Probability Theory and Related Fields
https://doi.org/10.1007/s00440-023-01196-7

n

Check for
updates

Asymptotic shapes for stationary first passage percolation
on virtually nilpotent groups

Antonio Auffinger’ - Christian Gorski’

Received: 6 October 2021 / Revised: 18 November 2022 / Accepted: 14 January 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract

We study first passage percolation (FPP) with stationary edge weights on Cayley
graphs of finitely generated virtually nilpotent groups. Previous works of Benjamini
and Tessera (Electron J Probab 20:1-20, 2015) and Cantrell and Furman (Groups
Geom Dyn 11(4):1307-1345, 2017) show that scaling limits of such FPP are given
by Carnot-Carathéodory metrics on the associated graded nilpotent Lie group. We
show a converse, i.e. that for any Cayley graph of a finitely generated nilpotent group,
any Carnot-Carathéodory metric on the associated graded nilpotent Lie group is the
scaling limit of some FPP with stationary edge weights on that graph. Moreover, for
any Cayley graph of any finitely generated virtually nilpotent group, any “conjugation-
invariant” metric is the scaling limit of some FPP with stationary edge weights on that
graph. We also show that the “conjugation-invariant” condition is also a necessary
condition in all cases where scaling limits are known to exist.

Mathematics Subject Classification 60K37 - 82B43

1 Introduction

1.1 Mainresult

First passage percolation (FPP) was introduced by Hammersley and Welsh [9] in
1965 as a model for the spread of a fluid through a porous medium. It is a random
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perturbation of a given graph distance, where random lengths are assigned to edges
of a fixed graph. For a survey on this model, the reader is invited to read [1, 11] and
the references therein.

The most studied case is when the fixed graph is Z¢ and the edge weights are
i.i.d. random variables. Under suitable moment conditions on the weight distribution,
one obtains the famous shape theorem of Cox and Durrett (d = 2) [4] and Kesten
(d > 2) [11]: there exists a norm 1 on R? such that FPP on Z¢ has almost surely
a deterministic scaling limit given by the normed vector space (R?, 11). The limiting
norm i depends on the distribution of the edge weights. It is a famous open question
to determine which possible metrics arise as FPP limits on Z¢ with i.i.d. edge weights.
In particular, it is expected that the limit unit ball should be strictly convex, ruling out
trivial metrics such as €1 or £oo.

In 1995, Haggstrom and Meester [8] showed that if the assumption of i.i.d. edge
weights on Z is relaxed, some of the expected restrictions on the limit norm disappear.
Precisely, they showed that for any norm p on R? there exist stationary edge weights
on Z? which give a FPP model whose scaling limit is (R?, p). In this paper, we explore
this direction for FPP in different (non-abelian) graphs.

Benjamini and Tessera [2] explored i.i.d. FPP models on Cayley graphs of a finitely
generated virtually nilpotent groups. This class of groups is precisely the class of
groups with polynomial growth, due to a famous theorem of Gromov, and includes
the classical example of Z?. The question of scaling limits of such groups was first
answered in the deterministic setting by Pansu [13], who proved that, for a large class
of invariant metrics on such groups, the scaling limit is given by a Carnot-Carathéodory
metric on a certain nilpotent Lie group.

Benjamini and Tessera prove that, under mild conditions, ani.i.d. FPP on a nilpotent
Cayley graph also has a deterministic scaling limit given by a Carnot-Carathéodory
metric on a nilpotent Lie group. Later Cantrell and Furman [3] proved an analogous
theorem for stationary edge weights. Again, in all these cases, the limit shape depends
on the distribution of the edge weights, and in the i.i.d. case, restrictions on realizable
metrics are conjectured but largely unproven.

A natural question then arises, in the spirit of Haggstrom and Meester [8]: for
stationary FPP on virtually nilpotent groups, are all possible limit shapes realizable?
What are the required symmetries for the limit metric? More explicitly, given a Cayley
graph of some finitely generated virtually nilpotent group and a Carnot-Carathéodory
metric on the associated nilpotent Lie group, do there exist stationary edge weights
which give a FPP with a scaling limit given by that Carnot-Carathéodory metric?
The goal of this paper is to provide an affirmative answer to this last question in the
nilpotent case and to obtain a similar characterization of all limit shapes of stationary
FPPs in the virtually nilpotent case (Fig. 1). Our main theorem is the following.

Theorem 1 Let I be a finitely generated virtually nilpotent group with generating set
S, and let E be the edge set of the corresponding Cayley graph. Let dg be a Carnot-
Carathéodory metric on the associated graded Lie group Goo. If © is conjugation
invariant, then there exist stationary weights w : E — Rx¢ such that the associated
metric space (I', T') satisfies
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Asymptotic shapes for stationary first passage percolation...

Fig.1 A portion of the Cayley i
graph of H (Z) with respect to

the generating set [X, Y, Z].

Source: Wikipedia; image by

Gabor Pete. Colors are for visual

contrast only (color figure

online)
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<F, lT) ——> (Goo, do)
n

n—oo

in the sense of pointed Gromov—-Hausdorff convergence.

To make the theorem more concrete, let us consider the example of the Heisenberg
group, the simplest nonabelian nilpotent group. The integer Heisenberg group H (Z)
has presentation

(XY, ZIIX,Y|=Z,[X,Z] =Y, Z] = 1),
and can be realized as the subgroup

lab
lc|:a,b,ceZ
1

of GL3(R). It sits as a cocompact lattice inside the real Heisenberg group H (R), the
group of real upper triangular matrices with 1s on the diagonal. Given any norm &
on the subspace

a

V.= cl:a,ceR

of the Lie algebra of H(R), there exists a metric called the Carnot-Carathéodory
metric dg on H (R) associated to @ (see “Appendix A”). So in the special case of the
Heisenberg group, our theorem is as follows:
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Theorem 2 Let ® be any norm on 'V, dg the associated Carnot-Carathéodory metric
on H(R). Then, given any Cayley graph of H (Z), there exist stationary edge weights
w : E — Rxq (E the edge set of the Cayley graph) such that the resulting FPP metric
T is such that

1
(H(Z), —T> —> (H(R),do)
n n—o0
in the sense of pointed Gromov-Hausdorff convergence.

1.2 Definitions, notations, and background

We now provide the definitions and the setup for Theorem 1. Let " be a finitely
generated virtually nilpotent group, and let S be a finite generating set. The Cayley
graph associated to (I, §) is the graph with vertex set I' and edge set E := {{g, gs} :
gel',s e S} Foranelement g € I', set

lg| :=inf{rn > 0:3s1,...,5, € SU s~! such that sy - - -5, = g},
and denote by d the word metric
d(x,y) =[xy

on I'. Note that d is a left-invariant metric on I'. If y is an edge path in E, we will
denote by |y| the number of edges in y. Thus we have

d(x,y) = inf{|y| : y is a path from x to y}.

Let w be arandom function w : E — [0, 00). We call w(e) the weight of the edge e.
The collection of weights w is called stationary if the distribution is invariant under the
left action of T, that is, for every finite collection of edges fi, ..., fxr € E and every
g € T, the joint distributions of (w( f1), ..., w(fx)) and (w(g_1f1), e, w(g_lfk))
are equal. The weights are called ergodic if the underlying probability space is ergodic,
that is, if all ["-invariant events have probability O or 1.

For an edge path y = (fi, ..., fx), we define

k

T(y):=Y w(fi)
i=1
and for two x, y € I we define the passage time from x to y to be

T(x,y) :=inf{T(y) : y is a path from x to y}.

T is a random pseudo-metric on I and the pseudo-metric space (I', T') is called first
passage percolation or FPP on T". Taking expectations we see that ET also gives a
metric on I'; if w is stationary, then this metric is left-invariant.
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Let N be a finite index normal torsion-free nilpotent subgroup of I'. Such a sub-
group is constructed in Propostion 6 in “Appendix B”. We denote the abelianization
N/[N, N]of N by N*’. This is a finitely generated abelian group, and so its torsion
elements form a finite subgroup Ntaobr We define N;ilr’ e =N ab Ntaobr

There is a graded nilpotent Lie group G associated to I' (via V), and a certain
subalgebra of its Lie algebra, which we denote by g, is equipped with a natural
isomorphism N%” @ R = g’. Each norm W on g’ determines a metric dy on G
which is called the Carnot-Carathéodory metric associated to W; conversely, every
Carnot-Carathéodory metric on G, comes from a unique norm on g*. More explicit
descriptions and constructions of these objects can be found in “Appendix A”, as well
as [3].

Lastly, there is a construction which plays a central role in our proof, which asso-
ciates a norm on g? to a metric on I'. Since | - | is a symmetric subadditive function on
I' (.e. |ab| < |a| + |b| for all @, b € T"), and hence a symmetric subadditive function
on N, it induces a symmetric subadditive function on N¢? Free = 74 via the quotient

ab
X = )Cfree

mapN—>N

free’

IVlap := inf x|,

X€EN, xfrw y

As a symmetric subadditive function on N2 Free = = 74, |-|ap is asymptotically equivalent
to a unique seminorm on R? = me ® R = N ® R. That is, there is a unique
seminorm || - || on N’ ® R such that

Iyl = 1ylap = o(y)

where the in the little-o notation we may take any norm on N** ® R to measure y.
Similarly, assuming our weights are integrable, ET (1, -) is also subadditive, and hence

it induces a subadditive fuction 7 on N;’lr’ee which is asymptotically equivalent to a

unique seminorm ® on N’ @ R.

The conjugation action of I" on N induces an action of I" on N*? ® R, hence induces
an action on the set of norms on N4 ® R. We call a norm on N** ® R conjugation-
invariant if it is invariant under this action. The conjugation action is discussed further
in Sect.4, but in the case that I" itself is already nilpotent, the action is trivial, and
hence in this case all norms on N** @ R are conjugation invariant. In Sect.4 (see
Proposition 4), we also show that conjugation-invariance is a necessary restriction,
that is, if @ is a norm associated to an invariant metric (such as ET when each T'(x, y)
is integrable), then @ is necessarily conjugation-invariant.

