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Abstract—System-level test, or SLT, is an increasingly im-
portant process step in today’s integrated circuit testing flows.
Broadly speaking, SLT aims at executing functional workloads
in operational modes. In this paper, we consolidate available
knowledge about what SLT is precisely and why it is used
despite its considerable costs and complexities. We discuss the
types or failures covered by SLT, and outline approaches to
quality assessment, test generation and root-cause diagnosis in
the context of SLT. Observing that the theoretical understanding
for all these questions has not yet reached the level of maturity
of the more conventional structural and functional test methods,
we outline new and promising directions for methodical develop-
ments leveraging on recent findings from software engineering.

I. INTRODUCTION

System-Level Test (SLT) has emerged as an important
additional test insertion in today’s semiconductor lifecycle [1].
It is run by the circuit manufacturer in the final stage of
production or by the buyer of the circuit, e.g., an automotive
Tier-1 supplier who will integrate the circuit into a product, as
part of incoming quality control. SLT can also be used during
the post-silicon characterization phase where a circuit’s extra-
functional properties are measured on a population of several
hundreds or thousands “first-silicon” circuits.

Conventional structural and functional test methods are
based on established theoretical concepts, such as fault models,
detection and detectability concepts, coverages. A plethora of
algorithms have been invented (and tools implementing these
algorithms developed) in the last decades. SLT lacks much of
this fundamental understanding; in fact, even the very term
“system-level test” is being used in rather different meanings.
This paper aims at making first steps towards laying solid
theoretical foundations for SLT. Specifically, it discusses the
following questions:

• What precisely is SLT that is being used in semiconductor
testing? How does it differ from the traditional structural
and functional test approaches?

• What are possible reasons for SLT-unique fails, i.e., fail-
ures observed during SLT in circuits that passed structural
and functional tests during earlier test insertions?

• How to determine the root cause of a failure during SLT,
in absence of established diagnostic methods?

• How can knowledge from the software engineering do-
main, e.g., on coverage definitions or on stress test
generation, be leveraged for SLT?

In the remainder of the paper, we describe our current
knowledge with respect to these questions, touching on related
scientific disciplines where necessary. Not all questions have
a known answer, and we see it as our objective to capture
and discuss the currently discussed explanations or hypotheses,
even if they are controversial or contradictory.

II. SYSTEM-LEVEL TEST

A. What is SLT?
The term “system-level test” (SLT) can stand for different

types of testing. In the context of integrated circuits (ICs), the
following three meanings are predominant:

1) Test of a whole system (e.g., a smartphone or an auto-
motive electronic control unit), focusing on interactions
between its components: ICs, sensors, mechanical parts,
and the like.

2) Incoming quality control of ICs by a system integrator,
to sort out defective ICs and to uncover systematic
quality problems of a supplier. The ICs under test are put
on a board that imitates the full-system setup and applies
to the IC a workload that mimics real-life operation.

3) Outgoing quality control by the IC manufacturer to
prevent defective ICs from delivery and to reinforce
its own quality control. The procedure is similar to
2), except that the IC manufacturer has less knowledge
about the full-system setup but more knowledge about
the manufactured IC.

In this paper, we focus on scenario 3), even though most
findings are directly applicable to scenario 2). We do not
consider scenario 1), where a failing test can point to a defect
in one of the system’s ICs, to a defect in a different component,
or to an erroneous integration. In the SLT scenarios considered
here, the system around the IC is assumed to work, and
the purpose of testing is to determine whether the IC is
defective or not. Fig. 1 visualizes the role of SLT within the IC
manufacturer’s quality assurance, i.e., before the circuit has
been shipped to a customer.

While there is no precise definition of “system-level test”,
it usually refers to applying to the device under test (usually,



Fig. 1. SLT within the quality-assurance flow

a complex system-on-chip IC) workloads that originate from
its intended usage. A popular SLT example is booting an
operating system and running several software applications
known to stress the system; if the system does not behave
as expected (e.g., it crashes), SLT has found a failure. This
implies that there is currently no test specification and gener-
ation process for SLT: the workload comes from an application
scenario. This may change in the future; for example, Chen
[1] proposes to use automatically generated design-validation
scenarios based on the Portable Test and Stimulus Standard
(PSS) flow.

