fast “highway” γ̄n ; when we have defined our weights, these “shells” will
discourage paths from leaving the “highways.”

Let (Yx )x∈� and (Zx )x∈� be collections of i.i.d. random variables with distri-
butions that satisfy P(Yx = 0) = 1

2 , P(Yx = n) = 3−n for n ≥ 1, and Zx is
uniformly distributed on [0, 1]. We also assume that the collections (Yx )x∈� , (Zx )x∈�

are independent.
Finally, the weights w : E → R+ are defined as follows: if Yx = n > 0, assign

the edges in xEn according to Txηn . If two configurations compete for the same edge,
then the configuration with the larger value of n wins; if both configurations have the
same value of n, then the one with the larger value of Zx wins. Any remaining edges
with no assigned weight are given weight K .

More formally: for each f ∈ E , let X f := {x ∈ � : f ∈ xEYx } be the set of starting
points of configurations competing for the edge f . Let n f := max{Yx : x ∈ X f } be
the largest value of n among these competing configurations, and let x f ∈ � be the
element of X f which attains the maximum (that is, Yx f = n f ) and has the largest
value of Zx among such elements, that is, Zx f = max{Zx : x ∈ X f ,Yx = n f }. Then

w( f ) =
{
Tx f ηn f ( f ) X f �= ∅
K otherwise.

Note that x f is a.s. unique since all the Zx are uniform, and it exists since |X f | < ∞
a.s. by the calculation

E|X f | =
∑
x∈�

P( f ∈ xEYx ) =
∞∑
n=1

∑
x∈�

1{ f ∈xEn}P(Yx = n)

≤
∞∑
n=1

|En|3−n �
( ∞∑
n=1

2n · 3−n

)
< ∞.

Here we used that� acts freely on E and so #{x ∈ � : x−1 f ∈ En} ≤ |En|. Hence the
weights are well-defined. They are also evidently stationary and a.s. bounded above
by K < ∞. The weights are also ergodic, since we can take our probability space

 to be (N × [0, 1])� , corresponding to the outcomes of Yx and Zx , which is clearly
ergodic as a direct product of probability spaces over �.
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Remark 5 These weights do not give a metric which is bi-Lipschitz to a word metric,
since πi (bn) will typically cluster around 0 and a uniform lower bound on the edge
weights is not available.

By the remark above, this construction does not suffice to prove Theorem 4. There
are two ways around this. In Sect. 5, we provide a different construction in the general
virtually nilpotent casewhich is bi-Lipschitz to thewordmetric, and impliesTheorem4
as stated. Secondly, the weights constructed above do satisfy aweaker conditionwhich
onemight call “bi-Lipschitz away from the diagonal.” That is, we have a uniformupper
bound K on the edge weights, and there exist some constants 0 < C < ∞ and k > 0
such that for any x, y ∈ � with d(x, y) ≥ C , we have

T (x, y) ≥ kd(x, y) (2.1)

almost surely. This fact follows from Lemma 6 proven in Sect. 7 below. Taking M and
k′ as in Lemma 6, and doing a similar analysis as in the next section, one sees that
if a path γ with |γ | ≥ M contains no edges of weight K , then it (or its reverse) is a
subpath of a “highway” x γ̄n (Yx = n) and hence has passage time

T (γ ) = 1

‖bn‖
〈
D(γ ),

bn
‖bn‖2

〉
≥
(
inf
b∈B

1

‖b‖2
)
k′|γ |.

On the other hand, if a path γ with M ≤ |γ | ≤ 2M does contain an edge
of weight K , then T (γ ) ≥ K ≥ K

2M |γ |. One then concludes (2.1) with k :=
min

((
infb∈B 1

‖b‖2
)
k′, K

2M

)
and C := M .

Under this weaker assumption, the proof of Theorem 3 given in [3] goes through
unchanged. Thus, although we prove a weaker version of Theorem 4 in the next
section, namely Theorem 4 with the conclusion “T is bi-Lipschitz to d” replaced by
the conclusion “T is bi-Lipschitz to d away from the diagonal”, we can then use the
stronger version of Theorem 3 to still conclude the result of Theorem1 in this restricted
setting.

3 Proof of Theorem 4when 0 is nilpotent and torsion-free with
torsion free abelianization

Using the weights w defined in the previous section, let T be the metric associated to
w as defined in Sect. 1.2. Let T̃ be the subadditive function on �ab induced by ET via
the abelianization map � → �ab as above. In order to prove our version of Theorem
4, all that remains is to show that as x ∈ �ab tends to infinity,

T̃ (x) − �(x) = o(x),

where in the little o notation we may use any norm on R
d to measure x . We use the

following proposition which is used in [8] (where they take Q = [−1/2,+1/2]d ⊂
R
d , but the exact form that Q takes does not matter):
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Proposition 2 To show that T̃ (x) − �(x) = o(x), it suffices to show the following

1. For all y /∈ B, y /∈ 1
t B̄(t) for all sufficiently large t.

2. For all y in the interior of B, y ∈ 1
t B̄(t) for all sufficiently large t.

Here we define

B̄(t) :=
⋃

{x∈�ab:T̃ (x)≤t}
x + Q,

where Q ⊂ gab is a compact connected neighborhood of 0 such that the quotient map
Q → gab/�ab is surjective.

First, we prove (1). To do this, we must establish some facts about the relationship
between the T -lengths of paths in E and their “displacements” in �ab. In proving
these we will repeatedly use the following easily verifiable lemma from [8]:

Lemma 1 Let B be a convex subset of R
d and let x1, . . . , xm ∈ R

d , α1, . . . , αm ≥ 0
be such that each α−1

i xi ∈ B. Then x1+···+xn
α1+···+αn

∈ B.

Let us call an edge f ∈ E “slow” if w( f ) = K and “fast” otherwise. Let us also
call an edge path in E “fast” if all its edges are fast and “slow” if all its edges are slow.
For an edge path γ in E from x ∈ � to y ∈ � denote by D(γ ) its “displacement”
yab − xab ∈ R

d . Note that displacement is preserved by left translations:

D(zγ ) = (zy)ab − (zx)ab = (zab + yab) − (zab + xab) = yab − xab = D(γ ).

Let us first consider fast paths γ . Note that by construction of the weights, each fast
path is a subpath of x γ̄n for some x ∈ �, n ≥ 1 (because of the “shell” of slow edges
surrounding each fast x γ̄n). We can then decompose D(γ ) as

D(γ ) = D‖(γ ) + D⊥(γ ),

where D‖ is the orthogonal projection of D(γ ) onto the line passing through 0 and bn
and D⊥(γ ) is orthogonal to that line. Note that the construction of the edge weights
guarantees precisely that if f is a fast edge in x γ̄n labeled by si then

D‖( f )
T ( f )

=
〈
±ei ,

bn‖bn‖2
〉

bn‖bn‖2
|πi (bn)|
‖bn‖22

= ±bn ∈ B.

Then by Lemma 1 we have

D‖(γ )

T (γ )
=

∑
f ∈γ D‖( f )∑
f ∈γ T ( f )

∈ B.
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We also know by Proposition 1 that

‖D⊥(γ )‖2 ≤ 2C0,

and hence

D⊥(γ )

h−1 · 2C0
∈ {x ∈ R

d : ‖x‖2 ≤ h} ⊂ B.

So again by Lemma 1,

D(γ )

T (γ ) + 2h−1C0
= D‖(γ ) + D⊥(γ )

T (γ ) + h−1 · 2C0
∈ B.

On the other hand, if f is a slow edge, then by our choice of K

D( f )

T ( f ) − 2h−1C0
∈ {x ∈ R

d : ‖x‖2 ≤ h} ⊂ B,

and so for a slow path γ , by Lemma 1 we have

D(γ )

T (γ ) − 2|γ |h−1C0
∈ B.

Now, a general path in E is an alternating concatenation of fast and slow paths.
That is, γ = γ 0

f γ
1
s · · · γ n

s γ n
f , where the γ i

f are fast, the γ i
s are slow, and we may take

γ 0
f or γ n

f to be empty, but all the γ i
s consist of at least one edge. Then by our previous

arguments and Lemma 1 we have

∑n
i=0 D(γ

f
i ) + ∑n

i=1 D(γ s
i )∑n

i=0(T (γ
f
i ) + 2h−1C0) + ∑n

i=1(T (γ s
i ) − 2|γ s

i |h−1C0)
∈ B.

The numerator in the above expression is D(γ ), and the denominator is at most T (γ )+
2h−1C0, so we have

D(γ )

T (γ ) + 2h−1C0
∈ B

for any path γ in E .
Finally, let y /∈ B. Since B is closed, there is some ε > 0 such that for any c > 0,

cB(y, ε) ∩ B �= ∅ implies that 1
c > 1 + ε. Now for any t > 0 let z ∈ � be such that

t y ∈ zab + Q, where Q is the fixed compact set in Proposition 2. If we choose γ to
be a T -minimal path from 1 to z in �, by our above arguments we have that

zab

T (γ ) + 2h−1C0
= t[y − 1

t (z
ab − t y)]

T (1, z) + 2h−1C0
∈ B.
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Therefore, whenever diam(Q)
t < ε, we have 1

t ‖zab − t y‖2 < ε and hence

T (1, z) + 2h−1C0

t
> 1 + ε;

and so whenever also 2h−1C0
t < ε/2, we have

T (1, z)

t
> 1 + ε

2
,

and then taking expectation gives

ET (1, z)

t
> 1 + ε

2
;

since this argument did not depend on our choice of z, we conclude that, for all t
sufficiently large, T̃ (zab) > t(1 + ε

2 ) whenever t y ∈ zab + Q, and hence

y /∈ B̄(t)

t
.

