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Abstract
In the 1980’s Colliot-Thélène, Sansuc, Kato and S. Saito proposed conjectures related
to local-to-global principles for 0-cycles on arbitrary smooth projective varieties over a
number field.We give some evidence for these conjectures for a product X = E1×E2
of two elliptic curves. In the special case when X = E × E is the self-product of an
elliptic curve E overQwith potential complex multiplication, we show that the places
of good ordinary reduction are often involved in a Brauer–Manin obstruction for 0-
cycles over a finite base change. We give many examples when these 0-cycles can be
lifted to global ones.

1 Introduction

Let X be a smooth projective geometrically connected variety over a number field F .
We denote by � the set of all places v of F and by Fv the completion of F at a place
v. The classical local-to-global principles for X refer to the image of the diagonal
embedding

X(F) ↪→ X(AF ) :=
∏

v∈�

X(Fv)
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E. Gazaki

to the set X(AF ) of adelic points of X . The cohomological Brauer group Br(X) :=
H2(Xét, Gm) is known to often obstruct either the existence of an F-rational point
or the density of X(F) in X(AF ). Namely, by the foundational work of Manin [25],
the Brauer group gives rise to an intermediate closed subset X(F) ⊆ X(AF )Br(X) ⊆
X(AF ), which is often empty or properly contained in X(AF ). Unfortunately, the
Brauer–Manin obstruction cannot always explain the failure of the Hasse principle
and weak approximation for points (cf. [1, 27]). However, this happens to be the case
for abelian varieties, assuming finiteness of their Tate-Shafarevich groups, and it is
conjectured to be the case for geometrically rationally connected varieties [4, p. 174].
The answer is likely to be yes also for K3-surfaces (cf. [36, p. 4]).

In this article we are interested in an analog of this study for 0-cycles, namely for
the group CH0(X).

Denote by� f (F) (resp.�∞(F)) the set of all finite (resp. infinite) places of F . For
a place v ∈ � denote by Xv the base change to Fv . We have the following conjecture.

Conjecture 1.1 ([6, Sect. 4], [18, Sect. 7], see also [5, Conjecture 1.5 (c)]) Let X
be a smooth projective geometrically connected variety over a number field F. The
following complex is exact,

lim←−
n

CH0(X)/n → lim←−
n

CH0,A(X)/n → Hom(Br(X), Q/Z).

The above formulation is due to van Hamel [40], see also [41, Conjecture (E0)].
The adelic Chow group CH0,A(X) is equal to

∏
v∈� f (F) CH0(Xv) when F is totally

imaginary, and it has a small contribution from the infinite real places otherwise.
When X is a smooth projective curve, Conjecture 1.1 has been proved by Colliot-

Thélène [3, paragraph 3] assuming the finiteness of the Tate-Shafarevich group of its
Jacobian. In higher dimensions, the main evidence for Conjecture 1.1 is for rationally
connected varieties startingwith the work of Colliot-Thélène, Sansuc and Swinnerton-
Dyer [7, 8] and continued by the work of Liang [24, Theorem B]. The latter proved
this conjecture assuming that the Brauer–Manin obstruction is the only obstruction to
Weak Approximation for points on XL where L is any finite extension of F . There is
some recent partial evidence of Ieronymou of similar flavor for K3-surfaces (cf. [16,
Theorem 1.2]). Moreover, Harpaz and Wittenberg [13, Theorem 1.3] proved that the
conjecture is compatible with fibrations over curves.

The purpose of this article is to give some evidence for this conjecture for a product
X = E1 × E2 of elliptic curves. We focus on the following weaker question.

Question 1.2 Let p be a prime number and Br(X){p} be the p-primary torsion sub-
group of Br(X). Is the following complex exact

lim←−
n

CH0(X)/pn → lim←−
n

CH0,A(X)/pn → Hom(Br(X){p}, Q/Z)? (1.3)

Assuming the finiteness of the Tate-Shafarevich group of X , and that the action of
the absolute Galois group GF on the Néron-Severi group NS(X ⊗F F) is trivial,
the exactness of (1.3) can be reduced (cf. Proposition 2.16, Corollary 2.19) to the
exactness of the complex,
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lim←−
n

F2(X)/pn → lim←−
n

F2
A(X)/pn → Hom

(
Br(X){p}
Br1(X){p} , Q/Z

)
, (1.4)

where F2(X) is the kernel of the Albanese map of X and Br1(X) is the algebraic
Brauer group of X . From now make the above assumptions. Our first result is the
following theorem.

Theorem 1.5 (Theorem 3.1) Let X = E1 × E2 be a product of elliptic curves over
a number field F. There is an infinite set T of primes p for which the middle term
in (1.4) vanishes, making the complex exact. If we further assume that at least one of
the curves does not have potential complex multiplication, then the complement S of
T is a set of primes of density zero (in the sense of [33]).

When both E1, E2 have potentially good reduction, this result was already obtained
in [12, Corollary 1.8].

It follows by [29, Theorem3.5] that the only places thatmight contribute a nontrivial
factor in lim←−n

F2
A(X)/pn are the places of bad reduction and the places above p. The

key to prove Theorem 1.5 is that under some assumptions on the prime p, the group
F2(Xv) is p-divisible for every unramified place v above p of good reduction (cf.
[12, Theorem 1.1]). One can think of this result as a weaker analog of the vanishing
F2(Xv) = 0 for X a rationally connected variety and v a place of good reduction [20,
Theorem 5].

A natural follow-up question is whether the places of good reduction are ever
involved in a Brauer–Manin obstruction for 0-cycles. Our second theorem gives an
affirmative answer for places of good ordinary reduction that are ramified enough.

Theorem 1.6 (cf. Theorem 4.2) Let X = E × E be the self product of an elliptic
curve E over Q. Suppose that E ⊗Q Q has complex multiplication by the full ring of
integers of a quadratic imaginary field K . Let p ≥ 5 be a prime which is coprime
to the conductor n of E and suppose that p splits completely in K , p = ππ for
some prime element π of OK . Let Ep be the reduction of E modulo p. Suppose there
exists a finite Galois extension F0/K of degree n < p − 1 such that there is a unique
unramified place w of F0 above π with the property that p divides |Ep(Fw)|, where
Fw is the residue field of F0 at w. Then there exists a finite Galois extension L/F0
of degree p − 1, totally ramified at w such that the following are true for the group
lim←−
n

F2
A(XL)/pn.

(1) It is equal to
∏

v|p lim←−
n

F2(XLv )/p
n, and isomorphic to Z/p ⊕ Z/p.

(2) It is orthogonal to the transcendental Brauer group Br(XL)/Br1(XL).

The same result holds if the elliptic curve E is defined over K .

The primes p of good reduction that split completely in K are precisely the primes
of good ordinary reduction. The involvement of the ordinary reduction places in a
Brauer–Manin obstruction after suitable base change is not surprising. An analogous
result for rational points was recently obtained in [2], which in particular applies to
weak approximation for points on abelian varieties and K3 surfaces. See also [26] for
an explicit example.
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Global approximation

We next pass to the main question of this article namely, whether in the situation
considered in Theorem 1.6, one can lift the group lim←−

n

F2
A(XL)/pn to global elements.

An important observation is that lim←−
n

F2
A(XL)/pn coincides with

∏
v|p F2(XLv )/p (cf.

Sect. 3.2). Thus, one is looking for genuine 0-cycles and the question is reduced to

showing that the diagonal map F2(XL)/p
�−→ ∏

v|p F2(XLv )/p is surjective.
We focus mainly on the simplest case considered in Theorem 1.6, namely when

F0 = Q; that is, when the reduction of the elliptic curve E satisfies |Ep(Fp)| = p.
One can find infinite families with this property. For example, consider the family of
elliptic curveswithWeierstrass equation {y2 = x3+c; c ∈ Z, c 
= 0} having potential
CM by the ring of integers of Q(ζ3). Let p be a prime of the form 4p = 1 + 3v2.
Then, there exist exactly p−1

6 congruence classes c mod p that give elliptic curves
that satisfy |Ep(Fp)| = p.

In Sect. 4.2 we give various sufficient conditions that guarantee the ability to lift.
The conditions are supported by explicit examples, giving therefore some evidence
for Conjecture 1.1. The following Theorem 1.7 is indicative of the computations we
do in Sect. 4. Before stating the result, we need to refer to some notation.

Suppose the pair E, p satisfies the assumptions of Theorem 1.6. Let P ∈ E(Q).
We will denote by PQp the image of P under the restriction map E(Q) ↪→ E(Qp).
We abuse notation and denote by PQp also its image modulo pE(Qp). In Sect. 3.2.1
we construct a decomposition PQp = P̂Qp ⊕ PQp , with P̂Qp ∈ Ê(pZp)/[p], and
PQp ∈ Ep(Fp)/p (cf. Notation 3.5).

We can now state our next theorem.

Theorem 1.7 Let p ≥ 5 be a prime and E an elliptic curve over Q satisfying the
assumptions of Theorem 1.6. Assume further that |Ep(Fp)| = p. Let L/K be the
extension constructed in Theorem 1.6. Suppose that the Mordell-Weil group E(Q) has
positive rank and there exists a point P ∈ E(Q) of infinite order such that the image
PQp of P under the restriction map resQp/Q : E(Q)/p → E(Qp)/p, has the property

that P̂Qp 
= 0 ∈ Ê(pZp)

[p]Ê(pZp)
. Then we have a surjection

F2(XL)/p →
∏

v|p
F2(XLv )/p → 0.

In particular, the complex (1.4) is exact.