B. SLT-induced Costs and Complexities

SLT’s benefits are offset by its costs. As it is obvious from
Fig. 1, SLT is an additional test insertion that also requires
special hardware. The device under test usually needs to be
mounted on an evaluation board which includes memories,
peripherals and interfaces necessary to run the intended work-
loads. It is often impossible to perform SLT on regular test
equipment that does not include such features, but specialized
SLT testers are available. Companies are currently investing
in deploying SLT-oriented tester architectures that can be re-
used (at least partly) over different products. In this scenario,
the more diversified a company’s products are, the more they
profit from the re-usability of dedicated SLT testers [2].

Another SLT cost factor is its very long test application
time in the range of several minutes, a multiple of prior
test insertions [1], [3], [4]. This has triggered interest in
adaptive test methods, where SLT is applied only for a subset
of circuits determined during earlier test insertions [5]. For
example, Singh [3] (motivated by industrial data reported in
[6]) proposes to assign the circuits to bins based on their timing
variability observed during pre-SLT test insertions. Every bin
corresponds to a certain expected test quality, quantified by the
number of defective circuits that will go undetected if no SLT
is applied (defective parts per million or DPPM). The expected
DPPM contribution for each bin is established by a predictive
model created by machine-learning from previous experiences.
SLT is skipped for circuits from “non-critical” bins associated
with (predicted) DPPM contribution below the desired DPPM
target. When considering application areas where Burn-In test
is required (e.g., automotive), cost reduction can be achieved
by combining Burn-In test and SLT. In this case, the tester
infrastructure developed for Burn-In (characterized by high

parallelism) can be adapted to account for SLT requirements
as well [7].

Fine-grained adaptive testing based on quality prediction
can also be used to select a subset of chips that must
undergo SLT for high-volume production [8], [9]. This strategy
includes two key steps. In the first step, parametric test results
from an early test insertion are used to train a machine-
learning model, which can predict the quality of each chip.
A random-forest model is used for quality prediction; the
parametric test results of the previous test insertion are used
as independent variables, and binary pass/fail results of the
current test insertion are used as dependent variables. In
the second step, based on the predicted quality, chips are
partitioned into two groups using k-means clustering. Test
selection is performed for each group individually. SLT can
be limited to chips that are predicted to be of low quality.
It is shown in [8], [9] using data from three lots, including
71 wafers and 230,000 dies, that fine-grained adaptive testing
reduces test cost by up to 7% for a lot, and by as much
as 90% for low-quality chips. Moreover, experimental results
also show a strong correlation between the predicted quality
and marginality of the test outcomes. Therefore, the quality-
prediction model can be further used to predict the occurrence
of early-life failures.

C. SLT vs. Conventional Testing

It helps the understanding of SLT to contrast its properties
with conventional structural and functional test approaches.
Table I summarizes the discussion below and in the subsequent
sections.

The main difference between SLT and structural test is that
the latter is strongly based on the notion of a fault according to
a fault model. Although fault models defined on various levels
of abstraction have been introduced in the past [10], [11], most
popular models (including stuck-at, bridging and most delay
fault models) work on gate level. The stimuli used during
testing are usually test patterns either applied through scan
infrastructure by automated test equipment (ATE) or generated
on-chip by built-in self-test (BIST) or test-compression logic.
These patterns are usually produced by automatic test pattern
generation (ATPG) procedures that target specific faults. The
resulting test set has a fault coverage (number of detected
divided by the number of all modeled faults), and there are
efficient fault-simulation tools that determine fault coverage.

In contrast, SLT fault models are currently lacking, even
though first ideas to define an “SL-FM” and to use it to
guide “SL-TG” to generate PSS scenarios for use in SLT are
discussed in [1]. Moreover, the application of conventional
fault models, such as stuck-at faults, to SLT is practically
infeasible because it would necessitate simulation of very long
(billions of clock cycles) SLT sequences for every considered
fault.