Now we prove (2).
It is sufficient to prove that for every ε > 0, for all but finitely many n,

‖bn‖2T̃ (zn)

2n
< 1 + ε.

Fix ε > 0. We give an upper bound on the T̃ -distance from 0 to zn by constructing
a path γ from 1 to a lift of zn in �. The lift we choose is the endpoint of the path
γ̄n , which we denote by z̄n . Note that although the path we construct is random, the
endpoints 1 and z̄n are not.

Denote by Z the center of �, and fix a total ordering < on Z such that if d(1, x0) <

d(1, x1), then x0 < x1 (recall that here d denotes the word metric on � with respect to
S). Then choose x to be the least element of Z with respect to this ordering such that
Yx = n. Note that x is then a well-defined Z -valued random variable with minimal
distance from 1, and that

(x = x0) ⇔ (Yx0 = n and Yx1 �= n for all x1 < x0).

That is, x is the nearest central starting point of a “highway” in the bn direction.
Now, to construct our path γ , first, take a path of minimal d-length from 1 to x in

�. Then, travel along x γ̄n (even if some of the edges are overwritten by slow edges)
to x z̄n . Finally, travel back to x z̄nx−1 = z̄n by traveling backwards along a translate
of the path you took from 1 to x . Note that we have used the fact that x is central to
conclude that x z̄nx−1 = z̄n and in particular that the d-distance from x z̄n to z̄n is no
larger than the d-distance from 1 to x .
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If x γ̄n was not overwritten by any slow edges, the passage time of the path would
be equal to

∑
f ∈γ̄n

ηn( f ) =
∑
f ∈γ̄n

〈D( f ), bn〉
‖bn‖22

= 〈D(γ̄n), bn〉
‖bn‖22

= 〈zn, bn〉
‖bn‖22

.

(Here we have used the fact that, by construction, all edges f in γ have positive inner

product with bn .) Since zn is less than distance
√
d
2 from 2n bn‖bn‖ , the above is bounded

above by

〈
2n bn‖bn‖ , bn

〉
‖bn‖22

+
√
d
2 · ‖bn‖2
‖bn‖22

= 2n

‖bn‖

(
1 +

√
d

2n+1

)
.

Taking into account the travel from 1 to x and from x z̄n to z̄n , as well as the fact that
some of the edges of x γ̄n may be overwritten by slow edges, we have

ET (γ ) ≤ K
[
2Ed(1, x) + E#{e ∈ x γ̄n : e is slow}] + 2n

‖bn‖

(
1 +

√
d

2n+1

)
. (3.1)

To bound the first term, we calculate

Ed(1, x) =
∞∑
i=0

P(d(1, x) > i) =
∞∑
i=0

P(Yξ �= n for all ξ ∈ Bd(i) ∩ Z).

Since we have assumed that � � Z, the growth of the center is at least 2-dimensional,
that is, we have some C > 0 depending only on � and S such that

|Bd(i) ∩ Z | ≥ Ci2

for all i ≥ 0. This is proved in Lemma 3 below, but for now we take it for granted.
Then, since the Yξ are iid, we continue the above computation to get

EdS(1, x) ≤
∞∑
i=0

(1 − 3−n)Ci
2 ≤ 1 +

∫ ∞

0
(1 − 3−n)Cs2ds.

Using the substitution σ =
[
ln(1−3−n)

ln(1−3−1)

]1/2
s, we get

∫ ∞

0
(1 − 3−n)Cs2ds =

[
ln(1 − 3−n)

ln(1 − 3−1)

]−1/2 ∫ ∞

0
(1 − 3−1)Cσ 2

dσ,

which is to say that

Ed(1, x) ≤ 1 + C ′[− ln(1 − 3−n)]−1/2
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for some C ′ > 0 independent of n. By convexity, − ln(1 − s) ≥ s for all s < 1, and
so

[ − ln(1 − 3−n)]−1/2 ≤ (3−n)−1/2 = 3n/2,

thus

Ed(1, x) � 3n/2, (3.2)

the implied constant of course independent of n.
Now, we bound

E#{e ∈ x γ̄n : e is slow } =
∑
e∈γ̄n

P(xe is slow);

since xe will only be slow if another TzEYz with Yz ≥ n competes for it, the above
quantity is bounded above by

∑
e∈γ̄n

P(xe ∈ zEYz and Yz ≥ n for some x �= z ∈ �)

≤
∑
e∈γ̄n

∑
x0∈�

∑
z∈�\x0

∞∑
i=n

P(x = x0, x0e ∈ zEi ,Yz = i)

=
∑
e∈γ̄n

∑
x0∈�

∞∑
i=n

∑
z∈�:x−1

0 ze∈Ei

P(x = x0,Yz = i);

we claim that for i ≥ n and x0 �= z, P(x = x0,Yz = i) ≤ 3
2P(x = x0)P(Yz = i), and

hence we continue

E#{e ∈ x γ̄n : e is slow } ≤
∑
e∈γ̄n

∑
x0∈�

∞∑
i=n

∑
z∈�:x−1

0 ze∈Ei

3

2
P(x = x0)P(Yz = i)

≤ 3

2

∑
e∈γ̄n

∑
x0∈�

∞∑
i=n

|Ei |P(x = x0)P(Yz = i)

= 3

2

∑
e∈γ̄n

∞∑
i=n

|Ei |P(Yz = i)

�
∑
e∈γ̄n

∞∑
i=n

2i · 3−i =
∑
e∈γ̄n

3

(
2

3

)n

= 3|γ̄n|
(
2

3

)n

�
(
4

3

)n

. (3.3)
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To prove the claim, note that for x0 �= z, i ≥ n,

P(x = x0,Yz = i) = P(Yx1 �= n for all x1 < x0,Yx0 = n,Yz = i);

if x0 < z, then all these events are independent, and hence P(x = x0,Yz = i) =
P(x = x0)P(Yz = i). Otherwise z < x0, and then

P(x = x0,Yz = i) =
⎛
⎝ ∏

x1<x0,x1 �=z

P(Yx1 �= n)

⎞
⎠P(Yx0 = n)P(Yz �= n,Yz = i).

If i = n, then this is equal to 0. Otherwise, i > n, and

P(Yz �= n,Yz = i) = P(Yz = i) = P(Yz = i)

P(Yz �= n)
P(Yz �= n) ≤ 3

2
P(Yz = i)P(Yz �= n),

where we used that P(Yz �= n) = 1 − 3−n ≥ 2
3 . Hence

P(x = x0,Yz = i) ≤ 3

2

⎛
⎝ ∏

x1<x0,x1 �=z

P(Yx1 �= n)

⎞
⎠P(Yx0 = n)P(Yz �= n)P(Yz = i)

= 3

2
P(x = x0)P(Yz = i),

as desired.
Hence, applying (3.1), (3.2), and (3.3),

‖bn‖2T̃ (zn)

2n
≤ ‖bn‖2ET (γ )

2n
≤ K‖bn‖2

[
2O

((
31/2

2

)n
)

+ O

((
2

3

)n)]

+ 1 +
√
k

2n+1 ,

which is less than 1 + ε for sufficiently large n, as desired.
To tie up the final loose end, we prove that the volume growth of the center of �

is at least 2-dimensional. This is a simple corollary of the following lemma from the
notes of Drutu and Kapovich [5]:

Lemma 2 (Lemma 14.15 from [5]) Let � be a finitely generated nilpotent group of
class k and let Ck� be the last nontrivial term in its lower central series. If S is a
generating set for �, and g ∈ Ck�, then there exists a constant λ = λ(S, g) such that
for all m ≥ 0,

dS(1, g
m) ≤ λm1/k .
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Lemma 3 Let � be a nontrivial finitely generated torsion-free nilpotent group which
is not isomorphic to Z, S a finite generating set for �. Denote the center of � by Z.
Then, there exists a constant C > 0 depending only on � and S such that

#{z ∈ Z : d(1, z) ≤ i} ≥ Ci2

for all i ≥ 0.

Proof We know that Z is a nontrivial finitely generated free abelian group. First,
assume that Z � Z. Then Z ∼= Z

k for some k ≥ 2. Then the lemma follows, since
the quantity in question grows at least as fast as Z does as a finitely generated group.
More explicitly, if S′ is a finite generating set for Z ∼= Z

k , we know that there exists
C ′ > 0 depending only on S′ such that

#{z ∈ Z : dS′(1, z) ≤ i} ≥ C ′i k .

Takem = maxs∈S′ d(1, s) < ∞. Then for all z ∈ Z , d(1, z) ≤ mdS′(1, z), and hence

#{z ∈ Z : d(1, z) ≤ i} ≥ #

{
z ∈ Z : dS′(1, z) ≤ i

m

}
≥ C ′

mk
ik .