We expect that Theorem 1.7 is satisfied by infinite families of elliptic curves. The
criterion given in Theorem 1.7 can be checked computationally in SAGE for small
values of the prime p. In the appendix Appendix A we study the family of elliptic
curves {y2 = x3 − 2 + 7n, n ∈ Z} and the prime p = 7. When n lies in the interval
[−5000, 5000], we show that about 86.68% of elliptic curves with rank one over Q

have such a “good point" P ∈ E(Q).
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The method used to prove Theorem 1.7 can be generalized to more situations (cf.
Corollary 4.10 for when F0/K is a quadratic extension). In Sect. 4.2 we give criteria
of similar flavor for elliptic curves that do not possess a suitable rational point of
infinite order. For the purposes of the introduction, we chose to state our theorem in
its simplest form.

Remark 1.8 In a recent article Liang [23] showed some compatibility of weak approxi-
mation for 0-cycles with certain products using the fibrationmethod. The samemethod
has been used in most known results [13, 16, 24]. Unfortunately, this breakthrough
method does not seem to generalize to abelian varieties. For, the key cohomological
properties Hi (X ,OX ) = 0, for i = 1, 2, and finiteness of Br(X)/Br0(X) (used for
rationally connected varieties and K3 surfaces respectively) are no longer true. Our
approach is different in the sense that it does not use the assumption that the weak
approximation is the only one for rational points. The downside is that we cannot
find a uniform treatment that guarantees lifting, but we instead present many different
sufficient conditions. The advantages on the other hand are first that our results are
unconditional and second that we construct global 0-cycles on the nose. In fact, if one
only focuses on proving exactness of (1.4), then the finiteness of the Tate-Shafarevich
group is no longer needed.

1.1 Notation

Throughout this note unless otherwise mentioned we will be using the following
notation.

• For a number field F , OF , �(F),� f (F),�∞(F) will be respectively its ring of
integers, the set of all places, all finite and all infinite places of F .

• For a finite extension k/Qp, Ok will be its ring of integers, mk its maximal ideal
and Fk its residue field.

• For a place v ∈ �(F), Fv will be the completion of F at v.
• For an abelian group M and a positive integer n, Mn and M/n will be the n-
torsion and n-cotorsion of M respectively. Moreover, M̂ will be the completion,
M̂ = lim←−

n

M/n.

• For an elliptic curve E and an integer nwewill insteadwrite E[n] for the n-torsion.
• For a field extension L/K , and a variety X over K , XL will be the base change
to L .

• For a field k and a continuous Gal(k/k)-module M we will denote by {Hi

(k, M)}i≥0 the Galois cohomology groups of M .

2 Background

2.1 Elliptic curves with complexmultiplication

In this subsection we recall some necessary facts about elliptic curves with complex
multiplication. Let E be an elliptic curve overQwith potential complexmultiplication
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by the full ring of integers OK of K . It follows by [30, Corollary 5.12] that K has
class number one. Note that there exactly 9 such fields K = Q(

√
D). Namely, D ∈

{−1,−2,−3,−7,−11,−19,−43,−67,−163}. The same result holds if E is defined
over K .

Notation 2.1 For an element a ∈ OK wewill denote by E[a] the kernel of the isogeny
a : EK → EK . Similarly, if a is an ideal of OK , then a = (a) for some element
a ∈ OK which is uniquely defined up to units. We will also write E[a] for the kernel
of a : EK → EK (which is independent of the choice of generator).

Let a be a nonzero proper ideal of OK which is prime to the conductor nK of EK .
It follows by [30, Corollary 5.20 (ii)] that there is an isomorphism:

Gal(K (E[a])/K )
�−→ (OK /a)×.

In particular, if p is a prime of OK not dividing the conductor, then the Galois group
Gal(K (E[p])/K ) is cyclic of order NK/Q(p) − 1, where NK/Q : K× → Q× is the
norm map. Next suppose that p is a rational prime coprime to n. We distinguish the
following two cases:

• p is a prime element of OK , so k = K(p) is a quadratic unramified extension of

Qp. Then Gal(K (E[p])/K )
�−→ F×

p2
. In this case the elliptic curve Ek has good

supersingular reduction.
• p splits completely in K , that is, p = ππ , whereπ is a prime element ofOK . Then

we have an isomorphism, Gal(K (E[p])/K )
�−→ F×

p ⊕F×
p , and hence K (E[p])/K

is an extension of degree (p − 1)2. In this case the elliptic curve EQp has good
ordinary reduction.

The case of interest to us in this note is the latter. From now on we will refer to
such primes as ordinary primes. We fix such an ordinary prime p and a factorization
p = ππ into prime elements ofOK . We will denote by p, p the prime ideals (π), (π)

ofOK respectively. Notice that the two completions Kp, Kp of K are both equal toQp .
Let Ep be the reduction of E modulo p and r : E(Qp) → Ep(Fp) be the reduction

map. We will the use same notation for the reduction E(k)
r−→ Ep(Fk) where k/Qp

is any finite extension. Moreover, we will denote by ÊQp the formal group of EQp .
It follows by [9] (see also [22, 13.4, Theorem 12]) that we can choose π so that the

endomorphismπ : EQp → EQp when reducedmodulo p coincideswith theFrobenius
endomorphismφp : Ep → Ep. In particular, the reduction ofπ is an automorphism of
Ep, and hence has trivial kernel. This implies that for every n ≥ 1 the subgroup E[πn]
of E[pn] coincides with the pn-torsion of the formal group, ÊQp [pn]. Moreover, the

relation p = ππ implies that π induces a height zero isogeny [π] : ÊQp → ÊQp ,
and hence for every n ≥ 1 the reduction induces an isomorphism of abelian groups

E[πn] �−→ Ep[pn].
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Let k/Qp be a finite extension. Since EQp has good ordinary reduction, for every
n ≥ 1 there is a short exact sequence of Gal(k/k)-modules,

0 → ÊQp [pn] → E[pn] → Ep[pn] → 0. (2.2)

The above discussion shows that (2.2) splits, since the subgroup E[πn] of E[pn]maps
isomorphically to Ep[pn] (see also [31, A.2.4] for more general results).

Special fiber

We next recall formulas for |Ep(Fp)| for the various choices of the quadratic imagi-
nary field K . We are particularly interested in finding examples of curves that satisfy
|Ep(Fp)| = p. That is, curves for which the extension F0 of Theorem 1.6 can be taken
to be Q. In all cases we have a formula,

|Ep(Fp)| = p + 1 − (π + π), (2.3)

where ππ = p and π reduces mod p to the Frobenius (cf. [17, p. 1]). For the various
choices of quadratic imaginary field K , the correct choice of prime element π can be
computed. We list a few examples.

Example 2.4 Suppose D = −3, that is, K = Q(ζ3), and E is given by the Weierstrass
equation y2 = x3 + c with c ∈ Z. It follows by [28, Theorem 1] that

|Ep(Fp)| = p + 1 −
(
4c

π0

)

6
· π0 −

(
4c

π0

)

6
· π0, (2.5)

where π0 is a prime element of K such that π0π0 = p and π0, π0 are normalized,

that is, they are congruent to 1 mod 3. Here

(
a

π0

)

6
= a

p−1
6 (mod π0) is the sixth

power residue symbol. The symbol

(
4c

π0

)

6
can take any value within the set of units

{±1,±ζ3,±ζ 2
3 } of Z[ζ3]. In particular, when p is of the form 4p = 1+ 3v2 for some

v ∈ Z, there are exactly p−1
6 different reductions Ep which satisfy |Ep(Fp)| = p.

Primes of this form include p = 7, 37, 61, . . .. For example, when p = 7, the family
of elliptic curves {En : y2 = x3 − 2 + 7n, n ∈ Z} satisfies the desired equality.
Later in this article we will make this family a case study to construct examples
that satisfy Theorem 1.7. A second example is given for p = 61 and the family
{Et : y2 = x3 + 2 + 61t, t ∈ Z}.
Example 2.6 Suppose D = −11. A sage computation shows that for p = 223 the
family {Es : y2 = x3 − 1056x + 13552 + 223s, s ∈ Z} satisfies the desired equality.
Another class of examples is given for D = −19, p = 43 and {El : y2 = x3−152x+
722 + 43l, l ∈ Z}.
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Example 2.7 When D = −43,−67,−163, and E is given by a CMWeierstrass equa-
tion with parameter c (cf. [17, Tableau 1]) it follows by [17, Théorème 1] that

|Ep(Fp)| = p + 1 −
(
2

p

) (
u

p

)(
c

p

)
u, (2.8)

where
( a
b

)
is the Legendre symbol, and the integer u is such that 4p = u2 − Dv2. In

this case it is easy to see that if u = 1, then every integer c such that

(
2

p

) (
c

p

)
= −1

gives |Ep(Fp)| = p. For example for D = −43 the following primes are of the form

1 + 43v2: p = 11, 97, 269, 1301, . . ..

Example 2.9 When D = −1 or−2, it follows that π +π is always an even integer, and
hence the equality |Ep(Fp)| = p never happens. That is, any extension F0 satisfying
the assumptions of Theorem 1.6 has positive degree. For example, consider the family
of elliptic curves given by the Weierstrass equation y2 = x3 + (3+ 5n)x , with n ∈ Z,
which has potential complex multiplication by Z[i]. Consider the prime p = 5, which
splits completely in Q(i). A SAGE computation shows that if E is any elliptic curve
in the family, then p||Ep(Fp2)|.

