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Abstract

The daily activities of cybersecurity experts and software engineers—code reviews, issue tracking, vulnerability reporting—are
constantly contributing to a massive wealth of security-specific natural language. In the case of vulnerabilities, understanding their
causes, consequences, and mitigations is essential to learning from past mistakes and writing better, more secure code in the future.
Many existing vulnerability assessment methodologies, like CVSS, rely on categorization and numerical metrics to glean insights
into vulnerabilities, but these tools are unable to capture the subtle complexities and relationships between vulnerabilities because
they do not examine the nuanced natural language artifacts left behind by developers. In this work, we want to discover unex-
pected relationships between vulnerabilities with the goal of improving upon current practices for post-mortem analysis of
vulnerabilities. To that end, we trained word embedding models on two corpora of vulnerability descriptions from Common Vul-
nerabilities and Exposures (CVE) and the Vulnerability History Project (VHP), performed hierarchical agglomerative clustering
on word embedding vectors representing the overall semantic meaning of vulnerability descriptions, and derived insights from vul-
nerability clusters based on their most common bigrams. We found that (1) vulnerabilities with similar consequences and based on
similar weaknesses are often clustered together, (2) clustering word embeddings identified vulnerabilities that need more detailed
descriptions, and (3) clusters rarely contained vulnerabilities from a single software project. Our methodology is automated and
can be easily applied to other natural language corpora. We release all of the corpora, models, and code used in our work.
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1. Introduction

A key goal of any software development team is to produce the most robust and secure software possible, but
security is an emergent property of software—software is only secure until a new vulnerability is discovered. Through
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studying historical vulnerabilities and understanding their causes, consequences, and mitigations we can learn to
engineer secure software. Prominent post-mortem analyses of vulnerabilities, by both developers and researchers,
involves the categorization and the computation of metrics, such as severity and impact [4, 5], but the natural language
descriptions of vulnerabilities are invaluable resources that reveal more nuanced information than just severity scores.

However, studying large corpora of security-focused natural language is a challenging task that can be simplified
using natural language processing techniques, as demonstrated in previous work: Pletea ef al. studied the sentiment of
developers’ natural language in GitHub commits/pull requests and discovered that security-related discussions tend to
be more negative. Munaiah et al. found that code reviews tend to miss vulnerabilities when developers are too vague
(low syntactic complexity) and make too many assertions (high propositional density) [9]. Meyers et al. explored
pragmatic characteristics of natural language (e.g. politeness, formality, uncertainty) in bug report discussions and
found that effective security conversations tend to be more polite and less formal [6]. Word Embeddings (WE) have
been used to identify bug reports related to security [10] and to match security professionals with security tasks [8].

Our goal is to discover new insights into historical vulnerabilities by developing a method of automatically in-
ferring the relationships between them. To that end, we train WE models on two corpora—189,734 vulnerability
descriptions from Common Vulnerabilities and Exposures (CVE) and 721 vulnerability descriptions from the Vul-
nerability History Project (VHP). Then we group vulnerabilities together, based on the semantic meaning of their
descriptions, using hierarchical agglomerative clustering. We derive insights about the relationships between vulnera-
bilities from the most common bigrams (sequences of two consecutive words) across vulnerability descriptions within
clusters. Our corpora, models, and code are available on GitHub'. We address the following research question.

RQ: What kinds of vulnerabilities are similar to each other? We expect vulnerabilities with the same conse-
quences (e.g. denial of service, integrity violations) and vulnerabilities with the same weaknesses (e.g. buffer overflow,
SQL injection) to be clustered together. We also expect vulnerabilities in the same project (e.g. Chromium, Apache
Tomcat) to be clustered together.