Now, suppose Z ∼= Z. Then� is not abelian (otherwise wewould have� = Z ∼= Z,
contradicting our assumption). So � is nilpotent of step k for some k ≥ 2, and Ck�

is a nontrivial subgroup of Z . Take a generator g for Ck�. By Lemma 2, we get
λ = λ(g, S) > 0 such that d(1, gm) ≤ λm1/k for all m ≥ 0. Therefore

{z ∈ Z : d(1, z) ≤ i} ≥ {m ≥ 0 : d(1, gm) ≤ i} ≥ {m ≥ 0 : λm1/k ≤ i}
≥
⌊
1

λk
i k
⌋

≥ Cik

for some C > 0. ��

4 Restrictions in the virtually nilpotent case

Any finitely generated virtually nilpotent group � will contain a finite index sub-
group H which is finitely generated, nilpotent, torsion free, and which has torsion-free
abelianization (see “Appendix B”)(Fig. 2). We often think of the H and � as having
the same coarse geometry; indeed:

Proposition 3 Let � be a group endowed with a metric T , let H be a finite index
subgroup, and let (X , D) be a metric space. If T � d (d the word metric) and

(H , 1
t (T |H ))

GH−−→ (X , D), then also (�, 1
t T )

GH−−→ (X , D).
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Fig. 2 The proper length (l) vs the rainbow function (H(ε)).We have chosen δ = 0.01, D = 1,�(ε) = − 1,
and B = 1

Proof Since (H , 1
t T |H ) is a metric subspace of (�, 1

t T ), the Gromov–Hausdorff
distance between the two spaces is bounded—up to an absolute constant—by

inf{ε > 0 : T (g, H) < ε for all g ∈ �},

which is itself bounded up to a constant by

1

t
[� : H ] = O(1/t).

Thus (�, 1
t T ) and (H , 1

t T ) must tend to the same limit. ��
Thus, it might seem trivial to pass from the simplified case we just proved to the

general case. However, perhaps surprisingly, the answer to the question we consider
is not the same for � and H . In general, there may be some limit shapes for stationary
FPPs on H which are not attained by stationary FPPs on �. Consider the following
example.

Let � := 〈ρ〉 � Z[i], the semidirect product of the Gaussian integers with a cyclic
group of order four, the generator of the cyclic group acting by multiplication by i . �
contains the abelian (hence nilpotent) group Z[i] ∼= Z

2 =: H as a subgroup of index
4. We know from our work above (and from [8]) that any norm on R

2 is attainable as
a limit shape for H . However, we claim that the scaling limit of any invariant metric
on � which is � d (such as ET for a stationary FPP T with integrable weights) must
be a norm on R

2 which has π
4 rotational symmetry. Take any (x + iy) ∈ Z[i]. Then

ET (1, i(x + iy)) = ET (1, ρ−1(x + iy)ρ)
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≤ ET (1, ρ−1) + ET (ρ−1, ρ−1(x + iy))

+ ET (ρ−1(x + iy), ρ−1(x + iy)ρ)

= ET (1, ρ−1) + ET (1, (x + iy)) + ET (1, ρ)

≤ ET (1, (x + iy)) + 2(const.).

Iterating this inequality four times and taking a scaling limit gives

lim
n→∞

ET (1, n(x + iy))

n

= lim
n→∞

ET (1, ni(x + iy))

n

= lim
n→∞

ET (1,−n(x + iy))

n

= lim
n→∞

ET (1,−ni(x + iy))

n
,

which is precisely the statement that the limit norm has quarter-turn symmetry.
A similar restriction arises in any virtually nilpotent group. As in Sect. 1.2, let �

be a finitely generated virtually nilpotent group, and let N be a torsion-free nilpotent
normal subgroup of finite index (for the construction of such a subgroup see “Appendix
B”). The conjugation action of � on N induces an action of �/N =: Q on Nab

f ree. It
will be convenient later to phrase things in terms of the right conjugation action, and
so we think of the action as a homomorphism φ : Q → Aut(Nab

f ree)
op. This further

induces a right action of Q on Nab ⊗ R ∼= Nab
f ree ⊗ R ∼= gab, which, by abuse of

notation, we also denote by φ : Q → Aut(gab)op. We say that a norm on � on gab is
conjugation-invariant if it is φ-invariant, that is,

�(xφ(q)) = �(x)

for all x ∈ Nab ⊗ R, q ∈ Q.

Proposition 4 Let �, N , φ be as above. If T is a stationary integrable FPP on � such
that the scaling limit of ET is a Carnot-Carathéodory metric on a nilpotent Lie group
G∞, then the norm on gab associated to this metric is φ-invariant.

Proof The proof is very similar to our example. First, let Q̃ be a finite set of coset
representatives of N , that is, a finite subset Q̃ ⊂ � such that the quotient map � → Q
induces a bijection Q̃ ↔ Q; Since Q̃ is finite and the FPP is integrable, there exists
some constant C < ∞ such that ET (1, q̃), ET (1, q̃−1) ≤ C for all q̃ ∈ Q̃. Then, for
any x ∈ N and any q̃ ∈ Q̃,

ET (1, xq̃) ≤ ET (1, q̃−1) + ET (1, x) + ET (1, q̃) ≤ ET (1, x) + 2C

where we have used the fact that ET is left-invariant. Similarly, we have

ET (1, x) = ET (1, (xq̃)q̃
−1

) ≤ ET (1, xq̃) + 2C,
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and thus

|ET (1, x) − ET (1, xq̃)| ≤ 2C .

Since φ respects the quotient map N → Nab
f ree, taking infima over x ∈ N such that

xabf ree = z for some fixed z ∈ Nab
f ree gives

|T̃ (z) − T̃ (zφ(q))| ≤ 2C = o(z);

that is, T̃ is asymptotically equivalent to T̃ φ(q) for all q ∈ Q, and hence the norm � it
induces on gab is φ(q)-invariant. Pansu’s theorem [13] tells us that � is the norm in
the Carnot-Carathéodory construction of the scaling limit of (�, ET ), so we are done.

��
Although there is certainly more work to be done in exploring necessary conditions

for the existence of a limit shape, in all cases which we know how to prove [2, 3], the
scaling limit of the random space (�, T ) coincides with the scaling limit of its mean
(�, ET ), so this tells us that conjugation invariance is a necessary feature of a limit
shape at least in all cases in which we can prove there is a scaling limit.

Theorem 1 then states that this is the only obstruction to a Carnot-Carathéodory
metric on G∞ being the limit shape of a stationary FPP on �; that is, as long as the
Carnot-Carathéodory metric comes from a norm which is conjugation-invariant, it is
the scaling limit of some FPP with stationary weights.

5 Construction of the edge weights in the virtually nilpotent case

Transferring our theorem to the general virtually nilpotent case is far from automatic,
essentially since our Cayley graph may not be nice with respect to the the finite index
subgroups we wish to pass to. Recall that N is a finite-index torsion-free nilpotent
normal subgroup of�. Instead of keeping track of “displacements” of paths by looking
at the projection to �ab, we want to instead look at Nab

f ree, and there is typically no

nice homomorphism from � to Nab
f ree. Nor is there a nice embedding Nab → �ab;

the natural map can have very large kernel (e.g. in our example � := 〈ρ〉 � Z[i]
above, �ab is finite, while N = Nab = Z[i]). Ultimately, we resolve this by looking

at a slightly nonabelian notion of “displacement” via the projection � → �/[̃N , N ],
where we define [̃N , N ] to be the kernel of the projection N → Nab

f ree. Note that

[̃N , N ] is indeed normal in �: an element x ∈ � is in [̃N , N ] if and only if x ∈ N and
for some 1 ≤ k < ∞, xk ∈ [N , N ]; since N is normal in �, both these properties are

preserved under conjugation by any element g ∈ �. Note also that �/[̃N , N ] contains
Nab

f ree as a subgroup of finite index.
In spite of these complications, the spirit of the proof exactly the same.Heuristically,

we want to ensure that every direction has the correct “speed” at large scales, and we
do this by sprinkling long “fast” paths throughout the graph which travel at a certain
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speed in a certain direction; the rest of the edges are “slow” so that any long geodesic
must largely avoid them.

It is clear from our above proof that the weight K of the slow edges can be as large
as we like, as long as it is finite. We use the slowness of the edges to account for any
error in the fast paths–that is, to guard against the fact that a subpath of a fast path
might not go in exactly the right direction or exactly at the right speed.

In our first proof, we used the existence of nice paths (Proposition 1) which had
the property that they (1) stayed close to the straight line through bn , and (2) traveled
“monotonically forward” along bn . In the general case, we will want to find nice paths

in �/[̃N , N ] which satisfy these properties in a certain “coarse” sense to be described
below.

Let us now go into more detail understanding the group �/[̃N , N ], especially con-
sidering it as a finite extension of Nab

f ree. First, take a finite set of coset representatives

Q̃ ⊂ �/[̃N , N ] for N/[̃N , N ]; we assume for convenience that Q̃ contains the iden-

tity. The quotient map �/[̃N , N ] → Q := (�/[̃N , N ])/(N/[̃N , N ]) ∼= �/N induces
a bijection Q̃ → Q, and we denote its inverse by s : Q → Q̃. If s were a homomor-
phism, we would have a semidirect product, but this is not always possible in general.
In general, define a function η : Q × Q → Nab

f ree satisfying

s(q1)s(q2) = s(q1q2)η(q1, q2).