2.2 0-cycles and Somekawa K-groups

Let X be a smooth projective variety over a perfect field k. We consider the Chow
group of 0-cycles, CH0(X). We recall that this group has a filtration

CH0(X) ⊃ F1(X) ⊃ F2(X) ⊃ 0,

where F1(X) := ker(deg : CH0(X) → Z) is the kernel of the degree map, and
F2(X) := ker(albX : F1(X) → AlbX (k)) is the kernel of the Albanese map. When
X = C1 × C2 is a product of two smooth projective, geometrically connected curves
over k such that X(k) 
= ∅, Raskind and Spiess [29, Theorem 2.2, Corollary 2.4.1]
showed an isomorphism

F2(X) � K (k; J1, J2), (2.10)

where K (k; J1, J2) is the Somekawa K -group attached to the Jacobian varieties J1, J2
ofC1,C2. The group K (k; J1, J2), defined byKato andSomekawa in [38], is a quotient
of

⊕
L/k finite J1(L)⊗ J2(L) by two relations. The first relation is known as projection

formula and the second asWeil reciprocity. In this article we won’t make explicit use
of these relations, and hence we omit the precise definition (see [29, Definition 2.1.1]
and the footnote on p. 10 for a correction to Somekawa’s original definition).

Example 2.11 Suppose that X = E × E is the self-product of an elliptic curve E over
k. We denote by K2(k; E) the group K (k; E, E). Moreover we will denote by O the
zero element of E . The Albanese kernel F2(X) is generated by 0-cycles of the form

wP,Q := fL/k�([P, Q] − [P, O] − [Q, O] + [O, O]),
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where L/k runs through all finite extensions of k, P, Q ∈ E(L), and fL/k is the

proper push-forward CH0(XL)
fL/k−−→ CH0(X). The isomorphism (2.10) sends the

0-cycle wP,Q to the symbol {P, Q}L/k . From now on we identify these two objects.

2.3 Weak approximation for 0-cycles

Let X be a smooth projective geometrically connected variety over a number field F .
Let v ∈ � f (F). There is a local pairing,

〈·, ·〉v : CH0(Xv) × Br(Xv) → Br(Fv) � Q/Z

called the Brauer–Manin pairing defined as follows. For a closed point P ∈ Xv and a
Brauer classα ∈ Br(Xv), the pull-back ofα along P is denoted byα(P) ∈ Br(Fv(P)),
where Fv(P) is the residue field of P . The pairing 〈·, ·〉v is defined on points by
〈P, α〉v := CorFv(P)/Fv

(α(P)) and it factors through rational equivalence (cf. [5,
p. 4]). Here CorFv(P)/Fv

is the Corestriction map of Galois cohomology (cf. [32,
VIII.2]).

Definition 2.12 Suppose that F is totally imaginary. The adelicChowgroupCH0,A(X)

is defined to be the product CH0,A(X) := ∏
v∈� f (F) CH0(Xv). Similarly, we define

F1
A(X) = ∏

v∈� f (F) F
1(Xv) and F2

A(X) = ∏
v∈� f (F) F

2(Xv).

When F is not totally imaginary, it follows by [5, Théorème 1.3] that the group
CH0,A(X) has a small (2-torsion) contribution from the infinite real places. In this
article we will mainly be working over totally imaginary number fields, and hence we
omit the more general definition. For more details see [12, Definition 5.2].

The local pairings induce a global pairing,

〈·, ·〉 : CH0,A(X) × Br(X) → Q/Z,

defined by 〈(zv)v, α〉 = ∑
v invv(〈zv, ι�v(α)〉v), where ι�v is the pullback of ιv : Xv →

X . The short exact sequence of global class field theory,

0 → Br(F) →
⊕

v∈�

Br(Fv)

∑
invv−−−−→ Q/Z → 0,

implies that the group CH0(X) lies in the left kernel of 〈·, ·〉. Thus, we obtain a
complex,

CH0(X)
�−→ CH0,A(X) → Hom(Br(X), Q/Z), (2.13)

where � is the diagonal map. Conjecture 1.1 then predicts that the complex (2.13)
becomes exact after passing to the completions; namely that the induced complex

ĈH0(X)
�−→ ĈH0,A(X) → Hom(Br(X), Q/Z) (2.14)

is exact.
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Next we consider the filtration Br(X) ⊃ Br1(X) ⊃ Br0(X) induced by the
Hochschild-Serre spectral sequence, where Br1(X) := ker(Br(X) → Br(XF )) is the
algebraic Brauer group of X , and Br0(X) = Im(Br(F) → Br(X)) are the constants.
When X has a F-rational point, the exactness of (2.14) is reduced to the exactness of
the induced complex,

F̂1(X)
�−→ F̂1

A(X)
ε−→ Hom(Br(X)/Br0(X), Q/Z). (2.15)

When X is a product of elliptic curves more can be said.

Proposition 2.16 Let X = E1×· · ·×Ed be a product of elliptic curves over a number
field F. Let GF be the absoluteGalois group of F. Suppose that theNéron-Severi group
NS(XF ) of the base change to the algebraic closure of F has trivial GF-action. Then
the restriction of the map ε : F1(X) → Hom(Br(X)/Br0(X), Q/Z) to the Albanese
kernel F2(X) factors through the group Hom(Br(X)/Br1(X), Q/Z).

Proof We need to show that for every z ∈ F2(X) and every α ∈ Br1(X)/Br0(X), it
follows 〈z, α〉 = 0. A direct computation of the Hochshild-Serre spectral sequence
gives an isomorphismBr1(X)/Br0(X) � H1(F,Pic(XF )). TheGF -modulePic(XF )

fits into a (splitting) short exact sequence

0 → Pic0(XF )) → Pic(XF )) → NS(XF )) → 0.

Since X is an abelian variety, the group NS(XF ) is torsion free, and hence a finitely
generated free abelian group. Since we assumed that GF acts trivially on it, it follows
that H1(F,NS(XF )) = 0. Thus, we obtain an isomorphism

H1(F,Pic(XF )) � H1(F, X(F)) �
d⊕

i=1

H1(k, Ei ).

For i = 1, . . . , d, let pri : X → Ei be the projection. The map pri is proper and it
induces a pushforward pri� : CH0(X) → CH0(Ei ) on Chow groups and a pullback
pr�i : Br(Ei ) → Br(X) on Brauer groups. Since the Brauer–Manin pairing is defined
just by evaluation, we have a commutative diagram

CH0,A(X) Hom(Br(X), Q/Z)

CH0,A(Ei ) Hom(Br(Ei ), Q/Z).

pri� Hom(pr�i ,Q/Z)

That is, for z ∈ CH0(X) and β ∈ Br(Ei ) we have an equality 〈z, pr�i (α)〉 =
〈pri�(z), α〉. Moreover, both homomorphisms preserve the two piece filtrations of
CH0 and Br. The pullbacks p�

i induce a homomorphism

d⊕

i=1

Br1(Ei )/Br0(Ei )
⊕ pr�i−−−→ Br1(X)/Br0(X).
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Our previous analysis shows that this is in fact an isomorphism. We compute

〈z, pr�i (α)〉 = 〈pri�(z), α〉 = 0.

The vanishing follows, because pri�(z) ∈ F2(Ei ) = 0, since Ei is a curve. ��
Corollary 2.17 Let X = E × E be the self-product of an elliptic curve over a number
field F. Suppose that E has complex multiplication defined over F by the full ring of
integers of a quadratic imaginary field K . Then the assumption of Proposition 2.16 is
satisfied.

Proof Because we assumed that F contains the quadratic imaginary field K , it follows
by [37, p. (120), Eq. (10)] that NS(XF ) is a trivial GF -module. ��

Proposition 2.16 shows that the complex (2.15) induces a complex

F̂2(X)
�−→ F̂2

A(X)
ε−→ Hom(Br(X)/Br1(X), Q/Z). (2.18)

Combining Proposition 2.16 with [12, Proposition 5.6] yields the following corollary.

Corollary 2.19 The exactness of (2.15) can be reduced to the exactness of (2.18).

We note that this corollary was claimed by the main author and T. Hiranouchi in
[12, Proposition 5.6]. It was brought to our attention however that the argument there
was not enough. Proposition 2.16 was a key missing ingredient. We note that such
a reduction cannot be made in general for other classes of varieties, for example del
Pezzo surfaces, or K3 surfaces.

3 Local results

In this section we are going to prove Theorem 1.5 and also obtain some necessary
local information in order to prove Theorems 1.6 and 1.7 in the next section.

3.1 Proof of Theorem 1.5

In this subsection k will denote a finite extension of Qp. We will often assume that p
is odd. Let X be a smooth projective geometrically connected variety over k. We will
denote by F2(X)div the maximal divisible subgroup of the Albenese kernel F2(X)

and by F2(X)nd the quotient F2(X)/F2(X)div. We have a decomposition,

F2(X) = F2(X)div ⊕ F2(X)nd.

The subgroup F2(X)nd is expected to be finite (cf. [29, Conjecture 3.5.4], see also [5,
1.4(g)]). When X = E1 × E2 is the product of two elliptic curves, this conjecture has
been established in a large number of cases. In particular, the following are true.
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(1) When X has good reduction, the group F2(X) is m-divisible for every integer m
coprime to p ([29, Theorem 3.5]).

(2) Suppose p ≥ 3, X has split semistable reduction and at most one of the curves
has good supersingular reduction. Then the group F2(X)nd is finite ([29, Theorem
1.1], [10, Theorem 1.2]).

(3) Suppose p ≥ 3, k is unramified over Qp, X has good reduction and at most one of
the curves has good supersingular reduction. Then F2(X)nd = 0 ([12, Theorem
1.4]).

The finiteness of F2(X)nd yields an equality F2(X)nd = F̂2(X). In the special
case when X has good reduction, it follows that the group F2(X)nd has p-power
order. Suppose F2(X)nd = pN for some N ≥ 0. Then F2(X)nd � F2(X)/pN .