2. Background

Word Embeddings: WE are vector-space representations of the semantic meaning of words within a corpus.
WE are learned using neural networks, which compute fixed-length word vectors of real numbers representing the
semantic meaning of each word in a corpus [7]. The numeric values in a word vector represent different dimensions of
meaning associated with a word, such that words with similar meanings will have similar word vectors. For example,
the words ‘vulnerability” and ‘flaw’ will have similar word vectors because their meanings are similar and they are
used in similar contexts, whereas the words ‘hash® and ‘browser’ will have word vectors that are more dissimilar.
At a document level, word vectors can be added together and the resultant document vector represents a numerical
summary of the overall meaning of the document. Document vectors can be clustered to group semantically similar
documents together. However, these document vectors are not easily interpreted by humans, so we use them for
clustering and then examine common bigrams in clusters to derive insights, as described in the next section.

Common Vulnerabilities and Exposures (CVE): CVE? is a dictionary of publicly disclosed vulnerabilities (and
their descriptions) in software projects. Many taxonomies—e.g. Common Attack Pattern Enumeration and Classifica-
tion (CAPEC), Common Weakness Enumerations (CWE), National Vulnerability Database (NVD)—reference indi-
vidual CVEs, making CVEs a powerful tool for shared reference and understanding when discussing vulnerabilities.
We downloaded CVEs in CSV format from the CVE website.

3. Data Preprocessing, Modeling, and Clustering Methodology

Vulnerability History Project (VHP): VHP? is a museum of security mistakes curated by one of the authors
and students in computing majors at the Rochester Institute of Technology (RIT). VHP collects CVEs from four

! https://github.com/meyersbs/MLBDACP21
2 https://cve.mitre.org/
3 http://vulnerabilityhistory.org/
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Table 1. Postprocessed corpora statistics.

# Documents Total # Words Total # Unique Words Avg. Words/Document
CVE 189,734 5,334,268 122,896 28.11
VHP 721 51,861 5,434 71.92

Table 2. Word embedding model hyperparameters.

Algorithm # Dimensions Context Window Negative Sampling Rate Min. Word Frequency

Skip-Gram 150 5 10 5

open source projects: Chromium®, HTTPD’, Struts®, and Tomcat’. Students and researchers at RIT examine the entire
context of the vulnerabilities, including the CVE description, the fix, and the estimated origin commit, called the
vulnerability-contributing commit. These entries provide more detailed descriptions than standard CVE descriptions.
Descriptions, mistakes made, project associations, and discovery dates were exported using the VHP website’s API.

Human Annotations: We manually annotated each vulnerability in the VHP corpus with a set of security topics
(e.g. complex inputs, cryptography, integrity, spoofing) based on the vulnerability descriptions. In total, we manually
identified 132 unique security topics. These annotations represent our preconceived expectations for clusters.

The remainder of this section outlines our methodology for training WE models and clustering vulnerability de-
scriptions using document vectors derived from the WE models:

(1) Text Preprocessing: Before training WE models, we clean up the data by lowercasing and removing stop words
(nltk.corpus.stopwords), punctuation, and special characters. We also use regular expressions to replace version
numbers, numerical values, and hexcodes with special tokens (‘VERVER’, ‘NUMNUM’, and ‘HEXHEX’, respec-
tively). Finally, we lemmatize the words in each corpus using the WordNetLemmatizer implemented in NLTK [1].
Table 1 shows statistics for each corpus after preprocessing.

(2) Training WE Models: We trained two WE models, CVE_WE and VHP_WE, on vulnerability descriptions
from the CVE and VHP corpora, respectively. WE are learned using the implementation of word2vec (as described
in Mikolov et al. [7]) in the Python library gensim [12]. Following Mumtaz et al. [8], our WE models are skip-gram
models that learn 150-dimensional word vectors with a sliding context window of five and a negative sampling rate of
ten. We opt for a minimum word frequency of five since our corpora are smaller than those in Mumtaz et al.. Table 2
summarizes the hyperparameters we used.

(3) Clustering: We performed clustering on document vectors (computed from the WE models) for each vulnera-
bility in the VHP corpus. Document vector values were normalized to values between [—1, 1] using the MinMaxScaler
from scikit-learn [11]. We used hierarchical agglomerative clustering (implemented in scikit-learn) since we
do not know how many clusters there are in the VHP corpus and we expect clusters to also be related to each other. In
agglomerative clustering, each data point is initially considered its own cluster, then clusters are merged using a link-
age criterion and a distance metric. We use Ward’s linkage method, which minimizes the variance between clusters
being merged [13]. The implementation of Ward’s method in scikit-learn only supports Euclidean distance.