Regarding the test quality, there is no serious discussion
of skipping structural test altogether, replacing it with SLT.
Structural tests, in addition to covering defects directly rep-
resented by the detected faults, usually also detect a large
number of unmodeled defects (“fortuitious detection”), such as
manifestations of crosstalk or power-supply noise [12], [13].
Therefore, the “baseline DPPM level” is provided by structural



TABLE I
SLT COMPARED WITH STRUCTURAL AND FUNCTIONAL TEST

Aspect Structural Test Functional Test System-Level Test
Level of abstraction Gate level, sometimes incor-

porating additional information
from layout or RTL

Instruction set architecture None explicitly considered

Main stimuli format 0/1 values at circuit’s inputs /
scan flops

Assembly programs Application or operating system code

Test application ATE; BIST ATE; Software-based self-test (from cache) Evaluation board; SLT tester
Test generation Fault-oriented ATPG; manual Manually created test programs; automated tech-

niques
Reuse of verification stimuli; applica-
tions; operating system

Quality metrics Fault coverage Instruction coverage; fault coverage; coverage
used in validation domain

Representative application (no explicit
metric)

How assessed? Fault simulation; sometimes
electrical simulation (Spice) of
selected patterns

Instruction set level simulation, sometimes fault
simulation

No systematic approach available

What defects covered? Gross and marginal defects rep-
resented by considered fault
models and beyond

Defects not targeted by structural tests (e.g., small
memories without BIST); complex defects missed
by structural tests; variability; defects triggered
by complex interactions within processor; a major
advantage of functional test compared to struc-
tural test is the fact that it is performed at speed

Defects missed by structural and func-
tional tests; asynchronous or analog
interfaces; clock-gating logic; clock
domain boundaries; unknowns (Xes);
timing-related failures in uncore logic

tests (it depends on the accuracy of the fault models and the
throughness of ATPG). SLT is considered as an additional test
insertion if this DPPM level is higher than required by a given
application.

The differentiation between functional test and SLT is more
subtle; in fact, many publications simply treat SLT as a sub-
type of functional test [1]. However, we believe that there are
serious differences between the “traditional” functional test
[14] and SLT. The former is based on running relatively small
test programs, usually stored in a microprocessor’s cache and
written, at least partially, in assembly language. Such programs
can be created manually, using evolutionary techniques [15]
or even deterministic test sequence generation [16].

Functional test programs can be (and are) assessed with
respect to detection of traditional gate-level fault models
(stuck-at, delay faults, and the like) or special instruction-set
level fault models [17]. As was discussed above, meaningful
SLT sequences are far too long to be assessed using these fault
models or generated by ATPG. A meaningful coverage metric
or any other systematic approach to decide whether an SLT
suite is “good enough” is currently lacking (see Section IV
for some ideas to this end).

In many cases, the functional test (which plays also a
major role when considering in-field test) is developed target-
ing single modules in the IC (CPU, peripherals, memories,
interconnections). Hence, it basically aims at checking the
correct behavior of each single module in an isolated manner.
At the same time, one target of SLT is to check whether
the whole device works correctly, exploring for example the
effects induced by the interactions among modules. Among
the different phenomena triggered by SLT, temperature-related
ones play a major role: cases have been reported, where a
given defect in an interconnection was only triggered when
the temperature gradient between two modules was exceeding
a given threshold. Clearly, this kind of defects can hardly be
detected by anything different than SLT.

An interesting question is whether functional test and SLT
detect the same classes of defects. Both aim at closing the
coverage holes of structural tests, and yet one would expect

that the expensive SLT would not be applied if the desired
test quality were achievable by simpler functional tests alone.
One reason for SLT’s superiority might be its sheer huge
number of test patterns being applied to the circuit during
its billions of clock cycles, resulting in a higher chance
of fortuitous detections. However, SLT may have systematic
advantages, as it is defined on SoC level and incorporates
functional interactions between the microprocessor and other
SoC components, while functional test tends to focus on the
microprocessor itself. For an ultimate answer to this question
(and possibly, options to shift some of the detections from SLT
to previous insertions), the nature of SLT-unique fails should
be better understood. The next section discusses our current
understanding of SLT-unique fails.

D. Debug and Diagnosis in SLT Context
When doing SLT, determining the root cause of an observed

failure is more difficult than for conventional testing, where
efficient diagnosis methods [18], [19] are available. As will be
discussed further below, the exact nature of failures observed
during SLT is not always clear, and the manifestation of a
failure (e.g., a crash) may happen thousands of cycles after
its occurrence. Post-silicon validation features such as trace
buffers [20] or “quick error detection” logic [21] can alleviate
this problem. It was proposed in [22] to use machine learning
to establish a relationship between SLT failures and values of
over one hundred check status registers within a server-grade
processor SoC.