We are now ready to prove Theorem 1.5, which we restate here.

Theorem 3.1 Let X = E1 × E2 be a product of elliptic curves over a number field F.
Suppose that the action of the absolute Galois group GF on the Néron-Severi group
NS(XF ) is trivial. Then, there is an infinite set T of rational primes p for which
the group lim←−

n

F2
A(X)/pn vanishes. In particular, the complex (1.4) is exact for every

p ∈ T . If we further assume that at least one of the curves does not have potential
complex multiplication, then the complement S of T is a thin set of primes.

Proof The proof will be along the lines of [12, Lemma 5.9]. Let p be an odd prime
and suppose that for every place v above p the surface Xv has good reduction. It
follows by Sect. 3.1 (1) that the only factors of F2

A(X) that might not be p-divisible
correspond to those places v above p and to the places of bad reduction. Let 
 =
{v place of bad reduction}. Then for every n ≥ 1 we have,

F2
A(X)/pn =

∏

v|p
F2(X)/pn ×

∏

v∈


F2(X)/pn .

Let v ∈ 
 be a place of bad reduction. Then there exists a finite extension Lv/Fv

such that the base change XLv has split semistable reduction. This means that either
both elliptic curves EiLv have good reduction, or if any of them has bad reduction,
then it has split multiplicative reduction. In the former case, since v � p, it follows by
[29, Theorem 3.5] that the group F2(XLv ) is p-divisible. In the latter case, it follows
by [10, Theorem 1.2]) that the group F2(XLv )nd is finite. Write Nv for its order. To
unify notation, we set Nv = 1 for the case of potentially good reduction. Consider the
following positive integer,

M =
∏

v∈


[Lv : Fv]
∏

v∈


Nv.

We claim that for every prime p which is coprime to M and for every v ∈ 


the group F2(Xv) is p-divisible. Consider the projection XLv

πLv/Fv−−−−→ Xv , and let

CH0(XLv )
πLv/Fv�−−−−→ CH0(Xv), and CH0(Xv)

π�
Lv/Fv−−−−→ CH0(XLv ) be the induced push-

forward and pull backmaps respectively. Thenwe have an equalityπLv/Fv�◦π�
Lv/Fv

=
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[Lv : Fv]. Since p is coprime to [Lv : Fv], it follows that the pull back map induces
an injective map of Fp-vector spaces

F2(Xv)/p
π�
Lv/Fv
↪→ F2(XLv )/p.

By our choice of p, it follows that the group F2(XLv ) is p-divisible, and hence so is
F2(Xv).

As a conclusion, for every prime p � M such that for every place v above p the
surface Xv has good reduction, we have an isomorphism

lim←−
n

F2
A(X)/pn �

∏

v|p
lim←−
n

F2(Xv)/p
n .

Let T0 be the set of odd primes p such that for every place v above p the abelian
surface Xv has good reduction, at most one of the curves E1v, E2v has good super-
singular reduction and p � M . Then it follows by Sect. 3.1 (2) that for every p ∈ T0
and for every place v|p the group F2(X)nd is finite of p-power order. Thus, we have
an isomorphism

lim←−
n

F2
A(X)/pn =

∏

v|p
F2(Xv)nd. (3.2)

If we further assume that for each place v|p the extension Fv/Qp is unramified, then
it follows by [12, Theorem 1.4] that the group F2(Xv)nd vanishes. Consider the set

T = T0\{p : ramified prime}.

Then for every p ∈ T , lim←−
n

F2
A(X)/pn = 0 and the complex (1.4) is exact.

Note that the set T0 is infinite, since it contains all primes p such that for every
place v above p both elliptic curves have good ordinary reduction. Since the set of
ramified primes is finite, it follows that T is an infinite set of primes.

Next suppose that one of the curves does not have potential complexmultiplication;
without loss of generality, assume End(E1Q) = Z. Then the set of primes p which
are such that the curve E1v has good supersingular reduction for every place v above
p is a set of primes of density zero (cf. [21, 33]). We conclude that the complement S
of T is a set of primes of density zero. ��

3.2 Computing the local Albanese kernel over ramified base fields

Throughout this subsection E will be an elliptic curve defined over a finite extension
k of Qp. We assume that E has good ordinary reduction. We will denote by Ê the
formal group of E and by E the reduction of E , which is an ordinary elliptic curve
over the finite field Fk . Moreover, we will denote by e the absolute ramification index
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of k. The purpose of this subsection is to obtain some explicit information on the group

F2(X)nd = F̂2(X).

3.2.1 Decomposition of local points

Wefirst obtain some information on points P ∈ E(k), whichwill be of use in Sect. 4.2.
Since the elliptic curve E has good ordinary reduction, for every integer n ≥ 1 we
have a short exact sequence of Gal(k/k)-modules.

0 → Ê[pn] → E[pn] → E[pn] → 0, (3.3)

where asZ-modules both Ê[pn] and E[pn] are isomorphic toZ/pn . The sequence 3.3
is also known as the connected-étale exact sequence. In general this sequence does
not split, but it does when E[pn] ⊂ E(k), and unconditionally on k if E has complex
multiplication ([31, A.2.4]). In particular it splits when E satisfies the assumptions of
Sect. 2.1. We assume we are in the CM situation. We additionally suppose that k is an
unramified extension of Qp and E[p] ⊂ E(Fk). We consider the exact sequence

0 → Ê(mk) → E(k)
r−→ E(Fk) → 0, (3.4)

where E(k)
r−→ E(Fk) is the reduction map. The group E(Fk) is finite, thus it decom-

poses as E(Fk) � E(Fk){p} ⊕ E(Fk){m}, for some large enough integer m ≥ 1
coprime to p. Because E has good reduction, it follows by the criterion of Néron-
Ogg-Shafarevich [35, Theorem 7.1] that the coprime-to-p torsion subgroup of E(k)
is isomorphic to E(Fk){m}. Moreover, since E is an ordinary elliptic curve and we
assumed E[p] ⊂ E(Fk), it follows that E(Fk){p} � E[pN0 ] for some integer N0 ≥ 1.
In particular, the group E(Fk){p} is cyclic of order pN0 . The splitting of (3.3) implies
that the map E[pN0 ](k) r−→ E[pN0 ](Fk) is surjective. Since we assumed that k/Qp

is unramified, it follows by [35, Theorem 6.1] that Ê[p] = 0, and hence this map is
an isomorphism. We conclude that the reduction map r induces an isomorphism on
torsion subgroups

E(k)tor � E(Fk)tor,

and hence the short exact sequence (3.4) has a natural splitting.Moreover, if L/k is any

finite extension, this splitting commutes with the restriction map E(k)
resL/k−−−→ E(L).

It also induces a split short exact sequence

0 → Ê(mk)/p → E(k)/p
r−→ E(Fk)/p → 0.

This splitting can be made more explicit as follows. We have an isomorphism,

E(Fk)/p � E[pN0 ]/E[pN0−1] � E[p].
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We fix a generator P0 of E[pN0 ](Fk) and its unique lift P0 ∈ E[pN0 ](k). Let P ∈
E(k). There exists an integer c ∈ {0, 1, . . . , pN0 −1} such that r(P mod p)− r(cP0
mod p) = 0. This implies that P has an expression as P = P̂ + cP0 + pQ for some
points Q ∈ E(k), P̂ ∈ Ê(mk).

Notation 3.5 From now we will abuse notation and for a point P ∈ E(k) we will
denote also by P its image in E(k)/p. The above discussion shows that P has
a unique decomposition as P = (P̂, P) where P̂ ∈ Ê(mk)/p and P := r(cP0
mod p) ∈ E(Fk)/p. It is clear by the construction that this decomposition is compat-
ible with the restriction map resL/k for finite extensions L/k. Namely, resL/k(P) =
(resL/k(P̂), resFL/Fk (P)).

3.2.2 Explicit isomorphism

In this subsection we consider a finite extension L/k such that E[pn] ⊂ E(L) for
some n ≥ 1. It follows by [29, Sect. 4] (see also [14, Theorem 4.2], [15, Theorem
3.4]) that we have an isomorphism

F2(XL)nd/p
n = F2(XL)/pn � K2(L; E)/pn � Z/pnZ. (3.6)

Let N = max{n ≥ 1 : E[pn] ⊂ E(L)}. If we further assume that the extension L
(E[pN+1])/L has wild ramification, it follows by [10, Theorem 3.14] that we have
an isomorphism

F̂2(XL) = F2(XL)nd = F2(XL)/pN � Z/pN . (3.7)

The case of interest to us is when N = 1. To prove Theorem 1.6, the above information
is enough. However, in order to construct global 0-cycles and prove Theorem 1.7, we
need to recall the explicit construction of the isomorphism K2(L; EL)/p � Z/pZ.
We are particularly interested in describing necessary and sufficient conditions for a
symbol {P, Q}L/L ∈ K2(L; EL)/p to be nontrivial.

The group K2(L; EL) is defined to be the quotient of the Mackey product (EL ⊗M

EL)(L) (cf. [12, Sect. 2.1]) modulo Weil reciprocity. It follows by [29] (see also [14,
Theorem 4.2]) that when E[p] ⊂ E(L) we have an isomorphism

K2(L; EL) � (EL ⊗M EL)(L)/p.

