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Penetration testing is a key practice toward engineering secure software. Malicious actors have many tactics
at their disposal, and software engineers need to know what tactics attackers will prioritize in the first few
hours of an attack. Projects like MITRE ATT&CK™ provide knowledge, but how do people actually deploy
this knowledge in real situations? A penetration testing competition provides a realistic, controlled envi-
ronment with which to measure and compare the efficacy of attackers. In this work, we examine the details
of vulnerability discovery and attacker behavior with the goal of improving existing vulnerability assessment
processes using data from the 2019 Collegiate Penetration Testing Competition (CPTC). We constructed 98
timelines of vulnerability discovery and exploits for 37 unique vulnerabilities discovered by 10 teams of pene-
tration testers. We grouped related vulnerabilities together by mapping to Common Weakness Enumerations
and MITRE ATT&CK™. We found that (1) vulnerabilities related to improper resource control (e.g., session
fixation) are discovered faster and more often, as well as exploited faster, than vulnerabilities related to im-
proper access control (e.g., weak password requirements), (2) there is a clear process followed by penetration
testers of discovery/collection to lateral movement/pre-attack. Our methodology facilitates quicker analysis
of vulnerabilities in future CPTC events.
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1 INTRODUCTION

Security is a ubiquitous concern that threatens the confidentiality of company/user data, the in-
tegrity of said data, and the overall availability of software systems. The onus of managing security
incidents can no longer rest solely on security experts; software engineers must seek out and mit-
igate security vulnerabilities before they can be exploited. Vulnerability assessment drives design
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decisions, implementation, and testing processes for both software engineers and security experts
(e.g., penetration testers, security response teams, tool developers). Through understanding the
causes, consequences, and mitigations for cybersecurity attacks, we can build proper defenses and
engineer more secure software.

Popular tools—such as Common Vulnerability Scoring System (CVSS) [21], Common
Weakness Scoring System (CWSS) [18], Common Vulnerabilities and Exposures
(CVE) [28]—facilitate shared understanding of vulnerabilities by providing unique identifiers and
descriptions, as well as characterizing vulnerabilities based on a variety of factors, such as the
complexity of their exploits (e.g., required privileges, attack vectors) and their impact on the con-
fidentiality, integrity, and availability of software assets. CWSS and the Open Web Application
Security Project (OWASP) [54] compute the likelihood of vulnerability discovery, discoverabil-
ity, but recognize that discoverability is difficult to quantify and often subjective. Some researchers
have proposed metrics to quantify discoverability using the time of vulnerability discovery, but
these metrics are often impractical, since accurate time of discovery is rarely available [20, 34].

In this work, we quantify discoverability by using logs and team reports from the 2019 Colle-
giate Penetration Testing Competition (CPTC) to construct timelines of vulnerability discov-
ery and exploit. We derived three metrics related to vulnerability discoverability from the timelines.
We mapped vulnerabilities to Common Weakness Enumerations (CWE) [30], which enabled
us to group vulnerabilities based on their shared weaknesses, compare our timeline-derived met-
rics across different groups of vulnerabilities, and examine mitigation strategies. Finally, we trans-
lated timeline events from a technical form to a standardized form by mapping them to MITRE
ATT&CK™ tactics and techniques, enabling us to glean insights into attacker behavior.

We designed our methodology with automation in mind and experimented with automating
MITRE ATT&CK™ mapping. With further automation and a steady stream of new CPTC data
each year, our methodology and metrics can be used to study vulnerability discoverability, mitiga-
tion impact, and attacker behavior in future competitions, while also observing patterns/changes
over time. All of these insights are valuable additions to the security community’s collective un-
derstanding of vulnerabilities and can help improve vulnerability assessment. We address the fol-
lowing research questions:

RQ 1: Speed of Vulnerability Discovery
Which types of vulnerabilities are discovered faster and more often than others? Met-
rics: Mean Time to Vulnerability Discovery (MTVD), Rate of Vulnerability Dis-
covery (RVD).

ROQ 2: Speed of Vulnerability Exploit
Which types of vulnerabilities are exploited faster than others? Metrics: Mean Dura-
tion of Attack (MDA).

RQ 3: Mitigation Impact
Which mitigation strategies are more effective at reducing the attack surface than oth-
ers?

RQ 4: Tactic Priority
What tactics did teams prioritize during their attack?

The remainder of this work is outlined as follows: In Section 2, we provide background knowl-
edge on cybersecurity competitions, the Collegiate Penetration Testing Competition, and tools
used for data collection/analysis. Section 3 describes related work that analyzes competition data
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or studies vulnerability discoverability. In Section 4, we describe our methodology for data collec-
tion, annotation, and analysis. Section 5 provides a discussion of our results. We discuss limitations
of our work, including concerns with the nature of competition data in Section 6. Finally, we sum-
marize our work and discuss future work in Section 7.

2 BACKGROUND

In this section, we provide background knowledge relevant to our work. Notably, we discuss
types of cybersecurity competitions, the Collegiate Penetration Testing Competition, and two tax-
onomies used for data annotation (Common Weakness Enumerations and MITRE ATT&CK™).

2.1 Types of Cybersecurity Competitions

Cybersecurity competitions are tools for providing hands-on, real-time experience with security
concepts as well as “educating young individuals who can design and create secure systems and
deploy these sophisticated tools to prevent malicious acts [48]” As outlined in Munaiah et al. [35],
cybersecurity competitions typically fall into one of the following categories:

o Capture the Flag: Participants compete to gain access to specific pieces of information (i.e.,
flags) that have been secured on competition servers. Example capture the flag competitions
include High School Capture the Flag (HSCTF)' and DEF CON CTF.?

Challenges: Participants compete in various challenges designed to assess their security skills.
Example challenges include those hosted by the National Cyber League (NCL)® and the
U.S. Cyber Challenge (USCC).*

Defensive: Competitors must defend their network against active attacks from a team of secu-
rity professionals. Competitors must “secure their infrastructure, root out persistent threats,
and monitor for malicious activity, all while maintaining an operational network [35] The
National Collegiate Cyber Defense Competition (NCCDC)® is a popular defensive com-
petition.

Enterprise: These competitions are typically restricted to security professionals as a means
of continued training and education.

King of the Hill: Competitors must defend their own networks from attack while actively
attacking other competitors’ networks. An example king of the hill competition is the In-
formation Security Talent Search (ISTS).°

Penetration: Rather than behaving as malicious attackers or as administrators securing a net-
work, competitors in penetration testing competitions take on the role of professional pen-
etration testers tasked with discovering as many vulnerabilities in the network as possible
while documenting their findings and providing recommended mitigations for discovered
vulnerabilities.