In the notations above, it is known that (G, d.)) is the scaling limit of (T", d) [13]
and that (I, T') almost surely has scaling limit (G, dp) for many choices of edge
weights [2, 3]. Theorem 1 above shows that any Carnot-Carathéodory dy as in (A.1)
is the scaling limit of some stationary FPP model on any Cayley graph of I, so long
as W is conjugation-invariant.
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1.3 Proof strategy and organization of the paper

The following theorem of Cantrell and Furman [3] provides a starting point for us:

Theorem 3 [3] Let w be ergodic stationary weights such that T is bi-Lipschitz to d,
that is, there exist 0 < k < K < o0 such that

kd(x,y) <T(x,y) < Kd(x,y)

for all x,y € T almost surely. Let ® be the norm on g*° associated to the metric
ET on T, and let dg be the Carnot-Carathéodory metric on G «, associated to ®, as
above. Then almost surely

(F, lT> ——> (G0, do) (1.1)
n n— 00

is the sense of pointed Gromov—Hausdorff convergence.

Remark 1 The fact that the norm ® we describe above is the same norm constructed in
[3] is perhaps not obvious except in the case that I' = N is torsion-free with torsion-
free abelianization. A proof that the two constructions do give the same answer is
given in “Appendix B”.

Remark2 We take the identity as the base point in the above pointed Gromov—
Hausdorff convergence. We omit the base point in our notation throughout the

paper.

Remark 3 Cantrell and Furman don’t require the random metric 7" to come from edge
weights but require it to be inner (see “Appendix B”) in addition to being bi-Lipschitz
to d. On the other hand, if 7 comes from edge weights which are uniformly bounded
above (implied by the bi-Lipschitz condition on T'), then T is inner, so the above
statement is implied by the main theorem of [3]. Thus our theorem shows that the
collection of scaling limits of FPPs coming from stationary edge weights on a fixed
Cayley graph is no smaller than the collection of scaling limits of stationary inner
metrics which are bi-Lipschitz to d.

Remark 4 In “Appendix C” we provide a step that was omitted in the proof of Theorem
3 in [3]. It guarantees that the convergence in (1.1) is indeed in Gromov—Hausdorff
sense. See Remark 8 for more details.

In view of Theorem 3 and the correspondence between Carnot-Carathéodory
metrics and norms on g%, in order to prove Theorem 1, it suffices to prove:

Theorem 4 Let T be a finitely generated virtually nilpotent group with generating set
S, and let E be the edge set of the corresponding Cayley graph. Let ¥ be a norm on
N @ R which is conjugation-invariant. Then there exist ergodic stationary weights
w : E — Rsuchthat T is bi-Lipschitz to d, and such that the subadditive function on

N;ﬁlr’ee induced by ET (1, -) is asymptotically equivalent to W.
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Proof of Theorem 1 given Theorem 4 Let dg be a Carnot-Carathéodory metric on G
and suppose that the associated norm ® on g? is conjugation-invariant. Given any
Cayley graph of I', use Theorem 4 to choose ergodic stationary weights w such that
the resulting T is bi-Lipschitz to d and such that the norm on g*® associated to the
metric ET on I' is equal to ®. Applying Theorem 3 to w then gives

1
<F, _T) —_— (GOOs d@)
n n— 00

in the sense of pointed Gromov—Hausdorff convergence, as desired. O

Thus, our main theorem is reduced to the problem of constructing stationary weights
which induce a given norm W on g“’. Haggstrom and Meester [8] give a construction
for inducing the correct norms in the Z? case, and in the simplest case, the core
of our work is “lifting” the Haggstrom-Meester construction from the abelianization
of the finitely generated nilpotent group to the group itself, and then checking that
everything goes through. Therefore, to give an idea of the construction we start by
proving Theorem 4 in this simplest case—namely, the case that I' = N is a torsion-
free nilpotent group with torsion-free abelianization, and the generating set S projects
to the standard generating set of Z¢ = N = I'*_ As mentioned above, in this case
conjugation-invariance does not play arole, and any norm W is attainable. This is done
in the next two sections.

In Sect.4, we discuss the restriction of conjugation-invariance and the nontrivial
subtleties that arise when treating the general virtually nilpotent case. The rest of the
main body of the paper is then dedicated to proving Theorem 4 in full generality. In
particular, this involves understanding a virtually abelian “almost-abelianization” of
I', and then again “lifting” a construction from the “almost-abelianization” to I'. In
order to accommodate all possible Cayley graphs as well as the slightly non-abelian
nature of the “almost-abelianization”, the general construction has a “coarser” flavor
than the original construction and requires some non-trivial modifications.

“Appendix A” provides more background on the associated graded nilpotent Lie
group and Carnot-Carathéodory metrics. “Appendix B” shows that the construction
at the end of Sect. 1.2 coincides with the construction in Cantrell-Furman’s theorem
[3]. In “Appendix C”, we review the notion of Gromov—Hausdorff convergence and
we also provide a missing step in Cantrell-Furman’s theorem so that it guarantees
Gromov—Hausdorff convergence.

2 Construction of the edge weights when I is nilpotent and
torsion-free with torsion free abelianization

Assume that I’ = N is a finitely generated torsion-free nilpotent group with torsion-
free abelianization. Moreover, assume that S = {si, ..., s4} is such that the image
of S under the quotient map I' — I'*? is a basis, and we choose an isomorphism
'*’ = 74 such that S maps to the standard basis for Z?. In this and the next section
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we prove the result of Theorem 4! under these extra assumptions, which then implies
the result of Theorem 1 under these extra assumptions, as shown above.

First, let us note that since I" is nilpotent, we cannot have d = 0, and if d = 1 then
in fact I' = Z. (For this latter fact, let @ € T" be such that (a)[I", I'] = T; then also
(a) = I' by Theorem 16.2.5 in [10]). It is easy to induce any norm on Z no matter what
the finite generating set is using deterministic weights, so from here on we assume
d>2.

We are given a norm ® on I'*” @ R = R?. We want to find weights w : E — Rxq
for I" such that the subadditive function 7 on I'*? = Z4 induced by ET via ' — I'%?
is asymptotically equivalent to ®. Let B ¢ R? = I'?’ ® R be the unit ball of ®. Note
that B is a compact, convex, and symmetric (i.e. x € B implies —x € B) subset of
R which contains an open neighborhood of 0. The construction below is a “lift” of
the construction of Haggstrom and Meester [8].

We first recall the following geometrc result from [8].

Proposition 1 There is a constant Co depending only on d such that, for any u € R?,
if 7 is a point in Z% with minimal Euclidean distance to u, there exists a directed edge
path y from 0 to z in the standard Cayley graph 7¢ with the following properties:

1. Any point on y is at Euclidean distance at most Cq from some point on the line
through 0 and u in R?.

2. If a subpath of y starts at x € R? and ends at y € R?, then (y — x, u) > 0.

3. The number of edges in y is the least possible, i.e. Zflzl |7; (2)|, where i : RY —
R is projection onto the i'" coordinate.

We will use the Proposition above as follows. Let {b,};° | be a countable dense
subset of the boundary of B C R?. For each n > 1, let z, be a point in Z¢ with
minimum possible distance to 2" ”fﬁ € R?, where || - || is the standard Euclidean

norm on R?. Let y, be the path in Z¢ associated to b, from Proposition 1. In short,
these nice paths y,, have the property that they (1) stay close to the straight line through
by, and (2) they travel “monotonically forward” along b,,.

We lift each of these nice paths y,, to an edge path y, in the Cayley graph of I" that
shares similar properties. The quotient map I' — I'*” = Z< induces a covering map
of Cayley graphs, so just let y, be the unique lift of y;, starting at 1 € I". Equivalently,
paths in Cayley graphs starting at the identity are naturally in correspondence with

words in the generating sets. The path y;, then corresponds to a word in ey, ..., eq4,
which we lift to a word in s1, .. ., 54, which corresponds to a path ¥, in our Cayley
graph for I'.

For eachn > 1, set E, C E to be the set of edges of the Cayley graph of I" which
share at least one vertex in common with an edge of y,. Note that |E,| < 2", where
the implied constant depends on |S| but is independent of 7.

Now we define a configuration of edge weights 1, : E, — R... Firstchoose & > 0
sufficiently small so that {x € R? : ||lx|l» < h} C B.Next, choose K < 0o sufficiently

1 Technically we prove a weaker version of Theorem 4 which still implies the conclusion of Theorem 1;
see Remark 5 below.

@ Springer



Asymptotic shapes for stationary first passage percolation...

large so that m < hand K > h~!. We then define
" —lﬁbﬁ’gﬂ f € 7, [ labeled by s;,
Nn = "

K, otherwise

where 7; is again the projection onto the i’ coordinate. If x € T, then we can also
define the translated configuration Tyn, : xE,, — R4 by Tyun,(f) = m, (x! f). The
reason for these choices will hopefully become clearer later, but in short we want the
weights along the paths y;, to yield fast passage times (with correct asymptotic speed)
in the direction ”bl?#. Moreover, E, \ y, forms a “shell” of slow weight K edges

around the fast “highway” y,; when we have defined our weights, these “shells” will
discourage paths from leaving the “highways.”

Let (Yy)xer and (Z,)rer be collections of i.i.d. random variables with distri-
butions that satisfy P(Yy = 0) = 3, P(Yy = n) = 3™ forn > 1, and Z, is
uniformly distributed on [0, 1]. We also assume that the collections (Yy)xer, (Zx)xer
are independent.

Finally, the weights w : E — R, are defined as follows: if Y, = n > 0, assign
the edges in x E), according to T 1, . If two configurations compete for the same edge,
then the configuration with the larger value of n wins; if both configurations have the
same value of n, then the one with the larger value of Z, wins. Any remaining edges
with no assigned weight are given weight K.