The key idea in [22] is to use a support-vector machine
(SVM) to classify SLT failures in the Intel Skylake SoC into
one of 18 classes, where each class corresponds to a candidate
faulty core or group of cores in the chip. The SVM model
was trained using a small number (1,000) of manually created
training vectors. A drawback of this approach is that the
training data has to be generated manually. Such a manual
approach obviously is not practical for high-volume production
tests. While it is desirable to use actual fail data from SLT to
train the model, a challenge in this context is that SLT fails are
“rare events”, and it would take a considerable amount of time
to generate a sufficient amount of fail data to train the model.



Fig. 2. Diagnostic quality over time

An attractive alternative in this context is to leverage transfer
learning techniques and methods for root-cause localization
methods using streaming data that have been developed for
board-level fault diagnosis [8], [23].

Machine learning-based fault-identification models exploit
knowledge from test results and corresponding ground-truth
data, without requiring a detailed understanding of the com-
plex functionality of chips. This problem can be formulated
as a supervised classification problem, where a complete set
of learning data consisting of pairs f(x; y). Each instance x is
associated with a unique label y, and we refer to each instance-
label pair (x; y) as a sample. In our application, since different
chips may have different fault candidates, we train a binary
classifier to diagnose each target fault. The learning algorithm
constructs a classifier that outputs a class prediction for a given
instance.

In a typical SLT scenario, only a limited amount of test
fallout data arrives in the early stages of manufacturing. In
fact, fallout data and then associated ground truth about root-
cause localization arrives in a streaming format characterized
by a potentially large volumes of data instances. As a result,
the diagnosis accuracy tends to be low in the early stages
of manufacturing. Compared to a static test and diagnosis
flow, processing data streams imposes two new requirements
on diagnosis algorithms: (1) the ability to adapt to concept
drift, and (2) the availability of a limited amount of memory.
Online incremental learning algorithms have been proposed
for handling streaming data, and to deal with concept drift,
classifiers implement forgetting, adaptation and drift detection
mechanisms. To overcome the challenge of limited memory,
classifiers record only the key information extracted from
the previous round of streaming data instead of all the past
samples. Moreover, classifiers can learn the target concepts
incrementally instead of training from scratch to save training
time. By executing online learning algorithms for streaming
data, the trained model predicts more accurately when the data
distributions shift. This approach has been utilized for fault
diagnosis in printed circuits boards [23]. We expect a similar
solution to be useful for root-cause localization in SLT.

The diagnosis accuracy improves when more instances of
successful root-cause localization in SLT are available for
training the diagnosis system. However, there exists a signifi-

cant knowledge gap in the initial product ramp-up stage (see
Fig. 2). In reality, a successful product typically experiences
multiple updates and there are often similar products during a
period of time. In chip manufacturing, fallout data accumulates
over multiple wafers and lots. A similar problem has been
addressed for board diagnosis, whereby knowledge learned
from a mature board is transferred to the diagnosis model
of a new board [8]. A supervised model is trained to identify
board-level functional fault using a large number of samples
from the mature product (i.e., source domain) and a limited
number of samples from the new product (i.e., target domain).

III. SLT-UNIQUE FAILS

SLT’s main raison d’être is its ability to detect failing
ICs that are missed during the conventional test insertions.
The existing literature suggests a number of sources of these
failures, which can be attributed to three broad categories:

1) Failure mechanisms that are not covered by standard
fault models. For example, traditional scan-based stuck-
at and TDF timing tests are node oriented, and explicitly
only target the interconnect between the standard cells
(gates) in the design. More recently, it was recognized
that these classical tests can miss a significant number
of defects within complex standard cells, which has led
to the development of Cell Aware Tests (CAT) targeting
cell internal defects [6]. Scan tests generated using the
CAT methodology can significantly reduce subsequent
SLT fallout in some applications. However, marginal, or
“soft”, timing failures [3] that manifest themselves only
under certain operating conditions (voltage, temperature)
[1], [4], and power-supply instabilities in conjunction
with complex power-management schemes [4], remain
challenging to detect using the available scan-based
delay test methods.

2) Systematic ATPG coverage holes. Complex SoC de-
signs contain signal lines connecting several, even
dozens, of different clock domains. Faults in the logic
structures at the clock domain boundaries, asynchronous
or analog interfaces or clock distribution networks often
need careful manual expert intervention during test
generation to ensure reliable detection. These may be
conservatively classified as “untestable” by automated
ATPG tools, even though the faults can manifest them-
selves during the device’s operation. More mundane
causes of incomplete test coverage are test time and
tester memory limitations. At times some scan patterns
that detect only a few faults are dropped to reduce mem-
ory requirements or test-application time; this “long-tail”
problem is also alleviated by fortuitous detection by the
very long SLT test sequences.