2.2 Collegiate Penetration Testing Competition

The Collegiate Penetration Testing Competition (CPTC) [12] is an annual event where teams
of undergraduate and graduate students from top universities compete to discover and exploit vul-
nerabilities in a fictional corporate software/network environment. CPTC has been held since 2015

Thttps://hsctf.com/.
2https://oooverflow.io/.
Shttps://nationalcyberleague.org/.
*https://www.uscyberchallenge.org/.
Shttps://www.nationalcedc.org/.
Ohttps://www.ists.io/.
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with competition software environments designed to reflect real-word systems—e.g., medical sys-
tems (2016), transportation industry applications (2018), and critical energy infrastructure (2020).
CPTC is a penetration testing competition, meaning teams are not attacking or defending against
each other and were not allowed to access any other team’s competition infrastructure. Each team
is given access to a sandboxed copy of the infrastructure and tasked with discovering vulnera-
bilities, suggesting mitigations, and documenting their process/findings. Competitors’ skills and
training varies based on their university and their personal experience. No training was provided
to teams by the CPTC development team/event organizers.

This work focuses on the collection, annotation, and analysis of data from the 2019 CPTC na-
tionals competition. Details about the 2019 event are included in Section 4.1. We also utilize data
from the 2018 nationals competition, which is described in detail in previous work [35, 36]. Briefly,
the 2018 nationals competition involved a competition infrastructure for the fictional Wheelz com-
pany, which provides ride-sharing services such as Uber or Lyft. Each of the nine competing teams
were given access to a sandboxed copy of the competition infrastructure, composed of four sub-
networks spanning 46 host machines. Three of the nine teams did not consent to their data being
used for research. 119 GB of Splunk log data was generated by the actions of the six consenting
teams, totaling 525,946,388 log events.

2.3 Common Weakness Enumerations

Common Weakness Enumerations (CWE) [30] is a community-curated collection of software
(and hardware) weaknesses that can be introduced at any point in the software development lifecy-
cle. These technology-agnostic weaknesses (e.g., buffer overflow, SQL injection, insecure defaults)
are common causes for specific vulnerabilities outlined in CVE [28]. CWE is organized as a hier-
archy of parent-child relationships, with CWE pillars at the top, and each pillar containing any
number of CWE bases, variants, or classes. A CWE class or base may be the parent of any number
of bases or variants, and CWE variants may be the parent of any number of other variants. For
example, CWE-759 (use of a one-way hash without a salt; variant) is the child of CWE-916 (use of
password hash with insufficient computational effort; base), which is the child of CWE-327 (use of
a broken or risky cryptographic algorithm; class), which is the child of CWE-693 (protection mech-
anism failure; pillar). The CWE hierarchy also contains composites—collections of two or more
distinct weaknesses that must exist simultaneously for a vulnerability to arise from them (e.g.,
session fixation). Composites are disregarded in this work.

2.4 MITRE ATT&CK™ Framework

MITRE ATT&CK™ is a curated knowledge base of tactics and techniques used by malicious actors
to discover and exploit vulnerabilities in a system [46]. Tactics answer the question, why did the
attacker perform an action?—the objective of the attack—while techniques (which are organized
by tactic) answer the question, how did the attacker perform an action?—the approach used for
an attack. For example, the discovery (TA0007) tactic collects techniques related to an attacker
trying to figure out the environment, such as account discovery (T1087), network service scanning
(T1046), and password policy discovery (T1201).

2.5 Splunk

Splunk” is an enterprise system that, at its core, facilitates fast and automatic log collection from
multiple hosts and sources (e.g., HT'TP connections, intrusion detection systems, bash/powershell
history). In addition, Splunk enables real-time monitoring (e.g., custom dashboards, alerting,

"https://www.splunk.com/.
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anomaly detection) and post-mortem analysis (e.g., distributed database indexing/querying, ma-
chine learning tools).

2.6 Term-Frequency-Inverse Document Frequency

Term Frequency-Inverse Document Frequency (TF-IDF), an information retrieval algorithm,
is a measure of the relative importance (or significance) of a word within a document compared to
its frequency of occurrence across all documents in a collection. The motivation behind TF-IDF is
to balance the tradeoffs between precision (rejecting irrelevant documents) and recall (retrieving
relevant documents) in the informational retrieval domain [43].

3 RELATED WORK

This section discusses related work on vulnerability discoverability and competition data analysis.

3.1 Vulnerability Discoverability

Quantifying the likelihood of a vulnerability being discovered—discoverability—is an active task
in the software security domain. OWASP computes the likelihood of a vulnerability being discov-
ered and exploited as a function of a variety of factors (e.g., the estimated number of potential
attackers, their skill level and motivation, ease of discovery, and ease of exploit) that are assessed
subjectively based on expert opinion [54]. CWSS uses likelihood of discovery (along with a num-
ber of other metrics) to compute a CWSS score that can then be used to prioritize assessment of
software weaknesses. CWSS specifications note that likelihood of discovery is often subjective and
difficult to measure [18].

Wilhjelm et al. proposed the promising Time to Vulnerability Disclosure metric—the time be-
tween the release date of the first affected version of the vulnerable source code and the date that
the vulnerability is disclosed to the public—as a proxy for likelihood of discovery. They noted that
using the date of vulnerability discovery would be more accurate, but is often not recorded and
opted for the vulnerability disclosure date as it is usually within 30-60 days of discovery [53]. Sim-
ilarly, Muegge et al. [34] attempted to collect the date of vulnerability discovery in open source
projects, but found that common vulnerability databases—such as CVE [28]—while containing in-
formation on the introduction of a vulnerability and the time it takes to fix a vulnerability, did not
reliably report vulnerability discovery dates. In a study by McQueen et al. involving 491 zero-day
vulnerabilities, the discovery date could only be identified for 15 vulnerabilities [20].

This lack of reporting for vulnerability discovery dates is a gap in our collective understanding
of vulnerabilities. There is a clear need for a dataset (and metrics) that reliably captures a vulnera-
bility’s time of discovery. In this work, we use evidence from Splunk logs and team reports to find
the time of discovery for vulnerabilities in the 2019 CPTC infrastructure.

3.2 Cybersecurity Competitions

Cybersecurity competitions—such as the National Collegiate Cyber Defense Competition
(NCCDC),? the Information Security Talent Search (ISTS),” and the U.S. Cyber Challenge
(USCC)¥—are effective tools for knowledge-sharing, training the next generation of security ex-
perts, and raising awareness of security concerns [3, 10, 44]. Additionally, cybersecurity compe-
titions can be designed to control variables and produce datasets that are valuable to security
research, which is an important endeavor given the lack of empirical security data [44]. Previous

8https://www.nationalcedc.org/.
“https://www.ists.io/.
Ohttps://www.uscyberchallenge.org/.
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work offers suggestions for designing, implementing, and hosting cybersecurity competitions [11,
49], as well as participating in them [45]. Other previous work has used survey results from com-
petition participants to assess the educational impact of cybersecurity competitions [3].

Previous work studying the data collected during cybersecurity competitions has primarily fo-
cused on analyzing network traffic: Bachupally et al. and Boger et al. both used data collected from
NCCDC to identify anomalies in network traffic indicating that a network may have been compro-
mised [5, 7]. Mireles et al. used network traffic from NCCDC to demonstrate a new methodology
for constructing attack narratives [24]. Moskal et al. used Intrusion Detection System (IDS)
logs from CPTC to evaluate a new approach to aggregate IDS logs that revealed latent similarities
between attacks [33]. Moving away from network traffic, Harrison et al. used system configura-
tion information and survey responses from NCCDC to confirm that commonly suggested security
measures do effectively improve the security stature of computer systems/networks [13].