(4) Choosing the Number of Clusters (K): We performed agglomerative clustering starting at K = 3 and chose
the maximum value of K such that all clusters had at least two vulnerability descriptions in them, since singleton
clusters do not immediately provide any insight into the relationships between vulnerabilities.

(5) Interpreting Clusters: Document vectors are not very interpretable to humans, so we instead show the most
frequent bigrams within a cluster. We also examine the most frequent words that appear in at least half of the vulner-
ability descriptions within a cluster, as well as our own manual annotations of security topics.

4 https://zenodo.org/badge/latestdoi/67513158
3 https://zenodo.org/badge/latestdoi/67513281
% https://zenodo.org/badge/latestdoi/167394888
7 https://zenodo.org/badge/latestdoi/ 166920755
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4. Results

Using the approach outlined in Section 3, we determined the number of clusters (K) for the CVE_WE and VHP_WE
document vectors to be K = 14 and K = 11, respectively. Table 3 shows the number of vulnerabilities assigned to
each cluster and the ten most frequent bigrams within each cluster.

CVE_WE: We see that the majority (ten) of clusters contain vulnerabilities related to denial of service (DoS)
attacks, but these clusters are still diverse: Cluster 1 contains vulnerabilities involving memory access (use-after-
free) and arbitrary code execution, while cluster 2 involves race conditions in addition to use-after-free mistakes and
arbitrary code execution; Cluster 11 contains vulnerabilities involving buffer and integer overflows, while cluster 9
contains vulnerabilities where insufficient testing and coding/design mistakes led to DoS. The clusters not related
to DoS attacks are more interesting: Vulnerabilities in cluster 3 deal with origin policy violations in web browsers
and confidentiality violations, while cluster 10’s vulnerabilities seem to involve web applications/extensions, and
vulnerabilities in cluster 13 deal with URLs.

VHP_WE: Again, we see that most (eight) of the clusters contain vulnerabilities related to DoS attacks, but our
clustering approach identifies DoS-related vulnerabilities with nuanced differences: Vulnerabilities in clusters O and
6 both involve buffer overflows, but vulnerabilities in cluster 0 deal with javascript code and the Document Object
Model (DOM), while those in cluster 6 involve remote attackers and use-after-free coding mistakes; Cluster 10’s
vulnerabilities involve input validation and insufficient unit tests, while cluster 3’s vulnerabilities involve use-after-
free coding mistakes. Looking at clusters of vulnerabilities not related to DoS attacks, we see that vulnerabilities in
clusters 7 and 8 both involve origin policy violations, but those in cluster 8 tend to be design mistakes.

Interestingly, regardless of the WE model used to compute document vectors, our clustering approach identifies
a cluster of vulnerabilities (CVE_WE: 12, VHP_WE: 5) that are embargoed or contain little information (an average
of six and nine words per vulnerability description, respectively), showing that clustering using WE vectors could
potentially be used to identify vulnerabilities with descriptions that need more detail. This should be explored further,
since minimal vulnerability descriptions do little to aid in post-mortem analysis.

We expected to find clusters that only contained vulnerabilities from a single project, but that is only true for
two clusters (CVE_WE: 2, 12). 14 clusters (CVE_WE: 1, 4, 5, 6, 9, 10, 11; VHP_WE: 0, 1, 2, 3, 8, 9, 10) contain
vulnerabilities from at least three projects, with 11 of those containing vulnerabilities from all four projects (CVE_WE:
1,4, 6,9, 10; VHP_WE: 1, 2, 3, 8, 9, 10). Contrary to expectations, vulnerabilities were not clustered together by
project, suggesting that the natural language used to describe vulnerabilities transcends project boundaries.