This then allows us to understand �/[̃N , N ] more explicitly thus: note that Q ×
Nab

f ree → �/[̃N , N ], (q, n) 
→ s(q)n is a bijection. Pulling back the multiplication

from �/[̃N , N ] to the set Q × Nab
f ree then gives the multiplication

(Q × Nab
f ree) × (Q × Nab

f ree) → Q × Nab
f ree

(q1, n1) · (q2, n2) := (q1q2, η(q1, q2) + nφ(q2)
1 + n2).

Thus, �/[̃N , N ] looks like a semidirect product up to the “finite error” introduced by
η.

Remark 6 η is in fact a cocycle; the cocycle condition comes precisely from the asso-
ciativity of the above multiplication. However, we will not use this fact. Rather, we
will repeatedly use the simple fact that η is a map from the finite set Q × Q, and thus
has finite image and hence uniformly bounded image.

Remark 7 The cocycle η of course depends on our choice of Q̃, and the choice is
non-unique.

We will now introduce two modified notions of displacement which will be conve-
nient for us. Let γ be a path in E (the Cayley graph of �) starting at x ∈ � and ending
at y ∈ �. We define

D̃(γ ) := x̄−1 ȳ ∈ �/[̃N , N ],
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where x̄, ȳ are the images of x, y under the projection � → �/[̃N , N ]. Note that D̃
is invariant with respect to the action of � on paths in E by left multiplication. Note
also that for concatenations of paths γ = α ∗ β we have

D̃(γ ) = D̃(α)D̃(β).

It will also be helpful for us to have a notion of displacement which lives in Nab
f ree

rather than �/[̃N , N ]; for this, we take a particular choice of point in Nab
f ree nearby

(in the Cayley graph of �/[̃N , N ]) to D̃(γ ):

D(γ ) := D̃(γ )q̃(γ )−1 ∈ Nab
f ree,

where q̃(γ ) is the image of D̃(γ ) under the composition �/[̃N , N ] → Q
s−→ Q̃; put

another way, using the identification �/[̃N , N ] ↔ Q× Nab
f ree, if D̃(γ ) = (q, n), then

D(γ ) = (q, n)(q−1, 0) = nφ(q)−1
. Note also that if D̃(γ ) ∈ Nab

f ree, then D̃(γ ) =
D(γ ).

D(γ ) is convenient because it always lands in Nab
f ree, the space we are trying to

induce the correct norm on; however, instead of being additive on paths, using the
definition and the concatenation property for D̃, we instead get the slightly more
complicated equation

D(αβ) = D(α) + D(β)φ(α) + η(α, β)φ(αβ)−1
, (5.1)

where in an abuse of notation, we define η(α, β) := η(q(α), q(β)), φ(α) := φ(q(α)),
where q(α) is the image of D̃(α) under the quotient map �/[N , N ] → Q. Iterating
the above fact easily gives the following by induction:

Proposition 5 For any paths α1, . . . , αN in E, we have

D(α1 · · · αN ) = D(α1) +
N−1∑
i=1

(
D(αi+1) + η(α1 · · · αi , αi+1)

φ(αi+1)
−1
)φ(α1···αi )−1

Thus, although the displacements do not add, besides the twisting of φ we only accu-
mulated at most one uniformly bounded error term per path concatenated, which will
end up being enough later.

From now on we fix an isomorphism gab ∼= R
d such that Nab

f ree is identified with

Z
d ⊂ R

d via the map Nab
f ree → Nab

f ree ⊗ R ∼= gab ∼= R
d . We will often thus identify

D(γ ) with its image in R
d .

We are now ready to state the properties we want for our “nice” paths in E (which
will become “fast” paths).

Lemma 4 There exists a constant C ′
0 > 0 depending only on �, S, N , and Q̃ such

that, for any vector u ∈ R
d and any n ∈ Z≥0 there exists a simple path γ in E such

that
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1. γ starts at 1 ∈ � and ‖D(γ ) − 2nu‖2 ≤ C ′
0.

2. |γ | � |D(γ )| � 2n‖u‖2.
3. γ stays near the line through u: If α is a subpath of γ starting at 1, then ‖D(α) −

proju D(α)‖2 ≤ C ′
0.

4. γ is a finite concatenation of paths βi where for each i , |βi | ≤ C ′
0, ‖D(β ′)φ(q)‖2 ≤

C ′
0 for all q ∈ Q and every subpath β ′ of βi , and

〈
D(β0 · · · βi+1) − D(β0 · · ·βi ),

u

‖u‖2
〉

≥ 1

C ′
0
,

that is, γ is “coarsely monotone.”

We also assume that maxq1,q2,q3∈Q ‖η(q1, q2)φ(q3)‖2 ≤ C ′
0.

This lemma will be proven in Sect. 7.
For now, we define the edge weights, very similarly to the first construction. First,

given aCarnot-Carathéodorymetricwith associated norm� on gab , let B ⊂ gab ∼= R
d

be the unit ball of �. Let {bn}n≥0 be a countable dense subset of the boundary of B.
For each n, let γn be the path given in Lemma 4 associated to the vector bn and the
natural number n. Let En be the set of edges in E which share at least one vertex with
the path γn .

Pick h > 0 small enough so that B2(0, h) ⊂ B and then choose K > 0 large
enough so that

max
f ∈S,q,q1,q2,q3∈Q

‖D( f )φ(q)‖2 + ‖η(q1, q2)φ(q3)‖2
K − 9C ′

0h
−1 ≤ h.

Then define ηn : En → R+ by

ηn( f ) =
⎧⎨
⎩

〈
D(β0···βi )−D(β0···βi−1),

bn‖bn‖2
〉

‖bn‖2|βi | f ∈ βi ,

K , otherwise.

where the βi are the subpaths of γ = γn alluded to in Lemma 4 (the dependence of
βi on n is suppressed in the notation).

Lastly, we superimpose randomly sprinkled translated copies of the ηn exactly as
in the first construction; that is, define {Zx }x∈�, {Yx }x∈� , X f , x f , and n f exactly as
above and then define w : En → R+

w( f ) =
{
Tx f ηn f ( f ) X f �= ∅
K otherwise.

By the same arguments as above, these weights are well-defined, ergodic, and uni-
formly bounded above. Moreover, the monotonicity condition in Lemma 4 implies
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that each edge has weight at least

min
b∈B

1

C ′2
0 ‖b‖2

> 0,

which is to say that T is bi-Lipschitz to the word metric, and we can apply Theorem 3.

6 Proof of Theorem 4 in the general case

Once again, the proof that the correct norm is induced on gab can be reduced to showing
the conditions in Proposition 2. The proof of the second condition is the same argument
as in the simplified case. (We construct the desired paths by traveling along the center
of N until we reach the first fast path that goes in the correct direction, and then we
travel back along the center of N . We have the same volume growth estimates that we
used above as long as we assume � is not virtually Z. In the virtually Z case, our limit
shapes are norms on R, and since all norms on R are scalar multiples of each other,
we can achieve any desired norm we like by appropriately scaling the weights of, say,
the deterministic FPP which assigns weight 1 to each edge and gives T = d.)

For the first condition of Proposition 2, the spirit of the proof is the same, but we
have to deal with more error terms.

First, we consider a fast subpath γ of E (that is, a path which does not contain any
edges of length K ), and again we note that it is (up to translation) a subpath of some
γn . First consider the case that γ travels forward rather than backward along γn . Then
we write

γ = αβ j · · · βiω,

where the βi are the subpaths alluded to in Lemma 4 and α and ω are subpaths of β j−1
and βi+1 respectively.

Now, by Eq. (5.1), we know that

D(β j · · · βi )
φ(β0···β j−1) = [D(β0 · · ·βi ) − D(β0 · · ·β j−1)]

−η(β0 · · ·β j−1, β j · · ·βi )
φ(β0···βi )−1

.

We can further decompose [D(β0 · · · βi ) − D(β0 · · ·β j−1)] into its components
parallel to bn and perpendicular to bn :

[D(β0 · · ·βi ) − D(β0 · · ·β j−1)] = [D(β0 · · · βi ) − D(β0 · · · β j−1)]‖
+[D(β0 · · ·βi ) − D(β0 · · · β j−1)]⊥.

Now, by our definition of ηn we have

T (β j · · · βi ) = 1

‖bn‖2
〈
D(β0 · · · βi ) − D(β0 · · · β j−1),

bn
‖bn‖2

〉
,
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where we have used coarse monotonicity of γ . Thus, we have

[D(β0 · · ·βi ) − D(β0 · · · β j−1)]‖
T (β j · · · βi )

= bn ∈ B.

Moreover, since γ stays near to the line through bn we have

[D(β0 · · ·βi ) − D(β0 · · · β j−1)]⊥
2C ′

0h
−1 ∈ B2(0, h) ⊂ B,

and by assumptions on C ′
0 we have

−η(β0 · · ·β j−1, β j · · · βi )
φ(β0···βi )

C ′
0h

−1 ∈ B2(0, h) ⊂ B.

Hence by Lemma 1

D(β j · · · βi )
φ(β0···β j−1)

T (β j · · · βi ) + 3C ′
0h

−1 ∈ B,

and then by conjugation-invariance of B we have

D(β j · · · βi )

T (β j · · · βi ) + 3C ′
0h

−1 ∈ B.