Mirkovic & Peterson [25] provide a methodology for designing small-scale capture the flag com-
petitions to be used in classrooms as a learning activity. These Class Capture the Flag (CCTF)
exercises differ from normal capture the flag (CTF) competitions in that they (1) are targeted at
less skilled students, (2) take considerably less time to prepare and to complete, (3) provide students
with both defensive and adversarial experience, and (4) incorporate post-mortem discussions. Mc-
Daniel et al. [19] created GenCyber CTF competitions to expose high school students in summer
camps to security topics. These competitions incorporated “tutorials and hints into the challenges,
so participants could learn while doing [19]” Participants competed in 30 challenges spanning
topics such as security basics, tool usage, network reconnaissance, and digital forensics. Students
received flags upon completion of a challenge. McDaniel et al. found that GenCyber competitions
were effective learning tools capable of providing students with computer security knowledge and
experience.

Other research involving CTF challenges includes that of Svabensky et al. [47], which exam-
ined almost 16,000 written solutions to CTF challenges and found that the majority of challenges
focus on cryptography and network security but neglect human aspects of security (e.g., social
engineering, cybersecurity awareness). Kucek & Leitner [16] compared eight open source CTF en-
vironments and found that they offered very similar functionality, but varied widely in available
game configuration options (e.g., time limits, hint penalties).

Most relevant to our work is a study in 2019, which sought to characterize attacker behavior
by mapping timeline events from the 2018 CPTC dataset to MITRE ATT&CK™ tactics and tech-
niques [36]. We improve upon the process from Munaiah et al. [36] by observing and utilizing
patterns in the data to streamline mappings. Additionally, Munaiah et al. (1) only examined vul-
nerabilities and timeline events for a single team, (2) did not map vulnerabilities to CWE, (3) did
not attempt to automate classification, and (4) did not attempt to measure vulnerability discov-
erability. To our knowledge, our work is the first to use cybersecurity competition data to study
vulnerability discoverability.

4 METHODOLOGY

Figure 1 summarizes our methodology, as discussed in the remainder of this section.

4.1 Step 1: Data Collection

In 2019, 10 teams of college students competed in the CPTC nationals event hosted at the Rochester
Institute of Technology on Nov. 22-24, 2019. The 2019 competition centered on the fictional Di-
noBank network infrastructure, which consisted of six subnetworks: banking (bank), corporate
(corp), three bank branches (spring, gotham, and metro), and Virtual Desktop Environment (vdi).
Each bank branch had between one and three bank teller machines, one or two workstations, and
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Fig. 1. Methodology.
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Fig. 2. DinoBank network topology.

Table 1. Summary of DinoBank Subnets and Hosts

Subnets
Hosts bank corp spring gotham metro vdi Total
Linux 7 1 0 0 0 7 15
Windows 0 7 3 6 4 6 26
Total 7 8 3 6 4 13 41

a data server. The bank subnet contained seven hosts, including the primary bank website, mon-
itoring/reporting, money transferring, customer service, and a database server. The corp subnet
contained eight hosts, including Windows server management, a Microsoft Exchange server, aux-
iliary website hosts, and the central database server. Teams had control over 12 hosts in the vdi
subnet and were tasked with discovering vulnerabilities in the other five subnets. Teams were not
allowed to access the competition infrastructure with personal devices. The vdi subnet also had
a nameserver that teams were not allowed to access. Table 1 summarizes the fictional DinoBank
infrastructure. A network topology for the DinoBank infrastructure is included in Figure 2.
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Table 2. Data Summary

Vulnerabilities

Team Discovered Complete Timelines Logs Collected
To1 18 7 367,099,634
To2 9 3 464,825,978
To3 14 7 361,042,023
To4 9 5 422,316,180
To5 9 5 438,572,452
To6 6 2 460,129,988
TOo7 17 7 367,166,162
To8 6 3 420,081,778
T09 6 2 340,866,472
T10 4 4 422,800,522

Total 98 45 4,064,901,189

Competitor machines were monitored and 83 different types of logs (Splunk source types)—bash
history, powershell transcripts, network connections, intrusion detection system alerts, and so on—
were collected using Splunk. Over four billion logs were collected in Splunk and teams made 98
vulnerability discoveries. We do not know the total number of vulnerabilities that were purpose-
fully implemented in the competition infrastructure, but 37 unique vulnerabilities'! were outlined
in team reports. Those 37 unique vulnerabilities were mapped to CWE (outlined in Section 4.3).
Evidence gathering (outlined in Section 4.2) yielded 45 complete attack timelines spanning 19 of
the 37 unique vulnerabilities. Table 2 summarizes the data collected.

Teams also submitted reports outlining the vulnerabilities they discovered and the steps
they took to discover them (e.g., executed commands, documented decisions, proof of discov-
ery/exploit). The Splunk logs and team reports are critical building blocks for the remainder of our
methodology.

4.1.1  Ethical Considerations. We received approval from our university’s Institutional Review
Board to preform this research involving data collected from human subjects. All data collected is
anonymous and contains no personally identifiable information: (1) competitors were not allowed
to use personal machines to access the competition infrastructure, (2) Splunk logs and team reports
are associated with team numbers, not individual team members, and (3) team numbers cannot be
used to identify the students on the team or their university. Additionally, all teams signed a waiver
acknowledging that their data would be anonymous and available for research purposes.

4.2 Step 2: Evidence Gathering

A comparison of the 98 vulnerability discoveries revealed 37 unique vulnerabilities. Table 3 shows
the 37 unique vulnerabilities discovered and which teams discovered them.

We gathered evidence corroborating discovery and exploitation details in team reports by query-
ing Splunk. The events (logs) in Splunk reveal a wealth of information about the actions teams
took during the competition. The most useful of these events revealed which commands teams
ran (bash history, powershell history), the duration of those commands (ps output), the web pages
that teams accessed (HTTP connections), and the internal services that teams connected to (TCP
connections).

We disregard a handful of reported vulnerabilities that dealt with the ATM and IVR systems, as logs from those systems
were not collected in Splunk.
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Table 3. Vulnerabilities Discovered and Exploited
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While our approach is similar to previous work by Munaiah et al. [36], we observed patterns in
the data that allowed us to streamline the process. The types of Splunk queries vary based on the
actions that teams took and the tools/commands that they used, but the following processes were

derived based on our observations and facilitated faster manual evidence gathering:

e Network Service Scanning: All exploits begin with the team scanning the network for
hosts and services running on those hosts. This typically involved teams running nmap to
enumerate hosts/services on specific subnets. For example: nmap -T4 -sV 10.0.2.0/24

-vv. During evidence gathering, we queried Splunk for a bash history event showing the
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command used for network service scanning and then verified that the command actually
ran by finding a ps event with the identical command running.

Remote Connections: Whenever a team report indicated a connection to a target host,
we queried Splunk for an outgoing connection from the vdi subnet to the target host and
an identical incoming connection to the target host. For example, if a team connected from
10.0.254.203 (team host) to 10.0.1.12 (target host) over FTP (port 21), then we would search
Splunk for an outgoing TCP connection logged on the team host and then search for a match-
ing incoming TCP connection logged on the target host.