More formally: foreach f € E,let Xy := {x € I' : f € xEy,}bethe set of starting
points of configurations competing for the edge f. Let ny := max{Y, : x € Xy} be
the largest value of n among these competing configurations, and let xy € I" be the
element of X y which attains the maximum (that is, Yxf = ny) and has the largest
value of Z, among such elements, thatis, Z, . = max{Zy : x € Xy, ¥y = ny}. Then

Tfonnf(f) Xf #0
K otherwise.

w(f)={

Note that x 7 is a.s. unique since all the Z, are uniform, and it exists since | X y| < oo
a.s. by the calculation

ElX;l =Y P(f€xEy) =Y Y e, )P(Yx =n)

xel n=1xel
[’} 00

<D IEBT S <Z 2" .3—") < 0.
n=1 n=1

Here we used that I acts freely on E and so#{x € I' : x_lf € E,} < |E,|. Hence the
weights are well-defined. They are also evidently stationary and a.s. bounded above
by K < oo. The weights are also ergodic, since we can take our probability space
Q to be (N x [0, T, corresponding to the outcomes of Y, and Z,, which is clearly
ergodic as a direct product of probability spaces over I.
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Remark 5 These weights do not give a metric which is bi-Lipschitz to a word metric,
since 7; (b,) will typically cluster around O and a uniform lower bound on the edge
weights is not available.

By the remark above, this construction does not suffice to prove Theorem 4. There
are two ways around this. In Sect. 5, we provide a different construction in the general
virtually nilpotent case which is bi-Lipschitz to the word metric, and implies Theorem 4
as stated. Secondly, the weights constructed above do satisfy a weaker condition which
one might call “bi-Lipschitz away from the diagonal.” That is, we have a uniform upper
bound K on the edge weights, and there exist some constants 0 < C < oo and k > 0
such that for any x, y € I" with d(x, y) > C, we have

T(x,y) = kd(x,y) 2.0

almost surely. This fact follows from Lemma 6 proven in Sect. 7 below. Taking M and
k" as in Lemma 6, and doing a similar analysis as in the next section, one sees that
if a path y with |y| > M contains no edges of weight K, then it (or its reverse) is a
subpath of a “highway” xy,, (Y, = n) and hence has passage time

: <D( ) bn >> (inf b )k’| |
J/ ’ ol )/ .
15l 15,112 beB ||bll2

On the other hand, if a path y with M < |y| < 2M does contain an edge
of weight K, then T(y) > K > ﬁlﬂ. One then concludes (2.1) with k£ :=

min ((infbeB m) K, %) and C := M.

Under this weaker assumption, the proof of Theorem 3 given in [3] goes through
unchanged. Thus, although we prove a weaker version of Theorem 4 in the next
section, namely Theorem 4 with the conclusion “T is bi-Lipschitz to d” replaced by
the conclusion “T is bi-Lipschitz to d away from the diagonal”, we can then use the
stronger version of Theorem 3 to still conclude the result of Theorem 1 in this restricted
setting.

I'(y)=

3 Proof of Theorem 4 when I is nilpotent and torsion-free with
torsion free abelianization

Using the weights w defined in the previous section, let 7' be the metric associated to
w as defined in Sect. 1.2. Let T be the subadditive function on I'*? induced by ET via
the abelianization map I' — I'*? as above. In order to prove our version of Theorem
4, all that remains is to show that as x € ['*? tends to infinity,

T(x) - @) = o(x),
where in the little 0 notation we may use any norm on R? to measure x. We use the

following proposition which is used in [8] (where they take Q = [—1/2, +1/2]¢ C
R4, but the exact form that Q takes does not matter):
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Proposition 2 To show that T(x) — ®(x) = o(x), it suffices to show the following

1. Forally ¢ B, y ¢ %B(t) for all sufficiently large t.
2. For all y in the interior of B, y € %B(t)for all sufficiently large t.

Here we define

Bn= |J =x+o0.

{xeleb:T (x)<t}

where Q C g is a compact connected neighborhood of 0 such that the quotient map
Q — g/ T is surjective.

First, we prove (1). To do this, we must establish some facts about the relationship
between the T-lengths of paths in E and their “displacements” in I'“®. In proving
these we will repeatedly use the following easily verifiable lemma from [8]:

Lemma 1 Let B be a convex subset of]Rd andletxi, ..., xm € RY ay, ..., 0m >0
-1 +etxy
be such that each o] " x; € B. Then ﬁ € B.

Let us call an edge f € E “slow” if w(f) = K and “fast” otherwise. Let us also
call an edge path in E “fast” if all its edges are fast and “slow” if all its edges are slow.
For an edge path y in E from x € " to y € T" denote by D(y) its “displacement”
y® — x% ¢ R?_Note that displacement is preserved by left translations:

D(zy) = @)™ = @) = @ + ") = @ +x7) =y =2 = D(y).
Let us first consider fast paths y . Note that by construction of the weights, each fast

path is a subpath of xy, for some x € I', n > 1 (because of the “shell” of slow edges
surrounding each fast xy;,). We can then decompose D(y) as

D(y) = Dy(y) + D1(y),

where D) is the orthogonal projection of D(y) onto the line passing through 0 and b,
and D (y) is orthogonal to that line. Note that the construction of the edge weights
guarantees precisely that if f is a fast edge in xy,, labeled by s; then

bi’l bl‘l
D <iei’ by > by
Tl((ff)) - J,,.(;!:N ~2 — kb, < B.
613
Then by Lemma 1 we have
Dy(y) _ Zfey Dy(f) cB.

T(y) Yo T
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We also know by Proposition 1 that

I1DL() 2 < 2C,
and hence

Di(y)

= clxeR?: <h) CB.
To2C {x lxll2 < h} C

So again by Lemma 1,

D(y) _ Dy +Di(y)

= € B.
T(y)+ 2h—1Co T(y)+ h=1.2Cy

On the other hand, if f is a slow edge, then by our choice of K

D(f)

—_— RY : <h}C B,
T(f)_zh_lcoe{xe lxll2 < h} C

and so for a slow path y, by Lemma 1 we have

D(y)
T(y) —2lylh=1Co

Now, a general path in E is an alternating concatenation of fast and slow paths.
Thatis, y = V})Vsl “+¥5'v}, where the y are fast, the y; are slow, and we may take

)/19 or y;? to be empty, but all the yj consist of at least one edge. Then by our previous
arguments and Lemma 1 we have

Yo D)+ X, DY) .
Yo (T ) +2h=1Co) + Y (T () — 2lyf |h =" Co)

B.

The numerator in the above expression is D(y), and the denominator is at most 7' (y ) +
2h~1Cy, so we have

D(y)
T(y)+2h~'Cy

for any path y in E.

Finally, let y ¢ B. Since B is closed, there is some € > 0 such that for any ¢ > 0,
cB(y,e) N B # () implies that % > 1 4+ €. Now for any t+ > O let z € I" be such that
ty € 2%’ 4+ Q, where Q is the fixed compact set in Proposition 2. If we choose y to
be a T-minimal path from 1 to z in I, by our above arguments we have that

zb ity — 1@ —1y)] .
T(y)+2h~'Co  T(l,2) +2h'Cy
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Therefore, whenever M < €, we have %Ilz“b — ty]l2 < € and hence

T(1,z) +2h~'Cy
t

>1+c¢;

2h~1Co
t

and so whenever also < €/2, we have

T(1,
( Z)>1+S,
t 2

and then taking expectation gives

ET(1,
—( 2) > 14 E;
t 2
since this argument did not depend on our choice of z, we conclude that, for all ¢
sufficiently large, T (z*?) > (1 + %) whenever ty € z%? 4+ Q, and hence

B()
YT

Now we prove (2).
It is sufficient to prove that for every € > 0, for all but finitely many n,

IIanI;T(Zn) “lte

Fix € > 0. We give an upper bound on the 7'-distance from 0 to z,, by constructing
a path y from 1 to a lift of z,, in I". The lift we choose is the endpoint of the path
¥, Which we denote by z,. Note that although the path we construct is random, the
endpoints 1 and Z,, are not.

Denote by Z the center of I', and fix a total ordering < on Z such that if d(1, x9) <
d(1, x1), then xg < x1 (recall that here d denotes the word metric on I" with respect to
S). Then choose x to be the least element of Z with respect to this ordering such that
Y, = n. Note that x is then a well-defined Z-valued random variable with minimal
distance from 1, and that

(x =x0) & (Yy, =nand Yy, # nforall x; < xp).

That is, x is the nearest central starting point of a “highway” in the b, direction.

Now, to construct our path y, first, take a path of minimal d-length from 1 to x in
I". Then, travel along xy, (even if some of the edges are overwritten by slow edges)
to xZ,. Finally, travel back to xZ,x~! = Z, by traveling backwards along a translate
of the path you took from 1 to x. Note that we have used the fact that x is central to
conclude that xZ,x~! = Z, and in particular that the d-distance from xz, to Z, is no
larger than the d-distance from 1 to x.
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If xy, was not overwritten by any slow edges, the passage time of the path would
be equal to

_ = (Db _ DG ba) _ e )
2 m(f) =2, TNE TNE lonl

f€n S €W

(Here we have used the fact that, by construction, all edges f in y have positive inner
b

product with b,,.) Since z,, is less than distance f from 2" the above is bounded

above by

by
<2"m’ bn> by, 2 Vd
2 2 = I+ )
by 12 by 12 b 2

Taking into account the travel from 1 to x and from xZz, to z,, as well as the fact that
some of the edges of xy, may be overwritten by slow edges, we have

_ . 2" NZi
ET(y) < K[ZIEd(l, x)+E#{e € xy, i eis slow}] + ol 1+ 1 ) - 3.1
n

To bound the first term, we calculate

Ed(1,x) = Z]P’(d(l,x) >i)= Z]P’(Y; #nforall & € By(i) N Z).

i=0 i=0

Since we have assumed that I 2 Z, the growth of the center is at least 2-dimensional,
that is, we have some C > 0 depending only on I" and S such that

|B4(i) N Z| > Ci?

for all i > 0. This is proved in Lemma 3 below, but for now we take it for granted.
Then, since the Y¢ are iid, we continue the above computation to get

Edg(1, x)<Z(1—3 nyCi? <1+/ (1 =37 g
=0

In(1-37")
In(1—=3-1)

00 _a-n 1/2 )
/0 (1 =371 gs [inﬁ_z 1;} / (1 =371 4.

which is to say that

1/2
Using the substitution o = [ ] s, we get

Ed(1,x) < 1+ C'[-In(1 —37")]71/?
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for some C’ > 0 independent of n. By convexity, —In(1 —s) > s forall s < 1, and
SO