Now, since α and ω are subpaths of βi−1 and β j+1, we have

D(α)

C ′
0h

−1 ,
D(ω)

C ′
0h

−1 ∈ B2(0, h) ⊂ B,

and hence by Lemma 1

D(αβ j · · · βiω)

T (β j · · · βi ) + 7C ′
0h

−1

= D(α) + D(β j · · · βi )
φ(·) + η(·, ·)φ(·) + D(ω)φ(·) + η(·, ·)φ(·)

C ′
0h

−1 + T (β j · · · βi ) + 3C ′
0h

−1 + C ′
0h

−1 + C ′
0h

−1 + C ′
0h

−1 ∈ B,

where we have again used conjugation-invariance of B.
Now, if γ travels backwards rather than forwards along γn , we apply the above

argument to γ (the reverse of γ ) to obtain

D(γ )

T (γ ) + 7C ′
0h

−1 = D(γ )

T (γ ) + 7C ′
0h

−1 ∈ B.
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Since we chose Q̃ to contain 1, D(γ γ ) = 0 and so by Eq. (5.1) we have that

D(γ ) = −D(γ )φ(γ ) − η(γ, γ ).

So again using symmetry and conjugation invariance of B, together with assumptions
on C ′

0 and Lemma 1, we conclude

D(γ )

T (γ ) + 8C ′
0h

−1 ∈ B.

Now, for slow edges f , by choice of K we have

D( f ) + η(·, ·)φ(·)

T ( f ) − 9C ′
0h

−1 ∈ B2(0, h) ⊂ B.

Writing an arbitrary path γ as a concatenation of fast paths and slow edges and
using Propositon 5 gives

D(γ ) =
∑

f slow edges
(D( f ) + η(·, ·)φ(·))φ(·) +

∑
γ ′ fast paths

(D(γ ′) + η(·, ·)φ(·))φ(·),

and so using the above and Lemma 1 gives

D(γ )∑
f slow edges(T ( f ) − 9C ′

0h
−1) + ∑

γ ′ fast paths(T (γ ′) + 9C ′
0h

−1)
∈ B,

and since there is at most one more fast path than there are slow edges, we conclude

D(γ )

T (γ ) + 9C ′
0h

−1 ∈ B.

The rest of the proof is just as in the above argument.

7 Proof of Lemma 4

To prove the existence of “nice paths” we want to approximate the nice paths in
Z
d ∼= Nab

f ree from Proposition 1 and prove that our approximation retains the nice
properties “coarsely”.

First, we prove a lemma which will help control error terms:

Lemma 5 There exists a constant K ′ such that for any paths α, β in E, we have

‖D(αβ) − D(α)‖2 ≤ K ′|β|.
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Proof By Eq. (5.1), we know that

D(αβ) − D(α) = D(β)φ(α) + η(α, β)φ(αβ)−1
.

First, since the image of Q in Aut(Nab
f ree)

∼= SL±
d (Z) is a finite family of bounded

operators on R
d , there is some constant M < ∞ such that

‖vφ(q)‖2 ≤ M‖v‖2
for all q ∈ Q, v ∈ R

d . Thus we have ‖D(β)φ(α)‖2 ≤ M‖D(β)‖2.
Next, since Nab

f ree is finite index in �/[̃N , N ], it is undistorted, which is to say that
any word metric on Nab

f ree is bi-Lipschitz to the restriction to Nab
f ree of any word metric

on �/[̃N , N ]. (This can be seen using Schreier generators for Nab
f ree, see e.g. Theorem

14.3.1 in [10]). In particular, this means that the Euclidean norm ‖ · ‖2 on Nab
f ree is

bi-Lipschitz to the metric induced by the Cayley graph on �/[̃N , N ]. Hence
‖D(β)‖2 ≤ K ′′|D(β)| = K ′′|D̃(β)q̃(β)−1| ≤ K ′′(|β| + max

q̃∈Q̃
|q̃|).

Lastly, since Q is finite, we have a uniform bound on the norm of the second term,
that is,

max
q1,q2,q3∈Q

‖η(q1, q2)
φ(q3)‖2 < ∞.

Putting everything together gives

‖D(αβ) − D(α)‖2 ≤ MK ′′|β| + const.,

and since every nonempty β has |β| ≥ 1 we can easily adjust to get a finite K ′ which
satisfies the desired inequality. ��

Now,we construct the paths. Given u and n, first consider the path γn inZ
d ∼= Nab

f ree

using the standard generators ei of Z
d given by Proposition 1. Next, for each edge e of

the path in the standard generators, choose a path β ′ in the Cayley graph for �/[̃N , N ]
induced by the image of S which starts one vertex of e and ends at the other; pick
these paths to satisfy

|β ′| ≤ max
i=1,...,d

d ′(1, ei ) =: C (7.1)

where d ′ is the word metric on �/[̃N , N ] induced by the image of S (Fig. 3). We then
lift to a path β̃ ′

0 · · · β̃ ′
N−1 in E . Note that by the properties guaranteed by Proposition

1 we have that:

‖D(β̃ ′
0 · · · β̃ ′

N−1) − 2nu)‖2 ≤
√
d

2
, (7.2)
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Fig. 3 Construction of “nice paths”. (The “lifting” step is omitted here to aid visualization)

|β̃ ′
0 · · · β̃ ′

N−1| � 2n‖u‖2, (7.3)

and

‖D(β̃ ′
0 · · · β̃ ′

i ) − proju D(β̃ ′
0 · · · β̃ ′

i )‖2 ≤ C0 (7.4)

for all i . If α is a general subpath of β̃ ′
0 · · · β̃ ′

N−1 starting at 1, it is of the form

α = β̃ ′
0 · · · β̃ ′

iα
′ where α′ is a subpath of β̃ ′

i+1, and hence combining Lemma 5 together
with Eqs. (7.1) and (7.4) gives

‖D(α) − proju D(α)‖2 ≤ C0 + K ′C . (7.5)

Thus, β̃ ′
0 · · · β̃ ′

N−1 satisfies many of the properties we desire. However, it may
contain loops, and it may not satisfy coarse monotonicity. So first erase loops to get
a simple path β̃0 · · · β̃N ′−1. The particular manner in which loops are erased does not
matter, so long as the resulting path is a simple path with the same starting and ending
point which is obtained from the original path by deleting subpaths. If entire segments
β̃ ′
i are deleted, the number N ′ of new segments β̃0, . . . , β̃N ′−1 need not be the same

as N the number of original segments, and some reindexing may be required so that
we don’t skip indices; however, every β̃i is composed of subpaths of a single β̃ ′

j , j

depending on i . Thus, each segment β̃i of the new path still consists of at most C
edges.

Moreover, since the set of displacements of subpaths of the loop-erased path is a
subset of the set of displacements of subpaths of the original path, Eq. (7.5) holds for
the new path as well. Equations (7.2) and (7.3) also clearly pass to the loop-erased
path as well.

Now we obtain coarse monotonicity. First we prove the following version of coarse
monotonicity for the original Euclidean paths:
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Lemma 6 There exists some k′ > 0 and M < ∞ such that any subpath γ of γn (γn
the path in the standard Cayley graph of Z

d from Proposition 1 associated to u = bn)
of length at least M satisfies

〈
D(γ ),

u

‖u‖2
〉

≥ k′|γ |.

Proof First, we claim that there is a constant C depending only on d such that for any
subpath of any γn of edge-length at least C , at least one edge f of the path satisfies

〈
D( f ),

u

‖u‖2
〉

≥ 1√
d

.

Heuristically, this is because the path cannot travel too long in directions perpendic-
ular to u while staying close to the line through 0 and u. More rigorously, for some
coordinate i0 ∈ {1, . . . , d} we have

|πi0(u)| ≥ ‖u‖2√
d

.

For notational convenience, let’s replace some of the standard basis vectors with their
opposites to ensure that 〈u, ei 〉 = |πi (u)| ≥ 0 for all i , and further, let’s reindex so

that e1, . . . , el satisfy ci :=
〈
ei ,

u
‖u‖2

〉
< 1√

d
and el+1, . . . , ed satisfy ci ≥ 1√

d
for

some 0 ≤ l < d.
Now let γ be a subpath of γn starting at x ∈ Z

d and ending at y ∈ Z
d , and assume

that for every edge f in γ ,

〈
D( f ),

u

‖u‖2
〉

<
1√
d

.

By Proposition 1, x and y must be within Euclidean distance C0 of the line L passing
through 0 and bn inR

n . Moreover, since we only travel in directions with low weights,
we have y = x + n1e1 + · · · + nlel for some positive integers ni . Now, the distance
from y to L is

dist(y, L) =
∥∥∥∥x + n1e1 + · · · + nlel −

〈
x + n1e1 + · · · + nlel ,

u

‖u‖2
〉

u

‖u‖2
∥∥∥∥
2

≥
∥∥∥∥n1e1 + · · · + nlel −

〈
n1e1 + · · · + nlel ,

u

‖u‖2
〉

u

‖u‖2
∥∥∥∥
2
− dist(x, L),

so, since both distances are less than C0, we have

2C0 ≥
∥∥∥∥n1e1 + · · · + nlel −

〈
n1e1 + · · · + nlel ,

u

‖u‖2
〉

u

‖u‖2
∥∥∥∥
2
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=
∥∥∥∥∥n1e1 + · · · nlel − (n1c1 + · · · nlcl)

(
d∑

i=1

ci ei

)∥∥∥∥∥
2

≥
√√√√ l∑

i=1

(
ni − (n1c1 + · · · + nlcl)ci

)2

≥ C ′
l∑

i=1

(
ni − (n1c1 + · · · + nlcl)ci

)

≥ C ′
l∑

i=1

(
ni − (n1 + · · · + nl)

1

d

)
= C ′

(
1 − l

d

) l∑
i=1

ni

≥ C ′

d

l∑
i=1

ni = C ′

d
|γ |.