Using timestamps from Splunk events, we were able to build timelines of discovery and ex-
ploit for each vulnerability. As an example, we will outline the process Team 01 took to discover
and exploit vulnerability 004 (arbitrary code execution via Postgres). The report shows that Team
01 discovered a PostgreSQL database running on 10.0.2.100 (target host) and was able to au-
thenticate to the database using default credentials via the command psql -h 10.0.2.100 -U
postgres. Using Splunk, we found evidence of the team performing network service scanning to
map the potential inputs into the target host’s subnet: nmap -n 10.0.2.0/24 -T5 -oA pingscan
(bash history and ps output). We also verified that the team connected to the database using the
command outlined in the report: psql -h_10.0.2.100_-U_postgres (ps output). Next, the team
created a shell script (k. sh) that runs some Python code:

#1/bin/sh
python -c 'import socket,subprocess,os;s=socket.socket(socket.AF_INET,socket.SOCK_STREAM);s.

connect("10.0.0.1",1234));0s.dup2(s.fileno(),0);o0s.dup2(s.fileno(),1);0s.dup2(s.fileno(),2);
=subprocess.call(["/bin/sh","-i"]1);"

Bash history logs in Splunk reveal the team creating k. sh: vim /tmp/k. sh. The team proceeded
to run the commands python -m SimpleHTTPServer 80 and nc -1 8888 -v;the former verified
from bash history logs; the latter could not be verified, but we consider this timeline complete, as
the time of discovery and the time of exploit do not rely on whether that command was executed.
The team then ran the following command inside of the PostgreSQL shell: COPY cmd_exec FROM
PROGRAM ’wget 10.0.254.204/s.sh -0 /tmp/k.sh; bash /tmp/k.sh &’ ;. While we cannot
see Postgres shell commands due to a limitation in logging capabilities, periodic logs of the output
of ps revealed that the code inside k. sh was executed by the postgres user on the target host. All
of this evidence from Splunk is timestamped, allowing the creation of the timeline in Table 4.

4.3 Step 3: Data Annotation

4.3.1 MITRE ATT&CK™ Mapping. The timelines provide a wealth of information, but insights
are not immediately accessible due to the highly specific nature and granularity of the log data.
To obtain more generalized insights, we manually mapped each event in a timeline to a MITRE
ATT&CK™ tactic and technique using a similar approach to Munaiah et al. [36]. In this section,
we outline the mapping decisions we made with examples. Due to the nature of the competition,
we removed the following tactics from consideration:

e Initial Access: Since teams were granted access to the network infrastructure, they did not
need to obtain initial access.

e Resource Development: Any custom tool/script implementation that teams may have
done would have been completed prior to the start of the competition.

e Defense Evasion: Since teams were given permission to discover vulnerabilities in the com-
petition infrastructure, they did not need to evade detection.

o Exfiltration: Teams were explicitly forbidden from exporting any data from the competition
infrastructure.
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Table 4. Example Timeline of Vulnerability Discovery and Exploit
Epoch Time Log Type Log Description
1574473453 bash_history nmap -n 10.0.2.0/24 -T5 -oA pingscan Network service scanning.
root 30283 . nmap . .
1574473588 ps ~sn_10.0.2.0/24_-0G_2-hosts. txt Network service scanning.
root 22092 . psql Authentication to remote Postgres
1574475207 ps -h_10.0.2.100_-U_postgres server using default credentials.
{‘“src_ip’’:¢“10.0.254.201"’, . . .
1574475214 streamitcp ..., “‘dest_ip’’:‘10.0.2.100" ", ;;enfecvaizgge‘feim‘)te connection
“‘dest_port’’:5432} p :
1574475402 bash_history vim /tmp/k.sh Creation of k. sh bash script.
1574475486  bash_history python -m SimpleHTTPServer 8@ Opening a Python HTTP server.
root 27660 python .
1574475492 ps -m_SimpleHTTPServer_80 Opening a Python HTTP server.
N/A N/A nc -1 8888 -v Starting a Netcat listener.
COPY  cmd_exec FROM ~ PROGRAM — "wget Postgres query that executes arbi-
N/A N/A 10.6.254.204/s.sh -0 /tmp/k.sh; bash  °° gcodg « ysh)
/tmp/k.sh &’; y T
postgres 26363
1574475505  ps python -c_import_socket ... Cg:tterr‘tess szerk(;;rgareiic};l(::t(l by
p=subprocess.call([¢‘/bin/sh’’, <‘-i’"1); poste g )

We used the following approach for mapping timeline events to tactics and techniques:

(1) Infer Attacker Objective: Given a timeline event and its associated metadata, we inferred
the objective of the attacker. For example, consider the first event in Table 4. The team used
nmap, a network scanning tool, targeted at a competition subnet. We can infer that the ob-
jective of this event is to enumerate hosts/services on the target subnet.

(2) Assign Tactic: Given the inferred objective of a timeline event, we assigned the most ap-
propriate tactic. Since the nmap event in our example both scans the subnet and saves the
output to disk (-o flag), we assign two tactics to this event: discovery and collection. Map-
ping to multiple tactics, when applicable, allows us to capture a more complete picture of
attacker behavior. If the nmap event was not saving the output to disk, then we would only
have assigned the discovery tactic.

(3) Assign Technique: Each tactic has an associated set of techniques. After assigning a tactic
for an event, we searched the associated techniques for the one that most closely matched
what the attacker did. Since nmap is a network scanning tool, the most appropriate discovery
technique is network service scanning. However, since the example event was also mapped
to the collection tactic, we also assigned the automated collection technique.

Here is a summary of our common mapping decisions, which should serve as precedents for
future CPTC analysis:

o Network scanning a host/subnet was mapped to the discovery and collection tactics and
the network service scanning and automated collection techniques when the scan results were
saved to disk. Otherwise, we mapped to just discovery and network service scanning.

e Connecting to a service on another host (e.g., Postgres, ssh) was mapped to the lateral
movement tactic. Technique mapping depended on the actual method of connection; typ-
ically valid accounts and/or remote services. We recognize that valid accounts is an initial
access technique, but when teams were not using remote services for lateral movement, valid
accounts is the most appropriate description in the MITRE ATT&CK™ framework for their
activities.

e Collection of data from a web service (e.g., phpinfo) was mapped to the collection tactic
and the data from local system technique.
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e Running code-based exploits (e.g., XSS) was mapped to the execution tactic. Technique
mapping varied depending on the nature of the event.

e Any event with the objective of privilege escalation (e.g., bypassing broken authorization)
was mapped to the privilege escalation tactic. Technique mapping varied depending on the
nature of the event.

e When we found evidence of teams manually visiting web pages looking for sensitive
information, we mapped these events to the discovery and collection tactics. However, we
could not find an appropriate technique in the MITRE ATT&CK™ framework, so we labeled
the technique for these events manual search for sensitive information in webpages.

e When we found evidence of teams preparing for attack (e.g., moving files around, writing

quick one-use scripts), these events were mapped to “pre-attack” for both tactic and tech-

nique, since we could not find an adequate mapping in the MITRE ATT&CK™ framework.