[ _ ln(l _ 3—}’1)]—1/2 S (3—}’1)—1/2 — 3}’1/2’
thus
Ed(1,x) < 3"/2, (3.2)

the implied constant of course independent of .
Now, we bound

E#{e € xy, : eis slow } = Z P(xe is slow);
€E€Yn

since xe will only be slow if another T, Ey, with Y, > n competes for it, the above
quantity is bounded above by

Z P(xe € zEy, and Y; > n forsome x #z € I')

66}7,1

< Z Z Z i]P’(x = xg, xoe € zE;, Y, =1)

ecy, xoel’ zel'\xp i=n

=Y >3 Y Plr=uxo Y. =i);

e€¥n X0€T I=n zerixlzecE;

we claim that fori > n and xg # z, P(x = x0, Y; = i) < %]P’(x = x0)P(Y; = i), and
hence we continue

E#{e € xpy ceisslow} < > > %" 3" %]P’(x = x0)P(Y, = i)

ecyy x0€l' i=n zerzxglzeEEi

% 33 Y IEIPG = x)P(Y: = i)

ecy, xo€l’ i=n

> SN IEPY: =)
2

ecy, i=n
> . 2\" 2\"
< 21 '3—1 — 3 — — 3 v —_
ST yEat-3(5) -ani(3)
eEYy I=n €€Yn

4\"
< (§) : (3.3)
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To prove the claim, note that for xg # z,i > n,
P(x =xo,Y; =i) =P(Y,, #nforall x; < xo, Yy, =n,Y;, =1i);

if xo < z, then all these events are independent, and hence P(x = x¢p, Y, = i) =
P(x = x0)P(Y, = i). Otherwise z < xo, and then

P(x =xo, Y, =i) = [T P #n) | POy =n)P. £n, Y. =i).

X]<X0,X17Z
If i = n, then this is equal to 0. Otherwise, i > n, and

P(Y, = i)

P(Y. #n) < %P(Yz = OP(Y, # n),

where we used that P(Y, #n) =1—-37" > % Hence

P(x =x0,Y; =1) < % [T P #n) | Py =n)PY. #n)PY, = i)

X1 <X0,X]#£Z

(O8]

SP(x = x0)P(Y; =1i),

[\

as desired.
Hence, applying (3.1), (3.2), and (3.3),

T 12\ " n
1ballaT @) _ 10uET ) _ e [20 ((3_) )+O ((g) ﬂ
2n 2n 2 3

NG

on+l’

+1+

which is less than 1 + € for sufficiently large n, as desired.

To tie up the final loose end, we prove that the volume growth of the center of I"
is at least 2-dimensional. This is a simple corollary of the following lemma from the
notes of Drutu and Kapovich [5]:

Lemma 2 (Lemma 14.15 from [5]) Let I" be a finitely generated nilpotent group of
class k and let CT be the last nontrivial term in its lower central series. If S is a

generating set for T, and g € CXT, then there exists a constant .. = A(S, g) such that
forallm > 0,

ds(1, g™ < am'/k,
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Lemma 3 Let I" be a nontrivial finitely generated torsion-free nilpotent group which
is not isomorphic to Z, S a finite generating set for I'. Denote the center of I" by Z.
Then, there exists a constant C > 0 depending only on I" and S such that

#zeZ:d(,7) <i}> Ci?

foralli > 0.

Proof We know that Z is a nontrivial finitely generated free abelian group. First,
assume that Z 2 Z. Then Z = 7K for some k > 2. Then the lemma follows, since
the quantity in question grows at least as fast as Z does as a finitely generated group.
More explicitly, if S’ is a finite generating set for Z = Z¥, we know that there exists
C’ > 0 depending only on S’ such that

#zeZ:dy(l,z) <i}> Ci*.

Take m = max,cg d(1,s) < oo. Thenforallz € Z,d(1, z) < mdg(1, z), and hence

/

' c
#{zeZ:d(l,z)gi}z#{zeZ:dSI(l,z)5l—} > ik,
m m

Now, suppose Z = Z. Then I is not abelian (otherwise we wouldhave I' = Z = 7Z,
contradicting our assumption). So I' is nilpotent of step k for some k > 2, and C¥T"
is a nontrivial subgroup of Z. Take a generator g for C¥I". By Lemma 2, we get
A =A(g,S) > Osuchthatd(l, g™) < aml/* for all m > 0. Therefore

(zeZ:d(l,2) <i}={m=0:d(1,g™) <i}>{m=>0:m'* <}

1
> L—ikJ > Ci*
)\k

for some C > 0. O

4 Restrictions in the virtually nilpotent case

Any finitely generated virtually nilpotent group I will contain a finite index sub-
group H which is finitely generated, nilpotent, torsion free, and which has torsion-free
abelianization (see “Appendix B”)(Fig. 2). We often think of the H and I" as having
the same coarse geometry; indeed:

Proposition3 Let I be a group endowed with a metric T, let H be a finite index
subgroup, and let (X, D) be a metric space. If T < d (d the word metric) and

(H, 2(T1m) Z5 (X, D), then also (T, 1) < (X, D).
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//////

Fig.2 The proper length (/) vs the rainbow function (H (¢)). We have chosend = 0.01,D = 1, A(e) = — 1,
and B =1

Proof Since (H, %T|H) is a metric subspace of (T, %T), the Gromov-Hausdorff
distance between the two spaces is bounded—up to an absolute constant—by

infle >0:T(g,H) <eforallg €'},

which is itself bounded up to a constant by
1
;[F :H]l=0(1/1).

Thus (T, %T) and (H, %T) must tend to the same limit. m]

Thus, it might seem trivial to pass from the simplified case we just proved to the
general case. However, perhaps surprisingly, the answer to the question we consider
is not the same for I and H. In general, there may be some limit shapes for stationary
FPPs on H which are not attained by stationary FPPs on I". Consider the following
example.

LetI" := (p) x Z[i], the semidirect product of the Gaussian integers with a cyclic
group of order four, the generator of the cyclic group acting by multiplication by i. I"
contains the abelian (hence nilpotent) group Z[i] = Z* =: H as a subgroup of index
4. We know from our work above (and from [8]) that any norm on R? is attainable as
a limit shape for H. However, we claim that the scaling limit of any invariant metric
on I' which is < d (such as ET for a stationary FPP T with integrable weights) must
be a norm on R? which has % rotational symmetry. Take any (x + iy) € Z[i]. Then

ET(1,i(x +iy)) = ET(1, o~ " (x +iy)p)
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<ET(1,p Y +ET(p ", p~'(x +iy)

+ET (o~ (x +iy), p ' (x +iy)p)
=ET(, p~HY+ET(, (x +iy)) + ET(, p)
<ET(, (x +1iy)) + 2(const.).

Iterating this inequality four times and taking a scaling limit gives

ET(1,n(x +iy))
m —_—

li
n—00 n
. ET(1, ni(x +1iy))
= lim
n—o00 n
. ET(, —n(x +1iy))
= lim
n—00 n
. ET(, —ni(x +1iy))
= llm )
n—oo n

which is precisely the statement that the limit norm has quarter-turn symmetry.

A similar restriction arises in any virtually nilpotent group. As in Sect. 1.2, let I"
be a finitely generated virtually nilpotent group, and let N be a torsion-free nilpotent
normal subgroup of finite index (for the construction of such a subgroup see “Appendix
B”). The conjugation action of I' on N induces an action of I'/N =: Q on N ?ljee. It
will be convenient later to phrase things in terms of the right conjugation action, and

so we think of the action as a homomorphism ¢ : O — Aut(N}“c’r’ 0)°F - This further
induces a right action of Q on N @ R = NJ“clr’ee QR = g“b, which, by abuse of
notation, we also denote by ¢ : Q — Aut(g®)°P. We say that a norm on ® on g is

conjugation-invariant if it is ¢-invariant, that is,
d>(x¢(q)) = d(x)

forallx e N* @R, q € Q.

Proposition4 LetI', N, ¢ be as above. If T is a stationary integrable FPP on I such
that the scaling limit of ET is a Carnot-Carathéodory metric on a nilpotent Lie group
G oo, then the norm on g“b associated to this metric is ¢-invariant.

Proof The proof is very similar to our example. First, let Q be a finite set of coset
representatives of N, that is, a finite subset Q C T such that the quotient map I' — Q
induces a bijection Q <> Q; Since Q is finite and the FPP is integrable, there exists
some constant C < oo such that ET'(1, ¢), ET (1, q—l) < Cforallg € Q Then, for
any x € N and any § € 0,

ET(1,x9) <ET(1,§ )+ ET(1,x) + ET(1,§) <ET(,x)+2C

where we have used the fact that ET is left-invariant. Similarly, we have
ET(1,x) =ET(1, )7 ) < ET(1,x7) +2C,
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and thus

IET(1,x) —ET(1,x9)| <2C.

Since ¢ respects the quotient map N — N;ﬁlr’ee,

x;‘f;ee = z for some fixed z € N;’cfee gives

taking infima over x € N such that

IT(z) — T(z?)| < 2C = o(2);

that is, T is asymptotically equivalent to T¢@ for all q € Q, and hence the norm & it
induces on g is ¢ (¢)-invariant. Pansu’s theorem [13] tells us that ® is the norm in
the Carnot-Carathéodory construction of the scaling limit of (I", ET'), so we are done.

O

Although there is certainly more work to be done in exploring necessary conditions
for the existence of a limit shape, in all cases which we know how to prove [2, 3], the
scaling limit of the random space (I', T') coincides with the scaling limit of its mean
(T, ET), so this tells us that conjugation invariance is a necessary feature of a limit
shape at least in all cases in which we can prove there is a scaling limit.

Theorem 1 then states that this is the only obstruction to a Carnot-Carathéodory
metric on G being the limit shape of a stationary FPP on I'; that is, as long as the
Carnot-Carathéodory metric comes from a norm which is conjugation-invariant, it is
the scaling limit of some FPP with stationary weights.