RQ: What kinds of vulnerabilities are similar to each other? As expected, we observe clusters of vulnerabili-
ties with similar consequences (e.g. denial of service, information disclosure) and based upon the same weaknesses
(e.g. buffer overflow, use-after-free), but only in limited circumstances; we expected to see more varied clusters (e.g.
integrity violations, spoofing attacks, cross-site scripting, user interfaces), but that was not the case. During manual an-
notation, we noticed small groups of vulnerabilities involving technologies (e.g. archives, clipboards, pseudo-random
number generators), specific types of attacks (e.g. sniffing, man-in-the-middle, phishing), programming concepts (e.g.
recursion, type confusion, encapsulation), and security concepts (e.g. defense in depth, security by obscurity, ac-
cess controls)—none of the clusters capture these relationships, but they are still valid relationships that should be
considered during post-mortem analysis of vulnerabilities. Perhaps there are sub-clusters contained within the ones
automatically discovered that do capture these small relationships—we hope to explore this in future work.

5. Summary & Future Work

In this work, we explored the use of Word Embedding (WE) models and hierarchical agglomerative clustering
to discover unexpected relationships between vulnerabilities. Many of the resulting clusters contained vulnerabilities
with the same consequences (e.g. denial of service) and the same weaknesses (e.g. buffer overflow), but a lot of the
clusters we expected (e.g. man-in-the-middle attacks) to see were not found, suggesting the need to examine the more
granular (smaller) clusters in the hierarchy in future work. We found that contrary to our expectations, clusters did
not often contain vulnerabilities from only a single project. We also observed that clustering grouped vulnerabilities
with minimal descriptions and embargoed vulnerabilities together, which suggests that clustering WE can be used to
identify vulnerability descriptions that need to be more detailed.
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Table 3. Clusters identified via hierarchical agglomerative clustering.

Model Cluster  # Vulns. 10 Most Frequent Bigrams w/ Frequencies
0 2 shadow dom (10), fastcgi server (3), past end (3), http header (3), web server (3), null character (3),
dom document (2), document object (2), object model (2), denial service (2)
| 53 denial service (26), use free (16), arbitrary code (15), coding mistake (14), design mistake (14),
) cause denial (13), google chrome (13), execute arbitrary (10), third party (9), VERVER VERVER (9)
2 30 use free (23), denial service (19), google chrome (15), cause denial (13), coding mistake (12),
remote attackers (10), service attack (9), free vulnerability (9), arbitrary code (9), race condition (9)
3 34 origin policy (26), google chrome (12), web page (10), remote attackers (7), design mistake (7),
N url bar (7), web pages (7), access data (7), web browser (6), sensitive information (6)
4 146 coding mistake (37), denial service (37), remote attackers (31), google chrome (29), cause denial (23),
mistake made (13), cross site (13), design mistake (13), allows remote (13), attackers cause (10)
5 59 denial service (41), use free (28), cause denial (25), coding mistake (21), free vulnerability (21),
attackers cause (15), memory freed (13), google chrome (13), mistake made (11), service attack (11)
6 77 coding mistake (18), design mistake (14), http request (11), denial service (10), google chrome (9),
CVE.WE remote attackers (9), input validation (8), attacker could (8), apache struts (8), blank page (7)
7 41 remote attackers (10), google chrome (7), denial service (7), cause denial (6), coding mistake (5),
allows remote (5), spoofing omnibox (4), attackers cause (4), escape sequences (3), allowing remote (3)
3 1 denial service (8), buffer overflow (6), shared memory (6), javascript code (5), attacker could (4),
could cause (4), wrap around (4), invalid memory (4), xml file (4), heap buffer (4)
9 33 denial service (19), unit tests (16), coding mistake (15), design mistake (12), make sure (8),
lack testing (7), cve 2017 (7), mistake made (6), even though (6), specially crafted (6)
10 14 web applications (9), object prototype (6), quirks mode (6), new tab (5), coding mistake (5),
fullscreen widget (5), web page (5), web application (4), remote attackers (4), chromium extensions (4)
denial service (39), buffer overflow (27), cause denial (18), integer overflow (13),
11 45 remote attackers (12), coding mistake (11), attackers cause (10), heap based (9), google chrome (9),
based buffer (8)
12 123 use free (25), embargoed use (17), embargoed bounds (10), spoofing omnibox (9), free pdfium (8),
url spoofing (8), type confusion (8), embargoed url (7), bounds write (6), embargoed heap (6)
13 4 example com (5), vary header (5), bug report (4), origin policy (3), address bar (3), http example (3),
harmony proxy (2), web page (2), mime sniffing (2), proposed solution (2)
0 13 denial service (11), shadow dom (10), buffer overflow (8), double free (8), shared memory (6),
javascript code (5), design mistake (5), attacker could (4), cause denial (4), could cause (4)
| 74 denial service (17), attacker could (13), google chrome (13), arbitrary code (13), web applications (13),
VERVER VERVER (12), origin policy (12), coding mistake (11), design mistake (11), cross site (10)
’ 17 denial service (31), remote attackers (30), coding mistake (27), cause denial (21), google chrome (20),
allows remote (11), attackers cause (11), design mistake (9), mistake made (9), allowed remote (7)
3 105 denial service (32), coding mistake (19), cause denial (16), remote attackers (13), google chrome (12),
design mistake (12), simple coding (9), input validation (9), service attack (8), seems like (7)
4 37 use free (28), denial service (26), remote attackers (17), cause denial (17), google chrome (17),
arbitrary code (14), mistake made (13), free vulnerability (12), coding mistake (12), buffer overflow (12)
VHP.WE 5 144 use free (25), embargoed use (17), spoofing omnibox (13), url spoofing (10), embargoed bounds (10),
- free pdfium (8), type confusion (8), embargoed url (7), bounds write (6), embargoed heap (6)
6 46 denial service (43), cause denial (25), coding mistake (19), use free (19), buffer overflow (18),
attackers cause (16), remote attackers (14), google chrome (13), free vulnerability (12), service attack (11)
origin policy (17), web page (11), access data (6), object prototype (6), bug report (5), evil com (5),
7 12 .
cross origin (5), example com (5), vary header (5), remote attackers (4)
3 67 google chrome (17), remote attackers (13), design mistake (13), coding mistake (12), mistake made (10),
cross site (10), http request (9), origin policy (8), site scripting (8), chrome browser (7)
9 47 denial service (28), coding mistake (19), use free (17), google chrome (13), cause denial (13),
unit tests (12), design mistake (11), mistake made (10), seems like (9), buffer overflow (8)
10 60 denial service (20), unit tests (18), coding mistake (16), make sure (9), design mistake (8),