TCP/HTTP connections and ps logs verifying another log event were mapped to the

same tactic and technique.

One of the authors completed the mapping process for all timeline events. The mappings were
reviewed by another author and disagreements were discussed until agreement was reached.

4.3.2 CWE Mapping. During vulnerability assessment, comparing vulnerabilities to software
weaknesses (e.g., CWE [30]), attack patterns (e.g., CAPEC [27]), and related vulnerabilities (e.g.,
CVE [28]) enables software engineers and other security practitioners to learn from past security
mistakes. In this work, we mapped vulnerabilities from team reports to CWE, which enabled us to
group related vulnerabilities together for analysis and study their mitigation strategies.

The CWE project outlines an explicit process for mapping vulnerabilities to CWE entries [31].
Two of the authors followed this process closely, using the “view” method for mapping CVE to
CWE suggested by CWE. The process we followed was:

(1) Choose View: Choose a CWE view (one of software development, hardware design, or
research concepts) to start with. For the majority of vulnerabilities, we used the Research
Concepts view, as it is the most complete.

(2) Identify Pillar: Read the descriptions for the higher-level categories (called pillars) within
the chosen view and identify those that are related to the vulnerability in question.

(3) Assign CWE: Traverse the children (CWE classes, bases, and variants) of each CWE pillar,
reading their descriptions. Continue recursively traversing the parent-child relationships
between CWEs until the most relevant/applicable CWE for the vulnerability in question has
been identified.

For example, vulnerability 001—default credentials in Postgres—is related to insecure defaults.
Starting from the Research Concepts view in CWE, the most closely related pillar is CWE-664 (im-
proper resource control). Expanding the pillar, we traversed the immediate child classes, bases, and
variants. We determined that CWE-665 (improper initialization) was the most relevant. We then
explored the immediate children of CWE-665 and determined that CWE-1188 (insecure default ini-
tialization) was the most relevant. After examining the children of CWE-1188, we determined that
they did not accurately capture vulnerability 001, so we stopped our CWE mapping at CWE-1188.

If CWE names and descriptions did not contain enough information for immediate classifica-
tion, then we searched CVE and Common Attack Pattern Enumeration and Classification
(CAPEC) [27] databases for keywords related to the vulnerability in question. Many CVEs and
CAPECs link to related CWEs, narrowing down the search space. For example, none of the CWE
pillar descriptions allowed us to immediately map vulnerability 018—malicious SSL certificates—so
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Table 5. Vulnerability Categories

Category Vulnerabilities Discoveries
CWE-284 006, 007, 008, 010, 013, 015, 017, 018, 019, 029, 034, 037 25
CWE-664 001, 002, 009, 012, 014, 021, 023, 024, 026, 027, 028, 031, 032 42
CWE-693 003, 005, 016, 036 9
CWE-707 004, 020, 033, 035 15
CWE-710 025 1
CWE-840 022 3
Insider Threat 011, 030 2

we searched CAPEC and found CAPEC-479 (malicious root certificate). The entry for CAPEC-479
linked to CWE-284 (improper access control). Using that information, we continued the mapping
process as normal.

Two of the authors independently completed mapping vulnerabilities to CWE. We computed
inter-rater reliability (Cohen’s k¥ = 0.39) using scikit-learn [40]. A Cohen’s k = 0.39 is considered
low. However, if we consider the hierarchical nature of CWEs and trace the authors’ independent
mappings to their respective pillars, then we can recompute inter-rater reliability for pillars (Co-
hen’s k = 0.67). This indicates that while mapping to specific CWE bases/variants is somewhat
subjective, mapping to CWE pillars is less subjective. After independent mapping to CWE, the
authors discussed their mappings and resolved any disagreements.

We utilized the pre-existing, hierarchical CWE framework to determine higher-level categories
(see Figure 3). This resulted in six vulnerability categories for analysis: CWE-284: Improper Ac-
cess Control, CWE-664: Improper Control of a Resource Through its Lifetime, CWE-693: Protec-
tion Mechanism Failure, CWE-707: Improper Neutralization, CWE-710: Improper Adherence to
Coding Standards, and CWE-840: Business Logic Errors. Additionally, we classified two vulnera-
bilities (011, 030) as insider threat, which is not captured in CWE. Our vulnerability categories are
outlined in Table 5. The vulnerabilities in this dataset span 60% of the high-level CWE pillars.

After disregarding categories with less than 10 complete timelines, we are left with the following
vulnerability categories for analysis:

o CWE-284: 8 vulnerabilities (006, 008, 010, 017, 018, 029, 034, 037), 13 complete timelines
o CWE-664: 6 vulnerabilities (001, 002, 021, 023, 027, 031), 24 complete timelines

4.4 Step 4: Metric Computation

As discussed in Section 3.1, quantifying vulnerability discoverability is an active task in the soft-
ware security domain. Existing metrics are either subjective or incomplete. We drew inspiration
from the field of software reliability testing to define three metrics in the spirit of Mean Time
to Failure [41]. We defined two discoverability metrics (Mean Time to Vulnerability Discovery,
Rate of Vulnerability Discovery) and one exploitability metric (Mean Duration of Attack) to aid in
summarizing and understanding attacker behavior in this dataset.

4.4.1 Discoverability Metrics. For each vulnerability in a category, we measured the time from
the beginning of the competition (epoch time 1574467200) to the first non-network service scan-
ning event in the vulnerability’s timeline. For example, when discovering vulnerability 001, Team
06 scanned the bank network for services at epoch time 1574475502. The difference between those
timestamps (the time to discovery) is 138.37 minutes. We call the average of each time to discovery
for vulnerabilities within a category the Mean Time to Vulnerability Discovery (MTVD). We
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Table 6. Classification Datasets

Dataset  #Logs # Unique Tactics # Unique Techniques

2018 261 23 35
2019 413 10 21
Combined 678 24 46

do not consider the timestamp for the first network service scanning event in a timeline to be the
time of discovery, because evidence suggests that all teams performed network service scanning
near the beginning of the competition and stored results for later use.

N
MTVDcategory = % Z{tdiscovery - tstart}i (1)

i=0
Each vulnerability was found by at least one team and at most 10 teams. We call the sum of
the number of teams that found each vulnerability in a category the total discoveries. For exam-
ple, in CWE-707, two different teams found vulnerability 004 and one team found vulnerability
033, making the total discoveries equal to three. The Rate of Vulnerability Discovery (RVD)
for a category is the total discoveries for the category divided by the product of the number of
vulnerabilities in the category times 10 (the number of teams that could have discovered each of

the vulnerabilities).

# vulnerability discoveries
RVDcategory =

— ()
# vulnerabilities X # teams
A lower MTVD and a higher RVD represents a more easily discoverable vulnerability category.

4.4.2  Exploitability Metric. For each timeline, the duration of attack is the time from the first
non-network service scanning event (the time of discovery) to the last timeline event, and the
Mean Duration of Attack (MDA) for a category is the average of the duration of attack for
each vulnerability within a category. A lower value for MDA indicates a more easily (or quickly)
exploitable category of vulnerabilities.