5 Construction of the edge weights in the virtually nilpotent case

Transferring our theorem to the general virtually nilpotent case is far from automatic,
essentially since our Cayley graph may not be nice with respect to the the finite index
subgroups we wish to pass to. Recall that N is a finite-index torsion-free nilpotent
normal subgroup of I'. Instead of keeping track of “displacements” of paths by looking

at the projection to I'??, we want to instead look at N;ﬁlr’ee, and there is typically no

nice homomorphism from T" to N;ﬁlr’ee. Nor is there a nice embedding N° — T;
the natural map can have very large kernel (e.g. in our example I' := (p) X Z[i]
above, % is finite, while N = N% = Z[i]). Ultimately, we resolve this by looking
at a slightly nonabelian notion of “displacement” via the projection I' — I'/ [Z/V—,\_JV],
where we define []/V_,\_IV] to be the kernel of the projection N — N;’clr’ 1o Note that

[I/V_,\_IV] is indeed normal in I": an element x € I" isin []/V_,\_]V] if and only if x € N and
for some 1 < k < 00, x¥ ¢ [N, NJ; since N is normal in I, both these properties are

preserved under conjugation by any element g € I". Note also that I"/ [I/V_,\_JV] contains
N?f +0 @S a subgroup of finite index.

In spite of these complications, the spirit of the proof exactly the same. Heuristically,
we want to ensure that every direction has the correct “speed” at large scales, and we

do this by sprinkling long “fast” paths throughout the graph which travel at a certain
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speed in a certain direction; the rest of the edges are “slow” so that any long geodesic
must largely avoid them.

It is clear from our above proof that the weight K of the slow edges can be as large
as we like, as long as it is finite. We use the slowness of the edges to account for any
error in the fast paths—that is, to guard against the fact that a subpath of a fast path
might not go in exactly the right direction or exactly at the right speed.

In our first proof, we used the existence of nice paths (Proposition 1) which had
the property that they (1) stayed close to the straight line through b,,, and (2) traveled
“monotonically forward” along b,,. In the general case, we will want to find nice paths

in I'/[N, N] which satisfy these properties in a certain “coarse” sense to be described
below. o

Let us now go into more detail understanding the group I' /[N, N1, especially con-
sidering it as a finite extension of N9 Free: First, take a finite set of coset representatives

Qcr/l N N]for N/ [N N ] we assume for convemence that Q contains the iden-
tity. The quotient map I' /[ N N]— Q :=[T/[N, N])/(N/[N N]) =T'/N induces
a bijection Q — @, and we denote its inverse by s : O — Q If s were a homomor-
phism, we would have a semidirect product, but this is not always possible in general.
In general, define a function 7 : Q x Q — N% Free satisfying

s(q)s(q2) = s(q192)n(q1, q2)-

This then allows us to understand I'/ [I/V_,\N] more explicitly thus: note that Q x
N?’r’ee — F/ [N, N], (g, n) — s(g)n is a bijection. Pulling back the multiplication

from I'/[ N N1 to the set O x N9 then gives the multiplication

ree

(Q X N7,0) X (Q X N7,) = Q x N7,

$(q2) + ”l2)

(q1,n1) - (g2, n2) = (9192, 1(q1, q2) +
Thus, I'/ []/V_,\N] looks like a semidirect product up to the “finite error” introduced by
n.

Remark 6 7 is in fact a cocycle; the cocycle condition comes precisely from the asso-
ciativity of the above multiplication. However, we will not use this fact. Rather, we
will repeatedly use the simple fact that 1 is a map from the finite set O x Q, and thus
has finite image and hence uniformly bounded image.

Remark 7 The cocycle 7 of course depends on our choice of Q, and the choice is
non-unique.

We will now introduce two modified notions of displacement which will be conve-
nient for us. Let y be a path in E (the Cayley graph of I') starting at x € I" and ending
aty € I'. We define

D(y) :=x"'5 e T/[N, NI,
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where x, y are the images of x, y under the projection I' — I"/ []/V_,\_IV]. Note that D
is invariant with respect to the action of I' on paths in E by left multiplication. Note
also that for concatenations of paths y = o % § we have

D(y) = D(@)D(B).

ab
free

rather than I'/ [ﬁ]; for this, we take a particular choice of point in N ab nearby

ree
(in the Cayley graph of I'/ [ﬁ]) to D(y):

It will also be helpful for us to have a notion of displacement which lives in N

D(y) := D(y)G(y)" € N,

where § (y) is the image of D(y) under the composition I'/ [ﬁ] — Q0 R 0: put
another way, using the identification I'/[N, N] <& QO x N ab  if ﬁ(y) = (g, n), then

free’
D) = (g, n)(g~",0) = n?@ ", Note also that if D(y) € N;ifee, then D(y) =
D(y).
D(y) is convenient because it always lands in N?lr’ee, the space we are trying to

induce the correct norm on; however, instead of being additive on paths, using the
definition and the concatenation property for D, we instead get the slightly more
complicated equation

D(aB) = D(a) + D(B)*@ + n(a, p)?P ", (5.1)

where in an abuse of notation, we define n(«, B) := n(g(a), g(B)), ¢ (o) := ¢(g(a)),
where g («) is the image of D(«) under the quotient map I'/[N, N] — Q. Iterating
the above fact easily gives the following by induction:

Proposition 5 For any paths a1, ..., an in E, we have

N-1

. -1
D@+ ay) = D)) + Y (D@ + 0 -+ ai, ai)* @+
i=1

)¢<a1---a,-)*‘

Thus, although the displacements do not add, besides the twisting of ¢ we only accu-
mulated at most one uniformly bounded error term per path concatenated, which will
end up being enough later.

From now on we fix an isomorphism g?® = R? such that N4

ree 18 1dentified with
74 c R? via the map N2, — N4, ® R = g*» = R?. We will often thus identify

D(y) with its image in R?.
We are now ready to state the properties we want for our “nice” paths in E (which
will become “fast” paths).

Lemma 4 There exists a constant C{y > 0 depending only on T, S, N, and 0 such
that, for any vector u € R? and any n € Z>q there exists a simple path y in E such
that
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—

y startsat 1 € I and | D(y) — 2"ull» < C,.

2.yl S IDWIS 2" ull.

3. y stays near the line through u: If « is a subpath of y starting at 1, then || D (o) —
proj, D()ll2 < Cy.

4. y is a finite concatenation of paths B; where for each i, |B;| < Cy, DB @, <

C| forall g € Q and every subpath B of B;, and

1
<D(ﬂo o Bis1) = D(Bo- - i) L> >

- 3
lul2/ — Cy

that is, y is “coarsely monotone.”

We also assume that maxgy, 4, 450 I1(q1, q2)¢(q3) 2 < C(/).

This lemma will be proven in Sect. 7.

For now, we define the edge weights, very similarly to the first construction. First,
given a Carnot-Carathéodory metric with associated norm ® on g??, let B C g> = R?
be the unit ball of ®. Let {b,},>0 be a countable dense subset of the boundary of B.
For each n, let y, be the path given in Lemma 4 associated to the vector b, and the
natural number n. Let E,, be the set of edges in £ which share at least one vertex with
the path y;,.

Pick 4 > 0 small enough so that B»(0, #) C B and then choose K > 0 large
enough so that

IDHPD N2+ lIn(gr, g2)?9 ||
max — <h
f€8.9.91.92,q3€Q K —9Cyh

Then define 5, : E, — R4 by

<D(ﬁo-"ﬁi>—D(/30”'/3f*1)’Hffz17n\\z>
m(f) = TaTaI] N

K, otherwise.

where the B; are the subpaths of y = y, alluded to in Lemma 4 (the dependence of
Bi on n is suppressed in the notation).

Lastly, we superimpose randomly sprinkled translated copies of the 7, exactly as
in the first construction; that is, define {Zy}yer, {Yx}xer, X7, xr, and n s exactly as
above and then define w : E,, — R4

Txfnnf(f) Xf #* @
K otherwise.

w(f)={

By the same arguments as above, these weights are well-defined, ergodic, and uni-
formly bounded above. Moreover, the monotonicity condition in Lemma 4 implies
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that each edge has weight at least

1
min > 0
beB Cy||D|l2

which is to say that 7 is bi-Lipschitz to the word metric, and we can apply Theorem 3.

6 Proof of Theorem 4 in the general case

Once again, the proof that the correct norm is induced on g*? can be reduced to showing
the conditions in Proposition 2. The proof of the second condition is the same argument
as in the simplified case. (We construct the desired paths by traveling along the center
of N until we reach the first fast path that goes in the correct direction, and then we
travel back along the center of N. We have the same volume growth estimates that we
used above as long as we assume I" is not virtually Z. In the virtually Z case, our limit
shapes are norms on R, and since all norms on R are scalar multiples of each other,
we can achieve any desired norm we like by appropriately scaling the weights of, say,
the deterministic FPP which assigns weight 1 to each edge and gives 7' = d.)

For the first condition of Proposition 2, the spirit of the proof is the same, but we
have to deal with more error terms.

First, we consider a fast subpath y of E (that is, a path which does not contain any
edges of length K), and again we note that it is (up to translation) a subpath of some
¥y First consider the case that y travels forward rather than backward along y;,. Then
we write

y=apj- Biw,
where the 8; are the subpaths alluded to in Lemma 4 and o and w are subpaths of 8;_1

and B respectively.
Now, by Eq. (5.1), we know that

D(B;--- p)? P Pim) = [D(Bo - i) — D(Bo--- Bj-1)]
—n(Bo---Bj—1,Bj - 'Bi)d)(ﬁo---ﬂi)*l_

We can further decompose [D(Bo---Bi) — D(Bo---Bj—1)] into its components
parallel to b,, and perpendicular to b,,:

[D(Bo---Bi) —D(Bo---Bi—D1=[D(Bo---Bi) — D(Bo---Bj-1]
+[D(Bo---Bi) —D(Bo---Bj-1)]1.

Now, by our definition of 1, we have

by
T(Bj---Bi) = <D(ﬂo~~ﬁi)—D(ﬁowﬁj—o,—>,

16n 2 16n 2
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where we have used coarse monotonicity of y. Thus, we have

[D(Bo---Bi) = D(Bo---Bj-1D]j
T - B

=b, € B.

Moreover, since y stays near to the line through b,, we have

[D(Bo---Bi) =D(Bo---Bj-DIL

zc/h_l € B2(01 h) C B,
0
and by assumptions on C;, we have
— . B .. )P (BoBi)
n(Bo ,3]71a /3] Bi) € B2(0,h) C B.