To go from the third to the fourth line, we used that the Euclidean norm is equivalent
to the �1 norm on R

d , to go from the fourth to the fifth line, we used that 0 < ci < 1√
d

for i = 1, . . . l, and to get to the final line we used that l ≤ d − 1.
Thus, any subpath of γn which consists of at least C := � 2C0d

C ′ � + 1 edges contains

at least one edge with displacement at least 1/
√
d in the u direction.

Finally, this implies that, for any subpath γ of γn with length at least 2C we have

〈
D(γ ),

u

‖u‖2
〉

≥ k� |γ |
C

� ≥ k

2C
|γ |.

That is, we have the lemma with M = 2C and k′ = k
2C . ��

Now take M ′ = max
(
M,

⌈
2K ′C+1

k′
⌉)

. We then define a new segmentation

β0, . . . , β�N ′/M ′�−1 of the path by

βi = β̃M ′i β̃M ′i+1 · · · β̃M ′i+(M ′−1)

if i < �N ′/M ′� − 1 and

βi = β̃M ′i · · · β̃N ′−1

if i = �N ′/M ′� − 1. Note that we have

|βi | ≤ 2M ′C .

To show that this segmentation of the path gives coarse monotonicity, we have to
compare with the original path before erasing loops. To this end, for a given i <

�N ′/M ′�−1, let I be such that β̃(M ′+1)i is a subpath of β̃ ′
I ; that is, the index such that

the next edge inβ1 · · ·β�N ′/M ′�−1 after the segment βi lies in β̃ ′
I . For i = �N ′/M ′�−1,
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we set I = N . We also set J to be such that the last edge in the path βi−1 lies in β̃ ′
J ;

that is, β̃(i−1)M ′−1 is a subpath of β̃ ′
I . If i = 0, we set J = 0.

Now note that there exists some (possibly empty) subpath α of β̃ ′
J such that

D(β0 · · · βi−1α) = D(β̃ ′
0 · · · β̃ ′

J )

and there exists some subpath ω of β̃ ′
I such that

D(β0 · · ·βiω) = D(β̃ ′
0 · · · β̃ ′

I ).

Hence, by Lemma 5 and Eq. (7.1), we have that

‖D(β0 · · ·βi ) − D(β̃ ′
0 · · · β̃ ′

I )‖2, ‖D(β0 · · · βi−1) − D(β̃ ′
0 · · · β̃ ′

J )‖2 ≤ K ′C,(7.6)

which then implies that

〈
D(β0 · · · βi ) − D(β0 · · · βi−1),

u

‖u‖
〉

≥
〈
D(β̃ ′

0 · · · β̃ ′
I ) − D(β̃ ′

0 · · · β̃ ′
J ),

u

‖u‖2
〉
− 2K ′C .

Now, by construction each D̃(β̃ ′
0 · · · β̃ ′

i ) ∈ Nab
f ree, and hence we have

D(β̃ ′
0 · · · β̃ ′

I ) − D(β̃ ′
0 · · · β̃ ′

J ) = D(β̃ ′
J+1 · · · β̃ ′

I ),

and then since D(β̃ ′
J+1 · · · β̃I ) is the displacement of a subpath of the path γn (in the

standard Cayley graph of Z
d ) with edge length at least I − (J + 1) ≥ M ′ ≥ M ,

Lemma 6 then gives

〈
D(β̃ ′

0 · · · β̃ ′
I ) − D(β̃ ′

0 · · · β̃ ′
J ),

u

‖u‖2
〉

≥ k′M ′ ≥ 2K ′C + 1,

and so combining with Eq. (7.6) gives

〈
D(β0 · · · βi ) − D(β0 · · ·βi−1),

u

‖u‖
〉

≥ 2K ′C + 1 − 2K ′C = 1.

Thus, taking

C ′
0 := max

(√
d/2,C0 + K ′C, 2M ′C, 1, max

q1,q2,q3∈Q
η(q1, q2)

φ(q3)
)

and γ := β0 · · · β�N ′/M ′�−1 gives the Lemma as desired. ��
Acknowledgements The authors thank Nir Avni for providing resources on finitely generated nilpotent
groups, Sami Douba for conversations on topics related to this paper, and Yves Cornulier for providing
helpful context by giving a counterexample showing that on nilpotent groups, being bi-Lipschitz to a word
metric does not imply innerness.
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Appendix

A Carnot-Carathéodorymetrics and the associated graded Lie group

In this section we explain the construction needed to describe continuum limits of
nilpotent groups, i.e. the associated graded nilpotent Lie group associated to a finitely
generated virtually nilpotent group, and Carnot-Carathéodory metrics on this group.
As above, let� be a finitely generated virtually nilpotent group, and let N be a torsion-
free nilpotent group of finite index. A theorem of Mal’cev ([12], see also Theorem
2.18 in [14]) says that there exists a simply connected nilpotent Lie group G such that
N is (isomorphic to) a cocompact lattice in G. Let g be the Lie algebra of G. Let g∞
be the associated graded nilpotent Lie algebra, that is

g∞ :=
⊕
i≥1

gi/gi+1,

where g1 := g, gi+1 := [gi , g] is the descending central series for g. Let G∞ be the
unique simply connected Lie group which has g∞ as its Lie algebra. We will refer to
G∞ as the graded nilpotent Lie group associated to �.

The map

N ↪−→ G → G/[G,G] ∼= g/[g, g] =: gab

induces an inclusion Nab
f ree → gab and an isomorphism Nab ⊗ R → gab. Now

consider a norm � on Nab ⊗ R ∼= gab. Note that gab = g/[g, g] = g1/g2 is a
vector subspace of g∞. By left translation in G∞, the subspace gab ⊂ g∞ gives a
left-invariant distribution on TG∞, and we can extend the norm to any vector in the
distribution. Let us call a path ξ : [a, b] → G∞ admissible if it is differentiable a.e.
and a.e. ξ ′ belongs to the support of the distribution. We can then define the �-length
of ξ to be

�(ξ) :=
∫ b

a
�(ξ ′(t))dt,

and this gives a metric on G∞ by

d�(x, y) := inf{�(ξ) : ξ is an admissible path from x to y}. (A.1)

Themetric d� is called the Carnot-Carathéodory metric onG∞ associated to�. Since
gab generates g∞ as a Lie algebra, by Chow’s theorem [6], the topology induced on
G∞ by d� coincides with the usual topology on G∞.

The above information is sufficient to understand the statement of themain theorem.
The following further data is required to understand Appendix C. The Lie algebra g∞
has a one-parameter family of automorphisms δt : g∞ → g∞, t > 0 given by setting

δt (X) = t i X
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if X ∈ gi/gi+1 and extending by linearity. This of course integrates to a 1-parameter
family of automorphismsofG∞,whichwe also denote by δt .We refer to δt asdilations.

Note that d� is homogeneous in the sense that d�(δt (x), δt (y)) = td� . In the
abelian case, � = Z

d , G∞ = R
d , the dilations are scalar multiplication by t , and d�

is the usual metric induced by the norm � on R
d .

We now describe a sequence of maps � → G∞ which will be Gromov–Hausdorff
approximations (see Appendix C) when � and G∞ are endowed with the appropriate
metrics. First, choose a collection of linear subspaces V1, . . . , Vk of g such that for
each i

g = V1 ⊕ · · · ⊕ Vi ⊕ gi+1.

Note that for each i , Vi ⊂ gi and the natural map Vi → gi/gi+1 is in isomorphism of
vector spaces. Let

L : g = V1 ⊕ · · · ⊕ Vk → ⊕k
i=1g

i/gi+1 = g∞

be the associated linear isomorphism. Then we define a family of maps

sclt : � ↪→ G
log−→ g

L−→ g∞
δt−→ g∞

exp−−→ G∞.

(Here log is the inverse of exp : g → G, which is a diffeomorphism, since G is a
simply connected nilpotent Lie group).

B Understanding the limit norm8 via Nab
free

Our description of the construction of the limit norm� on gab differs slightly from the
description in [3]. The two descriptions certainly coincide in the case that � = N is a
torsion-free finitely generated nilpotent group with torsion-free abelianization. How-
ever, it’s not immediately obvious that their description matches ours in the general
virtually nilpotent case. This section is primarily intended to show how our statement
of Theorem 3 follows from the following:

Theorem 5 [3] Let H be a finitely generated nilpotent group which is torsion-free
and has torsion-free abelianization. Let T be a stationary random metric on H which
is inner (see below) and bi-Lipschitz to a word metric on H. Let d� be the Carnot-
Carathéodory metric on G∞ associated to the metric ET , as in Sect.1.2 (with � =
N = H). Then almost surely

(
H ,

1

n
T , 1

)
−−−→
n→∞ (G∞, d�, 1)

is the sense of pointed Gromov–Hausdorff convergence.

First let us construct relevant finite-index subgroups.
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Proposition 6 Let � be a finitely generated virtually nilpotent group. Then there exists
a finite index subgroup H of � which is nilpotent, torsion-free, and has torsion-free
abelianization.