N
1
MDAcategory = ]T] Z{tend - tdiscovery}i (3)
o

4.5 Step 5: Classification Experiment

Manual mapping of timeline events to MITRE ATT&CK™ tactics and techniques requires a con-
siderable amount of human effort, as well as some subjectivity. To streamline analysis of future
CPTC data, we experimented with automated classification of tactics and techniques for timeline
events, using Linear Support Vector Classifiers (LSVC) and Logistic Regression (LR) classi-
fiers, both with and without Recursive Feature Elimination (RFE). In total, four models were
trained for each of the three datasets outlined in Table 6. For model features, we tokenized and
transformed raw Splunk logs into Term Frequency-Inverse Document Frequency (TF-IDF)
matrices. While TF-IDF features are typically used for natural language classification, we took
inspiration from Aussel et al., who used natural language processing based features for mining log
data [4].

Classification results (shown in Table 7) were poor (<40%) when models were trained on 2018
timeline events and tested on 2019 timeline events. We saw some improvement when using 2019
timeline events for training and 2018 timeline events for testing, suggesting the need for more
training data from future competitions before we can automatically map timeline events to tactics
and techniques. We saw significant improvement (precision, recall, f1 > 85%) when training models
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Table 7. Classification Performance on Validation Data

Train 2018/ Train 2019/ Train 2018+2019/

Test 2019 Test 2018 Test Leave-One-Out CV

Model precision recall f1 precision recall f1 precision recall f1
LSVC 0.13 0.20 0.13 0.37 0.23 0.26 0.85 0.91 0.87
Tactics LSVC+RFE 0.09 0.29 0.13 0.00 0.09 0.01 0.87 0.92 0.89
LR 0.25 0.38 0.28 0.31 0.08 0.11 0.86 0.88 0.87
LR+RFE 0.00 0.00 0.00 0.01 0.09 0.01 0.86 0.91 0.88
LSVC 0.12 0.30 0.16 0.31 0.21 0.24 0.79 0.84 0.80
Techniques LSVC+RFE 0.00 0.00 0.00 0.03 0.00 0.10 0.79 0.83 0.79
LR 0.12 0.31 0.18 0.25 0.23  0.27 0.87 0.90 0.88
LR+RFE 0.07 0.08 0.07 0.39 0.12 0.19 0.80 0.86 0.83

Table 8. Results for Discoverability/Exploitability Metrics

Metric Type Metric  Units Most Least
Discoverability, MIVD  Minutes CWE-664 (517.45) CWE-284 (596.43)
Y RVD  Ratio CWE-664 (0.400) CWE-284 (0.163)

Exploitability MDA Minutes CWE-664 (10.65) CWE-284 (279.44)

on both 2018 and 2019 timeline events and evaluating using leave-one-out cross validation, further
suggesting the need for more training data. We discuss more improvements in Section 7.1.

5 RESULTS

We computed our discoverability (MTVD, RVD) and exploitability (MDA) metrics for each vulner-
ability category using only the completed timelines within each category. Table 8 shows a ranking
of the metric scores (from most discoverable/exploitable to least) for each of the vulnerability
categories. Vulnerabilities in CWE-664 include improper session handling (e.g., session fixation),
insecure defaults, and sensitive information leakages (e.g., code comments, error messages). Vul-
nerabilities in CWE-284 include improper authentication (e.g., weak password requirements, pass-
words stored in plaintext, improper certificate validation) and lack of authorization mechanisms.

5.1 RAQT1: Speed of Vulnerability Discovery

RQ 1:  Which types of vulnerabilities are discovered faster and more often than
others?

Results: Improper resource control (CWE-664) vulnerabilities were discovered faster—
in terms of Mean Time to Vulnerability Discovery—and more often—in terms
of Rate of Vulnerability Discovery—than improper access control (CWE-284)
vulnerabilities.

The likelihood of vulnerability discovery is influenced by a variety of factors ranging from hu-
man behavior to technical reasons. One might expect that initial access (via authentication) and
authorization would be required before accessing sensitive resources, but our results, and CWEs
ranking, suggest otherwise.

One class of vulnerabilities in the CWE-664 category is CWE-200—exposure of sensitive in-
formation to an unauthorized actor—which encompasses seven vulnerabilities from CPTC team
reports. The CWE website curates a list of the top most dangerous software weaknesses, ranked
by prevalence and severity (based on CVE and CVSS data). CWE-200 was ranked #4 and #7 most
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dangerous in 2019 [26] and 2020 [29], respectively. In the CWE-284 category, CWE-862—missing
authorization—encompasses five vulnerabilities from team reports and was ranked #34 and #25
most dangerous in 2019 and 2020, respectively. Another ranking weakness from CWE-284 is
CWE-287—improper authentication—which encompasses five vulnerabilities from team reports
and was ranked #13 and #14 most dangerous in 2019 and 2020, respectively. Since vulnerabilities
in CWE-664 are consistently dangerous and discovered faster/more often than vulnerabilities in
CWE-284, mitigation of CWE-664 vulnerabilities should be prioritized. Our findings provide em-
pirical support for some of CWE’s top most dangerous weakness rankings, which is valuable, since
CWE’s rankings are based on sometimes incomplete CVE and National Vulnerability Database
(N'VD) [8] entries as well as often subjective CVSS scores [14, 51]. Our results strengthen the argu-
ment that vulnerabilities falling under CWE-664 need to be prioritized over those vulnerabilities
that fall under CWE-284.

5.2 RQ2: Speed of Vulnerability Exploit

RQ2:  Which types of vulnerabilities are exploited faster than others?

Results: Improper resource control (CWE-664) vulnerabilities are exploited faster (more eas-
ily) than improper access control (CWE-284) vulnerabilities in terms of Mean Du-
ration of Attack.

Not only are vulnerabilities in CWE-664 more dangerous and discovered faster/more often, but
they are also exploited more easily than vulnerabilities in CWE-284, making prioritization of mit-
igations for CWE-664 vulnerabilities even more important.

A reasonable assumption is that vulnerabilities that can be exploited via automated tools would
be exploited faster than vulnerabilities that require manual human effort. However, our results
indicate the opposite: automated tools could exploit vulnerabilities in authentication and autho-
rization mechanisms (CWE-284), but discovering and exploiting vulnerabilities in CWE-664 (e.g.,
insecure default passwords/configurations, sensitive data leaks, account enumeration) requires
manual human time and effort. Despite the need for human effort, vulnerabilities in CWE-664
were discovered and exploited faster than vulnerabilities in CWE-284.

5.3 RQ3: Mitigation Impact

RQ 3:  Which mitigation strategies are more effective at reducing the attack sur-
face than others?

Results: Out of 62 unique mitigation techniques suggested by CWE, 51 only apply to one or
two vulnerabilities in our dataset and 59 are not applicable outside of a vulnerability
category.

Each CWE includes a list of potential mitigations that have been suggested and curated by secu-
rity experts. Using this information, we examined mitigations that apply to multiple vulnerabilities.
In total, we examined 62 unique mitigation strategies spanning the 37 vulnerabilities discovered by
penetrating testing teams. Note that we consider all vulnerabilities'? for all teams in our analysis
of mitigation strategies, not just vulnerabilities with complete timelines.