Cyh™!
Hence by Lemma 1

DB 131.)¢(ﬁ0~~/3j71) B
T(ﬁj"'ﬂi)+3c(/)h_l ’

and then by conjugation-invariance of B we have

D(Bj--- Bi)

B.
T B +3CHnT ©

Now, since o and w are subpaths of §;_; and 811, we have

D(a) D(w)
= " ¢ By(0,h) C B,
con 1 g1 < PO C

and hence by Lemma 1

D(aB; - Biw)
T(Bj--Bi)+1CHh~!

_ D@+ D@B; - BHPO + (-, )20 + D()?O + y(., )*O

~ Coh™"+ T(Bj - Bi) +3Coh=" + Coh=" + Cph=" + Cjh~!

where we have again used conjugation-invariance of B.

€ B,

Now, if y travels backwards rather than forwards along y,,, we apply the above

argument to y (the reverse of y) to obtain

D(y) B D(y)
T(y)+7Cyh=" — T(y) +7C\h~!
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Since we chose Q to contain 1, D(yy) = 0 and so by Eq. (5.1) we have that

D(y) = —D@®*Y) —n(y, 7).

So again using symmetry and conjugation invariance of B, together with assumptions
on C(’) and Lemma 1, we conclude

D(y)

— ¢ B.
T(y) +8Cyh~!

Now, for slow edges f, by choice of K we have

D(f) +n(, )0
T(f) —9CHh~!

€ B>,(0,h) C B.

Writing an arbitrary path y as a concatenation of fast paths and slow edges and
using Propositon 5 gives

D)= Y. DA +nCPNO0+ Y (D) )PP,
1 slow edges y’ fast paths

and so using the above and Lemma 1 gives

D(y)
€
> slow edges (T (f) = 9Coh™1) + 3/ fast paths (T () +9Coh™1)

9

and since there is at most one more fast path than there are slow edges, we conclude

D(y)

— =’ ¢B.
T(y) +9CHh~!

The rest of the proof is just as in the above argument.

7 Proof of Lemma 4

To prove the existence of “nice paths” we want to approximate the nice paths in

74 = N?lr’e . from Proposition 1 and prove that our approximation retains the nice

properties “coarsely”.
First, we prove a lemma which will help control error terms:

Lemma5 There exists a constant K’ such that for any paths o, B in E, we have
ID@B) — D@)]2 < K'IBI.
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Proof By Eq. (5.1), we know that
D(@p) — D(@) = D(B)*@ + n(a, )P

First, since the image of Q in Aut(N;ilr’ o) = SL;IIE (Z) is a finite family of bounded

operators on Rd, there is some constant M < oo such that
@Iz < Mllv]l2

forallg € Q, v € R?. Thus we have || D(8)?@ |, < M||D(B)]>.
Next, since N ?lr’ee is finite index in I' /[N, N], it is undistorted, which is to say that
any word metric on N ;ilr’ee is bi-Lipschitz to the restriction to N ?l;ee of any word metric

onI"/ [ﬁ]. (This can be seen using Schreier generators for N?’r’ ve» S€€ €.2. Theorem

14.3.1 in [10]). In particular, this means that the Euclidean norm | - ||2 on N;i[r’ ve 18

bi-Lipschitz to the metric induced by the Cayley graph on I"/ [I/V_,\_IV]. Hence

IDB)2 < K"ID(B)| = K"IDB)G(B) "] < K" (Bl +I{1a5|til)~
ge

Lastly, since Q is finite, we have a uniform bound on the norm of the second term,
that is,

max__|n(q1, ¢2)?“ |2 < 0.
q1.92.93€Q

Putting everything together gives
ID(@p) — D(@)ll2 = MK"|B| + const.,

and since every nonempty 8 has |8] > 1 we can easily adjust to get a finite K’ which
satisfies the desired inequality. O

Now, we construct the paths. Given u and n, first consider the path y,, in Z¢ = N ;‘.’r’ee

using the standard generators ¢; of Z¢ given by Proposition 1. Next, for each edge e of
the path in the standard generators, choose a path 8’ in the Cayley graph for I/ [I/V_,\_]V]
induced by the image of S which starts one vertex of e and ends at the other; pick
these paths to satisfy

1Bl < i:rrllaxdd’(l,ei) =:C (7.1)

,,,,,

where d’ is the word metric on I'/ [ﬁ] induced by the image of S (Fig. 3). We then
lift to a path B - - - Bj,_, in E. Note that by the properties guaranteed by Proposition
1 we have that:

~ ~ d
ID(By -+ By—1) —2"w)ll2 < \/7_ (7.2)
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Fig.3 Construction of “nice paths”. (The “lifting” step is omitted here to aid visualization)

1By By_1l S 2" lulla, (7.3)
and
IDBG -+ B)) — proj, DBy - - - B2 < Co (7.4)

for all i. If o is a general subpath of E(/) e B}V_l starting at 1, it is of the form
a= 5(’) e ,31’05’ where o’ is a subpath of
with Eqgs. (7.1) and (7.4) gives

! 1-and hence combining Lemma 5 together

| D() — proj, D(@)]l2 < Co + K'C. (7.5)

Thus, ,3(’) e ,31’\,_ | satisfies many of the properties we desire. However, it may
contain loops, and it may not satisfy coarse monotonicity. So first erase loops to get
a simple path B - - - By/—1. The particular manner in which loops are erased does not
matter, so long as the resulting path is a simple path with the same starting and ending
point which is obtained from the original path by deleting subpaths. If entire segments
Bl’ are deleted, the number N’ of new segments Bo, el BN’—I need not be the same
as N the number of original segments, and some reindexing may be required so that
we don’t skip indices; however, every f; is composed of subpaths of a single ,3;, j

depending on i. Thus, each segment f; of the new path still consists of at most C
edges.

Moreover, since the set of displacements of subpaths of the loop-erased path is a
subset of the set of displacements of subpaths of the original path, Eq. (7.5) holds for
the new path as well. Equations (7.2) and (7.3) also clearly pass to the loop-erased
path as well.

Now we obtain coarse monotonicity. First we prove the following version of coarse
monotonicity for the original Euclidean paths:
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Lemma 6 There exists some k' > 0 and M < oo such that any subpath y of vy, (Vn
the path in the standard Cayley graph of Z¢ from Proposition 1 associated to u = by,)
of length at least M satisfies

< ), W> > Kyl

Proof First, we claim that there is a constant C depending only on d such that for any
subpath of any y, of edge-length at least C, at least one edge f of the path satisfies

< S IIMII> %

Heuristically, this is because the path cannot travel too long in directions perpendic-
ular to u while staying close to the line through 0 and u. More rigorously, for some
coordinate ig € {1, ..., d} we have

llaell2

i

For notational convenience, let’s replace some of the standard basis vectors with their
opposites to ensure that (u, e;) = |m; ()| > O for all i, and further, let’s reindex so

|7Ti0(u)| >

; — o 1 i . 1
that eq, ..., ¢ satisfy ¢; := <e,, W) <7 and ¢4, ..., eq satisfy ¢; > WZi for
some (0 </ <d.
Now let y be a subpath of y, starting at x € Z¢ and ending at y € Z¢, and assume
that for every edge f in y,

< oA [l |I> %

By Proposition 1, x and y must be within Euclidean distance Cy of the line L passing
through 0 and b,, in R". Moreover, since we only travel in directions with low weights,
we have y = x + nje; + - - - + nje; for some positive integers n;. Now, the distance
from y to L is

. u u
dist(y, L) = ||x + nie1 +-- -+ nje; — <x +nie; + -+ njey, —>
Null2f llell2 1l
u .
> n161+'-'+n1e1—<n161+ -+ ney, > —dist(x, L),
llell2 [ lluell2 ||,
so0, since both distances are less than Cy, we have
u u
2Co > |nier +---+mnep —{niep + -+ - +njep, ——
Nlullz/ Null2 ||,
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d
nier +---njep — (nycr + - - nycy) (Zcm)
i=1

2

v

I
Z (ni — (ier + -+ mepe;)’
i=1

1
c’ Z (ni — (njer 4+ + nlCl)Ci)
i=1
I

1 I
C’Z(m —(n1+~-~+n1)2> =C/<1 —é)Zni
i=1

i=1

v

v

[\
&
™

3
a|Q

<

To go from the third to the fourth line, we used that the Euclidean norm is equivalent
to the £1 norm on R4, to go from the fourth to the fifth line, we used that 0 < ¢; < \/Lg
fori =1,...1, and to get to the final line we used that/ < d — 1.

Thus, any subpath of y,, which consists of at least C := |_2%—9dj + 1 edges contains
at least one edge with displacement at least 1/+/d in the u direction.

Finally, this implies that, for any subpath y of y,, with length at least 2C we have

<D<y>, L> S VLLAY
llull2 C 2C
That is, we have the lemma with M = 2C and k' = % O
Now take M’ = max (M, %—D We then define a new segmentation

Bo, - --» Bin7ym -1 of the path by
Bi = BwiBwis1 -+ Buitomr—1)
ifi < |N'/M'] — 1 and
Bi = Bui - Bn-i
ifi = [N'/M’]| — 1. Note that we have
1Bil <2M'C.
To show that this segmentation of the path gives coarse monotonicity, we have to
compare with the original path before erasing loops. To this end, for a given i <
LN'/M'] —1,let I be such that By 41; is a subpath of B} that is, the index such that

the nextedgein By - - - B n'/m7|—1 after the segment ; lies in ﬁ}.Fori = |N'/M'|—1,
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we set [ = N. We also set J to be such that the last edge in the path g;_1 lies in B/J,
that is, ﬁ(i_l)M/_l is a subpath of ,3} Ifi =0,wesetJ =0.
Now note that there exists some (possibly empty) subpath « of ,3/1 such that

D(Bo---Bi—1a) = DBy -+ B)

and there exists some subpath w of 8 7 such that

D(Bo - Piw) = DBy B)).
Hence, by Lemma 5 and Eq. (7.1), we have that

IDBo---Bi) — DBy B2y IDBo - - Bi—1) — DBy - B2 < K'C,(7.6)

which then implies that

<D(ﬂo —-B) = Do Bi-1), i> > <D<56 B = DBy B,

fluell

7> —2K'C.
full

Now, by construction each ﬁ(ﬁ(’) e Bl’ ) € N and hence we have

free’
DB'y---B'))— DBy By =DBry - B,

and then since D(E’J FRRRE 1) is the displacement of a subpath of the path , (in the
standard Cayley graph of Z<¢) with edge length at least I — (J + 1) > M’ > M,
Lemma 6 then gives

<D(56 B = DBy B, ﬁ> >kK'M' > 2K'C +1,

and so combining with Eq. (7.6) gives

<D(ﬂo~-~ﬂi) —D(Bo---Bi-1), ”Z—”> >2K'C+1-2K'C=1.