TheMackey functor EL/p has a direct decomposition EL/p � ÊL/p⊕[EL/ÊL ]/p,
induced by the splitting short exact sequences

0 → ÊL(mL ′)/p → EL(L ′)/p → EL(FL ′/p) → 0,

where L ′/L is any finite extension. For the definition of the Mackey functor [EL/ÊL ]
we refer to [10, Proof of Theorem3.14]. It follows by [29, Lemma 3.4.2] and [10, Proof
of Theorem 3.1.4] respectively that theMackey products ([EL/ÊL ]⊗M [EL/ÊL ])(k),
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(ÊL ⊗M [EL/ÊL ])(L)/p, and ([EL/ÊL ] ⊗M EL)(k)/p all vanish. Thus we have an
isomorphism

K2(L; EL)/p � (ÊL ⊗M ÊL)(k)/p = (ÊL/p ⊗M ÊL/p)(k).

The upshot is the following, which will be used in Sect. 4.2. Let k/Qp be a finite
unramified extension like in the previous subsection and let P ∈ E(k)/p. Consider
the restriction of P in E(L)/p, which for simplicity we will denote again by P .
Consider the decomposition P = (P̂, P) as in notation (3.5). Let Q̂ ∈ ÊL(mL)/p.
Then we have,

{P, Q̂}L/L = {P̂, Q̂}L/L ∈ K2(L; EL)/p. (3.8)

Next we analyze the Mackey functor ÊL/p. The inclusion E[p] ⊂ E(L) implies
μp ⊂ L×, and Ê[p] ⊂ ÊL(mL). We fix a primitive p-th root of unity ζp ∈ L× and a
non-canonical isomorphism of Gal(L/L)-modules Ê[p] � Z/p � μp. This induces
an isomorphism

H1(L, ÊL [p]) � H1(L, μp) = L×/L×p.

We consider the connecting homomorphism of the Kummer sequence for ÊL (cf. [12,
Lemma 3.5])

δL : ÊL(L)/p ↪→ H1(L, ÊL [p]).

LetU 1
L be the group of 1-units of L× with its natural filtration {Ui

L = 1+mi
L}i≥1 and

define

U
i
L = Im(Ui

L → L×/L×p), i ≥ 1.

It then follows by [19, Theorem 2.1.6], (see also [12, Proposition 3.13]) that the
homomorphism δL induces an isomorphism

δL : ÊL(L)/p
�−→ U

1
L , (3.9)

and the same holds over any finite extension L ′/L . In fact we have an isomorphism

as Mackey functors ÊL/p � U
1
L .

Additionally, δL is a filtered isomorphism in the following sense. The formal group

ÊL(mL) has a natural filtration ÊL
i
(L) := ÊL(mi

L), for i ≥ 1. This induces a filtration

on the group ÊL(mL)/[p] = ÊL
1
(L)/p by defining (cf. [12, Definition 3.10]),
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Di := ÊL
i
(L)

[p]ÊL(L) ∩ ÊL
i
(L)

, i ≥ 1.

Then the isomorphism (3.9) has the property that δL(Di ) ⊂ U
i
L , for all i ≥ 1.

Moreover, it is functorial with respect to norm maps associated with finite extensions
L ′/L .

Since μp ⊂ L×, we have isomorphisms H2(L, μp ⊗ μp) � H2(L, μp) �
Br(L)p � Z/p. For a, b ∈ L×/L×p write (a, b)p ∈ Br(L)p for the cyclic sym-
bol algebra generated by a, b. Then we have an isomorphism

sp : (ÊL/p ⊗M ÊL/p)(k) → H2(L, μp) = Br(L)p

{P̂, Q̂}L/L �→ (δ(P̂), δ(Q̂))p, (3.10)

known as the generalized Galois symbol. For a proof of the injectivity of sp see for
example [14, Theorem 4.2].

3.2.3 Criterion for nontriviality

It follows that a symbol {P̂, Q̂}L/L is nonzero in K2(L; EL)/p if and only if δL(P̂)

is not in the image of the norm map

N : L
(
δL(Q̂)1/p

)× → L×,

or equivalently if and only if P̂ is not in the image of the norm map

N : ÊL

(
L

(
1

p
Q̂

))
/p → ÊL(L)/p.

Here we denoted by L
(
1
p Q̂

)
the smallest Galois extension of L over which there

exists a point Q̂′ such that pQ̂′ = Q̂. The same equivalence holds with the roles of
P̂, Q̂ interchanged.

4 Self-product of an elliptic curve with complexmultiplication

In this subsection we are going to prove Theorems 1.6 and 1.7. Throughout this section
we are making the following assumption.

Assumption 4.1 K will be a quadratic imaginary field of class number one. E will
be an elliptic curve over Q or K with CM by OK and p ≥ 5 will be an ordinary
prime for E . Moreover, we fix a factoring p = ππ into prime elements of OK such
that the endomorphism π : EK → EK reduces to the Frobenius automorphism
φp : Ep → Ep.

123

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



E. Gazaki

4.1 Local 0-cycles orthogonal to the Brauer group

We are now ready to prove Theorem 1.6, which we restate here.

Theorem 4.2 Let X = E × E. Suppose there exists a finite Galois extension F0/K of
degree n < p − 1 such that there is a unique inert place w of F0 above π with the
property that p divides |Ep(Fw)|, where Fw is the residue field of F0 at w. Consider
the extension L := F0 · K (E[π ]). Then the group lim←−

n

F2
A(XL)/pn has the following

properties.

(1) It is equal to
∏

v|p F2(XLv )nd and isomorphic to Z/p ⊕ Z/p.

(2) It is orthogonal to the transcendental Brauer group
Br(XL){p}
Br1(XL){p} .

Proof The proof involves three main steps.

Claim 1: There is an isomorphism
∏

v|p F2(XLv )nd � Z/p ⊕ Z/p.
It follows by [30, Corollary 5.20 (ii), (iii)] that K (E[π ])/K is a Galois extension

of degree p − 1 and it is totally ramified above p = (π). Since F0/K is unramified
above π , the extensions F0, K (E[π ]) are totally disjoint and hence Gal(L/K ) �
Gal(F0/K ) × Gal(K (E[π ])/K ). In particular, L/K is a Galois extension of degree
n(p−1) < (p−1)2, and there exists a unique place v of L above π with ramification
index p − 1 and residue field Fw0 of degree n over Fp. Moreover, the extension L/Q

is Galois, and hence there exists a unique place v above π with the same properties
and these are precisely the places of L that lie above p. The extensions Lv and Lv are

the same. It is enough therefore to prove an isomorphism ̂F2(XLv ) � Z/pZ.
We will simply denote by Ev (resp. Ev) the base change ELv (resp. ELv

) which
is an elliptic curve with good ordinary reduction over the p-adic field Lv/Qp. We
will denote by mv the maximal ideal of OLv , Êv will be the formal group of Ev

and Ev the reduction. We claim that Ev[p] ⊂ Ev(Lv). As noted in Sect. 2.1, the
subgroup EQp [π ] of EQp [p] coincides with the p-torsion of the formal group ÊQp [p].
It follows that Ev[π ] coincides with Êv[p], and hence it is Lv-rational. Since the
residue field of Lv/Qp is Fw0 , the assumption that p divides |Ep(Fw0)| implies that
Ep[p] ⊆ Ep(Fw0). The inclusion Ev[p] ⊂ Ev(Lv) then follows by the splitting short
exact sequence

0 → Êv[p] → Ev[p] → Ep[p] → 0.

The desired isomorphism ̂F2(XLv ) � Z/pZ follows by (3.7). More precisely, the
above argument shows that we have an inequality N ≥ 1. We claim that N = 1.
It is enough to show that the extension Lv(E[p2])/Lv(E[p]) has wild ramification.
But this is clear, since Lv(E[p2]) contains Lv(μp2), which has absolute ramification
index dividing p(p−1), while Lv = Lv(E[p]) has absolute ramification index p−1.
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Claim 2: There is an isomorphism lim←−
n

F2
A(XL)/pn �

∏

v|p
F2(XLv )nd.

We use the notation introduced in the proof of Theorem 3.1. Namely, let

M =
∏

v0∈


nv0

∏

v0∈


Nv0 ,

where 
 is the set of all bad reduction places of EL , nv0 is the degree of an extension
L ′

v0
/Lv0 over which the elliptic curve EL ′

v0
attains split semistable reduction and

Nv0 = 1 in the potentially good reduction case, Nv0 = |F2(XL ′
v0

)nd| otherwise. To
prove the claim, it is enough to show that p is coprime to M , because then the proof
of Theorem 3.1 gives us the desired isomorphism (cf. 3.2). Since the elliptic curve E
has complex multiplication, it follows by [34, Theorem 7] that the set 
 only contains
places of potentially good reduction. Thus, Nv0 = 1 for every v0 ∈ 
.

It remains to show that for each v0 ∈ 
 there exists a finite extension L ′
v0

/Lv0 of
degree coprime to p over which E attains good reduction. Let v0 ∈ 
 and l be the
rational prime lying below v0. It follows by [30, Corollary 5.22] that there exists an
elliptic curve E ′ defined over Q such that E ′ has good reduction at l and EQ � E ′

Q
.

But any two elliptic curves over Q become isomorphic over a degree 6 extension.
Since we assumed that p ≥ 5, the claim follows.

Claim 3: The group
Br(XL){p}
Br1(XL){p} is trivial.

The group Br(XL)/Br1(XL) is finite by [36, Theorem 1.1]. More precisely, if
GL = Gal(L/L), then Skorobogatov and Zarhin [37, Proposition 3.3] showed an
isomorphism,

Br(XL)p

Br1(XL)p
� HomGL (EL [p], EL [p])

(Hom(EL , EL)/p)GL
.