20ur analysis does not include mitigations for vulnerabilities that we could not map to CWE (i.e., Insider Threat). No
mitigations were suggested for CWE-840.
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Fifty-one out of 62 mitigation strategies only applied to one or two vulnerabilities, further vali-
dating the need to apply multiple mitigations to adequately protect a system from vulnerabilities
and exploits. We also found that 59 out of 62 mitigation strategies are not applicable outside of
a vulnerability category, suggesting the need to apply multiple unrelated mitigations to properly
secure a system.

For improper access control (CWE-284) vulnerabilities, mapping user roles to data/functionality,
performing access control checks related to business logic, utilizing pre-established authorization
libraries/frameworks, performing server-side access control checks, and utilizing OS access con-
trol mechanisms were the most effective mitigation strategies, covering 6 of the 11 vulnerabilities
in the category. We found that sanitizing error messages, handling exceptions internally (rather
than displaying them to the user), and reducing the attack surface are the most effective mitiga-
tion strategies for improper resource control (CWE-664) vulnerabilities, but these mitigations only
address 3 of the 13 vulnerabilities in the category. For protection mechanism failure (CWE-693) vul-
nerabilities, no single mitigation strategy addressed more than one vulnerability in the category.
Finally, for improper neutralization (CWE-707) vulnerabilities, assuming that all input is malicious
and implementing input validation could have mitigated all four vulnerabilities in the category.

5.4 RQ4: Tactic Priority

RQ 4: What tactics did teams prioritize during their attack?

Results: In the first three hours of the competition, teams discovered 21 vulnerabilities using
primarily discovery, collection, and lateral movement tactics. In the second three
hours, teams discovered 22 more vulnerabilities using collection, lateral movement,
and pre-attack tactics. The last seven hours of the competition saw sporadic collec-
tion, lateral movement, and pre-attack and only two vulnerability discoveries.

Teams were allowed access to the competition infrastructure from 7-10PM EST on Friday, No-
vember 22nd and 9AM-7PM EST on Saturday, November 23rd. Figure 4 shows the transitions
between MITRE ATT&CK™ tactics in timelines. Figure 5 shows timelines of MITRE ATT&CK™
tactics used by each team throughout the competition.

Most teams began by discovering their environment and/or collecting information to be used
later in the exploit. Some teams began trying to traverse through the competition infrastructure
(lateral movement) on Friday evening, and a few attempted to escalate their privileges and/or
began preparing to exploit vulnerabilities (pre-attack). When the competition resumed Saturday
morning, teams finished up the discovery phase and ramped up collection, lateral movement, and
pre-attack techniques. Of the total 45 complete timelines, 21 vulnerabilities were discovered on
Friday evening and 22 more were discovered in the first three hours on Saturday morning.

The MITRE ATT&CK™ framework has 215 techniques spanning 14 tactics. If we exclude the
techniques belonging to tactics that we did not map to, then we are left with 112 techniques. Teams
only used 21 unique techniques, the most common being network service scanning, automated
collection, and lateral movement via valid accounts and remote services. This suggests that miti-
gations for these activities should be prioritized.

5.5 Summary of Results

In summary, we found that improper resource control (CWE-664) vulnerabilities were discovered
faster and more often and exploited faster than improper access control (CWE-284) vulnerabili-
ties. Additionally, we found that teams followed a similar process for vulnerability discovery and
exploit; teams performed most of their discovery, collection, and lateral movement tactics within
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the first three hours before transitioning away from discovery to pre-attack in the second three
hours. Finally, we found that the majority of mitigations recommended by CWE only apply to one
or two vulnerabilities; multiple mitigations spanning different categories of vulnerabilities need
to be implemented to properly secure a system.
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6 LIMITATIONS
6.1 Does Competition Data Reflect the Real World?

There is a wide range of cybersecurity competitions—defensive, capture-the-flag, king-of-the-hill,
penetration, and challenges—all with their own purposes and goals. A common concern is whether
cybersecurity competitions reflect the real world. More specifically, there are concerns about (1)
the goals of competitions being unrealistic, (2) the compressed timeline of events, (3) the contrived
nature of competition environments, and (4) treating college students as a proxy for security ex-
perts when analyzing competition data. We discuss these concerns below. In lieu of a real organi-
zation releasing the results of penetration testing for their infrastructure (beyond network packet
captures), we believe the data from this competition is the best available and contains a wealth of
potential insights that should not be ignored.

6.1.1  Realism of Goals. As stated on the CPTC website, the explicit goal of the competition is
“mimicking the activities performed during a real-world penetration testing engagement conducted
by companies, professional services firms, and internal security departments around the world [12]
The goal of real-world penetration testing is to discover as many vulnerabilities as possible, assess
their risks, and suggest mitigation strategies [9]. This is not always true for all cybersecurity com-
petitions. Indeed, gaining access to a piece of data for the sake of it (e.g. capture-the-flag), teams
actively defending their own network while attacking another (king-of-the-hill), or challenges to
test the skills of individuals/teams may not reflect the real-world security game—attackers discov-
ering and exploiting vulnerabilities with malicious intent.

6.1.2  Realism of Timeline. CPTC is intended to be a simulation of the first few hours of a sig-
nificant cyber attack. In the real world, responding to a security incident is often a high-intensity,
overwhelming, stressful, and time-sensitive process [52] of determining where a vulnerability ex-
ists, how it was exploited, and how it can be fixed. CPTC is analogous to this in that teams were
only given 13 hours to discover and report on as many vulnerabilities as possible.

6.1.3  Realism of Environment. While the legitimacy of competition environments is often under
scrutiny, we believe that CPTC has a realistic competition infrastructure. The CPTC development
team is a diverse group of industry professionals and academics. They use actual commercial and
open source software whenever possible, and when required to write custom software, they re-
search the software that would exist in the industry domain of the competition, often receiving
guidance/advice from experts or companies (e.g., Uber in 2018, Eaton in 2020). Many members
of the CPTC development team are professional penetration testers that use their experience to
design and implement vulnerabilities in the competition infrastructure.

6.1.4  Students vs. Experts. Industry professionals use CPTC (and other competitions) to identify
talent in cybsersecurity [6], so the competition covers material relevant to industry. To be invited
to a national CPTC competition, teams first have to compete in and win a regional CPTC event,
ensuring that these penetration testing teams are top-tier in terms of skill. Competitors have ac-
cess to the same tools and resources that a professional would have. While these are students, they
are an elite group; these students are the next generation of security experts. Additionally, there is
some evidence that students and professional software developers behave similarly when imple-
menting functionality with security implications. For example, Naiakshina et al. [37] replicated a
previous study [38] conducted with computer science (CS) students with professional software
developers. In both studies, participants were tasked with implementing registration functionality
for a social networking platform. Naiakshina et al. found that both CS students and professional
software developers behaved similarly when told explicitly to consider secure password storage
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and when using the same Java framework, concluding that “security developer studies conducted
with CS students can offer valuable insights [37]” While this is only one example, and other factors
could be at play, other studies have also found that computing students and professional developers

have similar security behaviors [1, 2, 15, 39].