Thus, taking
C|, := max («/3/2, Co+K'C,2M'C,1, max n(q1, q2)¢(q3>>
q1,92,93€0

and y := Bo--- B n//m'|—1 gives the Lemma as desired. m|
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Appendix
A Carnot-Carathéodory metrics and the associated graded Lie group

In this section we explain the construction needed to describe continuum limits of
nilpotent groups, i.e. the associated graded nilpotent Lie group associated to a finitely
generated virtually nilpotent group, and Carnot-Carathéodory metrics on this group.
As above, let I be a finitely generated virtually nilpotent group, and let N be a torsion-
free nilpotent group of finite index. A theorem of Mal’cev ([12], see also Theorem
2.18 in [14]) says that there exists a simply connected nilpotent Lie group G such that
N is (isomorphic to) a cocompact lattice in G. Let g be the Lie algebra of G. Let goo
be the associated graded nilpotent Lie algebra, that is

9oo =P a'/a ",

i>1

where g' := g, g'*! := [g, g] is the descending central series for g. Let G, be the
unique simply connected Lie group which has g, as its Lie algebra. We will refer to
G as the graded nilpotent Lie group associated to I.

The map

N < G — G/IG, Gl = g/lg, g] =: g*

induces an inclusion N4 ~— g% and an isomorphism N ® R — g*’. Now

free
consider a norm W on N** @ R = g®. Note that g’ = g/[g,g] = g'/g* is a

vector subspace of goo. By left translation in G o, the subspace g%’ C goo gives a
left-invariant distribution on 7 G, and we can extend the norm to any vector in the
distribution. Let us call a path & : [a, b] — G admissible if it is differentiable a.e.
and a.e. &’ belongs to the support of the distribution. We can then define the W-length
of & to be

b
W) = / W(E (1),
a
and this gives a metric on G, by

dy(x,y) = inf{¥(£) : £ is an admissible path from x to y}. (A.D)
The metric dy is called the Carnot-Carathéodory metric on G, associated to W. Since
g’ generates goo as a Lie algebra, by Chow’s theorem [6], the topology induced on

G by dy coincides with the usual topology on G .
The above information is sufficient to understand the statement of the main theorem.
The following further data is required to understand Appendix C. The Lie algebra g
has a one-parameter family of automorphisms &; : goo = 800, ¢ > 0 given by setting

§X)=t'X
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if X € g'/g'*! and extending by linearity. This of course integrates to a 1-parameter
family of automorphisms of G o, which we also denote by ;. We refer to §; as dilations.

Note that dy is homogeneous in the sense that dy (8;(x), 6;(y)) = tdy. In the
abelian case, ' = Zd, Goo = R4 , the dilations are scalar multiplication by 7, and dy
is the usual metric induced by the norm ¥ on R¢.

We now describe a sequence of maps I' — G, which will be Gromov—Hausdorff
approximations (see Appendix C) when I' and G , are endowed with the appropriate
metrics. First, choose a collection of linear subspaces Vi, ..., Vi of g such that for
each i

a=Vi®---dV,@gth

Note that for each i, V; C g’ and the natural map V; — g'/g'*! is in isomorphism of
vector spaces. Let

L:g=Vi&---®V, —> @{?:lgi/gi"’_l = goo
be the associated linear isomorphism. Then we define a family of maps

1 5
scl,:F%GE)gigwégoogGoo.

(Here log is the inverse of exp : g — G, which is a diffeomorphism, since G is a
simply connected nilpotent Lie group).

ab

B Understanding the limit norm & via Ng°,

Our description of the construction of the limit norm ® on g“? differs slightly from the
description in [3]. The two descriptions certainly coincide in the case that ' = N is a
torsion-free finitely generated nilpotent group with torsion-free abelianization. How-
ever, it’s not immediately obvious that their description matches ours in the general
virtually nilpotent case. This section is primarily intended to show how our statement
of Theorem 3 follows from the following:

Theorem 5 [3] Let H be a finitely generated nilpotent group which is torsion-free
and has torsion-free abelianization. Let T be a stationary random metric on H which
is inner (see below) and bi-Lipschitz to a word metric on H. Let dg be the Carnot-
Carathéodory metric on G, associated to the metric ET, as in Sect. 1.2 (with ' =
N = H). Then almost surely

n— oo

1
<H1_T71> ’ (GOOsdq:‘vl)
n

is the sense of pointed Gromov—Hausdorff convergence.

First let us construct relevant finite-index subgroups.
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Proposition 6 Let I be a finitely generated virtually nilpotent group. Then there exists
a finite index subgroup H of T which is nilpotent, torsion-free, and has torsion-free
abelianization.

Proof By definition, I' contains a nilpotent subgroup I'” of finite index, and this is
also finitely generated by Schreier’s lemma (see e.g. [10] Theorem 14.3.1). Thus I'/
contains a forsion-free subgroup I'’” of finite index (see [10], Theorem 17.2.2).

Take N to be the kernel of the map I' — Sym(0/0”) given by the action of I on
the cosets of I'” by left multiplication. Since N < ', N is nilpotent and torsion free,
and since N is the kernel of a map to a finite subgroup, it is a finite index normal
subgroup of I'.

Now we extract a finite index subgroup H of I which is nilpotent, torsion-free, and
has torsion-free abelianization as follows. One explicit construction is given by Yves
Cornulier in the MathOverflow post [15]; this construction also has the advantage
that that the natural map H”> — N° induced by the inclusion H < N is itself an
inclusion (also of finite index).

Here is the construction: recall that we have a projection map N — N —

N“b/Nt“o”r =: N;ljee. Take a basis offi generators ey, ... , g for Z4 % N;‘fr’ee., apd lift
them to s, ..., 57 € N; then we claim that H := (s, ..., sg) < N is a finite index

subgroup with torsion free abelianization.

To see that H has torsion-free abelianization, consider the natural map H ab _,
N;lr’ee induced by the map H <~ N — N “-lr’ee. We claim this is an injection. For if
n18s1 + - - - + ngs4 is in the kernel of this map, by the choice of 51, ..., s4 this means
thatnje; + - - - + ngeq = 0, which implies that ny, ..., ngs = 0, since e, ..., ez s a
basis. The map is also clearly surjective by construction, so H*? = N %’ee and so H
has torsion-free abelianization.

To see that H is finite index and finish the proof of Proposition 6, first note that,
from the above, H%®® < N9 is finite index. We then use the following lemma below;

the proof is taken from Cornulier’s argument in [15]. O

Lemma7 Let N be a finitely generated nilpotent group, and let H be subgroup of N
such that H[N, N1 is finite index in N (equivalently, H** — N® has finite-index
image in N°°). Then H is finite index in N.

Proof We proceed by induction on the nilpotency degree of N. If N is abelian, then
the statement is immediate.

Suppose the statement holds for all nilpotent groups of degree k — 1, and suppose
N is degree k. Let N* be the k" subgroup in the descending central series for N. By
our inductive hypothesis applied to N/N*, HN* is a finite index subgroup of N. So
all that remains is to show that H is finite index in H N*.

For this, first note that since all (k + 1)-fold commutators vanish, the k-fold
commutator map N x - -- x N — N is “multilinear” in the sense that

[ali"'!xyv"'7ak]=[a17"'7-x7"'7ak]'[a11"'1ys"'sak];

we also see that the output only depends on the abelianizations of ay, ..., ak, and
thus the k-fold commutator map induces a surjective homomorphism from the tensor
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product N%? @ ..@ N — NK.We claim that the map ®@* H** — @ N induced
by the finite index inclusion H — N has image which is finite index in ®k N4,
Once we know this, since H* is precisely the composition of the map ®k H? —
®k N4 _ Nk H* is finite index in N¥, and hence H is finite index in H N*.

Now, to see that the image of ®k HY® — ®k N is finite index, we use the
following general fact: If A is a finitely generated abelian group and B < A is a
subgroup of finite index, then for any i > 1, ®i B < ®i A is finite index. Fori = 1,
this is immediate. Now, inductively assume 7" is a finite set such that 7" + ®i B =
®' A, and let S be a finite generating set for ' B. Also let T be a finite set such
that T 4+ B = A and let S be a finite generating set for B. We claim that the set

{Ztg®a+z <IT®‘C+ZS®IS/’T> :tg,t,eT,t;’TeT/}

oes’ tel’ seS

forms a finite set of coset representatives for ®i+l B in ®i+l A.

To see this, first consider a general element of ®i+1 A. It is a sum of elements of
the form

<Z mgs + t) ® (Z mys + t’)
seS s’'eS’
wheret € T,t' € T', mg, my € 7, and hence, by expansion, equal to
> (Emstn)or+ X (Dt o
eSS’ \seS§ teT’ \seS
for some mg s, mes € Z, t5,t; € T.Since every s @ o € ®K*1B, the element
RIS <zt®f+zs®mmr)
oes tel’ SES

represents the same coset of ®+! B. For each s, t, by the inductive hypothesis, we
have

SQ@mesT=5® (Z nyg s’ + t‘;)r>

s'eS’

for some ny ; € Zand ] . € T', and this is equivalent modulo ®" B to

Z s Q t_;,r.

s'eS’
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That is, an arbitrary element is equivalent to one in the set provided, as desired. O

In sum, by Proposition 6, we have H < N <T finite index inclusions, where N is
torsion-free and H is torsion-free with torsion-free abelianization.