google chrome (7), input validation (6), code execution (6), service attacks (5), third party (5)
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As this was an exploratory study using WE for clustering natural language from vulnerability descriptions, there
is a wide range of potential future work. Going forward, we intend to examine how these clusters are related to each
other in the hierarchy. We also hope to explore other clustering algorithms (e.g. DBSCAN, K-Means, MeanShift) and
models trained on different sources of cybersecurity natural language (e.g. Common Weakness Enumerations). We
also want to explore topical word embeddings [3] and Latent Dirichlet Allocation (LDA) topic modeling [2]. More
importantly, we wish to explore the following research questions:

e RQ: How are vulnerability clusters related to each other? What can we learn about vulnerabilities and their
relationships by comparing super- and sub-clusters identified by hierarchical clustering?

¢ RQ: How are vulnerabilities related across the dimension of time? Based on past development experience,
we anticipate that similar types of vulnerabilities (e.g. XSS, integer overflow) are discovered and disclosed
around the same time. What can we learn from vulnerabilities discovered at a steady rate independent of time?

¢ RQ: Does training with more diverse corpora yield better clusters? We believe that training WE models
on security-focused natural language from other modalities—e.g. Common Weakness Enumerations, commit
messages for vulnerability fixes, code review comments—will result in better clustering, since the word (and
resulting document) vectors will have been learned using more natural language context.

e RQ: Can clustering with word embeddings capture more subtle relationships between vulnerabilities?
Contrary to our expectations, clustering did not group vulnerabilities dealing with similar concepts (e.g. inter-
nationalization and fonts, SQL and databases) together. Can we find a different set of training parameters or a
different clustering algorithm that results in vulnerabilities dealing with these concepts being clustered together?
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