3) Faults exposed only during system-level interactions.
This includes complex software-controlled clock- and
power-domain interactions or resource contention in a
multi-core system that cannot be fully replicated on
an ATE [1]. Other possible situations include complex
hardware-implemented protocols or “soft” failures dur-
ing high-speed memory accesses [4]. The key character-
istics of these failures is that the electrical and timing
interaction of the IC under test with other components



in the target system are insufficiently defined, or too
complex, to be accurately modelled on a tester.

Since using SLTs as an additional final test screen during
post manufacturing tests imposes significant added costs, con-
siderable efforts have focused on minimizing test escapes from
traditional structural scan-based testing so as to eliminate, or
at least reduce, the need for SLTs. In some applications, SLT
is critically needed only during the early yield ramp phase of
production, when the yield of defect free parts is low, as test
escapes are obviously more numerous when there are more
defective parts being tested. Once the manufacturing process
matures and yields improve, SLT is only performed in these
applications on sample parts for quality assurance purposes—
to ensure acceptable defect levels in the shipped ICs.

An increasing number of high-volume applications, e.g.
high-end cell phone processor SoCs, continue to require SLT
on all manufactured parts throughout the product lifetime. This
has motivated considerable research on understanding the test
escapes from traditional scan tests that are uniquely detected
by SLTs. The goal is to improve the coverage of these failures
by the scan tests, and thereby reduce dependence on SLTs. In
revisiting the three categories of test escapes listed above, it
is obvious that (3), faults exposed only during system-level
interactions, cannot by definition be targeted using traditional
test methods. Plugging coverage holes (2) caused by the
inability of ATPG tools to generate some tests, e.g., across
timing domain boundaries, and for asynchronous and analog
mixed signal circuit structures, is a well understood and a
longstanding challenge. It is currently the focus of significant
development effort at major EDA companies.

However, until recently, considerable mystery has sur-
rounded Category (1), failures that are not covered by fault-
model-based scan tests but uniquely detected by SLT. The
reason for this uncertainly is the poor diagnostic capability of
SLTs. Unlike in scan tests where each applied test input pattern
and corresponding circuit response is known, it is extremely
difficult to root cause a failure observed by functional SLT
down to a logic gate. Failure in functional operation may be
observed thousands, even millions, of clock cycles after the un-
derlying logic level malfunction occurs, making it impossible
to trace and locate (see Section II-D). It is virtually impossible
to confirm the cause of most of the SLT failures that escape
scan tests. This makes it difficult to target them with new fault
models.

The new Cell Aware Test generation methodology aimed at
detecting shorts and opens within standard cells has been suc-
cessful in reducing SLT fallout in some applications, but less
so in others [6]. The distinction appears to be the susceptibility
of the design to “soft” timing errors, which are not caused by
the “hard” defects targeted by CAT. Particularly vulnerable
to timing failures are power constrained applications such
as cell phones that implement aggressive power management
to ensure battery life while meeting ever increasing compu-
tational demands. This involves dynamic voltage-frequency
scaling, with the circuit operated at slow clock frequencies
and low energy saving voltages when computational loads are
minimal. Unfortunately, the impact of manufacturing process
variations on circuit timing is greatly amplified during very
low voltage operation, causing some circuits to experience

occasional timing errors. Ideally, such “defective” ICs contain-
ing extremely slow statistical outlier transistors from random
process variations should be detected by the scan timing tests.
However, the widely used transition delay fault (TDF) model
explicitly only targets a single lumped delay in the circuit. It
is unable to reliably detect accumulated delays along circuit
paths resulting from a distribution of delays across the IC due
to the effects of random process variations. What are required
are effective scan path delay tests, which have so far not proven
practical. Variation-aware tests [24] are, therefore, not part of
the scan test set, resulting in the increasing dependence on
SLTs in power constrained low voltage applications.

IV. ASSESSING THE QUALITY OF SLT PROGRAMS

As was already mentioned above, the standard quality met-
rics normally used during IC testing (fault coverages) are not
practically applicable to SLT, just because the workloads that
are being applied for minutes would be impossible to simulate.
The only suggestion for an SLT-aware metric proposed so far
is the number of used scenarios in the context of the PSS-
based SLT flow [1]. In the following, we discuss coverage
concepts used during software integration test and whether it
can play a role during SLT.