Now, let T be a stationary random metric on I" which is almost surely inner and
bi-Lipschitz to a word metric on I'. Recall that a metric space is called inner if for all
€ > 0, there exists 0 < R < oo such that for any x, y € I', there exists an (¢, R)-
coarse geodesic from x to y, that is, a sequence x = pg, p1,..., py = ¥ in I" such
that each d(x;_1, x;) < R and

M
Y d(pi-1, pi) < (1+€)d(x, y).

i=1

(Note that, in the main body of the paper, we consider 7" an FPP with edge weights w
uniformly bounded above; such T is automatically inner). We want to show that

(F, lT) — (G, dq;) .
n

By Proposition 3, it suffices to show that

1
<H, ;T|H) — (Goos dq:) .

Thus, we want to apply Theorem 3 to H, so first we must check that the hypotheses
are satisfied.

Proposition7 Let ', H, T be as above. Then T |y is bi-Lipschitz to a word metric on
H and T |y is inner.

Proof T|p is bi-Lipschitz to d|y, and since H < T is finite index, any word metric
on H is bi-Lipschitz to d| g (this can be seen using Schreier generators for H, see e.g.
Theorem 14.3.1 in [10]), so we have the first claim.

Next, we show innerness. Let € > 0. First, using the innerness of 7 on I', choose
r > Osothatany x, y € T can be joined by an (5, r)-coarse geodesic. Next, note that
since H < I is finite index and T < Kd a.s. for some K < oo, we have

max T (g, H) < Kmaxd(g, H) =: C
gel gel

for some non-random constant 0 < C < o0o. Now choose 0 < R < oo sufficiently
large so that 0 < % < 5. We claim that any 2, 2" € H can be joined by an
(¢, R + 2C)-coarse geodesic in H.

To construct such a coarse geodesic, first take an (5, r)-coarse geodesic h =

Py P1» -+ s Py = R in T. By deleting points, we can construct a (5, R)-coarse
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geodesic h = py, ..., py = h’ with

M <

’

T(h, h') - 2T (h, k')
’7 R—r —‘ -~ R-r
where the last inequality only holds for T'(h, h’) > R — r,butif T (h,h’) < R +2C
then pg = h, pi = A’ trivially gives an (e, R + 2C)-coarse geodesic, so we may
assume this inequality holds.

Lastly, for each p;, choose g; € H with T (p;, ¢;) < C (and of course g9 = po =
h,qu = py = h'). Theneach T(g;_1,q;) < T(pi_1, pi) +2C < R +2C and

M M
€
> T(@im1.a) = Y T(pic, p) +2CM < (14 3) T W) +2CM

i=1 i=1

2T (h, K
< (1 +5) Tty +2c. 2L 1)
2 —r
<1 +eT(h, ),
S0 qo, - .., qum 1s an (€, R + 2C)-coarse geodesic in H, as desired. O

Now, note that the Malcev completions of H and N coincide; if N is a cocompact
lattice in G, then as a finite-index subgroup of N, H is also cocompact in G. Therefore
H and N have the same associated graded nilpotent Lie group G, as well. Thus,
Theorem 3 tells us that

1
(H’ ;T|H> i (G007 dCDH)a

where we define @ to be the unique norm on g*? asymptotically equivalent to the
subadditive function

Ty(h):= inf ET(,1)

teH:t%=h

on H% . (Recall that we can relate functions on H* and g®?, since we have a map
H® — g% and an isomorphism H%” @ R = g’ induced by the composition

H < G — G/[G, G = g/lg, g] =: g°°.)

Thus, to deduce our statement of Theorem 3, it only remains to show that &y = &,
where recall that we define ® to be the unique norm on g’ which is asymptotically
equivalent to the subadditive function

T(m):= inf EQ,1)

tEN:t;’cb n

ree”

ab
on Nfree.
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Proposition8 &y = .

Proof Note that H*” and N?b are identified with the same subgroup of g since

the inclusion H*® — g is exactly equal to the composition of the isomorphism
H = N?’r’a and the inclusion N;Ir’ee — g?b. Using the isomorphism H% = N4

free

to consider TH as a subadditive function on N2 we have

free’

Ty(n)= inf ET(,1).

ab
teH: tjrec =n

From this it is clear that 7 < fH
To show a lower bound, first note that since H is finite index in N, H N [N N ] is
ﬁnlte index in [N N]. Let R be a finite set of right coset representatives for H N [N N]
n [N, N], thatis, N 0 [N, N] = U,z H N [N. Nr. Set C := max,cg ||, where
| -| =d(, ) is, as always, the word length in I" with respect to the generating set S.
Then we have

T(n) = inf ET(,tr) > inf ET(1,t) —ET(1,r) > ®pn) —

ab ab
teH.reR.tfm,_n teH, reRtfm, =n

where we have used that T < Kd. Thus |f(n) — TH(n)| <KC =o0(m)and ® = oy,
as desired. O

C Gromov-Hausdorff convergence to the limit shape

Recall the notion of pointed Gromov—Hausdorff convergence [7]. There are many
equivalent conditions for this convergence, but here we use a particular sufficient
condition. Let (X, dy, 0,), (X0, do, 09) be metric spaces with distinguished base-
points o,, 0g. A sequence of maps f, : X,, — X is called a sequence of of pointed
Gromov—Hausdorff approximations if for every € > 0, for all sufficiently large n we
have

L. do(fn(0n, 00)) <€,

2. every point of B(og, 1/€) is within distance € of f,(B(0,, 1/€)),

3. (I = €)du(x,y) — € < do(fu(x), fa(y)) < (1 + €)dyn(x,y)e forall x,y €
B(oy, 1/€).

If f, : X, > Xp is a sequence of pointed Gromov—Hausdorff approximations, then
X, pointed Gromov—Hausdorff converges to X. Here, our metric spaces are groups
with various metrics, and the basepoint will always be the identity element.

In [3], Section 4.4, Cantrell and Furman prove the following: for any fixed g, g’ €
G, almost surely

lim hmsupsup{—|T(y y) —do(g,g)l:y,y €T,

e>0 >0
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dy(seliy, g), dj(scliy’, g) < 6} =0, (€D

whereI', G, T, do, d)|.| are all as defined in Sect. 1.2, and the maps scl1 : N — Goo

are as defined in Appendix A. In particular, (G, d)|.|) is the scaling limit of I" endowed
with the word metric as given by Pansu’s theorem:

Theorem 6 (Pansu, [13])
1
scl; : (F, ;d) — (Goo, dy))
t

is a sequence of Gromov—Hausdorff approximations.

To prove that scl; : (T, %T) — (G, do) is a sequence of Gromov—Hausdorff
t

approximations, by homogeneity of the norm dg, it suffices to show that, for any
€ > 0, there exists R > 0 such that for any |y, |y’| > R,

IT(y,y") = da(scli(y), scli(y')] < e max(lyl, [y']).
The rest of this appendix is devoted to proving this fact.

Remark 8 In[3],itis shown that the event of failure of Gromov—Hausdorff convergence
is contained in an uncountable union of null-sets. More specifically, they show that
failure of Gromov—Hausdorff convergence entails the existence of some pair g, g’ €
G oo for which Eq. (C.1) fails, but a priori (g, g’) ranges over the uncountable set
G oo X Goo. Itis necessary to show that it is contained in a countable union of null-sets.

Now, let {(g,, g,,)} be a countable dense subset of Goo X Goo. With probability 1,
Eq. (C.1) holds for all (g,, g,,) simultaneously. We show that on this probability 1
subset Gromov—Hausdorff convergence holds.

Suppose that Gromov—Hausdorff convergence fails, that is, there exists €p > 0 and
some sequence (y,, ¥,) € I' x T’ with min(|y,|, |y, |) = oo such that

1
—IT(y, ¥ —da(scli(y), scli(y)] = «o,

n

where we define 7, := max(|yy|, |y, |). By homogeneity of dg, this is equivalent to

1
t—T(y, vy —do (scli Vi, scl 1 y,;) > €. (C.2)
n In In

Since the sequence (scl 1 Vn, scl 1 yn) lies in the product of the unit d).| balls of G,

by compactness we may pass to a subsequence and assume that
(SCltL Yn SCI’L Vy:) — (go» g6)
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for some (go, g{)) € G X Goo. Convergence holds in the d.| metric as well as the
de metric.
Now choose N sufficiently large so that

)
|do (SCltLVn, scltm/,ﬁ) —do (g0, o)l < > (C.3)

for all n > N. Combining Egs. (C.2) and (C.3) gives
1 , , €0
n

Fix &' > 0 (to be chosen later). Now choose (g, g;no) from our countable dense set
such that

max (d). | (8mg> 80)» dil-| (&> 80)> A (&mo» 80)s A (85 80)) < 8.

For each k > 1 define yn]i , to be the y € I" such that scl 1 has minimal distance to g,

and similarly define y,/nko. Then by Eq. (C.1) we have

1 k tk ’
’%T(ymo, Yimg) — do(8mos 8myy) Py 0,

and so we can choose N also sufficiently large that foralln > N,

un

1
=Ty Vo) = Ao (8o 8iy)| <8
n

By Theorem 6 we can also choose N so that foralln > N,

1
t—d(yn, Vo) = dj. (805 &mp) | < 8,
n
L,
—d Wy V) = d1(80: 8| = 8-
n

Thus we have (again taking k = max(|y,[, |v,1))

Ity

TV V) = T Wi Vo
In

=<

1
—T (O, va) — dao (8o, &)
n

1
+ ‘I_T(V;ZL()? yyZ’é) - dq)(ng’ g;no)
n

+ 1do (8mos &my) — do (80, 80)!-
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By our choice of (g, g;no), we have that the last term is bounded by 2§. If n > N,
we have that the second term is bounded by §. To bound the first term, recall that by
assumption, 7 < Kd and hence

Ity

n tn tn tn tn
T s V) = T Wtys V)] < T s Vno) + T s vt < K(d s Vi) + d gy Vi),

and so

T Vs V) = T (Vs Vit

Ity

1 : 1 roo
th In In

< K (d)1(80. 8mo) + 8 + d) (80. 8my) +8) = 4K8.

All in all we have

< 4K$§ + 36,

1
t_T(an J/y:) - d(b(g()’ g(l))

n

and for a sufficiently small choice of §, this contradicts Eq. (C.4), and so we are done.
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