Proof By definition, � contains a nilpotent subgroup �′ of finite index, and this is
also finitely generated by Schreier’s lemma (see e.g. [10] Theorem 14.3.1). Thus �′
contains a torsion-free subgroup �′′ of finite index (see [10], Theorem 17.2.2).

Take N to be the kernel of the map � → Sym(0/0′′) given by the action of � on
the cosets of �′′ by left multiplication. Since N ≤ �′′, N is nilpotent and torsion free,
and since N is the kernel of a map to a finite subgroup, it is a finite index normal
subgroup of �.

Nowwe extract a finite index subgroup H of � which is nilpotent, torsion-free, and
has torsion-free abelianization as follows. One explicit construction is given by Yves
Cornulier in the MathOverflow post [15]; this construction also has the advantage
that that the natural map Hab → Nab induced by the inclusion H ↪−→ N is itself an
inclusion (also of finite index).

Here is the construction: recall that we have a projection map N → Nab →
Nab/Nab

tor =: Nab
f ree. Take a basis of d generators e1, . . . , ed for Z

d ∼= Nab
f ree, and lift

them to s1, . . . , sd ∈ N ; then we claim that H := 〈s1, . . . , sd〉 ≤ N is a finite index
subgroup with torsion free abelianization.

To see that H has torsion-free abelianization, consider the natural map Hab →
Nab

f ree induced by the map H ↪→ N → Nab
f ree. We claim this is an injection. For if

n1s̄1 + · · · + nd s̄d is in the kernel of this map, by the choice of s1, . . . , sd this means
that n1e1 + · · · + nded = 0, which implies that n1, . . . , nd = 0, since e1, . . . , ed is a
basis. The map is also clearly surjective by construction, so Hab ∼= Nab

f ree and so H
has torsion-free abelianization.

To see that H is finite index and finish the proof of Proposition 6, first note that,
from the above, Hab ≤ Nab is finite index. We then use the following lemma below;
the proof is taken from Cornulier’s argument in [15]. ��
Lemma 7 Let N be a finitely generated nilpotent group, and let H be subgroup of N
such that H [N , N ] is finite index in N (equivalently, Hab → Nab has finite-index
image in Nab). Then H is finite index in N.

Proof We proceed by induction on the nilpotency degree of N . If N is abelian, then
the statement is immediate.

Suppose the statement holds for all nilpotent groups of degree k − 1, and suppose
N is degree k. Let Nk be the kth subgroup in the descending central series for N . By
our inductive hypothesis applied to N/Nk , HNk is a finite index subgroup of N . So
all that remains is to show that H is finite index in HNk .

For this, first note that since all (k + 1)-fold commutators vanish, the k-fold
commutator map N × · · · × N → Nk is “multilinear” in the sense that

[a1, · · · , xy, · · · , ak] = [a1, · · · , x, · · · , ak] · [a1, · · · , y, · · · , ak];

we also see that the output only depends on the abelianizations of a1, . . . , ak , and
thus the k-fold commutator map induces a surjective homomorphism from the tensor
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product Nab⊗· · ·⊗Nab → Nk .We claim that themap
⊗k Hab → ⊗k Nab induced

by the finite index inclusion H → N has image which is finite index in
⊗k Nab.

Once we know this, since Hk is precisely the composition of the map
⊗k Hab →⊗k Nab → Nk , Hk is finite index in Nk , and hence H is finite index in HNk .

Now, to see that the image of
⊗k Hab → ⊗k Nab is finite index, we use the

following general fact: If A is a finitely generated abelian group and B ≤ A is a
subgroup of finite index, then for any i ≥ 1,

⊗i B ≤ ⊗i A is finite index. For i = 1,
this is immediate. Now, inductively assume T ′ is a finite set such that T ′ + ⊗i B =⊗i A, and let S′ be a finite generating set for

⊗i B. Also let T be a finite set such
that T + B = A and let S be a finite generating set for B. We claim that the set

{∑
σ∈S′

tσ ⊗ σ +
∑
τ∈T ′

(
tτ ⊗ τ +

∑
s∈S

s ⊗ t ′s,τ

)
: tσ , tτ ∈ T , t ′s,τ ∈ T ′

}

forms a finite set of coset representatives for
⊗i+1 B in

⊗i+1 A.
To see this, first consider a general element of

⊗i+1 A. It is a sum of elements of
the form

(∑
s∈S

mss + t

)
⊗
(∑
s′∈S′

ms′s
′ + t ′

)

where t ∈ T , t ′ ∈ T ′, ms,ms′ ∈ Z, and hence, by expansion, equal to

∑
σ∈S′

(∑
s∈S

mσ,ss + tσ

)
⊗ σ +

∑
τ∈T ′

(∑
s∈S

mτ,ss + tτ

)
⊗ τ

for some mσ,s,mτ,s ∈ Z, tσ , tτ ∈ T . Since every s ⊗ σ ∈ ⊗k+1B, the element

∑
σ∈S′

tσ ⊗ σ +
∑
τ∈T ′

(
tτ ⊗ τ +

∑
s∈S

s ⊗ mτ,sτ

)

represents the same coset of ⊗k+1B. For each s, τ , by the inductive hypothesis, we
have

s ⊗ mτ,sτ = s ⊗
(∑
s′∈S′

ns′,τ s
′ + t ′s,τ

)

for some ns′,τ ∈ Z and t ′s,τ ∈ T ′, and this is equivalent modulo ⊗k B to

∑
s′∈S′

s ⊗ t ′s,τ .
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That is, an arbitrary element is equivalent to one in the set provided, as desired. ��
In sum, by Proposition 6, we have H ≤ N � � finite index inclusions, where N is

torsion-free and H is torsion-free with torsion-free abelianization.
Now, let T be a stationary random metric on � which is almost surely inner and

bi-Lipschitz to a word metric on �. Recall that a metric space is called inner if for all
ε > 0, there exists 0 < R < ∞ such that for any x, y ∈ �, there exists an (ε, R)-
coarse geodesic from x to y, that is, a sequence x = p0, p1, . . . , pM = y in � such
that each d(xi−1, xi ) ≤ R and

M∑
i=1

d(pi−1, pi ) ≤ (1 + ε)d(x, y).

(Note that, in the main body of the paper, we consider T an FPP with edge weights w

uniformly bounded above; such T is automatically inner). We want to show that

(
�,

1

n
T ) → (G∞, d�

)
.

By Proposition 3, it suffices to show that

(
H ,

1

n
T |H ) → (G∞, d�

)
.

Thus, we want to apply Theorem 3 to H , so first we must check that the hypotheses
are satisfied.

Proposition 7 Let �, H , T be as above. Then T |H is bi-Lipschitz to a word metric on
H and T |H is inner.

Proof T |H is bi-Lipschitz to d|H , and since H ≤ � is finite index, any word metric
on H is bi-Lipschitz to d|H (this can be seen using Schreier generators for H , see e.g.
Theorem 14.3.1 in [10]), so we have the first claim.

Next, we show innerness. Let ε > 0. First, using the innerness of T on �, choose
r > 0 so that any x, y ∈ � can be joined by an ( ε

2 , r)-coarse geodesic. Next, note that
since H ≤ � is finite index and T ≤ Kd a.s. for some K < ∞, we have

max
g∈�

T (g, H) ≤ K max
g∈�

d(g, H) =: C

for some non-random constant 0 < C < ∞. Now choose 0 < R < ∞ sufficiently
large so that 0 < 4C

R−r ≤ ε
2 . We claim that any h, h′ ∈ H can be joined by an

(ε, R + 2C)-coarse geodesic in H .
To construct such a coarse geodesic, first take an ( ε

2 , r)-coarse geodesic h =
p′
0, p

′
1, . . . , p

′
M ′ = h′ in �. By deleting points, we can construct a ( ε

2 , R)-coarse
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geodesic h = p0, . . . , pM = h′ with

M ≤
⌈
T (h, h′)
R − r

⌉
≤ 2T (h, h′)

R − r
,

where the last inequality only holds for T (h, h′) ≥ R − r , but if T (h, h′) ≤ R + 2C
then p0 = h, p1 = h′ trivially gives an (ε, R + 2C)-coarse geodesic, so we may
assume this inequality holds.

Lastly, for each pi , choose qi ∈ H with T (pi , qi ) ≤ C (and of course q0 = p0 =
h, qM = pM = h′). Then each T (qi−1, qi ) ≤ T (pi−1, pi ) + 2C ≤ R + 2C and

M∑
i=1

T (qi−1, qi ) ≤
M∑
i=1

T (pi−1, pi ) + 2CM ≤
(
1 + ε

2

)
T (h, h′) + 2CM

≤
(
1 + ε

2

)
T (h, h′) + 2C · 2T (h, h′)

R − r
≤ (1 + ε)T (h, h′),

so q0, . . . , qM is an (ε, R + 2C)-coarse geodesic in H , as desired. ��
Now, note that the Malcev completions of H and N coincide; if N is a cocompact

lattice inG, then as a finite-index subgroup of N , H is also cocompact inG. Therefore
H and N have the same associated graded nilpotent Lie group G∞ as well. Thus,
Theorem 3 tells us that

(
H ,

1

n
T |H

)
→ (G∞, d�H ),

where we define �H to be the unique norm on gab asymptotically equivalent to the
subadditive function

T̃H (h) := inf
t∈H :tab=h

ET (1, t)

on Hab. (Recall that we can relate functions on Hab and gab, since we have a map
Hab → gab and an isomorphism Hab ⊗ R ∼= gab induced by the composition

H ↪→ G → G/[G,G] ∼= g/[g, g] =: gab.)