Since EL has CM defined over L , (Hom(EL , EL)/p)GL � (Z/pZ)2. We claim that
this is equal to the numerator HomGL (EL [p], EL [p]). Since by assumption n <

p − 1, we have proper field extensions K � L � K (E[p]). It follows that EL [π ]
is the unique nonzero submodule of EL [p] with a trivial GL -action. Hence, any GL -
equivariant homomorphism f : EL [p] → EL [p] must send EL [π ] to itself. This
is precisely a subgroup of rank 2 of Hom(EL [p], EL [p]) � (Z/pZ)4 containing
(Hom(EL , EL)/p)GL , and hence it must be equal to it. ��
Definition 4.3 Let F0/K be an extension satisfying the assumptions of Theorem 4.2.
ThenFw0 � Fpn .Wewill say that F0 isminimal if it has theminimumpossible degree.
That is, if p||Ep(Fpn )| and n ≥ 1 is the smallest possible with this property.

When we construct global 0-cycles in the next subsection, we will often start with
a minimal totally real extension F0/Q and apply Theorem 4.2 for F0 · K . When
p||Ep(Fp)|, F0 = Q. In all other cases a minimal F0 is not uniquely determined.
The following proposition shows that the extension L = F0 · K (E[π ]) constructed
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in Theorem 1.6 is in some sense minimal over which interesting things happen at the
places above the ordinary prime p.

Proposition 4.4 Let (E, p) be a pair satisfying the assumptions of Theorem 4.2. Let
F0/Q be an extension as in Theorem 4.2 of minimal degree. Let Q ⊂ F � L =
F0 · K (E[π ]) be any intermediate extension. Then ∏

w∈� f (F),w|p F2(XFw)nd = 0.

Proof Since F � L = F0 ·K (E[π ]), any such field F has at most two placesw above
p of ramification index dividing p− 1. Moreover, since F is properly contained in L ,
and the fields F0 and K (E[π ]) are minimal with respect to their defining properties,
it follows that for every place w of F above p, E[p] 
⊂ E(Fw). This observation
reduces the proposition to the following local claim.

Claim: Let k/Qp be a finite extension such that E[p] 
⊂ E(k). Then we have an
equality K2(k; Ek)/p = 0.

Consider the finite extension k1 = k(E[p]) and notice that k1/k is a nontrivial
extension of degree coprime to p. We have a commutative diagram

K2(k; Ek)/p H2(k, Ek[p]⊗2)

K2(k1; Ek1)/p H2(k1, Ek1 [p]⊗2)

sp

resk1/k resk1/k

sp

,

where sp is the Galois symbol map (cf. [12, Definition 2.13]) and resk1/k are the
restriction maps (cf. [12, p. 7]). The bottom horizontal map is injective (cf. [14, Theo-
rem 4.2]). Moreover, Nk1/k ◦ resk1/k = [k1 : k], and hence the restriction maps are also
injective. This forces the top horizontal map to be injective, and hence it is enough to

show that the image of the Galois symbol K2(k; Ek)/p
sp−→ H2(k, Ek[p]⊗2) is zero.

The image of sp can be computed by [11, Theorem 1.1]. Namely, under the Tate
duality perfect pairing

H2(k, Ek[p]⊗2) × HomGal(k/k)(Ek[p], Ek[p]) → Z/p,

the orthogonal complement of Im(sp) consists precisely of those Gal(k/k)- homo-

morphisms Ek[p] f−→ Ek[p] that lift to a homomorphism of finite flat group schemes

Ek[p] f̃−→ Ek[p], where Ek is the Néron model of Ek over Spec(Ok). Since Ek has
good ordinary reduction, it follows by [11, Proposition 8.8] that these are exactly the

homomorphisms Ek[p] f−→ Ek[p] that satisfy f (Êk[p]) ⊂ Êk[p]. Thus, to show
Im(sp) = 0, it is enough to show that every Gal(k/k)-equivariant homomorphism

Ek[p] f−→ Ek[p] satisfies this property. Since Ek has complex multiplication defined
over k, it follows that Ek[p] � Êk[p] ⊕ Ek[p] as Gal(k/k)-modules. Since at least
one of the cyclic submodules is nontrivial, the claim follows. ��

In Sect. 2.1 we saw many examples when F0 can be taken to be Q. We will focus
more on this case in the next subsection.
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4.2 Constructing global 0-cycles

In this last subsection we investigate the exactness of the complex (1.4) in the situation
considered in Theorem 4.2. That is, we are looking for criteria that allow us to lift the
group

∏
v|p F2(XLv )nd � (Z/p)2 to global 0-cycles in F2(X).

Lemma 4.5 Let K = Q(
√
D) with D ∈ {−1,−2,−3,−7,−11,−19,−43,−67,

−163}. Let E be an elliptic curve over Q such that EK has complex multiplication
by OK . Let F/Q be a totally real extension and suppose that the Mordell-Weil group
E(F) has positive rank. Let P ∈ E(F) be a point of infinite order.WriteOK = Z[ωD].
Then the points P, ωD(P) ∈ E(K · F) are Z-linearly independent.

Proof We will simply write ω instead of ωD . Note that ω(P) ∈ E(K · F)\E(F). Let
μ(x) = x2 − bx + c ∈ Z[x] be the minimal polynomial of ω. Let ω be the conjugate
of ω, so the equalities ω + ω = b and ωω = c hold. Suppose for contradiction
that P, ω(P) are Z-linearly dependent. Then we can find n,m ∈ Z such that nP +
mω(P) = 0. We may assume that n,m are relatively prime, and hence we can find
x, y ∈ Z such that nx + my = 1. The relation nP + mω(P) = 0 implies that
nx P + mxω(P) = 0 = nyP + myω(P). Applying the endomorphism ω to the first
equality yields nxω(P) + mxcP = 0, and hence nxω(P) − (mxc + nxb)P = 0.
Adding the latter to the equation nyP + myω(P) = 0 gives

ω(P) = (nxb − ny + mxc)P ∈ E(F),

which is a contradiction. ��
Remark 4.6 Suppose D ∈ {−3,−7,−11,−19,−43,−67,−163}. Then OK =
Z[ωD], whereωD = −1

2
+

√−D

2
. The minimal polynomial ofωD is x2+x+ 1 + D

4

so that in the notation of Lemma 4.5 we have b = −1, c = 1

4
+ D

4
. Let p be an odd

prime, p 
= −D. Then the system of equations

{
x2 = c
2x = −1

has no solution over Fp.

For, if x were a solution, then the solution would be x = −1/2 ∈ Fp, giving 4c ≡ 1
mod p ⇔ D ≡ 0 mod p. This simple observation will be used in the proof of the
following Theorem 4.7.

Proof of lifting when a“good” rational point exists

In this section we give a first criterion to lift the local 0-cycles to global. Our criterion
relies only on the existence of a “good" rational point P . Before proving our main
results, we briefly describe our methodology.

From now on we assume we are in the set-up of Theorem 4.2 with the extension
F0 minimal. The base change XL , where L = F0 · K (E[π ]), contains a nontrivial
L-rational π -torsion point A ∈ E[π ](L). Our strategy is to examine when this torsion
point can be used to construct global 0-cycles.
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We say that a point P ∈ E(F0) is good if the 0-cycle z1 = [A, P] −
[A, O] − [O, P] + [O, O] ∈ F2(XL) induces a nontrivial element (z1v, z1v) ∈
F2(XLv )nd ⊕ F2(XLv

)nd. When this happens, we show that the 0-cycle z2 =
[A, ω(P)]−[A, O]−[O, ω(P)]+[O, O] induces a second Fp-linearly independent
element of F2(XLv )nd ⊕ F2(XLv

)nd. To find an explicit condition that guarantees
(z1v, z1v) 
= (0, 0), we will use the nonvanishing criterion from Sect. 3.2.3. From now
on we identify the 0-cycle z1 with the symbol {A, P}L/L ∈ K2(L; E) and we denote
by {Av, Pv}Lv/Lv the corresponding element of K2(Lv; Ev). We will abuse notation
and write {Av, Pv}Lv/Lv for the class of this symbol modulo pK2(Lv; Ev). We recall
from (3.8) that we have an equality

{Av, Pv}Lv/Lv = { Âv, P̂v}Lv/Lv = {Av, P̂v}Lv/Lv ,

where Pv = (P̂v, Pv) is the decomposition of P modulo pE(Lv) as in (3.5). Here we
used the fact that Av ∈ Êv[p].

The following Theorem 4.7 develops the above idea when F0 = Q. In this case we
are looking for a point P ∈ E(Q) inducing the desired symbol {A, P}L/L . For such a
point we will denote by PQp = (P̂Qp , PQp ) ∈ Ê(Qp)/p⊕Ep(Fp) the corresponding
local point.

Theorem 4.7 Suppose p is a prime and E an elliptic curve over Q satisfying the
assumptions of Theorem 4.2. Assume further that |E p(Fp)| = p, and consider the
extension L = K (E[π ]) constructed in Theorem 4.2. Suppose that the Mordell-Weil
group E(Q) has positive rank and there exists a global point P ∈ E(Q) of infinite
order such that the induced local point PQp ∈ EQp (Qp) has the property that P̂Qp ∈
ÊQp (Qp)/p is nontrivial. Then theglobal p-torsion0-cycles z1, z2 ∈ F2(XL) induced
by A, P and A, ω(P) respectively lift the group

∏
v|p F2(XLv )nd � Z/p ⊕ Z/p.

Proof The assumption |E p(Fp)| = p implies that K = Q(
√
D) with D ≡ 1 mod 4.

Let μ(x) = x2 + x + c ∈ Z[x] be the minimal polynomial of ω = ωD over Q.