6.1.5 Penetration Testers vs. Malicious Actors. We recognize that the actions of penetration
testers and malicious attackers may be different and that insights based on penetration testers
may not generalize to malicious attackers. However, the CPTC data provides a unique opportu-
nity to study penetration testers in a controlled environment, which is worth studying, given the
incomplete information for vulnerability discoverability/exploitability in the real world (see Sec-
tion 3.1). Additionally, there is some evidence that penetration testers and hackers follow a very
similar process for vulnerability discovery [50].

6.2 Incomplete Timelines

Of the 98 total vulnerability discoveries, 53 timelines could not be completed, either due to miss-
ing evidence in Splunk or a lack of information in team reports. For example, Splunk logs show
that a Postgres connection was active or a Metasploit console was running, but Splunk did not log
individual Postgres/Metasploit shell commands, which are crucial to corroborating certain attacks.
We have contacted the CPTC development team and asked them to implement logging for Metas-
ploit console and Postgres shell commands; Metasploit console logging was implemented in 2020.
There were also 28 instances of teams describing commands or web page access that could not
be corroborated using Splunk logs. We only use completed timelines in our metric-based analyses
(RQ1 and RQ2).

6.3 Mean Time to Vulnerability Discovery

The MTVD metric is based on the time from the beginning of the penetration testing competition to
the time of discovery for a vulnerability. We recognize that this measurement, being in minutes (or
hours), does not reflect the time to discovery of vulnerabilities in the real world, as they often exist
for days or years before being discovered. However, our purpose is to quantify relative vulnerability
discoverability, and the MTVD metric does that. While the MTVD measurements for this dataset
are in minutes, the metric can be calculated at different time scales (hours, days, or years) for other
datasets to achieve the same purpose.

7 SUMMARY & FUTURE WORK

In this work, we curated 98 timelines of vulnerability discoverability for 37 unique vulnerabilities
discovered by 10 teams in the 2019 Collegiate Penetration Testing Competition (CPTC). We
derived three discoverability and exploitability metrics from the timelines and compared those
metrics across categories of vulnerabilities with related weaknesses. We also examined the impact
of mitigation strategies (suggested by CWE) and attacker behavior using MITRE ATT&CK™ tactics
and techniques. The contributions of our work are outlined below:

e a publicly available dataset [23] of vulnerability discovery timelines from the 2019 CPTC
nationals event;

e a methodology for gathering evidence of vulnerability discovery using Splunk logs and vul-
nerability reports;

e a methodology for mapping reported vulnerabilities to their underlying weakness in CWE;

e an improved methodology for mapping events in an attack timeline to MITRE ATT&CK™
tactics and techniques;

e new insights into penetration tester behavior;
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e new metrics for measuring and comparing vulnerability discoverability; and
e an in-depth discussion of common concerns with competition data and how CPTC addresses
these concerns.

We found that vulnerabilities related to improper resource control (e.g., insecure defaults, sensi-
tive data leakage) were among the most dangerous according to CWE rankings, while also being
discovered faster/more often and exploited more easily than vulnerabilities related to improper ac-
cess control (e.g., improper authentication, lack of authorization). Our findings provide empirical
support for some of CWE’s top most dangerous weakness rankings. Software engineers can use
these findings to prioritize their vulnerability assessment processes. Examining suggested mitiga-
tion strategies from CWE revealed that no single mitigation technique is enough to sufficiently
secure a software system. We recommend that software engineers examine different types of vul-
nerabilities in the context of their software systems and implement mitigations for multiple vul-
nerabilities to adequately secure their software. Finally, we found that there is a clear process
employed by penetration testers: (1) discover as many vulnerabilities as possible while exploring
the infrastructure and collecting information to aid exploits and (2) move throughout the infras-
tructure while preparing to attack. Since penetration testers follow a similar vulnerability discov-
ery process as malicious attackers [50], we recommend that software engineers prioritize defenses
against discovery, collection, and lateral movement tactics. We also experimented with automating
MITRE ATT&CK™ mapping.

These are valuable insights that can inform vulnerability prioritization and mitigation tech-
niques for security practitioners, software engineers included. We intend to repeat this analysis
for future CPTC competitions, which will allow us to improve the collective understanding of vul-
nerability discoverability and exploitability. To facilitate future analysis, we discuss the following
directions for future work.

7.1 Automation

As previously discussed, we intend to use machine learning techniques to automatically map time-
line events to MITRE ATT&CK™ tactics and techniques. Initial results (discussed in Section 4.5)
from classification suggest the need for more training data. After we manually map 2020 timeline
events to tactics and techniques, we will re-evaluate our models trained on 2018 and 2019 data
and determine our next steps. We also intend to explore different models for classification, includ-
ing convolutional neural networks that use the previous events in a timeline to classify tactics
and techniques. Mapping timeline events to MITRE D3FEND™!3 or smaller frameworks, such as
the Cyber Attack Kill Chain [17] or the Action-Intent Framework [32] may also yield meaningful
insights while reducing the complexity of automated mapping.

We also intend to use machine learning and natural language processing techniques to automate
CWE mapping. We have started experimenting with different classification models, but there is
still much work to be done. Our previous work [22] has shown promise using word embeddings to
automatically cluster related vulnerabilities, which may be adapted to help automate CWE map-
ping. We may also be able to use other natural language processing techniques, such as latent
Dirichlet allocation. CWE classification models could suggest potential CWE candidates for vul-
nerabilities, narrowing the search space of CWEs for manual mapping and reducing classification
time and effort.

The evidence-gathering process (outlined in Section 4.2) currently requires a large amount of
manual human time and effort. We intend to automate this process as much as possible. There is

Bhttps://d3fend.mitre.org/.
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potential to apply machine learning models trained on existing manually curated timelines with
the goal of automatically identifying potential timelines in future competitions. To facilitate this,
we recorded the Splunk query used to narrow down the search space for every log event within
a timeline. These potential timelines would still need to be manually analyzed to determine if
they match attacks described in team reports, but that may take less time than manual curation
of timelines. Additionally, this automated approach could potentially identify failed attack paths,
which could benefit other areas of security research.

7.2 Analysis & Understanding of Trends

Since CPTC is an annual competition, repeating our analysis (and adding new analyses) each year
affords us an opportunity to study vulnerability discoverability and attacker behavior across the
dimension of time. We intend to study the insights from CPTC data each year with the goals of
(1) identifying trends in vulnerability discoverability and (2) observing changes in attacker behav-
ior. The insights gained from annual analysis of CPTC data will aid software engineers and other
security practitioners in vulnerability assessment.

7.3 Curated Insights Portal

We hope to build and maintain a publicly accessible website that presents the insights gained from
CPTC analysis in the form of graphs, visual timelines, and other curated metadata (e.g., mistakes
made, lessons learned, CVSS scores, mitigation strategies), similar in spirit to the Vulnerability
History Project (VHP).'* By presenting our insights with actionable recommendations, we can
aid software engineers and other security practitioners in vulnerability assessment and learning
from history.
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