Thus, to deduce our statement of Theorem 3, it only remains to show that�H = �,
where recall that we define � to be the unique norm on gab which is asymptotically
equivalent to the subadditive function

T̃ (n) := inf
t∈N :tabf ree=n

E(1, t)

on Nab
f ree.
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Proposition 8 �H = �.

Proof Note that Hab and Nab
f ree are identified with the same subgroup of gab since

the inclusion Hab → gab is exactly equal to the composition of the isomorphism
Hab ∼= Nab

f ree and the inclusion Nab
f ree → gab. Using the isomorphism Hab ∼= Nab

f ree

to consider T̃H as a subadditive function on Nab
f ree, we have

T̃H (n) = inf
t∈H :tabf ree=n

ET (1, t).

From this it is clear that T̃ ≤ T̃H .
To show a lower bound, first note that since H is finite index in N , H ∩ [̃N , N ] is

finite-index in [̃N , N ]. Let R be a finite set of right coset representatives for H∩[̃N , N ]
in [̃N , N ], that is, N ∩ [̃N , N ] = ⋃

r∈R H ∩ [̃N , N ]r . Set C := maxr∈R |r |, where
| · | = d(1, ·) is, as always, the word length in � with respect to the generating set S.
Then we have

T̃ (n) = inf
t∈H ,r∈R:tabf ree=n

ET (1, tr) ≥ inf
t∈H ,r∈R:tabf ree=n

ET (1, t) − ET (1, r) ≥ �H (n) − KC,

where we have used that T ≤ Kd. Thus |T̃ (n)− T̃H (n)| ≤ KC = o(n) and� = �H ,
as desired. ��

C Gromov–Hausdorff convergence to the limit shape

Recall the notion of pointed Gromov–Hausdorff convergence [7]. There are many
equivalent conditions for this convergence, but here we use a particular sufficient
condition. Let (Xn, dn, on), (X0, d0, o0) be metric spaces with distinguished base-
points on, o0. A sequence of maps fn : Xn → X0 is called a sequence of of pointed
Gromov–Hausdorff approximations if for every ε > 0, for all sufficiently large n we
have

1. d0( fn(on, o0)) < ε,
2. every point of B(o0, 1/ε) is within distance ε of fn(B(on, 1/ε)),
3. (1 − ε)dn(x, y) − ε ≤ d0( fn(x), fn(y)) ≤ (1 + ε)dn(x, y)ε for all x, y ∈

B(on, 1/ε).

If fn : Xn → X0 is a sequence of pointed Gromov–Hausdorff approximations, then
Xn pointed Gromov–Hausdorff converges to X0. Here, our metric spaces are groups
with various metrics, and the basepoint will always be the identity element.

In [3], Section 4.4, Cantrell and Furman prove the following: for any fixed g, g′ ∈
G∞, almost surely

lim
ε→0

lim sup
t→∞

sup

{
1

t
|T (γ, γ ′) − d�(g, g′)| : γ, γ ′ ∈ �,
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d‖·‖(scl 1
t
γ, g), d‖·‖(scl 1

t
γ ′, g′) < ε

}
= 0, (C.1)

where�,G∞, T , d�, d‖·‖ are all as defined in Sect. 1.2, and themaps scl 1
t

: N → G∞
are as defined inAppendixA. In particular, (G∞, d‖·‖) is the scaling limit of� endowed
with the word metric as given by Pansu’s theorem:

Theorem 6 (Pansu, [13])

scl 1
t

:
(

�,
1

t
d

)
→ (G∞, d‖·‖)

is a sequence of Gromov–Hausdorff approximations.

To prove that scl 1
t

: (�, 1
t T ) → (G∞, d�) is a sequence of Gromov–Hausdorff

approximations, by homogeneity of the norm d�, it suffices to show that, for any
ε > 0, there exists R > 0 such that for any |γ |, |γ ′| ≥ R,

|T (γ, γ ′) − d�(scl1(γ ), scl1(γ
′))| ≤ ε max(|γ |, |γ ′|).

The rest of this appendix is devoted to proving this fact.

Remark 8 In [3], it is shown that the event of failure ofGromov–Hausdorff convergence
is contained in an uncountable union of null-sets. More specifically, they show that
failure of Gromov–Hausdorff convergence entails the existence of some pair g, g′ ∈
G∞ for which Eq. (C.1) fails, but a priori (g, g′) ranges over the uncountable set
G∞×G∞. It is necessary to show that it is contained in a countable union of null-sets.

Now, let {(gn, g′
n)} be a countable dense subset of G∞ × G∞. With probability 1,

Eq. (C.1) holds for all (gn, g′
n) simultaneously. We show that on this probability 1

subset Gromov–Hausdorff convergence holds.
Suppose that Gromov–Hausdorff convergence fails, that is, there exists ε0 > 0 and

some sequence (γn, γ
′
n) ∈ � × � with min(|γn|, |γ ′

n|) → ∞ such that

1

tn
|T (γ, γ ′) − d�(scl1(γ ), scl1(γ

′)| ≥ ε0,

where we define tn := max(|γn|, |γ ′
n|). By homogeneity of d�, this is equivalent to

∣∣∣∣ 1tn T (γ, γ ′) − d�

(
scl 1

tn
γn, scl 1

tn
γ ′
n

)∣∣∣∣ ≥ ε0. (C.2)

Since the sequence (scl 1
tn

γn, scl 1
tn

γ ′
n) lies in the product of the unit d‖·‖ balls of G∞,

by compactness we may pass to a subsequence and assume that

(
scl 1

tn
γn, scl 1

tn
γ ′
n

)
→ (g0, g

′
0)
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for some (g0, g′
0) ∈ G∞ × G∞. Convergence holds in the d‖·‖ metric as well as the

d� metric.
Now choose N sufficiently large so that

|d�

(
scl 1

tn
γn, scl 1

tn
γ ′
n

)
− d�(g0, g

′
0)| ≤ ε0

2
(C.3)

for all n ≥ N . Combining Eqs. (C.2) and (C.3) gives

| 1
tn
T (γn, γ

′
n) − d�(g0, g

′
0)| ≥ ε0

2
. (C.4)

Fix δ′ > 0 (to be chosen later). Now choose (gm0 , g
′
m0

) from our countable dense set
such that

max(d‖·‖(gm0 , g0), d‖·‖(g′
m0

, g′
0), d�(gm0 , g0), d�(g′

m0
, g′

0)) ≤ δ′.

For each k ≥ 1 define γ k
m0

to be the γ ∈ � such that scl 1
k
has minimal distance to gm0 ,

and similarly define γ ′k
m0
. Then by Eq. (C.1) we have

∣∣∣∣1k T (γ k
m0

, γ ′k
m0

) − d�(gm0 , g
′
m0

)

∣∣∣∣ −−−→
k→∞ 0,

and so we can choose N also sufficiently large that for all n ≥ N ,

∣∣∣∣ 1tn T (γ tn
m0

, γ ′tn
m0

) − d�(gm0 , g
′
m0

)

∣∣∣∣ ≤ δ′.

By Theorem 6 we can also choose N so that for all n ≥ N ,

∣∣∣∣ 1tn d(γn, γ
tn
m0

) − d‖·‖(g0, gm0)

∣∣∣∣ ≤ δ′,
∣∣∣∣ 1tn d(γ ′

n, γ
′tn
m0

) − d‖·‖(g′
0, g

′
m0

)

∣∣∣∣ ≤ δ′.

Thus we have (again taking k = max(|γn|, |γ ′
n|))

∣∣∣∣ 1tn T (γn, γ
′
n) − d�(g0, g

′
0)

∣∣∣∣ ≤
∣∣∣∣∣
T (γn, γ

′
n) − T (γ

tn
m0 , γ

′tn
m0)

tn

∣∣∣∣∣
+
∣∣∣∣ 1tn T (γ tn

m0
, γ ′tn

m0
) − d�(gm0 , g

′
m0

)

∣∣∣∣
+ |d�(gm0 , g

′
m0

) − d�(g0, g
′
0)|.
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By our choice of (gm0 , g
′
m0

), we have that the last term is bounded by 2δ. If n ≥ N ,
we have that the second term is bounded by δ. To bound the first term, recall that by
assumption, T ≤ Kd and hence

|T (γn, γ
′
n) − T (γ

tn
m0 , γ

′tn
m0 )| ≤ T (γn, γ

tn
m0 ) + T (γ ′

n, γ
′tn
m0 ) ≤ K (d(γn, γ

tn
m0 ) + d(γ ′

n, γ
′tn
m0 )),

and so

∣∣∣∣∣
T (γn, γ

′
n) − T (γ

tn
m0 , γ

′tn
m0)

tn

∣∣∣∣∣ ≤ K

(
1

tn
d(γn, γ

tn
m0

) + 1

tn
d(γ ′

n, γ
′tn
m0

)

)

≤ K
(
d‖·‖(g0, gm0) + δ + d‖·‖(g′

0, g
′
m0

) + δ
) ≤ 4K δ.

All in all we have

∣∣∣∣ 1tn T (γn, γ
′
n) − d�(g0, g

′
0)

∣∣∣∣ ≤ 4K δ + 3δ,

and for a sufficiently small choice of δ, this contradicts Eq. (C.4), and so we are done.
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