Claim 1: The symbol {Av, P̂v}Lv/Lv ∈ K2(Lv; Ev)/p is nontrivial.
To prove the claim, we consider the Kummer extension k0 = Lv

(
δ(Av)

1/p
) =

Lv

(
1
p Av

)
. Recall from Sect. 3.2.3 that the symbol {Av, P̂v}Lv/Lv is nontrivial if and

only if δ(P̂v) is not in the image of the norm map

Nk0/Lv : k×
0 → L×

v .

We consider the filtration {Êv
i
(Lv)}i≥1 of Êv(Lv) and the induced filtration {Di }i≥1

of Êv(Lv)/p (cf. Sect. 3.2.2). We claim that Av ∈ Êv
1\Êv

2
and it therefore induces

a nontrivial element of D1/D2. For, let v(Av) be the valuation of Av . Since Av is an
element of Ê(Lv) of exact order p, it follows by [35, IV.6, Theorem 6.1] that

1 ≤ v(Av) ≤ v(p)

p − 1
.
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The extension Lv/Qp is totally ramified of degree p − 1, and hence it follows that
v(p)
p−1 = 1 yielding the desired equality v(Av) = 1.

We note that the integer v(p)
p−1 = 1 is precisely the integer t0(φ) defined in [12, page

11, Lemma 3.5] where φ = [p] is the p-isogeny on Êv , which is of height one. Using

the filtered isomorphism (3.9), we deduce that δ(Av) ∈ U
1
Lv

\U 2
Lv
. It follows by [19,

Lemma 2.1.5] (see also [12, Lemma 3.5]) that the extension k0/Lv is totally ramified
of degree p with the jump in the ramification filtration of Gal(k0/Lv) happening at

s = p − 1. It then follows by [32, V.3, Corollary 7] that there exists a unit u ∈ U
p−1
Lv

such that the symbol algebra (δ(Av), u)p is nontrivial in Br(Lv)p. In fact, we can

conclude that u ∈ U
p−1
Lv

\U p
Lv
. For, it follows by [32, V.3, Corollaries 2 & 3] that

(δ(Av), u′)p = 0 for every u′ ∈ U
p
Lv
. The next key observation is that

(δ(Av), u)p 
= 0, for every unit u ∈ U
p−1
Lv

\U p
Lv

.

This is because the residue field of Lv isFp, and therefore we have an isomorphism (cf.

[12, Lemma 3.4])U
p−1
Lv

/U
p
Lv

� Fp. Thus, in order to prove the claim, it is enough to

show δ(P̂v) ∈ U
p−1
Lv

\U p
Lv
, or equivalently that v(P̂v) = p−1. Consider the inclusion

resLv/Qp : ÊQp

1
(Qp)/p ↪→ Êv

p−1
(Lv)/p,

sending P̂Qp to P̂v . This map is injective, because we have an equality NLv/Qp ◦
resLv/Qp = [Lv : Qp] = p − 1, which is coprime to p. Our last claim will then

follow once we show that P̂Qp ∈ ÊQp

1
(Qp)\ÊQp

2
(Qp). Let us assume otherwise

that P̂Qp ∈ ÊQp

2
(Qp), and hence P̂v ∈ Êv

2(p−1)
. Because 2(p − 1) > p, it follows

by the filtered isomorphism (3.9) and [12, Lemma 3.4] that P̂v (and hence also P̂Qp )

is a multiple of p, which contradicts our assumption that P̂Qp ∈ ÊQp

1
(Qp)/p is

nontrivial. This completes the proof of the Claim. The above computation shows that
the global 0-cycle z1 = [A, P]−[A, O]−[O, P]+[O, O] ∈ F2(XL) has a nontrivial

image (z1v, z1v) under the diagonal map F2(XL)/p
�−→ ∏

v|p F2(XLv )nd.
A byproduct of the proof of Claim 1 is that the following two maps are isomor-

phisms,

f : D1/D2 → Z/p, g : D p−1/D p → Z/p

x �→ {x, P̂v}Lv/Lv , y �→ {Av, y}Lv/Lv .

The extensions Lv and Lv are isomorphic as abstract fields. Therefore Claim 1
holds true also for the symbol {Av, Pv}Lv/Lv

∈ K2(Lv, Ev)/p corresponding to the
0-cycle z1v . Since P is defined over Q, it follows that Pv = Pv . Moreover, the map f
being an isomorphism implies that there exists some a ∈ F×

p such that

f (Av) = {Av, P̂v}Lv/Lv = a{Av, P̂v}Lv/Lv
.
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In other words, if we fix an isomorphism F2(XLv )nd
�−→ Z/p sending z1v to 1, then

the diagonal map � : F2(XL)/p → F2(XLv )nd ⊕ F2(XLv
)nd

�−→ Z/p ⊕ Z/p,
z �→ (zv, zv) maps z1 to the tuple (1, a).

Claim 2: The element �(z2) is Fp-linearly independent from �(z1) = (1, a), where
z2 is the 0-cycle z2 = [A, ω(P)] − [A, O] − [O, ω(P)] + [O, O] ∈ F2(XL).

The 0-cycles z2v, z2v correspond to the symbols {Av, ω̂(P)v}Lv/Lv , {Av,

ω̂(P)v}Lv/Lv
. Since P ∈ E(K ) ⊂ E(L), the point ω(P)v is the restriction of ω(P)p,

and hence it is none other than the complex conjugate,ω(P)v . The pointsω(P), ω(P)

induce elements ω̂(P)v, ω̂(P)v ∈ D p−1/D p. Since ω(P) + ω(P) = −P , and
P̂v ∈ D p−1/D p is nontrivial, at least one of these points induces a nontrivial ele-
ment of D p−1/D p. Without loss of generality, assume there exists m ∈ F×

p such that

ω̂(P)v ≡ mP̂v mod D p.
The isomorphism g then yields an equality

g(ω(P)v) = {Av, ω(P)v}Lv/Lv = m{Av, Pv}Lv/Lv .

To prove linear independence, it is enough to show

{Av, ω(P)v}Lv/Lv

= ma{Av, Pv}Lv/Lv .

Notice that we have {Av, ω(P)v}Lv/Lv = a{Av, ω(P)v}Lv/Lv . Thus, it suffices to

prove that the elements ω̂(P)v, ω̂(P)v induce distinct elements ofD p−1/D p. Suppose
for contradiction that they are the same. That is, ω̂(P)v ≡ ω̂(P)v ≡ mP̂v mod D p.
We have ω̂(P)v + ω̂(P)v = −P̂v , giving 2m = −1 in Fp. Moreover, ̂ω(ω(P))v =
m2 P̂v = cP̂v , where c = (D + 1)/4. That is, m ∈ F×

p is a solution to the system

{
x2 = c
2x = −1

,

which is a contradiction by Remark 4.6. ��
Remark 4.8 We believe that the condition of having a “good” rational point P ∈ E(Q)

is satisfied by a positive proportion of elliptic curves with positive rank over Q. As
we saw in the proof of Theorem 4.7, all we need is a point P such that P̂Qp ∈
Ê1(Qp)\Ê2(Qp). The latter can be checked computationally as follows.

(1) Compute the coordinates of a point P ∈ E(Q) of infinite order.
(2) Compute the coordinates of the induced local point P̂Qp ∈ E(Qp).
(3) Compute the coordinates of a local nonzero p-torsion point P0 ∈ E[p](Qp).
(4) Find a scalar λ ∈ Fp such that the x-coordinate of PQp − λP0 has negative

valuation.
(5) If the above valuation is exactly −2, then P is a point that satisfies the condition

of Theorem 4.7.
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When the ordinary prime p is small enough, this is a computation that can be carried out
in SAGE. As a case study, in the appendix Appendix A we carry out this computation
for the family of elliptic curves {y2 = x3 − 2 + 7n : n ∈ Z}, and the prime p = 7.

Remark 4.9 An interesting case to consider next is the following. Start with a pair
(E, p) that satisfies the assumptions of Theorem 4.2 with F0 = Q and consider
extensions M/Q of degree g < p − 1 such that p splits completely in M . Then we
still have a vanishing Br(XL·M ){p}/Br1(XL·M ){p} = 0, where L = K (E[π ]). An
analog of Theorem 4.2 gives

∏

v|p
F2(X(LM)v )nd � (Z/p)2g.

We see that as g gets larger, it becomes increasingly harder to find concrete criteria that
guarantee the lifting of this group to global 0-cycles. For example, consider the curve
E given by the Weierstrass equation y2 = x3 +2 and the prime p = 61. Then p splits
completely over the degree six extension Q(α), where α is a root of the polynomial
x6 − x4 + x2 − 3x + 3.

The key ingredient in the proof of Theorem 4.7 was that the two homomorphisms

f : D1/D2 → Z/p, g : D p−1/D p → Z/p

x �→ {x, P̂v}Lv/Lv , y �→ {Av, y}Lv/Lv

are isomorphisms and this was because the residue field of K (E[π ]) is only Fp. A
similar method can be extended to many more situations. For example the following
corollary describes a generalization to when L = F0(E[π ]) with F0/Q a quadratic
extension.

Corollary 4.10 Let (E, p) be a pair that satisfies the assumptions of Theorem 4.2.
Suppose that p � |Ep(Fp)|, but p||Ep(Fp2)|. Let F0/Q be a quadratic extension
having a unique inert place w0 above p. Set k = F0 · Qp. Suppose there exists a
point P ∈ E(F0)\E(Q) of infinite order such that the induced local point Pk ∈
E(k) has the property P̂k ∈ Êk(k)/p is nontrivial. Then the global p-torsion 0-
cycles z1, z2 ∈ F2(XL) induced by A, P and A, ω(P) respectively lift the group∏

v|p F2(XLv )nd � Z/p ⊕ Z/p.