Overall, software integration test is—similarly to SLT—not
as well investigated as unit tests on the lower levels. For the
latter, coverage is often used to describe the completeness
of the tests. The coverage most often encompasses control
flow (such as statement coverage or branch coverage) but can
also relate to the data flow (such as all definitions). This
translates badly to integration tests as it then still relies on
which statements in the integrated components are executed,
just with a relation to the interface of the components [25].

An alternative approach [26] sees the integrated components
as black boxes. Motivated by the application in the automotive
domain, in which many software components are developed
by suppliers without revealing the source code, it aims at
understanding if the components are well integrated only based
on the information from the data flow between them.

To achieve this, the observations on shared data between
components are described and classified into preconditions
that represent the states of the components, stimulations that
capture manipulations of shared data, and verification that rep-
resents observed data that can be used to check the behaviour
based together with preconditions and stimulations. This gives
rise to new coverage criteria, for example, the coverage of all
usages of shared data (“shared-data-use”), or the verification
usage of a shared data (“verification-data-use”) in which a
test must use a shared data to verify behaviour [26]. Using
this approach for automotive integration testing, test gaps were
identified. It appears promising to use similar coverage criteria
for SLT.

Some high-level parameters are playing an important role
in the detection of failures during the SLT insertion. To stress
the component to facilitate the insurgence of an SLT defect is
often not a pure duty of the SLT software, but it requires some
extra conditions to be met. The characterization of an SLT
program must also carefully consider the effects of different
temperatures (both high and low) and temperature gradients.

In most cases when temperature is a factor to consider,
the requested temperature conditions are provided by climatic



chambers. Anyway, a stressful (therefore valuable) SLT work-
load should also show self-heating capabilities to reach a
specific junction temperature as indicated in mission profiles.
Furthermore, it should also implement heat control mecha-
nisms to avoid over stress and sometimes the thermal overrun.

Testing at harsh power supply conditions is another very
common industrial practice in SLT; power supply voltage for
core and other power domains is increased or decreased even
to make the test running out of the functional specifications of
the product. This power supply variation is aimed at screening
out latent faults that may easily show up in the early life of
the IC. Obviously, this may turn into a dangerous practice if
the SLT workload was not very carefully graded in term of
punctual power demands.

V. SLT PROGRAM GENERATION

While the current state of the art for SLT is to use existing
software (thus requiring no explicit generation), testing for
specific problems can call for SLT programs with specific
characteristics. For instance, if we know that a particular part
of the system is vulnerable to subtle failures, an SLT workload
that stresses this part of the system will be useful. This is
related to the “power-virus” generation considered (for much
smaller circuits) in the past [27].

Thermal measurement on physical samples like in [28]
is an important practice to also provide physical findings
about the implemented SLT workload. Warming up the silicon
surface of a device is often asking quite a long time (up
to minutes) before the circuit shows the desired (usually
high) temperatures. Such a thermal characterization is usually
done by thermocamera-based experiments. This experimental
observation can be supported by suitable firmware read-out of
the chip the temperature recorded by the sensors embedded in
it.

The creation of a functional oriented program able to control
the thermal behaviour should not address the entire circuit
in one shot, but rather focus on different circuit zones at
different times. Differently from scan testing, the focused
functionalities during SLT should be triggered by a suite of
workloads targeting relevant circuit portions.

VI. CONCLUSION

Looking back at conventional integrated circuit test sev-
eral decades ago, we see a scientific success story, which
made quality assurance feasible and kept its cost reasonable
throughout the long period of exponential circuit complexity
growth. A (largely) common understanding of terms and
concepts throughout a large community, both industrial and
academic, has led to sophisticated and yet practical solutions
that could be adopted by most relevant players. We believe
that SLT needs to reach a similar level of widely agreed-upon
understanding to enable comparable progress and overcome
its foreseeable limitations. To answer the questions posed in
this paper, a new level of cross-sector collaboration between
semiconductor manufacturers, system integrators, test equip-
ment manufacturers, EDA companies and academia will be
necessary. For instance, reliable information on SLT programs
that are practically effective, and on SLT-unique fails identified
by such programs, will be helpful in giving the necessary

research, e.g., on improved generation of SLT programs and
systematic assessment of their quality, a meaningful direction.
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