Proof The proof is essentially the same as in Theorem 4.7.
In this case we have an isomoprhism of Fp-vector spaces (cf. [19, Lemma 2.1.4])

U
p−1
Lv

/U
p
Lv

� D p−1
Lv

/D p
Lv

�−→ Fp2 � Z/p ⊕ Z/p.

It follows by [32, V.3, Corollary 7] that there exists some B ∈ D p−1
Lv

/D p
Lv

such
that (δ(Av), δ(B))p 
= 0. We will show that we can take B = (Pk)v . Consider the
extension F = K (E[π ]) and denote by v0 the unique place of F below v. Since
p � |Ep(Fp)|, we have a proper inclusion F � L . It follows by Proposition 4.4 that
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K2(F · Qp; EFQp )/p = 0. This implies that for every C ∈ D p−1
Lv

/D p
Lv

which is the
restriction of some element defined over Fv0 , it follows (δ(Av), δ(C))p = 0. Since

U
p−1
Lv

/U
p
Lv

is two dimensional over Fp, every element B that is not in the image
of the restriction map resLv/Fv0

gives rise to a nontrivial symbol. The assumption
P ∈ E(F0)\E(Q) implies that we can take B = (Pk)v , which yields the desired
nonvanishing (δ(Av), (Pk)v)p 
= 0.

The rest of the proof of Theorem 4.7 carries through to show that the 0-cycles z1 =
[A, Pk]− [A, O]− [O, Pk]+ [O, O] and z2 = [A, ω(Pk)]− [A, O]− [O, ω(Pk)]+
[O, O] are Fp-linearly independent. The only difference is that we have to consider
also the case when K = Q(

√
D) with D 
≡ 1 mod 4 (see 2.9 for examples of elliptic

curves with potential CM by Z[i] which satisfy the assumptions of the corollary).
The computation of linear independence is in fact simpler in this case. The minimal
polynomial of ω is μ(x) = x2 − D, giving ω(P) = −ω(P). Since p > 2, it is clear
that the elements ω̂(P)v, ω̂(P)v induce distinct elements of D p−1/D p.

��

Extensions

We close this article by discussing alternative criteria of lifting when a “good” rational
point does not exist. We focus on the simplest case considered in Theorem 4.7, namely
when |Ep(Fp)| = p. In this case the point A ∈ E[π ] can no longer be used to produce
global 0-cycles. One needs to find instead two “good” points P, Q ∈ E(L) such that
the induced symbol {P̂v, Q̂v}Lv/Lv 
= 0. To look for such points we need to start with
points of infinite order living in intermediate extensions Q � F ⊆ L = K (E[π ]). In
the following paragraphs we develop this idea.

Suppose we have a local point Bv ∈ Ê(Lv) such that Bv ∈ Êl(Lv)\Êl+1(Lv) for
some integer 0 < l < p. Then it follows by [32, V.3, Corollaries 2 and 3] that the
map

D p−l/D p−l+1 → Z/p, x �→ {x, Bv}Lv/Lv

is an isomorphism. Thus, if we can find intermediate extensions K ⊂ M, F ⊂ L
and points P ∈ E(M), Q ∈ E(F) of infinite order such that the induced local formal
points P̂v, Q̂v lie in Êl(Lv)\Êl+1(Lv), and Ê p−l(Lv)\Ê p−l+1(Lv) respectively, then
the symbol {P̂v, Q̂v}Lv/Lv is nonvanishing in K2(Lv; Ev)/p. Then we can produce
a second Fp-linearly independent symbol using the complex multiplication, as we
did in the proof of Theorem 4.7. We next describe a potential algorithm to compute
such “good points” P, Q in a particular example. A similar method can be used more
generally, but the algorithm will require more steps.
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An extended example

To illustrate our method, we consider the case when the quadratic imaginary field
K = Q(ζ3), and p = 7. We consider the family of elliptic curves

{En : y2 = x3 − 2 + 7n, n ∈ Z},

so that the pair (7, En) satisfies the assumptions of Theorem4.2, for all n ∈ Z. Suppose
that for a certain value of n the condition of Theorem 4.7 is not satisfied. That is, there
is no good point P ∈ En(Q). For simplicity we will write E = En .

The Galois group G = Gal(L/K ) is cyclic of order 6, and hence there exist unique
intermediate subfields K ⊂ M, F ⊂ L such that [M : K ] = 2 and [F : K ] = 3.
Moreover, the extension L/K is totally ramified at p, p. This implies that there exist
unique places s, s ofM lying over p, p respectively and the extensionMs/Qp is totally
ramified of degree 2. Similarly there exist unique places t, t of F over p, pwith Ft/Qp

totally ramified of degree 3.
Suppose we can find global points B ∈ E(M), C ∈ E(F) such that B̂s ∈

Ê1(Ms)\Ê2(Ms), and Ĉt ∈ Ê1(Ft )\Ê2(Ft ). Their restrictions B̂v, Ĉv in Ê(Lv) lie
in Ê3(Lv)\Ê4(Lv) and Ê2(Lv)\Ê3(Lv) respectively.

Next consider the points ω(C), ω2(C) ∈ E(F). Similarly to the proof of Theo-
rem4.7, at least one of these points induces a formal point in Ê2(Lv)\Ê3(Lv). Call this
point C ′. Then there exists some scalar m ∈ F×

7 such that Ĉ ′
v ≡ mĈv mod D3, This

is equivalent to saying that the x-coordinate of the formal point Ĉ ′
t −mĈt has strictly

smaller valuation than the one of Ĉt . If it happens that Ĉ ′
t − mĈt ∈ Ê2(Ft )\Ê3(Ft ),

then the point Q = C ′ − mC is a “good" point. That is, Q̂v ∈ Ê4(Lv)\Ê5(Lv), and
since 3+4 = 7, our earlier discussion shows that {Bv, Qv}Lv/Lv 
= 0 ∈ K2(Lv; E)/p.
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Appendix A Computations with local points by Angelos Koutsianas

In this appendix we give more details about the computations we have done in order
to verify the existence of a “good” rational point P that Theorem 4.7 requires for the
family of elliptic curves

{En : y2 = x3 − 2 + 7n, n ∈ Z}.

Our computations are based on Remark 4.8.We consider the cases n ∈ [−5000, 5000]
with p = 7 and rank(En(Q)) = 1.

For a fixed value of n we define a = −2 + 7n. We recall that En has complex
multiplication by the ring of integers OK of K = Q(

√−3). It follows that p = 7
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splits in OK with 7 = ππ where π = 1+3
√−3
2 and π is the complex conjugate of π .

For the computations we need an explicit description of En[p](Qp).

Lemma A.1 With the above notation, it holds

En[7](Q7) = {( 3
√

θζ i3,±
√

θ + a) : for i = 0, 1, 2},

where θ is the root of f (x) = 7x2 − 4ax + 16a2 such that θ ≡ 6 (mod 7) and
i = 0, 1, 2.

Proof A symbolic computation shows that the 7th torsion polynomial of En is given
by

f7(x) = (7x6 − 4ax3 + 16a2)(x18 + 564ax15 − 5808a2x12

−123136a3x9 − 189696a4x6 − 49152a5x3 + 4096a6).

It follows by Example 2.4 that |En,p(F7)| = 7. Moreover, the leading coefficient of f7
is divisible by 7 and thus by [35, TheoremVII.3.4] we conclude that #En[7](Q7) = 7.
Therefore, it is enough to show that the above points have order 7 and coordinates
in Q7.

Let g(x) = 7x2 − 4ax + 16a2, then we can easily prove that the roots of g are

θ1,2 = 2a
1 ± 3

√−3

7
.

Supposewe embed
√−3 intoQ7 such that

√−3 ≡ 2+5·7+6·73+O(74). As a result,
we get θ1 = 2a(2+2 ·7+4 ·72 +O(73)) and θ2 = 2a( 27 +5+4 ·7+2 ·72 +O(73)).
Because v7(θ2) = −1 we understand that 3

√
θ2 /∈ Q7.

Let θ = θ1. Because θ ≡ 6 (mod 7) by Hensel’s lemmawe get that the polynomial
x3 − θ has a root in Q7. Furthermore, because ζ3 ∈ Q7 we conclude that

3
√

θζ i3 ∈ Q7
for all i = 0, 1, 2.

Let xi = 3
√

θζ i3 for i = 0, 1, 2. In order to finish the proof, suffices to show that the
polynomial

x2 − (x3i + a) = x2 − (θ + a),

has both of its roots in Q7. Because θ + a ≡ 4 (mod 7) Hensel’s lemma yields the
conclusion. ��

Having determined the set En[7](Q7), we follow the steps in Remark 4.8. We
focus on the curves En with rank 1. The most computationally expensive part is the
determination of the generator P of the free part of En(Q). In order to speed up the
computations we assume the finiteness of Tate-Shafarevich group.

Theorem A.2 Let n ∈ [−5000, 5000]. Under the assumption of the finiteness of the
Tate-Shafarevich group of E, the 86,68% of the rank one elliptic curves En satisfy
the hypothesis of Theorem 4.7, in other words there exists a “good” rational point P.
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Weak approximation for 0-cycles on a product. . .

Proof We have written a Sage [39] script1 that does all the computations we have
described in Remark 4.8 and Lemma A.1.

It is important to mention that there are 176 values of n for which we are not
able to compute the generator of the free part of En(Q). For the calculation of the
above percent we do not consider these 176 curves. The total amount of time for the
computations was 31 minutes in a regular personal computer. ��

The code can be found in https://github.com/akoutsianas/local_global_0_cycles.
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